

Digitized by Microsoft ${ }^{\circledR}$

Digitized by Microsoft ${ }^{\circledR}$

Digitized for Microsoft Corporation

 by the Internet Archive in 2008. From University of Toronto.May be used for non-commercial, personal, research, or educational purposes, or any fair use. May not be indexed in a commercial service.

ZOOLOGISKA BIDRAG

FRÅN UPPSALA

(ZOOLOGISCHE BEITRÄGE AUS UPPSALA)
SUPPL.-BD. I

UTGIFNA AF

A. WIRÉN

STUDIES
 ON MARINE OSTRACODS

PART I
(CYPRIDINIDS, HALOCYPRIDS AND POLYCOPIDS)
tage skogsberg

$$
\begin{aligned}
& Q L \\
& 444 \\
& 08557
\end{aligned}
$$

582006

Digitized by Microsoft ${ }^{\circledR}$

TILL BANKDIREKTÖREN

H. MANNHEIMER

GÖTEBORG

FRẢN FÖRFATTAREN

Digitized by Microsoft ${ }^{\circledR}$

PREFACE.

The present treatise is based for the most part on studies earried out by me at the Zoological Institution of the University of Upsala on material belonging to the st wedishitate Museum (Riksmuseum), Stockholm. For the purpose of carrying out verificatory investigations smaller collections have also been furnished by the Zoological Museumof the University of Upsala, the Christiania hoological Museum, the Copenhagen Zoological Museum and by Professors G. W. Méllere, Greifswald and G. S. BRamy, Sheffield. In addition the Ostracod material brought home by the , Michaet Sars North Atlantie 1)eep Sea Expedition", 1910 has been lindly entrusted to me for examination. - In order to study the oecology of the marine Ostrarods and to collect material for this group of animals I have spent some summer months (assisted partly by grants from the Swedish Royal Academy of Science) at the west coast of Sweden (the \%oological Marime Nitam at Kristineberg) and from December 1915 till June 1916 (with a grant from the (C . LILJEWALCH's trayelling scholarship fund) at the Labotatoive Russe de \%oologie at Villefrauche-sur-Mer and the Musée Océanographique de Monaen.

Among the Ostracod collections in the Swedish State If useum I fomnd the original material of P. T. CLete's work of 1900 (a part of wheh had been already published by (. W. S. Alrivhla's in 1899). On re-examining this material I verified that Comehoreiabispinose. C'. borealis, C. elegans and Microconchocin ('lousii (- Conchopcia curta J. Letmotil) wern correctly determined. On the other hand Petraconchueciu whlongu was incorrectly determined: the specimens on which this statement was based turned out to bekong to Buconchorciu Chierchiue G. W. Miller. See these species below. There was omly a single specimen of (omehecetth $(=$ Conchoecia) acuminute: this was a malo which was not yot mature (presumably belonging to the oldest larval stage). The length of this specimen was ${ }^{2} .1$ mm. the number of furcal claws seven. As far as could be seen the correctness of its determination was faidy eertain.

In the collections of this museum there is also a part of the original material of ('onchocciut
 1903). On re-examining this material I found that the determinations were correct.

In the collections of the Zoulogiral husenmof of We Universityof Upsala I found the original material of Phitomedes globosus and C'ypridine Romnombii Zoolog. bidrag. T'ppsala. Sirppl-IBC I
 seritiod. Fou the result of my re-examination of the lather form see the remark on the subgemus C'ypritina below.

The collection sent to me from the Koulogical Nusenmof (thristiania

 mined by Professor suis himsilf. For the results of my re-examination of this material see the respertive suectes below. (On the same oecasion ats this collection was sent to me Professor Sus- informed me that the original material of his work of 1887 -- which I asked permission (1) investigate - hat untortumately been completely lost.)

Fron the C'openhagen Zoologieal Museum I obtained a portion of the material om whech (i. S. Bhans based his treatise of 1902 a. The lollowing marine species were found in this eollection (the names are those used in (i. S. Brad I's treatise): Asterope oculata, A. lichenotes, C'udasterope fuscigera. C'. brecis. C.. stmilis. C'ypritina foreolute. ('. insolita. Pyrocypris umericana, l^{\prime}. ('hierchues, C'ypridinodes farus, Corlonocera crucnte, Conchoecia spinirostris, C. striuta and Euconchoccial Chierchiac. Of these species Asterope lichenoides, Cyclasterope brecis. Cypridimu invelata (aecording to (4. S. Bras)'s label = Cypridinu monopia CL.AUs) and Codonocera cruenta were representel by an empty shell and Cyclasterope similis, Cypridina insolita and Cypridinorles farus only by one valve. Becanse of this I thought it best not to deal with these forms at any length in this work. Asterope oculate and Cyclasterope fascigera are re-described by me behw. Conchoccit spinirostris (from lat. $26^{\circ} \mathrm{N}$. and long. $29^{\circ} \mathrm{W}$.) and Euconchoccia Chierchiae were correctly determined; see these speeies below.* For the result of my re-examination of Pyrocypris Chierchice see the remarks on the sub-genus Cypridina below. For the same reasons as are given at the place mentioned it did not seem convenient to me to deal in this work with P. americana, the other species of this sub-genus; there are in this collection a couple of mature individuals of this speeies. Conchocciu striuta is presumably incorrectly determined, but the material is so poor that it does not seem to be possible to arrive at a certain identification; I have accordingly refrained from trying to give any definite answer to the question as to the identity of this form.

Professor (G. IV. Müller kindly sent me at my request specimens of Cypridina
 my re-examination of these specimens see the former species below and my remarks under Asterope Milleri.

For the purpose of carrying out a verificatory investigation I wrote to Professor G. S. Brami for specimens of Asterope Mariae (IV. Bard) and A. teres (A. M. Norman). I obtained a mature female of the latter species; for the result of my investigation of this specimen see Asterope Mülleri below. I also received five specimens of the former species; the result of $m y$ investigation of these will be found under Asterope aberrate and A. norvegica below.

[^0]Only two of the species from the ..Micharl Sars" (see Gigantocypris Mitleri and Cypritina (Macrocypridina) castenea) have been treated in the prosent work. Alf the other Ostracod species of this expedition will be treated in a spectial work that I am preparing.

The first impulse to my studies of the marine Ostracods came from my highty esteemed toacher, Professor A. Appellöf. Upsala. It is with real pleasure that I take this opportunity of expressing to him my sense of gratitude - which has become more and more profound in the course of years - for the untiring interest with which he has followed the development of my work and for the never failing kindness and sympathy he has shown me on the numerous necasions when it was necessary to ask for his help.

To Professor A. Wrem the head of the Zoological Institution of the University of Upsala, where, as I pointed out above, the greater part of this work was carried ont, I beg to express my gratitude for all his kindness and interest during the past years.

At the same time I wish to thank the following persons as well for the help they have rendered me in connection with this work: Professor H. Theme and Phil. Dr. N. ObHyer, Swedish State Museum. Stockholm, Jr. H. Östargrex. Kristineberg. Professors G. O. Sils and
 Laboratoire Russe de Zoologie, Villefranche-sur- Dler, 1)r. J. Rucimad, Musée (océanographique de Monaco, Mr. Hexry Alexinder, Jecturer in English at the Thiversity of Lpaaja (for his skilful and untiring work in translating the present work), Herr G. LIANEALh (drawings of some figures; see Philomedes (Scleroconcha) Appellofi), Herr J. W. Wasiluxi) (Indian ink reproductions of most of my drawings of the group (ymmitinifomes), Frökn Auy Wistreis (Indian ink reproductions of my drawings of the Ifalucypriformes and Polycopiformes, some of the figures of the Cypridiniformes and all the figures in the general part of this work) and Fröken Gerda Juvgberg (the first two drawings of Cypridina (siphonostra) spinifera).

Finally I wish to tender my heartfelt thanks to Herr H. MINVIEI UGR. Bank Director. of Cothenburg. Owing to the present difficult conditions and the abomornally high priees, the printing of this treatise seemed almost impossible, and it is only because this exeerdingly generous benefactor stepped in and. tugether with some frionds of his, mate the financiat side secure that I have been able to have it printed.

INTRODUCTION.

> „It seems to me most desirable that minute, and even apparently trivial, features should be given in the descriptions of species".

C Sthiwibt*

In the present work there has been collected under the title of, s tudies on marine Ostracods", Part I a part of the results that have proceeded from the investigations that I have carried ont during the last few years on the marine representatives of the Ostracods, a gronp of C'rustacea which is in many respects particularly interesting, both to the zoologist and the geologist.

Thes work is not a monograph; the reasnos for this.

One criticism that may possibly be made against this work is that although it is rather voluminons. it has not the form of a monograph; a number of the many problems presented by the marine 0 stracods have been left quite untouched, and my efforts have been concentrated on others - some of them very heterogeneous in their nature.

I must readily admit the justice of this criticism. The type of the work seems anything but satisfactory to myself. It is, as the title itself shows, a conglomeration; some of its integral parts are quite independent of each other.

Although the marine Ostracods have been treated by a number of investigators in a comparatively large number of works, it may be said not withont justification that, on account of the uncertainty and superficiality that characterizes the great majority of these works, they constitute a subject that in many respects is almost entirely unknown. Under these circumstances it would of course have been most convenient to have directed these studies on a smaller systematic unit. for instance one family or even one genus, and to have submitted this to a fundamental and comprehensive examination or to have examined the Ostracod group as a whole from the point of view of a limited problem. In this way a result that was more favourable in many respects might certainly have been obtained and at the same time the treatise might have been more homogencous from a structural point of view, a real unit.

As a matter of fact this was the direction I intended at first to take. My first studies were concentrated on the Cypridinids and Halocyprids.

It soon became clear to me, however, that my investigations would have to procerd on other lines. There were several causes for this. The most important of these was the scarcity of material. A comprehensive and thorough examination of a group needs a matrrial rich in specimens and comprising a comparatively large number of species. For several reasons the greater part of my work had to be carried out at Upsala and in this town there was only the not too abundant material of the Swedish museums at my disposal. Moreover, during the periods I spent at the west coast of Sweden in order to study (Ostracods 1 soon diseovered how sparsely these groups were represented there - both witli regard to species and to individuals. I had the same experience as G. W. Motluer had previonsly at Naples with regard to the C'ypridinids; I found that specimens of these groups were so rare .,dass ich bakd die Lust vertoren habe, besonders nach ihnen zu suchen" (G. WI. Mitulif. 1894. p. 2, remark). Because of the circumstances under which I was working it was thus necessary for me almost completely to accommodate my studies to a material which had, on the whole. been furnished once for all. A fairly abundant material was at my disposal in some groups and my work has expanded round these; other groups, on the contrary, could unfortunately be treated only rather cursorily because of the scarcity of the material both in speeies and individuals. This may - at least partly - explain and aceount for the conglomerate character of the present work.

I myself look upon this treatise only as a preparatory work for the really exhanstive monographs on the various divisions of the Ostracods and the problems connected with them, which are awaited by everyone.

Among the problems that I was faced with during my studies of the marine 0 stracods and that can be adrantageonsly dealt with on the basis of a material like that which was at my disposal there was, in my opinion, one espectially that demanded a cpuick and thorough examination. This problem was that of classification and so I devoted most of my time and labour to it.

Other problems, such as the comparative morphology and histology of the forms, also need. of course, a new and thorough examination, as there is much to comect and add here too. They may, however, be said to be so well known alredly - eppecially from G. W. Metdrek's large monograph, 1894, which is sorixh in morphological and histological facts - that it is not absolutely necessary to reconsider them immediately if we are to hare a sound derelopment of our knowledge of this group of animals.

I do not mean by this that the main features of the current classification of the marine Ostracods are incorrect. On the contrary: als a matter of fact I think that it is onty necessary to alter these very slightly. The () stracods. like the drahrapods in wenmal. are chatacterized by what may be called a monpholegy that points outward. I comenduence of this is that a quite modem revision of the classification of this eroup of animals - i. . taking carefully into consideration as many characters as possible, both internab and extemal is mat likely to attain results that differ so much from those wained be older investigators. whome work is marked not only by too litte aceuracy but be the fact that attention is patil only om prati catly only to external characters, as a modern investigation of the chasxification wif lea ar aty the lower groups of worms. The latter are chatacterizel be a morphohes that - if 1 may - ay

The matn ubject this work is the classilimation of the martie" Oitrar uls.

Thi man f"ent Withe urrentorri -1 oncon .nr. .1. ". . -rric
 muporant tixas pmints, whike on the other hand, a careful insestigation of the inmer structure in these ermups is often likely In give good and important results.

What 1 refor to is the spectal elassification

 contirmed by the fullowing insestigations. Thus (2. W'. Motadek in his syoptic work on the
 and of the en the marime forms compose the vast majority. To judge from the most recently published works and from the experience I had myself in working out this treatise, the mmber is. in meditions. far from exhansted.

Undor these eiremmstanes it would be a great pity if the quality of the deseriptions of the species were not to correspond to their quantity.

Exen in Fra, D.1n1's work on the ('ytherids of the Baltie, 1888, we find on p. 1 the following statements, umfortmately only too true, which throw light on this state of affairs: ... C h maße aber bald emsehen. daß sich sehon dem Vorstudium zu eimer solehen Arbeit, d. h. der Bestinmmng der Arten, ganz erhebliche Sehwierigkeiten entgegenstellten. Selbst nach eingehender Prifung kome ich nicht mit Sicherheit angeben, ob meine Bestimmung wirklich richtig sej. Es lag dies theils daran, daß in der vorhandenen Literatur gar keine oder undmituente Zeichungon vorliegen, und doch dürfen gerade in dieser Thiergruppe genane Zeichmungen mbedingt nothwendig sein"
(i. II. MULLI:R states that, out of the 1719 Ostracod speeies inchoded in his work of 1912 . only 021 are to be considered as ,sichere", the remaining 798 are ,,unsichere Species". My own experience goes to show that even a rather considerably greater percentage of these species are to be denoted as uncertain.

On a eloser study of the mmerons diagnoses of marine species of this group that are fomm in the literature one cannot but be struck almost contimally by two facts: first the indefinite and uncertain nature of all that is written and secondly the fewness of the characters that are taken into consideration.

Most of these species are, as a matter of fact, so super ficially deseribed and reproduced - the diagnosis consists only of a general deseription of the habitus - that certain identification is quite impossible merely becanse of this.

This superficiality has had the result that obvious errors have very often crept in. Only a few authors, such as G. IV. MUllek and N. Hirscinann, seem to have troubled about any great exactitude with regard to details. But not even they ean escape criticism for lack of eare, a fact that I had an opportunity to observe, for instance. in the ease of G. W. MULLERR, in a number of verificatory investigations. As the conditions now are, it is at least equally probable, in the eases where a difference is found between the form investigated and the description or figure of a species formerly treated in the literature, that this deviation is due to lack of precision in the description or the figure as that the difference actually exists.

In arriving at a certain identification of species at least as much trouble is caused by the fact that too few characters have been taken into consideration as by the lack of exactness in preceding writers. A very large number of species. for instance, lave only the characters of the shell described. (i. S. Brady wrote, 1868 a p. 112: „By far the greater number of Ostracoda at present known have been deseribed from fossil specimens"; in the original descrip). tions of these forms of course only the charaeters of the shell have been taken into consideration. A rather large number of these species have been since identified with living forms, but the extent of the descriptions has not, however, been increased. G. S. Brabr himself has afterwards very much increased the number of species that are only described by shell characters. A good illustration of this mendesirable state of affairs is also shown by the fact that in (i. W. Hilume's large monograph on the Ostraeods of the Bay of Naples, undoubtedly the foremost work on this group of animals that we possess, the author has only included characters taken from the shell and the penis in the diagnoses of the great majority of the very numerous species belonging to the family Cytheridae. The appendages, thrir number of joints, bristles, ete. are, on the other hand, as a rule not included at all in these diagnoses. To this may be added that in almost all eases only a few appendages of these forms are reproduced. A number of this author's later works, e. g. that of 1908 , are even worse in this respect.

The situation in most groups is really sueh at the present time that if the locality of the find is situated near the type locatity of a previously deseribed species one may renture perhaps - though with hesitation - to establish identity, but if the two loealities are situated in regions that from the point of the view of theis fauna are different one is inclined not to make an identification, although there are no differences according to the diagnosis of the species and the figures. Only a few descriptions of species that have been carried out so fur can really be considered so complete and certain that merely on the basis of a comparison with them it is possible to distinguish minor systematic units, e. ge geographical sub-specios.

A natural consequence of the abovedescribed uncertanty and incompleteness of the descriptions of species is that the diagnoses of generat and families in this group of ammals are also characterized by great uncertainty and ineompleteness. Even the diagnoses of genera and families found in G. WV. MCluER's above-mentioned large monograph, 1894, are anything but satisfactory. Only a comparatively few characters are included in these. This is of course due to some extent to the fact that this investigator only had an opportunity of personally investigating in detail a rather limited number of species in each group. but on the other hand his intentions do not seem to have extended very far. A single typical example maly be given: In the diagnosis of the family Nesideidae we read concerning the mandible, p. 205: „Die Mandibel mit kräftigen Kaufortsatz, der + längere. 3 spitaige und cinige kloinere, cinfache Zähne trägt, zwischen den Zähnen entspringen Borsten: Taster dentheh viergliodrys. das letzte Glied mit starker Klaue; die Athemplate mit wenigen (3) strahlem, wom drame einer außerordentlich lang ist." In the diagnoses of the two genera of this family Xesiden. P. 267 , and Bythocypris, 1. 275 , this limb is not mentioned at all. The same thing is alan true with regard to the diagnoses of the ten species belonging to the former gomus amb with regard to the diagnosis of the only species of the genus Bythocypris. This limb, is only repme
 1. the mandiha quite similar in all these speries or is it subject to variation? No information is riven un this puint.

It is th boted that N. Hmsaldnave is his very fine essay on the Ostraned fama of the (inilf of Finland. 1912, hat givem a grood diagnosis of the gemus C'ythere.

In identifying previons! deseribed marine $O s t r a c o d s$ most investigators also show rery great superficiality and uncertainty:

The most striking instamer of this is probably d. Ci. Wicalk. In 1901 this writer published a work called ..Ostracodon aus Meresgrundproben, gelothet von
 almost half are stated to have hern previonsly fomed in Europe in a fossilized condition, in pust-miary, plincene, mincene, oligncene. cocene and chalk. Most of these species were from antaretic rewions and had not been found living in our Seandinavian seas. In other words, according to this author there was a great resemblance between the present antarctic Ostracod fauna and the Ostracod fama in Europe during the tertiary and chalk periods, a state of affairs. which, if it turned out to be correet, would be of the greatest interest. G. W. Mülueli, howerer. undertook an investigation in order to test the identifications of this author and arrived at a really surprising result: scaredy a single one of them was correct. (G. W. MUller writes as lollows abont this 1908, p. 144: ,Eine solche Nachpriifung ergibt, daß kaum eine Bestimmung richtig ist; ich habe zurzeit eine größere Zahl von Bestimmungen geprüft und nicht aine richtig gefunden. (Tor Jahren habe ich die sämtlichen Bestimmungen geprïft, die Resultate sind mir zurzeit nicht zugänglich; soweit ich mich entsimnen kann, ließ sich nur eine Bestimmung mit einiger Wahrscheinlichkeit aufrecht crhalten.)" It seems to me beyond all doubt that G. II. MC'leLER?s view is correct.
(iond instances of this state of affairs are also fond in G. S. Briwh's work on the .. Challenger" Ostracods. Pl. XXIV in this work affords, for instance, a very good proof; C'ythere dictyon (i.S. BridDr, which, according to the statements of this author, seems to hare a cosmopolitan distribution, is certainly not a natural unit.

Another very striking proof of this uncertainty will be found below in the remark under Asterope aberrata.

In short everything is vague in this field of work

This state of affairs cannot continue. A firmer basis must be created for the classification and so for all our knowledge of this group of animals. The classifier must make his methods of description more strict. The gemeral descriptions of habitus which pay attention to only a few organs must disappear. (ireater and greater cxactitude must replace dilettantism. As many urgans as possible must be subjected to a careful investigation and described correctly, attention being paid to the rariety of the details. - In an cssay entitled , Prinzipien dersystematik, etc.", 1914, L. Plate put forward, p. 95, the following fundamental principle for modern classification: ...Jedeskonstante Merkmal kann zur Trenmung ron Unterarten und Arten verwandt werden." The characters for distinguishing the different systematic categories may be obtainet equally well
from physiology and oecology as from morphology. Wre have not the right to prefer one character to another. We must try to give a picture that is as correct and complete as possibleof thespecies as wefindit in nature. This programme puts a gigantic task before us, but nature is work.

It is of course not only from the point of view of the identification of species that it is desirable to pay attention to as many characters as possible. The descriptions of species are not only useful for a barely certain identification. They are also to enable us to decide the mutual relationships of the forms described. The descriptions of the species form the basis on which in most cases the investigation of the natural system of a group almost exclusively must rest.

If attention is paid to only a few organs this obviously presupposes that the characters that are not taken into consideration are quite constant or, if they are variable, that their variation is accompanied by correlative changes in the organs that are included in the diagnosis or of which reproductions are given. A constancy or correlation of this kind seems of course. even a priori, very improbable. I myself have observed a great many instances in which it: dloes not exist.

A good illustration of this is shown by the two species described below belonging to the sub-family Cypridininae, namely Cypridina (Doloria) levis and C. (D.) pectinata. - I may mention in passing that these two forms played a considerable part in the development of my studies of this group of animals, as it was during the examination of them that I realized the necessity of departing from the old-established superficial methods of investigation and description. These two species show a striking resemblance with regard to the length and the trpe of the shell, the endopodite of the second antenna, the seventh limb and the furca, in other words, those organs to which in the group Cypridiniformes (cf. below) attention had hitherto been almost exclusively paid. I too assumed at first that they were quite identical. Only after the number of species investigated by me was increased and I had observed that there was a great difference between the Ostracods of South (xeorgia and those of the Falkland Islands Tierra del Fuego did I undertake a detailed re-cxamination of specimens from both these regions, paying attention not only to the organs mentioned above but to the other organs as well. It was only then that I discovered that this was a case of two very well differentiated species and that profound differences were present, especially in the maxilla and the fifth limb, in other words two organs to which practically no attention had formerly been given in this group.

As a proof of how necessary it is to observe carefully in each form the conditions of the varions characters and not to attempt a premature gencratization, some examples may also be given, taken from forms treated in the present portion of m! work. In the sub-genus Cypridina the number of furcal claws is quite constant. In some other sub-genera and gencra of the sub-family Cypridininae this character is constant in each species, but on the wher hand it is variable for the sub-genus or genus considered as a whole. Finally in a mumber of species in this sub-family the number of the furcal claws differs not only from individual to indivichal but sometimes even on the two furcal lamellate of the same individnal. Similar conditims may
also be ohserved with regard to other characters in this sub-family, e. g. the nmber of fitaments on the sensory bristle of the fifth joint on the first antema. - The bristles on the second and third emdite of the protopodite of the fifth limb showed complete constancy with regard to number and ahmost with regard to type in all the species of the sub-family Cypridininae that I had an opportunity of closely investigating. The bristles on the first endite of the protopodite (If this limb were with equal regularity subject to variation both in number and trpe. Curiously enough the species of the sub-family Philomedinae that I investigated showed quite opposite conditions. In these the bristles on the first endite of the above-mentioned limb were quite constant in number and their type too showed a rather marked constancy. On the other hand the bristles on the seeond and third endites of this limb varied. - In this comection I may point out as a curions fact the constant appearance of the three medial bristles inside the rostral sinus of the shell in Doloria, Vargula, Macrocypridina, Siphonostra, Cypridina (sensu str.) and Cypridinodes, sub-genera which presumably constitute a natural unit within the sub-family Cypridinima. The medial bristles situated near these three bristles are, on the other hand, subject to considerable variation. This shows how in a rather large group details that are apparently quite insignificant may remain constant.

But it may be said by some that such small characters, such as bristles, etc., in which the present work abounds, cannot, of course, be constant as a rule. With regard to this I wish to state two facts. In cases in which I had an opportunity of carefully investigating a large number of specimens of the same species, some hundreds for instance, as in the case of Philomedes globosa (IV. Lilideborg), Pontocypris monstrosa G. W. MUlleer, some new species of the genera Pontocypris, Xestoleberis and Krithe, I found such small characters surprisingly constant. (Of course no general conclusions are drawn from this.) In addition it is to be noted that the variability of a quality in a species is to the classifier a fact of equal or almost equal importance as the constancy of a character. If these small characters are not constant this must be established.

What is specially necessary under the present circumstances is of course a thorough revision of the great majority of the species hitherto described. In doing this it would be best to proceed sery radically with all the forms that are not described so well that they ean be identified with complete certainty and of which it ean be proved that there are no type specimens in existence. Unless there are speeial reasons for not doing so, these species ought not to be taken into consideration any further; it would be best to consider them as non-existent. It does not seem right to devote a great amount of work to setting up more or less long lists of synonyms. in which most of or sometimes almost all the names ought really to be followed by a query; from a scientific point of view such lists do not seem to be any gain.

In the same way it seems necessary to deal very radically with identifications made from speejes that are deseribed in an unsatisfactory way, whether they are nomina nuda or unsatisfactorily re-described. In the first place these should not - unless, of course, there are special reasons - be included in lists of synonyms and secondly they should not be used in zoogeographical investigations if the specimen or specimens on which the statements in question are based are not still in existence.

I have unfortunately had no opportunity of contributing to any great extent to this work of clearing the path of study. The eonditions brought about by the war were a deeisive obstacle to this. I have only succeeded in getting type specimens of a few previously described species; see the preface.
n. The main object of this work of mine became consequently to make as large a number of species well known as possible. . . Although now that the first part of this work is nearing its close I feel that I have not attained the precision and eomprehensiveness at which I ventured at one time to aim, yet I put forward the results that I have obtained in the hope that the descriptions given below may prove to be satisfactory both for certainty in the iflentifieation of species and for establishing the positions of the forms in question in the natural systen.
L. Plate, in his above quoted essay ,"Prinzipien der Systematik, etc.." 1914, writes, p. 148: ,Ganz allgemein läßt sich behaupten, daß die äußerlich siehtbaren Grgane der Tiere schon aus dem Grunde zur Diagnose besonders geeignet sind, weil sie viel veränderlicher sind als die inneren. Nah verwandte Arten sind häufig nur an solehen Differenzen der Hautskulptur, der Färbung, der Hantanhänge, der Schalen, der Simnesorgane zu unterscheiden, während sic in den inneren Organen gleich oder fast gleieh gebaut sind. . . . Selbst Arten aus verschiedenen Gattungen sind gar nieht selten an imeren Organen nicht zu erkemnen." 1 have made the same observation with regard to the marine Ostracods. The external charaters are much more variable than the intemal ones, a state of affars that, as L. Plate writes (loc. cit.), is presumably due to the fact that the former , won dem bestinntigen Wechsel der äußeren Faktoren in erster Linie getroffen werden". As a rule only the higher systematic units differ from each other in the internal characters, such as the digestive organs, the inner sexual organs, etc. One consequence of this is that in the deseriptions of species and genera I have given below I have dealt almost exclusively with outer characters taken from the shell. limbs, furca, the outer sexual organs and sensory organs. - The inner characters, the nervous and the digestive systems, the inner sexual organs and musculature, which have been partly worked out in a very meritorious way by preceding authors, for instance (. II. MULLER, 1894, 1 hope to have an opportunity to deal with in more detail in a subsequent work in connection with a eomparative morphological study of these forms.

A consequence of the ineompleteness and uncertainty of the great majority of the preceding deseriptions of species is of course that it is at present often quite impossible to decide the value of a charaeter from a systematic point of view, i. e. it is impossible at present to establish detailed family and genus diagnoses of a definitive nature. It is therefore necessary, when more detailed diagnoses are now worked out, to burden the deseriptions of species in many eases with a multitude of characters of a higher systematic value, characters which may gradually be transferred to genus or perhaps aven to family diagnoses acomeling as the number of the well described species increases. In the cases where I had a comparatively abundant material of the same family or genus at my disposal I worked out comparatively detailed family and genus descriptions in order to avoid too much repetition. In these deseriptions, which arm to be taken as quite provisional. I have collected all or at any rate most of the characters that 1 fonnd common to all the specien of the family or genus in question that were inverigutert

Mifferenere bertwer
raternal and internal rharacter
 inmelros: and bener
by me and melnded in this work. In exerptional cases the same characters as wew included nn the greme diagnosis are also repeated in the diagnoses of the species. This was done when it seemed desirable to draw attention to these qualities because, to judge from the preceding literature they were perhaps not common to all the species belonging to the genus in question.

No short, concentrated family and genus diagnoses, for the purpose of rapid orientation, hame been given in the present work. For them the reader is referred to G. W. MULAER, 1912.

In order to obtain the greatest possible perspicnity all the diagnoses in this work have been carried out in as stereotyped a manner as possible. Each character has the same place in each diamousis.
(${ }_{11}$ accomnt of the incompleteness of the preceding descriptions of species 1 have been mable tu give by the side of the comprehensive and comparatively umwieldy deseriptions of species, short, summary and less unwiekly diagnoses of species. In those eases where a rather large mmber of species of the same gems have been dealt with, a key has been drawn up in order to compensate for this deficiency.

If a species that has already been described in the literature is included in the present work a complete re-description of this is given when the original description is very incomplete or obvionsly incorrect; otherwise only a suplementary description is given.

In some descriptions the male is given first, in others the female. The caluse of this inconsisteney is either to be found in the nature of the material at my disposal or in the fact that in some genera one sex - either the mate or female - is easier to characterize with certainty than the other.

The absence of any information about a character in a species must not be taken as indicating that in this character the species in question agrees with the most closely related form. It only means that there is no information about it!! Statements as to pilosity are exceptions to this rulc. The absence of information as to this means that I found the organ in question quite smooth.

In the cases where no special remark is made about the constancy of a character in a species this means that the character was practically constant in all the specimens examined by me. It is of course left to subsequent investigators to discover how far this constancy extends. It is to be noted that I often had a rather small amount of material of each separate species at my disposal. In those cases where there was more abundant material of a species a number of specimens have always been carefully investigated with regard to all the characters includel in the descriptions. It might quite justifiably be remarked that I ought to have stated how many specimens of each species were carefully examined. By means of this a more certain idea of the constancy of the separate species would, of course, have been obtained. The reason why this information is not given is that it was unfortumately not included in the original records of my investigations.

It may perhaps seem superfluous to have given both exhaustive descriptions of species and detailed figures. The reasons for this are as follows: 1) in studying the figures given by preceding authors I often felt uncertain as to the interpretation of details, 2) in many cases it was impossible to show all the details and to modulate them on account of practical reasons

- the small size of the figure, the method of reproduction, ete. - 3) it seemed exceedingly important to give a verification of the figures by means of the text.

With regard to the description of the shell wemust note: All shell measurements are taken by means of an ocular micrometer. Like most precedinn authors I have, when measuring the length of the shell, inchuded any processes that were present, e. g. the rostrum, spines, etc. In his measurements of Halocyprids and Cypridinids G. H. Fowlere, 1909, measured, ,parallel to the dorsal border from the most prominent part of the anterior border, ventral to the niche for the second antenna" to the most projecting part of the posterior border, leaving out of account any spines that might exist. This method of measuring was to give ,a real measurement of the shell, which is comparable in different species" (loc. cit. p. 222). As I never had any need of any such "real" values, I have, as stated above, employed the methol used by other investigators.
G. W. MÜLLER writes, 1894, p. 9, as follows: , Die meisten Untersuchungen an der Śchate können mit Erfolg nur an isolierten Schaten vorgenommen werden, besonders soliten Profilzeichnungen mur nach ihnen gemacht werden" This principle has been applied to as great an extent as possible in the present work. (nly in eases where it was impossible, on account of the soft condition of the shell, to separate the two valves without destroying the form has the profile been drawn from the whole shell. In the latter case the body was almost always first removed from the shell. „Man ist dann leichter im Stande, das Thier in dic Profillage zu bringen" (G. W. Mülleri, 1894, p. 10).

During the drawing of the profile the shell is most conveniently fixed, if it is drawn whole, by means of gelatinous glycerine.
G. W. Müller writes as follows in his work of 1894 , p. 9, with regard to the shell: ,Han untersuche, wenn auch vorwiegend, so doch nicht ausschließlich in Cimadabalsam oder Nelkenöl. sondern auch in Glycerin, eventuell auch in Wasser oder Alkohol, da hänfig Einzelheiten dor Sculptur in Canadabalsam vollständig verloren gehen." To this it may be objected that it is absolutely necessary to investigate and reproduce sculptured shells in a dry condition and in reflected light. If the shell is investigated in a liquid we may tasily obtain a mistaken idea of the seulpture whether we use reflected or transmitted light. - The reproduction of the sculpture as it appears in transmitted light is of course inconvenient, becanse by this the identification of fossil forms is rendered much more difficult.

The figures of the shells ought to be made comparatively large and as similar in details as possible; generalized and minute figures, such as thost of (i. S. Brabs, are of little usi th us; sculptured shells ought to be reprotheod by means of shated figures, not figures of the type given by G. Wr. Molder in his work of 1908; masculptured shefle are drawn most anveniently in transmitted light and without any shading.

The cross-striation of the selvage is most often very slight it is exaggerated in the drawings in order to show what is selvage.

In describing the limbs we must note: The relative longth of tho joints of an appendage has sometimes been shown befow in a way that is illustrated by the following example: $1 \frac{17}{17} ; 11_{13}^{23}$: $11 I_{3}^{6} \ldots .$. VIII 0.5 . Here the roman figures denote the mumbers of the
joints, the fignes above the line denote the relative length of the joints on the dorsal or anterior side, the figures below the line the relative length of the joints on the rentral or posterior side.

1 may point out in passing that when I spak below of bristles that ase more or less finely peetinated distally, this pectination is presumably always in two rows, even if it is shown in one ren in the drawing; the two rows of spines are often situated on the same side, *n that what is apparently one row of pectination seems to be present. This pectination could, of comrse. only be reproduced in outline.

It is often rather difficult to estimate the number of bristles because they are situated *o close together. G. W. Mulldel complains about this, 1894, p. 28 . . . , Wer die Schwierigkeit einer genauen Feststellung dieser Vertältnisse kemnt" I think I have overcome this difficulty, at least partly, by a simple manipulation: the limb (in glycerine) is crushed br a slight pressure on the cover-glass and then the latter is moved, if desired, in different directions. By this procedure bristles that are placed close to each other are separated. I have ubtained rery good results with this method. Chitinous parts onght not to be reproduced from fresh material; the material ought first to be hardened in alcohol, or else the chitinous parts are too strongly compressed by the cover-glass and misleading images arise.

In the descriptions given in this work the penis is deseribed rather superficially, but I hope that the drawings that are given of this organ will, in spite of their being done in outline, prove to be sufficiently detailed to permit of quite certain identification of species. 1 hope to have an opportunity in a subsequent work to give more detailed deseriptions and reproductions of this organ which is so interesting from a morphological point of view.

Although it is almost always stated below how many specimens of each species were canght, this information cannot be used, except with very great caution, as an indication of the frequeney of the forms in question, as the samples that were investigated were not collected for comparative quantitive investigations.

All the plankton samples were caught in open nets. The statements as to depth given under these forms are consequently of comparatively little value.

All statements as to the longitude of the localities are made with reference to Greenwich.
A historical resumé is given after each of the higher systematic units, sub-families, families, etc. These resumés deal chiefly with the historical development of our knowledge of the classification of the Ostracod group and the organs that are most important for the special classification, the shell, appendages, external sensory organs, ete.

Before ending this introduction and giving the results of my investigations I wish to quote a statement made by Tu. Mortevisey in his distinguished work on the Echinoids of the Ingolf Expedition, 1903, p. 3: , Det viste sig, at Dyrene var saerdeles gode at have med at gure, Arterne meget vel karakteriserede. Det er Literaturen, der bringer Vanskelighederne gennem den Uendelighed af daarlige Beskrivelser, den rummer."* This remark coincides entirely with the experience I obtained myself in tarying out the present work.

[^1]
GENERAL PART.

Digitized by Microsoft ${ }^{\circledR}$

CHAPTER I.

General terminology.* With a discussion of the general morphology of the limbs.

With regard to several terminologieal questions comected with the Ostraeods there is still, unfortmately, considerable confusion and uncertainty in the literature. Becanse of this some of these problems have liad to be subjected to a new treatment in the present work. The most important of these is the general terminology of the limbs, a problem which can scarcely be dealt with except in connection with a disenssion of the general morphology of these organs. In the ease of others I have had to define my standpoint with regard to the views of previons anthors.

Shell: -
With regard to the shell the terminology worked out by G. W. Mulder has been used in this work. - For the term "Samm" I have used .,selvage". the word used by G. H. Fowler, 1909 (see, for instance, p. 257). - When ,shell, seen from the side" appears in the explanations of the drawings, this means that the figure is drawn from the whole shell: when the word valve is used. the figure is drawn from a detaehed valve.

Limbs: -
The names of the limbs: - \mathbb{I}. Gambrecht, in his essay ,, Hittheilungen über Copepoden", 1893, p. 102, after laving first printed out a momber of inconsistencios that previons writers had been guilty of in the terminology of certain limbs, utters the following noteworthy words: ..dem wemn die Namen der Gliedmaßen auch ursprünglich nath ihrer Function gewählt sein mögen, so ist doch als Prineip fostzustellen, daß die homologen Gliedmaßen mit gleichlautenden Namen zu benenmen sind, und man derselben Glietmaße nicht nach ihrer, zuweilen in derselben Ordnung weehselnden Function versehiedene Namen boilegen darf."

[^2] the demomination of eetain limbs, esperially with regard to the thee posterior ones. This is due to a great extent to the rery fact that the functions and not the homology of these organs hawe been faken as a hasis for the terminology. Thas I. D. Disa, the first writer to interpere the appendages of the ('ypridinids correctly. names the there posterior limbs as follows in his work of 18.32.*
latherypridinids
luthe eyprid.

 Gnly in the case of the last two pairs of limbs in the Cypridinids are there variations in this work: these limbs are called either the next to the last and the last pairs of limbs or the furst and the last pairs of limbs.

The terminology of the appendages used by G. W. MóLJER in his large monograph of $18: 14$ is also very inconsistent - perhaps even more than that of the other authors. Thus in the spectial part of this work the three limbs in question are called:

In the Cypridinid:

limbs the fifth, sixth and seventh himbs or the third, fourth and fifth post-oral limbs: sometimes, however. he uses the terminology employed in the special part in this part as well.
 out, however, even in this work the desirability of employing a consistont tominology for these organs, based on their homology. Then he writes, p. 195: Die Bezeichnung, ohne Riicksicht auf die Function, einfach von der bei anderen Krebsordnungen zu entnehmen, scheint mir schon wegen der Unsicherheit der Homologie unzulässig. So wäre es wohl für spätere Arboiten das Gerathenste, die betreffenden GlicdmaaBen einfach als 3., 4.. 5. postoraho oder schlechtweg als 5., 6., 7. zu1 bezeiehnen wohei wir freilich wieder bedenken miissen, daf. sie den 5., 6., 7. anderer Krebse nieht homoloy sind."

In his later works. in accordance with this statement, G. W. MUller: applies the same terminology for all appendages in all Ostracod groups. In these works the three posterior pairs of limbs are not, however, given names in accordance with any of his two suggestions quoted above, but are ealled instedt the first, second and third thoracal limbs. - Other authors. such as, for instance, (. Alsh, 19L5, have adopted this terminology.

On the other hand W. GiesbaEatr, who also uses at terminolugy that is applied consist ently to all Ostracod groups, calls these three limbs in his work of 1913: the second maxilla, the first and second thoracopods.

Which of these suggestions is tho most conveniont to adopt?
Foen in his above quoted statement of 1894 (k. W. Mombar indicates, as is seen. that there is difficulty in carying out a certain homologization betwern the appendages of the Ostracods and those of wther Crustacean groups. The dilfieulty there indicated is the uncertainty with regard to the interpretation of the filth limb of the Ustratods. Whike some investigators (for instance, G. O. Swes and \mathbb{W}. Gatimathr) are of the opinion that the filth limb of the Ostracods is homologous with the second maxilla of other Crustucen. other writers (G. W. Müldera among them) definitely state that this limb in the 0 st rateds is to be taken as homohgous to the first thomath limb in the higher C'matucen, the serond maxilla
 work of $1894, \mathrm{p} .179$ brought forwarl a noteworthy argumem from the mbryoney of the ('yperids. He points out that white an new limb appeats at earh of the first. thime fombth and filth larval moults, no new appendage is formed at the second tarval montt. the moult at which the second masilha ought to appear. Her illustrates this state of affairs hey formow. ing table:

Digitized by Microsoft ${ }^{\circledR}$

A bracket romal a figner denutes that the lanb with this mamber is only fomed in the torm of ..stummelformige, ungegliederte oder undeutlieh gegliederte, meist anch unbewegliche Anlage", a fignre without a bracket denotes that the limb in question is more or less fully developed. * denotes the undereloped second maxilla. The same state of affairs is also lound in the family Cytheridae ,.die Liicke zwischen 4. und 5. Gliedmaake tritt noch deutlicher hervor* (189t. p. 182). I must leave the question open as to the value of this argument. It onght to be noted, however. that in the Cypridinids the development of the limbs is quite independent of the moults, a fact that I myself have had an opportunity of observing during very eareful investigations of the embryology of these forms. Another argument for G. W. M"MAR's view is perhaps to be found in the fact that in the Cladocers, which are presumaty rather closely related to the O stracod s , this appendage is very much reduced; it is observable in young specimens, but it persists only very seldom in mature individuals (e. g. in Sida and Mnina). On the other hand what we know so far about the nervous system of the Ostracods does not seem to support G. W. MULLER's opinion; it is to be noted, however, that our knowledge of this subject can by no means be said to be too certain. In my opinion, the problem of the nature of the fifth appendage in the Ostracods must still be considered as being unsolved. A very thorough embryologico-histological investigation is needed for the solution of this question.
() ${ }_{1}$ account of this I am of the opinion that it is not convenient at the present time to carry out a consistent terminology for the Ostracods in accordance with the principle laid down by W. Giesbrecht.

There is in addition another reason, which seems to me rather strong, for rejecting the terminologies employed both by W . Giesbrecht and by G. W. Mừleer in his later works. In the C'rustacea we understand by the thorax. according to modern terminology, if this term is taken as a strict morphological conception, the eight post-cephal segments in Leptostraca and Malacostraca as opposed to the cephalon and pleon of these forms. It seems as if this term ought not at all to be used in the ease of Entomostraca. IV. Giesbrecht writes on this point as follows. 1913, p. 20: „Da also der vordere Rumpfabschnitt der Entomostraca dem stets ans 8 Hetameren bestehenden Thorax der Leptostraca und Malacostraca nicht homolog ist. und anBerdem sein morphologischer Inhalt (Netamerenzahl) auch innerhalb der Entomostraca variiert, darf man ihn nicht ebenfalls Thorax nennen, sondern wir bezeichnen ihn als Vorderrumpf und den hinteren Abschnitt als Hinterrumpf." If thus that part of the Ostracod body on which the three posterior appendages are attached ought not to be called the thorax, these appendages cannot, of course, be conveniently ealled thoracal either.

The homologization of the limbs in the different Ostracod groups that is now generally adopted seems, on the other hand, to be fairly well founded.

Starting out from these facts I have in the present work, like most of the preceding writers, termed the first four limbs of the $U s t r a c o d s$ the first and second antemae, the mandible and the maxilla; in other words in the ease of these organs I have employed the same terminology as that which is now used in other Crustacea. For the three posterior appendages I have tried to find terms that were neutral and at the same time followed
the preceding literature. For several reasons the terms: fith, sixth and seventh limbs seems to me most convenient; i. e. in the case of these organs one of the two methods recommended by G. W. Mưleler in his work of 1894 (el. the quotation on pr 19 above) has been adopted.

Pre-oral limbs*: -
First antenna: - With regard to this appendage I follow the temmology used by G. IV. Mưler in all essential points. On this appendage, as on all the following ones, the joints are reckoned proximo-distally, unless something is said to the contrary. In naming the different sides of the joints on this appendage as on the following ones, the appendage is always thought of in its natural position of rest, unfesis something is said to the contrary. It is to be noted that the sides on which the joints bordore on each other are always called the proximal and the distal sides; if attention is paid to this, there is no danger of any mistakes.

Post-oral limbs: -
The post-oral limbs of the Crustacea may, as is known, be divided into three main types according to their structure: the leaf-like or foliaceous, the biramous and the rod-shaped limbs.

The first type is found in the Phyllopods and is characterized by 11 . (imsimecait in his work of 1913, p. 31 as follows: The leaf-like limb consists of a lamella with an anterion and a posterior surface and with medial, distal and lateral edges; the edges are provided with hairs and bristles and have lobes and processes. Its middle piece is called the protopodite, the lobes and processes are called exites, if they are situated on the lateral eder of the lamella. endites, if they issue from its medial edge. In a number of foms the protoporite appears 10 -be - though sometimes only rather incompletely - divided into transverse joints. The exites and endites may sometimes not only be bounded from the protopordite but also divided more or less distinctly into joints themselves.

The second type of limbs is described by $\mathbb{I V}$. Giesbrechet in his work just puoted as follows: The biramous limb consists of a trunk, the protopodite and two branches, an outer one called the exopodite and an imer one called the endopodite. Proximally of the "xopodit, and the endopodite exites and endites may occur on the protopoclite; the former are called epipodites. The protopodite of the biramons limb is proportionately has strongly develoned than in the foliaceous limb and is in most cases divided into two joints. the proximal onn of which is called the coxale, the distal one the basale. It is to be noted that in most cases probably only the distal part of the protopodite of the leaf-like limb, the part that has the exitm, is to be considered as homologous to the protopodite of the biramous limb; that part of the protopodite of the latter type which corresponds to the proximal part of the protoprodite of the former type seems, in most cases, to have been more or less completnly mitml in the hody of the amimal. Sometimes, when this union is less completa, ome can. howerer, oberve a jom or the remains of a joint between the coazle and the boty; this joint in usually called the pras

exath. The expenthe and the embpedite of the biramous limb are in most eases divided into a laryer or smatler number of joints. which are usually distinet.

The third type, the rod-shapedimb, is ustally well jointed and consistsofasingle row of jointo.
The chicef function of the foliaceous limb seems to be that of locomotion, swimming, amb 1ts sucondary functions are those of respination, carying the food to the mouth, beaking ul the foret, etce. In the biramons limb these functions are differentiated and localized; the exofordite and emfopmedte are specially adapted for locomotion and the epipodial appendages wpercially are used in respiration; the endites on some of the limbs sitnated nearest the mouth are differentiated for the function of taking up food. The rod-shaped limbs are especially lecommory organs, functioning chiefly as organs for crawling and climbing.

Which of these three types is to be considered as the most primitive? This seems an exceedingly difficult question to answer.

It is rather common nowadays to eonsider, with Ray Lankester, the first type, the lnbed foliaceous limb as most primitive (e.g. II. GIESBRECAT in his comprehensive work on the Crustucea, 1913). It is this type that we find in the Ply yllopods, the group that is now generally and presumably correctly considered as the most primitive of all the recent C'rustucea known at present.

Another view is maintained by C. CLats. This eminent investigator of Crustacea writes as follows in his important work of 1876, p. 17: ..Demnaeh wïrden wir zu dem gewif nicht unberechtigten Sehlusse geführt, dalb die Extremitäten der Stammkrebse, über deren Ban uns leider die ältesten paläontologischen Crustaceenreste zur Zeit keine Auskmitt geben, keinesWegs echte blatförmige Phyllopodenfïbe waren, sondern den Gliedmaßen vom Nauplius ähnlich, eine Annäherung an die Spaltfïbe zeigten, welche nun um so leichter in einseitiger \therefore 'reckung ler Aeste, den sich nach einer anderen Richtmig mehr Hächenhaft gestalteten Phyllopodenfïl Ben gegenüber, ihre Eigenthimmichkeiten ausbilden konnten." According to this author (1.16) the epipodial appendages are later acquisitions.
E. Korschelt and K. Heider seek the original type of the limbs of the Crustacea in the bifureated paraportium of the Annelids. In their textbook of $1890, \mathrm{p} .389$ these authors write as follows: , Man ist versucht, die typische zweiästige Form des Crustaceenbeines direct ron der ähnlichen gegabelten Gestalt der Amelidenparapodien herzuleiten. Hierfïr spricht die eben erwähnte Thatsache, daß die Sondermig von Exoporit und Endopodit sich an den Beinanlagen von Branchipus mgemein frühzeitig geltend macht." The endites are aceording (1) these authors new acquisitions; the epiporlial appendages, on the other hand, are primitive organs. which ,man wohl mit ciniger Wahrscheinlichkeit auf Dorsalciren der Anneliden beziehen diirfen". .Gegen letztere Auffassung spricht allerdings das verspätete Auftreten dieser Bildungen in der (ontogenie der Crustaceen. Doelı darf man nicht vergessen, dab (ine Steigerung des respiratorischen Bediirfnisses erst bei einer gewissen Körpergrößc sich geltend zu machen pflegt and es somit erklärlich scheint, wemn kleine Krebslarven (ebenso wie ansgebildute Formen von greringer Körperentwieklung) der Kicmenanhänge entbehron."
J. Thele also stirti ont from the idea that the parapodium of the Annelids is the original type of the (rustacean prost-oral limbs. This auther writes, 1905: p. 467:
 fïhrbar ist, diufte die eines awoigliedrigen Blattes sein, dessem proximales (ilided noch unvollkommen vom Körper getremt ist und seine Muskulatur ans dienem empfängt. während das distale Glied noch ungegliedert ist und einen dorsalen blattfümigen Anhang trägt." (her fig. I.) With regard to the epipodial appendages this whiter assumes, contrary to the wo preceding writers but similarly to C. CLAUS, that the are : besondere Frwerbung der Phyllopoden und Leptostraken" (p. 466): as and argument for this he aldnees the relatively late appearance of these organs during the ontogeny.

With regard to the viows of the three last-mentioned writers I wish to quote a statement of II°. T. CAlman. This author writes, 1909a, a. .9: ..It cloes not seem profitable . . . to attempt, as some liave done, to emmare the limbs of the Branchiopoda in dotail with the Polvehatete parapodimm". It is to be noted that in the Archicmuctida, the Annelid group with the simplest structure, - whether this simplicity is original

Fig. . 1 . l hiagran of tho wricinal type of the pos. aral Crustamean limbe. atcording for J. Tomatio. (1'rom I. Thatio. Imis. pors. or seeondary seems to be uncertain as yet - there are no paraporelia at all. E. Korschelt and K. Hener have not attempted to give any more dotailed seasons fon their viow - their statement is probable to loe considemed more as a whim that as a sorious hypothesis. On the other hand J. Tifleme has tried to produce areuments for his opiniom. but his demonstration is anything but convincine. So a matter of fact one manot, when studying his exposition, help reflecting that it would not be very diffieult, using his mothod of prow and other facts, to ., prose ${ }^{*}$ other riews of this questiom.

The biramons himb has - aecording to the first montioned opinion - deveroped from the foliaceous limb. No agreement has. howeros. becen yet readerd ats to which gates of the latter are to be (mnsidered as homologons with the expodite and molopotito of the former nor in general as to the part that the different parts of the fulaceons limbl) have played in this
 nervous system of Apus concrifomis", this authom put forwarel the assmmption that of
 distally, is homologous with the endoporlite and wo. "; with the exopodite; (ef. we aceompanying

 sponds to the endopodite; the exopendite aneending to this author, comresponde to the distal exite.

This uncertainty will bo be no means sumprising the those who have studied the momphology of the foliaceous limbs of the Ph H 110 pods and have observed the ereat differulty that is attached to earying ont a eerman homongization of the lobes and preersese of the

It is supposed that the thire main type of pest-oral limbs. Whe rod-shaped limbs. Wa arisen by the reduction and disappearance of one of the twe branches of the birammes limb.
 that disappeared, semes. aceording to what I believe I have nbserved. Wh bather umeretain.

Digitized by Microsoft © ${ }^{(8)}$

the dijferent parts ? theser theres.
 the foliaceons fyp. As an instane of this W. (absibseche mentions. 1913. p. 33, among other things. .dte stabbenfömigen hinteren Maxithen med die :ihnliehen Thoracopodien mancher U-1 racod an": for these forms ser below.

It sembs. howeref. to be he no means impossible that the development has sometimes proment in the "pmsite direction. Hat. For instance, more or tess foliaceons limbs have been deweloped from biramous or rod-shaped limbs. Thus.
 eren if we areept the assmption that the foliacerous type is the primitive one in the Crustacea, we are not by any moans justified in assuming a priori that we have an original type every time we ment this limb.

With regard to what might be called the morphologieal value of the different parts of the Crustacem post-oral limbs opinions also still differ. Thus E. Kobscomet and K. HEHBR, in their work of 1890. are of the opinion that the exopoctite and the andopodite are orqans of ergual value - they refor them, ase wave seen aboes, to the two main branches of the Annelidan parapodim: when in a momber of forms, especially among the Molacostraca. the endoporlite forms a direct contimation of the protopodite: while the exopodite appears in the form of a more or less rednced appendage. this is - according to these illthors - not to be considered as a primitive condition: cf. loc. cit. p. 388. On the other hand, according to these two authors the epipodial appendages are of a different nature from the exopodite and endopoolite; they are, as we see above, p. 22 homologized with the dorsal cirri on the Annetidan parapodinm.
J. Thifal: protests against this view; in his work of 1905. p. 466 he writes as follows: .D)azu bemerke ich zunächst, daf nach meiner Auffassung die boiden Aste. Endopodit und Exoporlit, urspriinglich durchans nicht glechwertig sind, sondern der erstere die einfache Fortsctzung des Stammes, der letztere ein Anhang desselben, daher kann man sie nicht wohl auf die gegabelte Gestalt der Parapodien zurïckfiihren, sondem den Basipueliten mit dem Endopoditen auf deren Stamm, den Exopoditen auf einen dorsalen Inhang. etwa einen 「'irrus."

Neither of these two alternatives fan be said to be proved in any way. So far both are to be comsithered as assumptions.

In my opinion therecould originally searcaly havebeen any essential morphological difference eitherbetweenexites
and endites ur betwron these and thedistal partortheprotor podite. These terms seem to be merely expressions for a classification of parts of the same organ which were originally similar, a elassification based on the relative position of the partsto eachother and to the organ, the limb considered as a whole. The probability of this assumption onght to be obvious to anyone who has made a thorough comparative morphological study of the post-oral limbs of the Phyllopods .

The problem of the phylogeny of the Crustacean post-oral limbs must conscquently as yet be considered as being far from settled. Our knowledge of the types of limbs that characterized the Protostraca, the hypothetical ancestral forms of the Crustacea, is still rather uncertain. The homologization of the different parts of the limbs in different Crustacean groups in many cases cannot be said to be proved.

Is it possible to carry out a certain homologization of tho different parts of the multiform post-oral limbs of the Ostracods? In other words is it possible to carry ont for this group as well the terminology employed above?

In discussing this very complicated problem we must, I think, pay special attention to the fact that, as I have just pointed out, there was presumably no essential and fundamental difference originally between the different parts of the limbs, the epipodites, the exopodite, the endopodite and the endites. The cause of their varied differentiation probably lies chiefly in their different positions. Thus the endites that were situated inside were destined to serve as organs for taking up food, the distally situated exo- and endopodites to develop into locomotory organs, natatory, crawling or climbing organs, the lateral epipodial appendages were to become especially respiratory organs of one sort or other.

Looking at it from this point of virw, it can by no means be ennsidered surprising or improbable if it should turn ont that the exopodite of one limb were differentiated to fulfil a function which was connected with, let us say, the endopodite in the case of another limb of the same species or of the same limb in another group, or if the exopodite and the epipodiat appendage of different limbs of the same species were differmtiated in corresponding ways for the same function. As is shown by the foltowing facts it may be eonsidered quite certain that instances of such conditions necur in the Ostracods: In Thaumatocypris and Polycopidue both the exopodite and the endopodite of the second antenna are developed for matatory function: in the Cypridinids and most of the Halocyprids the exopodite atonn has taken over this function, the endopodite has been more or less redued and adapted to quite different functions; in the males. for instance, it is used as an oryan for seizing the females. In the Cyprids the endoporlite of this antemma is adapted in a number of forms both for crawting and for swimming in other ('yprids, as well as in the Nosideids and C'ytherids, this branch is explusively a cawling organ: in thea three groups the exopodite is more or less completely reduced. In the r'y therellids both the exopodite and the emdopodite are very powerfully developed and both of thom are crawling and digging organs.

The prinriples used in theswork in homo. legizing the differm! parts of the limbs.
 multiform: lle same limb often appears in such different types in the different groups that a cortain homologization of its different parts seems to be ahmost hopeless. As a matter of bact the Ostacod wroup comprises such heterogeneous elements that one eamot expect a priori to find any far-reaching morphological agrecment between actually homologons organs. fomervation, museulature, the mumber of joints, the bristle equipment, in other words the anatomical chameters that are concerned, often completely fail to give a certain chue to the homologization.

Although facts obtained from comparative morphology and cmbryology havo as far ámpossible beentaken into considerationindiseussing theseproblems, thedetermining factar has heen, under these eireumstances, the position of the parts dealt with, their ralative positionto archotheras well as their position in rolation to the limbtaken as a whole Theresults of homolngizations rarried out on so slight a basis as the positionsmust, ol coursa, be both uncertain andunsatisfactory in many cases*; this is still more so as the situation of the different parts of the limbs is by no means constant.
(r. W. Milderk, the only author who has discussed this problem in detail for the Ostracods. does not show quite clearly what principles he has followed in working it out. But this writer serms, at least in some cases, chiefly to have followed the last principle put forward by me above, i. e. the positions of the different parts has been taken by this author too as the determining factor. In other cases, on the contrary, other principles have been the dominant ones for this writer. As a result of this he has in many cases, as is shown below, arrived at results quite different from those put forward in this work.
second antenna: - With regard to this limb I follow almost entirely the terminology found in C. W. Müller's large treatise of 1894. According to this author this antenna is a biramous limb, consisting of a protopodite, an exopodite and an endopodite; on the nther hand there are no epipodites and endites at all. The protopodite is sometimes singlejointed. sometimes two-jointed, sometimes it even has an indication of a third joint. The exopodite and endopodite are developed very differently in different groups; sometimes both these branches are well developed, as in Thaumatocypris, the Polycopids and the Cytherellids. sometimes the exopodite dominates decidedly over the endopodite, as, for instaner. in the Cypridinids and most of the Halocyprids; sometimes the exopodite is very much reduced, the endopodite on the other hand, very large and powerful, as in the C'yprids. Darwinulids, Nesideids and Cytherids.

Before G. IV. MéLler it was assumed that the natatory branch in the Cypridinids. Halocyprids and Polycopids represented the endopodite, the other branch the

* The difficully of carrying out a terminology, based on a reetain homologization, for the different parts of the Ostratol limbs, corresponding to that which has been accepted for other Crustacea may perhaps seem io justify the usi. at leasl for the present, of a quite neutral terminology for this group. The reason why this method has not heen rhwan in the present work is that hereanse. in my opinion, it would only increase the confusion in these guestions.

Digitized by Microsoft ${ }^{\circledR}$

 All the authors after 1894 too except E. v. Daday, 1908, are opposed to G. W. Jľhere in this question - if they take up any position at all with regard to it.

In spite of this it seems certain that the opinion put forward by G. W. Milldek is correct. , Dies ist eine nothwendige Folgerung ans der wechselseitigen Lagerng der betreffenden Anhänge." (G. IV. MUlleer, loc. eit. p. 44).
G. W. Mulaber was of the opinion that he had found proof for his view in comparative morphology as well as in the relative positions of the branches. He writes (loe, cit. p. 44) ats follows: „Ich glanbe, die Ansicht läßt sich auch noch weiter begriinden durch einen Vergleich der Aeste in den verschiedenen Familien. Als ich von der nahe liegenden Meinung ansging, daß der Hauptast der Cypridiniden ete. homolog dem der Cypriden etc. sci, wats meines Wissens bisher nirgends kjar ausgesprochen, aber wohl als selbstrerstindlich angenommen worden ist, war ich überraseht dureh den Mangel jedweder deutlichen morphologisehen Beziehung zwischen den einzelnen Gliedern; mindestens fehlte jeder Anhalt dafür, wio eine Form aus der anderen, oder beide aus einer gemeinsamen Stammform abzuleiten seien. Anders. wenn wir den Nebenast der Haloeypriden mit dem Haptast der Cypriden vergleiehen: hier finden wir als typische Gliederachl 3, dort 4, die. Anzahl dor (ilieder ist also nicht wesentlich verschieden, wemn sich auch nicht sicher nachweisen lialt, an welcher stelle die Verschmelzung erfolgt ist (ich vermuthe, Glied lder Halocypriden ist homolog $1+2$ der Cypriden). Wie bei den Haloeypriden entspringt bei den Cypriden das letzte Glied am ventralen Rand des vorletzten, weit unterhalb der Spitze desselleen, und diw fiir die Haloeypriden typisehe Zahl von 3 Borsten am letaten Glied wiederholt sich bei einer ganzen Anzahl von Cytheriden. Am ïberzeugendsten spricht fïr die hier vertretome Ansieht die Antenne der Polyeopiden, bei denen wir 2 wohl entwirkelte Aesto fiuden, den einen äußeren von auffäliger Uebereinstimmung mit dem Hauptast der ('y puridiniden und Halocypriden, den anderen imeren zum mindesten mit deutlichon Beziehungon zu dem Hauptast der Cypriden etc., zum Nebenast der Haloeypriden."

The weakness of this proof ought to be so striking to everyone who knows this group of animals in detail that any further diseussion of it may even perhaps serm superfloms. But 1 shall eriticize it briefly here. The small number of joints seems to be. as far as can be sem, the most important resemblanee between the secondary branch of this antenna in the (C y pridinids, Halocyprids and Polyeopids on the one hand and the man hanch of the Cyprids, Daewinulids, Nesideids and Cytherids on the wther, In order to test the weight of the evidence afforded by the number of joints it ought to be sulfindent to bing up the ease of the family Cytherellidue: in this family the exopordite of the seemot antenna is characterized by two joints, its condopodite by three, i. e. in this family the expmolit,

hans fewer joints than the endopordite. With regand to the number of joints in the endopodite of thr second antenna in different. Ostracod groups I need only refer to what is written about this limb in the second chapter of this work. The weight of the evidence afforded by the position of the end joint of the inner branch is well illustrated by the fact that in the Halocyprids as well as in the Polycopids the end joint has a dorsal position, when the branch is pointing forwards contrary to the statement of G. WY. MUlLer (see my fig. 12 of Halocypris brecirostris). A close comparison between Halocyprids, Polycopids, ('yprids, l) arwinulids, Nesideids and Cytherids will also afford good material as to the strength of the evidence of the number of the end bristles; it must be deseribed as nil. There is no additional resemblanee between the homologized branches, at least acmording to (i. W. MULLER - and my own experience does not contradiet this idea. The moscular system. for instance, shows, as anyone can easily ascertain, far-reaching differences in this limb in the different Ostracod groups. G. W. MULLER stated that he was surprised ., (lurch den Mangel jedweder deutlichen morphologischen Beziehung zwischen den einzelnen Clliedern; mindestens fehltp jeder Anhalt dafür, wie cine Form aus der anderen, oder beide aus einer grmeinsamen Stammform abzuleiten seien " when using the old homologization. He might have experienced the same surprise on comparing the exopodite in, for instance, the Gypridinids and the Cytherellids. These are both essentially different from cach other - but nevertheless it is certain that they must be homologous.

The fact that it is not possible to observe any far-reaching morphological agreement between the homologized branches of the Cypridinids: Halocyprids and Polycopids on the one hand and the other Ostracod groups on the other does not, however, render the humologization earried out by G. W. MÜLLER in any way less probable, as the morphological differences between the former groups and the latter are so far-reaching in other respects as well that no close agreement between these limbs can be expected a priori.

Mandible: - This limb appears as a very uniform type in the different Ostracod groups. It has not been a subject for any important differences of opinion among preceding authors; we may note, however, that several of these authors have not given any opinion as to the morphological value of its different parts; thus the small appendage on the Cypridinid mandible, which is interpreted as the exopodite in this work, is often called simply ,"appendage". Apart from one important exception I have followed in this work the homologization used by G. W. Muller in his work of 1894.

According to this writer the mandible, like the second antenna, is almost always developed as a biramons limb. The protopodite is powerful, and in most cases it is distinctly divided into two well developed joints, the coxale and the basale; in some Polycopids even three distinct protopodite joints are to be distinguished on this limb, see my fig. 5 of Polycope setigera; sometimes the protopodite is fitted with two powerful endites, one on the coxale and one on the basale (Halocyprids); in most cases, however, it has only one endite, which is situated on the coxale. The latter endite in. for instance, the Polycopids and Cyprids and most of the Cytherids is very powerful, but in the Cypridinids, on the other hand, it is weak and in most cases small and is not used as a masticatory organ; in a number of forms belonging
to this last-mentioned group this limb may even be without the stightest trate of endites, as, for instanee, in the females of the genus Sarsiella. (For the endites on this limb in the males of the genus Philomedes see the description of this genus in the present work.) The endoporlite is in most eases well developed and has well developed joints. The exopodite, on the other hand, is always more or less reduced and is unjointed. In the Cypridinids and the Polyeopids the exopodite is situated at the typieal place for that organ, dorso-distallylaterally on the basale, in the Halocyprids it is in most cases or perhaps always displaced somewhat medially. In the other groups, Cyprids, Darwinulids, Nesideids, Cytherids and Cytherellids, on the other hand, it is very much displaced proximally; in most cases it is situated near the proximal-lateral boundary of the basale. In most of the last-mentioned groups it is used for respiratory purposes, it has been developed as a vibratory plate.

The only point in the explanation given above as to which there seems to be the possibility of any justifiable doubt is whether the organ that has been explained as an exopodite in the Cyprids, Darwinulids, Nesideids, Cytherids and Uytherellids is really homologous with the exopotite. This has been generally assumed by preceding authors, but they have not given any reasons for this view of theirs.

This view seems to be supported by the fact that in the family Polycopidae the mandibular exopodite appears in two different types. (One of these types resembles rather closely the one that is characteristic of the Cypridinids; ef. G. W. Mưler, 189t, pl. 7. fig. T; the other shows a close agreement with the vibratory plate of the C yprids, etc.; cf. $\mathrm{G} . \mathrm{II}$. MÜLler 1894, pl. 7, fig. 39. That this process on the mandible of the Polyeopids really eorresponds to the exopodite is shown with all desirable distinctness first by its position and secondly by a comparison between the mandible and the maxilla in this family; ff. figs in pl. 7 . G. IV. MÜller, 1894.

The following art the reasons why this opinion has nevertheless not been accepted in this work:

It is true that all Cyprids, Darwinulids, Nesideids, Cy yherids and Cytherellids are, apart from the vibratory plate, quite without any appentage on the mandible that could be interpreted as an cxopotite, and that in those forms of the ('ypridinids and Polycopids that are furnished with a typical exopodite on the mandible there is no trace at all of any epipodial appendage on this limb. There is, however, one group. the Haloeyprids, in which the second protopodite joint of this limb sometimes has two appendages, one situated disto-dorsally, somewhat medially, the other proximo-medially, at or somewhat above a point half-way up the joint. In the gemus Conchoccia the former appendage is represented by a small, vermeiforn process with a plumons bristle: in the genera Halocypris and Euconchoecia* only by a plumons bristle, no traces wi the verruciform appentage could be observed in these genera. In the gemm: Thaumatocypris there is at the corresponding place, according to (t . W. MI'LLEF's work of $1906 \mathrm{a}, \mathrm{pl}$. V1, fig. 7 , a curiou-
 give at drfinite opinion as to this.
litte remuciform appendage, mijointed and without bristles. In my opinion this appendage corresponds to the exopodite of this limb. In the case of this appendage in the genus Conchrecier this explamation has alrealy been adopted by preeding investigators; (G. W. MƯLusk, 18:4. p. 49): in Thaumatocypris, on the contrary, this appendage is not even mentioned in wur unly description of this genus (G. W. MULLER, 1906 a). In most species of the genus f'onchociur the proximo-medial one of these appendages is represented by in small, verveiform process. which is furnished distally with a single bristle; in other species of this genus there is only a bristle developed at this place: in a lew forms there is no trace at all of this appendage. In the species of the genus Euconchoecia that I had an opportunity to investigate this appendate was represented only by a bristle; no trace of any verruciform process could be observed. In Halocypris this appendage seems always to be quite absent. Thaumatocypris, which is in many respects the most primitive genus among the Halocyprids, is very interssting in this respect. In this genus there is at the corresponding place on the mandible ..eine ovale Winze mit 2 Borsten an ihrem Vorderrand" (G. W. Mưluer, 1906 a, p. 41). This appendage, which has not been observed by preceding investigators in the ease of the genera Conchuccia and Euconchoeciu, must certainly be regarded as an epipodial appendage. This assumption is supported by its position; that it can scarcely be homologous with the exopodite is shown, of course, by the fact that another appendage, presumably homologous with the exopodite, is found on this joint.

With regard to this appendage in the genus Thuumatocypris G. Wr. Müller writes as frllows, 1906 a, p. 42: .,Bemerkenswert ist der warzenartige Anhang an der medialen Seite des 1. Tastergliedes. Einen Anhang trägt dieses Glied bei den Ostracoden ziemlich allgemein, aber deutlich lateral (Podocopa) oder dorsal (Mehrzahl der Myodocopa). Dieser Anhang wird als Außenast des lasters gedeutet. Es kann kaum zweifelhaft sein, daß der hier beschriebene Anhang dem als Exopodit bezeichneten zum mindesten der Myodocopa homolog ist, doch widerspricht dieser Deutung die deutliche mediale Lage. W̌ahrscheinlich haben wir es hier mit einem auf die mediale Seite verschobenen Außenast zu thun, wenigstens scheint mir diese Deutung noch dic einfachste und nächstliegende, sobald wir ïberhaupt eine Homologie dieses Anhangs und des sogenamiten Exopodits bei den anderen Ostracoden annehnem."

For reasons given above I cannot accept the interpretation of this appendage as homolugrous to the exopodite in Cypridinids, Halocyprids and Polycopids. On the other hand it seems to me rather likely that it is homologous with the vibratory plate in ('yprids, Darwinulids, Nesideids, Cytherids and Cytherellids. The fact that this appendage is placed laterally in the five latter groups and medially in Thaumatocypris (and other Halocyprids) cannot, as G. W. Müller has shown in the quotation given above, be considered any decisive argument against this homologization. (It is to be noted that the exopodite in the Halocyprids too is somewhat, though only slightly, displaced medially). If this line of argument is correct, the consequence of it would be that the vibatory plate on the mandible in Cyprids, Darwinulids, Nesideids, ('ytherids and C'ytherellids is not, as has been assumed by preceding authors,

Digitized by Microsoft ${ }^{\circledR}$

homologons with the expodite but with an epipodial appendage, an explanation that is. by the way, also supported by the function of this organ.

On this, as on the following, limbs, the endites are mumbered proximally distatly.
Maxilla: - The morphological interpretation of the different parts of this limb, presents considerably greater difficulty than an explanation of the second antemna and the mandible, a fact that is elearly reflected in the precediny literature. A dotailed sturly of the different types of maxillae in Polycopidue and a comparison between the state of affairs in this family and in other groups onght, however, to render possible a solution of this problem that, if not absolutely certain, is nevertheless fairly certain.

The maxilla of Polycopsis serrata G. W. Müller (cf. (i. II. MÖlber, 18:4, pl. i. fig. 51 - reproctuced in fig. ILI: I of the present treatise) represents the simplest type within the family Polycopidue: it may be described as a rather straight, typically biramous limb, presumably of a fairly primitive type. Its protopolite, which is fairly strong. consists of two well developed joints. coxale and basale, proximally of which theve is a somewhat weaker joint, the procoxale. The exopodite and the endopotite. both of which are sitnated distally on the basale, the former weakly two-jointed, the latter distinctly threejointed, are also fairly well developed: the former is somewhat weaker than the later. The protopodite has on the procoxale and the eoxale slight indications of three endites armed with bristles: there are some ventral bristles on the basale as well. No epiperdial appendage is leveloped. In wther forms of this family, e. g. Polycope mstrata (i. IV. Mulder and P. tuberose (i. W. Mitder. the maxilla differs from the preceding type by having the basale, the colopodite and the exopodite bent ventrally and by an increase in the strength of the three endites on the procoxale and the coxale; the basale, on the other hand, has no endites. In both these species the exopodite shows no division into joints; in the former one the endoprodite is still distinetly threc-jointed, while in the latter this branch too is unjointed; in these speries ton, as in all the others belonging to this family, the maxilla las mop eppodial appondage. (1. (i. II: Meller, 1894, pl. 7 , fig. 13 (reprotueed in fig. $111: 2$ of this treatise) and fiy. 27.

The maxilla found in the families C'ypritlmitue (in the seope given to this family in the present work) and Sarsiellidue (i. e. in all the ('ypridinids axcept the families Rutidermatatue and Asteropidue) shows a type that agrees rathor strikingly with the maxilla of Polycopo rostrata and P. tuberosa (see flg. III: 3). The morpholugieal explanation of this limh in these families, which is given in the present work on the basis of a comparisen with these twondercien may accordingly be considered as fairly well grounderl. In these two families the frotoporlit. of the maxilla is strongly developed and is mone or less distinctly divided into jointe: in most cases two well developed joints, coxale and basale, can be observed. proximally of which a third joint, the procoxale, is sometimes marked off. The procoxale and the coxale are (at least in all the species I have investigated or in which I was able to ascertain the cemulitumwith the help of the literature - exeept in the gems Pseudophitomates) armed with thee endites; these endites are in most cases vory strongly devoloped, considerably more stronglu than in the two last-mentioned Poly en fids: the basale, on the wher hand, has no trace of any endites. The basale has lwo appendages distally. which are cemaink whe
idenfiferl with the expredite and the endoporlite. One of these is very perwerful, with strong musculature, in most cases with fwo or three joints, and armed with mumerous bristles, which are most frequently strong. The other is considerably less voluminons, even rather small in the sub-hamily Philomedime, hyaline and weak, minjointerl and only furnished with a few bristles; there are mo museles in this process, which is moved only by museles attached at its base.

 Cypridininae. 4. Diagram of the genus Asterope. (From C. W. Müleer, 189': 1:0s. 3. and 4. are somewhat altered).

In all the species of the family Cypridinidae which were investigated by me and of which descriptions are given in this work, the latter appendage has only three bristles, all of which are placed near its distal end and which are almost always of the same type, rather long and weak, in most cases finely plumous, a uniformity that may perhaps be considered to indicate a great phylogenetic age. In the family Sarsiellidae this appendage seems, if one is to judge both from G. O. Sars's and G. W'. Muller's drawings, to be still weaker than in the sub-family Cypridininae; among other things it always seens to be provided with only two distal bristles.

Which of these two appendages is to be looked upon as the exopodite and which as the endopodite? The fact that it is the exopodite that is most weakly developed in the family Polycopidae and that it is this branch that shows the greatest tendency to lose its division into joints in this family scems, at least to a certain extent, to make it probable that in the families Cypridinidue and Sarsiellidue it is the weak, unjointed appendage that represents the exopodite. We may in point of fact with a fair degree of certainty assume this to be the case; the relative position of the two appendages supports this explanation very decidedly, as the weak, moionted process is in almost all the forms both of the family Cypridinidae (cf. G. O. Sars, 1887, pl. VII, fig. 11) and of Sarsiellidae (cf. G. O. Sars, 1887, pl. X, figs. 5, 6) plated at almost exactly the corresponding place on the basale as the mandibular exopodite in these forms, i. e. disto-laterally, laterally of the strong appendage; in most cases, perhaps, a very slight displacement ventrally can be observed (with this orientation the maxilla is thought of in its natural position, i. e. pointing obliquely forward and outward). Only in one out of all the forms seen by me, Monopia (Cypridinodes) acuminata (described in this work), in which, moreover, this appendage is rather strongly reduced, almost verruciform, is it placed distinctly medially of the larger process and, in addition, it is very much displaced distally. Only very slight importance, however, should be attached to this exception, as the maxilla in the sub-genus Cypridinodes must be regarded as very much metamorphosed. - Finally, if we start out from the fact that this explanation of the two distal appendages is correct, there cannot be much doubt that the lamelliform appendage, in most cases more or less rounded, that is found dorsally on the coasle in a number of forms belonging to the sub-family Cypridininae is to be explained as an epipodial appendage. In most cases this appendage has dense, fine hairs and. in addition, it is sometimes fumished with a few bristle-like proeesses; cf. C. CLAL's, 1873, pl. XI, fig. 27. Additional arguments in favour of this interpretation are perhaps, first, the fact that this appendage is developed rather late during the ontogeny and, secondly, that it is not very constant, being absent in a number of forms belonging to the sub-family Cypridininae and in the sub-family Philomedinue and the family Sarsiellidae; in the two latter groups it appears only in the form of ,eeinen flachen, fein behaarten Hautsaum" (G. W. Méller, 1894, p. 56).

The maxilla in the family Rutidermatidue has abont the same type as in the two preceding families; its exopodite seems, however, to be almost entirely reduced; cf. G. II. MucLLER, 1908, pl. VII, fig. 5.

The morphological explanation of the different parts of the strange maxilla in the family Asteropidae, see fig. III: 4, certainly presents rather great difficulty, but nevertleless it can be carried out with fairly great certainty. Presumably this limb has originally had five or six joints, the protopodite having three and the endopotite two or three joints, thus having the same fundamental type as in the preceding families. The long, powerful, forward pointing part, situated distally of the endites, probably represents the distal joint of the protopodte, the basale; the part at which the endites issue thus corresponds to the procoxale and the coxale. It seems very probable that the two-jointed palp which is situated distally on the basale and points downward is, as in the preceding families, homn-
logous to the endopodite. The exopodite is possibly quite absent. It does not seem to be impossible, however, that the bristle or bristles found disto-laterally on the basale are to be explained as a remains of this branch. The large lamelliform appendage, fumished with fine hairs, that is found dorso-proximally on this limb in all the forms of this family known so fare is probably. on the other hand not homologous to the exopodite. It is presumably homologons to an epipodial appendage; this idea is supported both by the position of this appendage - distally on the part that has been explained as the coxale, i. e. at the same place as the epipodial appendage on the maxilla in a number of forms of the sub-family Cypridininae - and by its appearance, which bears a rather close resemblance to the epipodial appendage in the last-mentioned group. seems, on the other hand, rather uncertain. The proximal part with its three endites of course probably corresponds, as in the preceding groups, to the procoxale and the coxale. But does the palp, as in Cypridinids, Halocyprids and Polycopids, correspond to the basale of the protopodite and the endopodite or does it represent the basale and the exopodite or only the endopodite or the exopodite? Is the vibratory plate to be considered as homologous to the exopodite or to an epipodial appendage? Neither the relative position of these organs, their morphology or their embryology give any certain information on these points. The fact that it is presumably the endopodite that has predominated in the development of the maxilla in Cypridinids, Haloeyprids and Polyc opids clearly does not justify us in assuming without further hesitation that the same branch has also predominated in the four families mentioned above; of this the second antenna affords proof. The fact that in the Cyprids, Darwinulids, Nesideids and Cytherids it is, in the case of the mandible, prohably an epipodial appendage that is developer as a

[^3]vibratory plate may certaimly seem, at first sight, to support the assmm,tion that we are alto concerned with an epipodial appendage in the case of the maxilla in these groups. This argmment will, however, count very little with those who take the same view with regard to the morphologieal value of the different parts of the limbs in Protostraca as that given above on p .24. The situation and function of the vibratory plate support the assumption that we are eoncerned with an epipodial appendage; in the Cypridinids, in addition, there is often, as we have seen above, an appendage which is situated at about the corresponding place on the maxilla and whose epiporlial nature seems to be quite certain.

In short it seems to me at present quite impossible to find any more decisive proofs for the real morphological value of the different parts of the maxilla in the Cyprids, Darwinulids, Nesideids and Cytherids. Under these circumstances would it not be best to aceept the terminology used by the najority of the later writers on this subject? This would perhaps have been most correct. I have, however, allowed my personal opinion to prevail in this matter. The homologization adopted by me differs in one important point from that of previous anthors: I take the vibratory plate on this limb too as an epripodial appendage. In accordance with the view taken by previous writers I look upon the distal part of this limb as an endopodite. It seems to be rather probable that this explanation is correct. At any rate the possibility that it is right must be considered as an open question.

In the case of the maxilla of the Cytherellidae too the difficulty of carring out a certain homologization of the different parts is very great. The proximal purt with its three endites may very well correspond to the two proximal joints of the protopodite, the procoxale and the coxale. There is the same uncertainty with regard to the palp and the vibratory plate as there is in the case of these organs in the Cyprids, I) arminulids. Nesideids and Cytherids. It seemed to me most convenient to adopt the homolngization accepted above for these four groups in the (ase of the first-mentioned group as well.

The explanation of the two appendages sitmated distally on the basale of the maxilla in the family Cypridinidue as an exopodite and an endopodite has already been made by C. Clads, 1865. This author writes concerning the axopodite (loc. cit. p. 151): ... beduch geschieht hier" (W. Lildeborg, 1853) ,des schmaten Anhanges keme Erwähung, welcher bei unserer Art an der Spitze drei Borsten trägt und dem am ersten Maxillenpaare von C'ypris und C'ythere mächtig entwickelten ,Kiemenanhang zu entsprechen seheint." The vibratory plate. .Kiemmanhang* on the maxilla of Cypris and ('ythere is explained by this writer as an exopotite. C. Custs based this homologization especially on the important fact that in yomg larvar ..noch im Brutrame des Mutterthieres" these two appendages are developed more similarly (ef. C. Clades, 1865, p. 150, pl. X, fig. 6) and that it is only later on that the mondoedite grows stronger in proportion to the ..appendage". A similar opinion is expressed by (i. (). sits, 1sat: he identifies this process with the ..satakalde Branchialpladd."* in the C'yprids and C'y thorids; he does not, however, give any reasoms in support of this viow. (1n the othor hamd G. W. Müller, in his work of 1890 , has an explanation of this limb in the family ('ypridimidue which differs exceedingly from that adopted in the present work. This writer describes the

[^4]Cytherellidae.

Mriturimal.
basale as the first endopodite joint，the exopodite as an endite of the protopodite and the epipodial appendage as the exopodite：ef．loc．cit．p．219．In his large monograph，1894，G．W． Mcitide retains this explanation on the whole，but，curionsly enough，he does not touch at all on the question as to the morphological nature of the parts interpreted by me as the exopodite and the epipodial appendage．

The maxilla in the family Asteropidae has so far been explained as follows：Aceording to C．Cluls， $1876, p .93$ ，it can easily be traced back to the natatory limbs in Ph y 110 － pods and Nebalia：，nach Art cines Schwimmfußes gebant＂，p．94；the basale and the endo－ podite are explained as the endopodite，the epipodial appendage as an exopodite；the endites were observed and identified．（．O．Sass，1887，p．22 and G．W．Mulder，1890，p． 220 and 1894 ，p． 56 adopted the same view as C．Clats．

With regard to the explanation of the proximal part of the maxilla with its endites in Cyprids，Darwinulids，Nesideids and Cytherids a somewhat different opinion from that adopted above has in some eases appeared in the literature．I shall not criticize these writers at any length，but merely quote what G．ALm says on this point（1915， p．7）：，Die 3 hier von mir als Kauladen gedeuteten Stammfortsitze sind auch anders aufgefaßt worden．Zenker，v．Daday，Claus und Kaufmann haben nämlich behauptet，daß diese Fortsätze wirkliche Glieder sind，und zusammen mit dem kleinen，soeben als Endopodit auf－ gefaßten Teil den eigentlichen und dann aus 5 oder 4 Gliedern bestehenden Endopodit bilden． Als Stiitzpunkt für diese Auffassung gilt hauptsäehlich das Vorhandensein kräftiger Chitin－ balken zwischen den Basalteilen der Kauladen，auch haben einige Forscher geglaubt，besondere Muskeln für die verschiedenen Kauladen gefunden zu haben．Diese Muskeln dienen aber，wie Jensen gezeigt hat，zur Bewegung der Atemplatte．In den Kauladen finden sich keine Muskeln，was da－ gegen in den Endopoditen der Fall ist，und dies bekundet ohne weiteres die Verschiedenheit， zwisehen den Endopoditen und den Kauladen．Auch sind die Chitimbalken nur im distalen Teil des Stammes vorhanden，und sind natiurlich nur als Stiitzorgane der Kauladen aufzufassen．＂

Fifth，sixth and seventh limbs：－On account of the great resemblance between these appendages in many groups it seemed best to deal with them together．

These three limbs，like the maxilla，appear in rather different types in the different Ostracod groups，and an attempt to interpret their different parts morphologieally seems to be even more difficult than the explanation of the maxilla．The difficulties in the solution of this problem are clearly shown in the preceding literature；even with regard to the main points we still find one unproved assumption opposed to another．I did not succeed either in attaining a quite certain solution of these problems，although I studied them very thoroughly．This uncertainty does not only apply to details；there still seem to be at least two almost completely different explanations possible．

I shall first try to give an account of these two explanations below；in this each limb will be diseussed independently，and under each limb the explanations of previous authors will also be given．I shall then give the reasons that have eaused me to choose one of these two methods of explanation．I may，however，point out here in passing that the result of this choice is only looked upon by me as provisory．

Fifth limb: - Aceording to the first of the methods of explanation just mentioned this limb would in my opinion be explained morphologieally as follows:

Family Polycopidae: The fifth limb in this family is of a comparatively simple structure and it is possible that a thorongh study of it - as in the ease of the second anterna, the mandible and the maxilla - may contribute considerably to a correct explanation of the somewhat more complicated structure of this limb in other Ostracod groups. On the other hand, however, it is by no means impossible that this limb in the Polyeopids is to be considered as a type that has been simplified in a number of respects; this is supported perhaps by the fact that the two following limbs in this group have been quite reduced; cf., in addition, chapter II of this treatise for the type of the fifth limb in the primitive Ostracods; in other respects it is perhaps of a type that is secondarily somewhat complicated.

Aceording to G. W. Múller the fifth limb of the Polycopids consists of ,emem mondeutlich gegliederten Stamm, der am Ende 2 kurze ungegliederte Fortsätze (Exopodit und Endopodit?) trägt" (1894, p. 62). This opinion coineides with what I have ealled in this treatise the first method of explanation. According to this we thus see that this appendage too is to be considered as a biramous limb, although of a less marked type; it resembles rather closely the foliaceons type on acconnt of the protopodite's strongly dominating over the verruciform, unjointed* branches, the exopodite and the endopodite, which are certainly well marked off, but very much reduced. The part which, according to this explanation. corresponds to the protopodite always seems to be divided into at least two joints; the proximal one of these joints is sometimes more or less distinctly two-jointed, i. e. three joints can le distinguished, which are consequently to be denoted as the procosale, coxale and basale. This limb is furnished proximally with a rather long and narrow vibratory plate, which is furnished with fairly mumerous and long marginal bristles; this plate is mited thronghont its whole length with the outside of the two joints that were termed above the procoxale and the coxale; ef. fig. $1 \mathrm{~V}: 1$ of Polycope frequens (: II. MCluser. - ln Polycopsis serrata G. W. Moller the vibratory plate issues, acoording to G. W. Moldenk, 1894. pl. 7. fig. 37, from a narrow base situated proximo-taterally on the joint denoted above as the procosale, but it seems to me not at all impossible that this organ is. in this form trom, attached throughout its whole length to the two proximal joints of the protopodite and that in the specimen investigated by (x. U. Iltiller (presumably only one specimull was investigated by this writer; (cf. his work of 1894. p. 2399) it was partly detached, during preparation, from the protopodite along the chitinous list that forms its imer boundary: - If the two distal verruciform processes on this limb are to be considered as the exoporlite and the endopodite, then it is evident that this vibratory phate must be explained ats an epipodial appendage, as (i. II. Mưblek has also done. Of the two distal prowesses the outer one is to be denoted as the exoporlite, the inner one - armed with only one bristle in the accompanying figure - as the endoporlite. This limh has no endites.

Family Sarsiellidue: The fifth limb in this family shows a rather close resemblanee to that which is found in the family Polycopidae. (It seems to be rather difficult to decide for

Fifih livel. The first method of explanation. Polycopilloe.
wertain whether it is to be considered, compared with the fifth limb in the following family, as a primitively simple one or as having been simplified secondarily; for several reasons the later of these two alternatives seems to me the more probable; with regard to this 1 shall only refer to what has been writen below in the second chapter of this treatise about the type of the fifth limb in the primitive Ostracods .) The exopodite, endopodite and epipodial appendage on this limb are - if this same method of explanation is employed for this family as has just been used for the family Polycopidae - of types that differ rather slightly from thene abserved in the Polycopidae. The process that is supposed to represent the exopodite is, howewr, relatively larger, the endopodite* is small relatively; the joints of the protopodite camot be distinguished. There is, at least in some cases, an indication of an endite proximally of the process that has been explained as the endopodite (cf. the fifth limb of Sarsiella capsula A. M. NommiN. in G. O. Sars, 1887, pl. X, fig. S, reproduced below, fig. IV: 2 and G. W. Müllera $1894 . \mathrm{pl}$. t. fig. 28).

Family Cypridinidac (see fig. IV: 3, 4): In this family the fifth limb is both very much differentiated and (secondarily?) also of a rather marked foliaccons type. But in spite of its complex structure it shows a fairly great resemblance to the same limb in the families Polycopidae and Sarsiellidae, especially to the latter. If the homologization carried out above is applied to this family, we have, in my opinion, the following results: The protopodite is powerful and often dominates somewhat over the distal part of the limb; it is in most cases divided into two joints, but sometimes, however, it is three-jointed, the proximal one of these two joints has been divided into two more or less distinct joints; in the latter case we can thus distinguish a procoxale, a coxale and a basale. The protopodite is armed on its inner edge with three endites, in most cases powerful, one on the procoxale, one on the coxale and one on the basale. According to this method of explanation the part situated distally of the protopodite is homologons with the exopodite; it is in most cases four- or five-jointed (four-jointed in the accompanying figure). Of the joints of the exopodite the two proximal whes are in most cases very strongly chitinized; each of them has on the inner edge a powerful endite armed with bristles and teeth. The following joints differ in most cases very considerably from the preceding ones on account of their structure**; they are very slightly chitinized and their bristles are in most cases rather soft and plumous. The fourth exopodite joint is, as (f. WV. Mitler showed as early as 1894, p. 62 , sunk deeply in joint no. 3 . In this way the latter joint is divided into two lobes, one outer and one inner one; the inner lobe is, in addition, often more or less reduced. The vibratory plate, which, according to this explanation, is to be looked upon as an epipodial appendage, has almost exactly the same type and position as the same organ in the family Sarsiellidae. The endopodite seems to be always absent in this limb.**

Family Asteropidae: In this family the fifth limb shows, as we know, a type that differs very much from the same appendage in other families; cf. the genus description of Asterope

[^5]below. C. Claus wrote in 1876, p. 94 , of this limb that it ,seine fußähnliche Form erhalten hat". If by this statement C. CLAUs meant that this limb had retained a number of primitive characteristies, he has certainly committed a fundamental mistake. This limb is undoubterlly

 no. 5 is somewhat modified. Fig. Fis drawn hy me from nature.
to be regarded as very much modified. This far-reaching modification and the tutal lark wh known transitional forms makes any attempt at homologization merely a caprice, at womat obviously incorrect, at best unverifiable.
$$
{ }^{\text {erphiglifitized by Microsoft }{ }^{\text {Dig }} \text {. }}
$$

As an instance of an homologization of the fomer kind the following may be given: In 1876, p. 94 C. Clans explained the spine-like ventral part of the chitinous support of the vibratory plate, the part that, as it were, eompletes posteriorly the part of this limb that is ealled ..the eomb" in this work, as , Kieferhaken, der eme Bezichung zur Nahrungsambahme zu besitzen seheint". The complete incorrectuess of this explanation is shown with all desirable distinetness by the fact that this chitinous part is not free, but only consists of a thickened part of the wall of the body, and that a similar spine-like part also completes the vibratory plate or perhaps. more correctly, the chitinous support of this organ dorsally. (It may be pointed out that in forms whose fifth limb seems to represent a more primitive type, e.g. in the sub-family Cypridininae the vibratory plate of this limb is often completed ventrally by a chitinous process. This process is, however, probably not homologous with the chitinous part discussed above in the Astcropidae.)

Only two out of all the preceding authors have tried to lomologize the part of this limb that is called ..the comb" in the present work.

One of these writers, C. Clatss, 1876, p. 94 and 1888 , p. 152 explained this organ as an endopodite; transeribed in the terminology used by me above this would correspond to about the whole exopodite. C. Claus did not give any further reasons for his view; it is to be pointed out that he considered the vibratory plate to be homologous to the exopodite.

The only writer who has made a more thorough attempt to homologize this organ is G. II. Múller, who has dealt with this problem on two separate occasions, $1890, \mathrm{p} .221$ and 1894, p. 63.

In the first-mentioned place we read as follows: „Die größte Schwierigkeit bietet beim Versuch, einen Vergleich durchzuführen, Asterope; angensehemlich handelt es sich auch hier um eine weitgehende Reduction; der eigenthimliche Kaufortsatz von Asterope diirfte nur einem der Glieder von Cypridina entspreehen, zum mindesten der weit vorragende Theil, wenn es auch nicht ausgeschlossen erseheint, daß in den vorderen Theil des borstentragenden Randes die Reste von anderen Gliedern mit aufgegangen sind. Ziehen wir zum Vergleich die Bildung beim Mämchen von Philomedes heran, so können wir, die Berechtigung eines solehen Vergleichs vorausgesetzt, kaum daran zweifeln, daß es der Fortsatz 7 ist, aus dem der eigenthümliche Kaufortsatz bei Asterope hervorgegangen. Der Fortsatz beim Männehen von Philomedes hat die entsprechende Lage, zeigt auch bereits die eigenthümliche Richtung. Ziemlich häufig entspringt mitten auf dem Fortsatz von Asterope eine einzelne, ziemlich lange Borste; an ihrer Stelle finden wir bei Asterope hilgendorfii zwei längere Borsten, die auf einem kleinen, aber immerhin deutlich abgesetzten Grundglied entspringen, welches dureh einen schmalen Fortsatz mit dem gemeinsamen Stamm verbunden ist. Dieser kurze Fortsatz, ebenso wie die gewöhnlich allein vorhandene Borste, muß seiner Lage nach dem Fortsatz 8 an der zweiten Maxille von Cypridina entsprechen" (ef. G. W. MUlller, 1890, pl. XXVI, fig. 4). The joint of the fifth limb that is denoted by G. W. MUller as no. 7 corresponds to the joint that was denoted as the fourth exopodite joint in the homologization carried out by me above for the family Cypridinidae; the joint denoted by G. W. MÜLler as no. 8 corresponds to the outer lobe of the third joint of thr exopodite according to my terminology. Thus, according to the statement just quoted from G. W. Mưller,
the comb as a whole or at least the greater part of it is homologous to the joint that is denoted by me above as the fourth exopodite joint; the long bristle (or the two long bristles) on the lateral side of the comb is, according to the same statement, part of the outer lohe of the joint that is termed by me the third exopodite joint.

After having had an opportunity of studying the fifth limb of the genus Pseudophilomedes G. W. Mưller, however, altered his opinion. Thus he writes, 1894, p. 63: „Ueber die Morphologie des Fortsatzes habe ich an anderem Ort die Ansicht geäußert, dal er vielleicht homolog dem Glied 4 sei, wobei ich mich auf die Aehnlichkeit mit der 2. Maxille der ô von Philomedes stützte; hier sehen wir das 4. Glied nach vorn gerichtet. Die einzelne Borste, welche auf dem äußeren Rand des Blattes entspringt, sollte den hinteren Borsten von Glied 3 entsprechen. Zu einem anderen Vergleich giebt Pseudophilomedes die Veranlassung. Der Fortsatz entspricht in Richtung und Lage dem stark verlängerten Zahnfortsatz von Pseudophilomedes; der Haken an der Basis würde dann dem inneren (vorderen) Zahn, die Borste dem Glied 4 entsprechen. Die Aehnlichkeit in der wechselseitigen Lage der einzelnen Theile ist auffällig genug. Giebt man die Möglichkeit zu, daß sich ein Zahn in einen borstentragenden Fortsatz umwandelt, so erscheint dieser Vergleich zutreffender als der ältere. Einstweilen muß wohl die Frage in Ermangelung entscheidender Zwischenformen als offen betrachtet werden" (ef. G. W. MÜller, 1894, p. 60, fig. 6). In the statement just quoted joint no. 4 corresponds to joint no. 7 in the statement of 1890 ; joint no. 8 in the statement of 1890 corresponds to the outer lobe on joint no. 3 in the statement of 1894 . The "/ahnfortsatz" corresponds to the second joint on the part of this limb in the Cypridinidae that was termed the exopodite in the homologization that I carried out above for this family. Joint no. 4 in the statement just quoted corresponds to the joint that, according to the terminology used by me above, is denoted as the fourth joint of the exopodite. According to G. W. ML'LLAR's last statement the comb is thus to be considered as homologous to the second joint of the part that is termed by me above as the exopodite, the long bristle (or the two long bristles) on the outer side of the comb is, according to the same statement, part of the joint termed by me the fourth exopodite joint.

The fact that G. W. Muhber writes: ..Giebt man die Möglichkeit zu, daß sich ein Zahn in einen borstentragenden Fortsatz umwandelt" Seems to indicate that this anthor has started from the assumption that the primitive forms of the family Asteropidae were characterized by a fifth limb of about the same type as in the genus Psendophilomedes. This can, however, scarcely have been the case. Although, as has been shown in another part of this treatise, of ath the recent forms so far known the sub-family Philomedinae is probably most closely related w Asteropidue, the latter can by no means be considered as being derived directly from the former. On the contrary, the sub-family Philomedinae must certainly be considered to have a type that differs very much from the primitive form from which the Asteropids originate: the fifth limb especially must be considered as being rather much modified in this sub-fanily. On the other hand it does not seem impossible that Philomedinue and Asternpidae originatr from a common primitive form. The part of the fifth timb that was termed the first and second exopodite joints in the homologizationicarcied gut bymerabogituis presumably more power-
filly developed in this primitive form than in the sub-family Cypridimime and, as in the latter. it was armed with numerous bristles.

Which of the explanations described above. (. Clauls's: (i. W. Müller's of 1890 and that of the same investigator of 1894 is to be considered correct - judging from the view of the method of homologization applied by me above to the families I'olycopidue, Sarsiellidae and Cymidindae? Or is it possible - judging from this point of view - that any of them on the whole is to be considered quite correct?

No very definite answer to these questions can be given - at least at present. The strongly modified type of this limh and the complete absence of any known intermediate forms som - as has been shown above and as G. W. MULLER has also previonsly pointed out - to make it almost impossible to carry out a certaim homologization of this organ at the present time.

It seems to me very improbable that, as G. W. MULLER assumed in 1894, the comb has developed only from the part denoted above as the sceond joint of the exopodite, on account uf the fact that this organ issues near the base of the limb. The same reason militates to an eren greater extent against G. W. MílLER's assumption of 1890 . It seems to me most probable that the proximal part of the comb has been formed by what I termed above the protopodite, its distal part by what is called above the first and sceond joints of the exopodite. The long bristle (or the two long bristles) with the short bristles situated near it (them) on the lateral vide of the comb presumably belong, according to my idea, to what I have called the third and fourth exopodite joints: on the other hand it seems quite impossible to decide whether they belong to only one of or to both these joints. It is uncertain, however, whether this homolugization is more correct than that worked out by G. W. Múleer. It is at present based unly on such weak arguments as the relative positions of the different parts.

The vibratory plate on this limb is of about the same type as in the families Polycopidae, sarsiellidue and Cypridinidue and must certainly be homologized with this organ in these families. According to the explanation given above it is eonsequently to be considered as an epipodial appendage. Cf. the adjoining figure IV: 3, 4.

Family Holocypridue: At the first glance there seems to be a great gap between the type of the fifth limb in the families Sarsiellidae and Cypridinidae and that found in the same organ in the family Helocypridue. While in the two first-mentioned families this appendage is developed as a more or less typical foliaceous limb, in Halocypridae it-is a typical rod-shaped limb. still it is possible to show, although with a certain amount of doubt, which parts of this limb are homologous in these three families.

If the homologization employed above is applied to the fifth limb of the Halocyprids we shall find the following results: The vibratory plate is to be considered as homologous to the same organ in the preceding families and is consequently to be denoted as an epiportial appendage. The three distal joints are probably to be homologized with the process that is denoted by me above as the exopodite. The protopodite, which is proportionately almost as large as in, for instance, the Cypridinidae, is sometimes divided into two joints. which are often only weakly marked off from each other. a proximal one. on which the vibratory plate issues which is to be considered as a procoxale and a coxale, and a distal

Digitized by Microsoft ${ }^{\circledR}$

one. Which, like the preceding joint, is rather powerful and is to be denoted as a basale. Distally on the anterior side the protopodite has indications of two endites. Distally of these and in front of the part that has just been termed the exopodite there is a rather strong, but short and unjointed, process, fumished with powerful minseles and bristles, a process which. on account of its position, is perhaps to be regarded as homologons to the process in the family Polycopidae that was termed by me above the endopodite; cf. fig. IV: 6. The morphological value of this last part seems to me, however, rather doubtful. Does it perhaps belong to the protopodite or the exopodite?

The families Cypridae, Darwinuldae, Nesideidae, Cytheridae and Cytherellidae: In these families the fifth limb shows such far-reaching agreement with the same limb in the Halocypridue that one can show with a fair degree of certainty which parts of this appendage in these families

Cyprıdac, Darmen. ulidur, Vesideidur. rytheridae and riytherellidne.

The vibratory plate, which is more or less completely reduced in the C'y therids and a number of Cyprids, is certainly homologous with the same organ in the Halop y prids and, according to the explanation made use of above, it is consequently to bo denoted as an epipodial appendage. It is situated at different places on the protopodite, sommtimes distally*, sometimes proximally (ef. the accompanying fig. I^{*} : 1). The frotopodite is minointed. Distally anteriorly it has sometimes an unjointed process pointing forwards and inwards, which, according to its position, is to be considered homologous to the part that was denoted as the endopodite in the preceding family. This part is in most cases more on less completely absent in Nesideidae and Cytheriduc. The backward pointing, rod-shaped.

A cond methend on erplny staon.

Polycopidue.
-
bne- to fonr-jointed part of this limb seems to be homologons with the branch that was termed the exopodite in the preceding families. Cf. figs. $1 \mathrm{~V}: 7,8$.

According to the sccond of the two methods of explanation mentioned above the tifth limb in the different families is in my opinion to be explained as follows:

The vibratory plate corresponds to the exopodite. The greatest difficulty in carrying ont this homologization arises when we have to define the boundary between the protopodite and the endopodite. In this but rather little value can be attached to the position of the vibratory plate: it is very far from improbable that this organ has been subject to not inconsiderable alterations in position. The difficulty in fixing this boundary was really so great that it seemed to me impossible to reach any definite result; there have always seemed to be different possibilities present. covale, coxale and a basale, or else it is formed only by the two joints on which the vibratory plate is fixed. In the first case the nearest joint distally to the vibratory plate would correspond to the basale and the outer of the two distal processes would correspond to the endopodite, the inner being an accessory appendage, an endite on the basale, ef. fig. VI; in the second case the first-mentioned joint would correspond to the first endopodite joint and one of the two distal processes is to be regarded as the end joint of the endopodite, the other as an accessory appendage to the first endopodite joint. In the former case the vibratory plate, the exopodite, has been displaced proximally, but not in the second case.

Family Sarsiellidae: As is seen above, this limb is almost entirely without any division into joints. The large outer distal process is to be regarded as an endopodite, the small inner distal lobe presumably as an endite either on the basale (cf. the accompanying figure VI) or on the endopodite.

Family Cypridinidae: The protopodite either has the same extension as according to the first method of explanation or else it is represented only by the joint (or the two joints) on which the vibratory plate is fixed. In the former case the joint nearest to the vibratory plate distally is to be homologized with the basale, and the following joints correspond to the endopodite; with this homologization the part that was denoted, according to the first method of explanation, as the first and second exopodite joints would correspond to the first and second joints of the endopodite; cf. the accompanying figure VI. In the latter case the joint situated clistally nearest to the vibratory plate is to be considered as the first endopodite joint; the endopodite should have five joints in the accompanying figure. In the former case the exopodite has been displaced proximally.

Family Asteropidae: The comb seems to have been formed from the protopodite + the two proximal endopodite joints or from the protopodite and the three proximal endopodite joints. The long bristle (or the two long bristles) with the short bristles close to it (or them) on the lateral side of the comb appears, according to this interpretation, to belong to the two distal joints of the endopodite or to one of these two joints; cf. the accompanying figure VI.

Digitized by Microsoft ${ }^{\circledR}$

The families Itulucypriduc, C'ypridae, Darwinulidue, Nesudeudue, C'ytheridue and C'ytheretlidue: The protopodite either has the same extension as according to the previous explanation, with the addition, however, that even the part that was denoted as the endopodite according to this explanation belongs to it; this part is to be considered as an endite on the lasale; ef.

Hutorypurudar '?ypridue, Marrinuludar. Vesideider. rytheridne".

 For further explation see fig. N.
the accompanying figures VI or else the joint situated distally nearest to the vibratury plate is to be homologized with the first endopodite joint, equipped with an endite process. In the former ease the backward pointing branch would represent the whole endopodite. in the latter case only the second, third and fourth endoporlite joints. In the former case the vibutory plate has been displaced proximallyigitized by Microsoft ©
'The boundary between the protopodite and the endopodite may of course be thought of as being drawn in other ways as well: the altematives described above seem, however, to he those that are most probable. As I have already pointed out above, I have not suceeeded in deciding which of these two altematives have the strongest argments to support them: I know of no forms so far that give any clear evidence on this point.

Mnst of the authors who have dealt with this group of Crustacea are very superficial with regard to this important problen. Thas, for instance, no one has tried so far to identify the different joints of the protopodite; the terms procoxale, coxale and basale have not come into use for this group.

The vibratory plate has - if its morphological value has been tonched upon at all been taken by most investigators to be the exopodite, and the distal part of this limb, which often points backwards, has been taken an endopodite. With regard to the exact boundary between the protopodite and the endopodite these writers are very vague, and one camot find any definite statements in their works on this point; most of them seem, however, to have taken the forward pointing processes on the antero-ventral part of this limb as belonging to the protopodite.

The only one of the previons authors who has sought to enter more deeply into this difficult problem is $(\underset{y}{ }$. \mathbb{W}. Mơller. Leaving aside the opinion of this writer as expressed in earlier works - which seems to me of little interest in this connection - I shall give an account here of his view as expressed in his monumental work of 1894, a view that he did not depart from in his later works. According to this investigator the vibratory plate on this limb is to be taken as an epipodial appendage in all families, ,ohne damit eine Homologie mit dem Epipodialanhang der Phyllopoda behaupten zu wollen, wie mir iiberhanpt die Homologie der verschiedenen Epipodialanhänge keineswegs sichergestellt erscheint" (G. W. MúLLEF, 1894, p. 85). The family Polycopidae: With regard to the fifth limb of this family G. W. Müller the only investigator who has dealt in detail with the homologization of this appendage gave, as is seen above, p. 37, on the whole the same explanation as I have worked out above and called the first method of explanation. This author does not, however, touch upon the question as to which of the two distal verrucae corresponds to the exopodite and which to the endopodite. The family Sarsiellidue: The large outer distal process corresponds to ,den verschmolzenen beiden letzten Gliedern" (1894. p. 63) of the endopodite; no information is found in this author's works as to the morphological value of the small imner distal process. The family Cypridinidae: The joint or the two joints on which the vibratory plate is fixed was identified by G. W. Múllek with the protopodite; all the following joints were homologized with the endopodite; the part that, according to the first of the two methods of explanation given by me above, is homologous with the first and second joint of the exopodite, is taken to be a single divided (bifurcated) joint, the second joint of the endopodite. The family Asteropidae: G. IV. MÜleer's idea of the morphology of this limb has already been described above, so that I need only refer to this account, p. 41 above. The family Halocypridae: The backward pointing branch is taken by this writer as the second, third and fourth endopodite joints; the part that, according to the first of the two methods of homologization given by me above, was interpreted as the endopodite,

Digitized by Microsoft ©

is taken to be the first endopodite joint. The families Cypridae, Darwinulidue. Nesideidae. Cytheridae and Cytherellidae: 'The backward pointing branch is taken as the endopodite, but (f. W. Muller did not feel quite certain about this explanation, cf. below; this uncertainty is also expressed in his work of 1912; in the latter work we read on p. 105 , der lintere Ast, den ich als Endopodit bezeichne (obwohl die Deutung nicht sicher)". . . the forward pointing process is homologized with the exopodite.

Sixth limb: - Like the following limb this is, as we know, quite absent in the family. Polycopidue, so that in this case. as in the case of the second antenna, the mandible and the maxilla, this family cannot throw any light on the conditions in the other gromps.

The families Halocypridae, Cypridae. Darwinalidae, Nesideidae, Oytheridae and Cytherellidae: In these families the sixth limb shows such far-reaching agreement with the fifth limb that there seems to me to be no serious reasons against carrying ont quite the same homologization for both these appendages. In other words there seem to be for the sixth limb, as for the fifth one. two quite different explanations possible. According to the first of these two methods of explanation the vibratory plate is to be taken as an epipodial appendage, and the backward pointing rod-shaped branch as the exopodite. The endopodite is scarcely ever developed: only in the Haloeypridae is there often a part (without any endite) that must be homologized with the part that has been explained as the endopodite on the fifth limb; cf. p. 48 above and fig. 30 of Conchoecia symmetrien (. W. Míther, in this treatise below. According. (1) the second method of explanation the vibratory plate is homologons with the wopodite. the backward pointing rod-shaped branch with the endopodite. The vibratory plate is well developed only in Halocyprids and Cytherellids: in all the others it is more or less completely reduced. There are no endites.

It seems to me that it is somewhat more difficult to explain this limb in the Cypri dinids. In all the forms of this group, it is, as we know, developed as a broat, flattenmel appendage. In the families Sarsiellidae and Asteropidae it lacks - presmably secondarily entirely or almost entirely all traces of division into joints and, in other respects as well this is especially the ease in the Sarsiellidae - it is very slightly differentiated. It is, of course, quite impossible to carry out a detailed homologization in these two families. - The family Cypridinidae: In this family the structure of the sixth limb is more complicated: in most cases it has well developed joints; the variation in the structure of this limb is, however. rather slight in this group. According to the first method of explanation the proximal joint of this limb. which is almost always characterized, as shown. for instance, in the acompanying figure hy two bristle-bearing endites on the anterior edge, is presumably to be regarted as a procoxale and a coxale, the following joint, which also has a powerful endite on the anterior edtere, appears to correspond to the basale; the two following joints. the proximal one of which is relatively short and is amed on the anterior edge with a powerful endite. While the distal one is comparatively large and has no endite. correspond to the exoperlitn: the eollection of short bristles, which sometimes issues on a lobe-like little process almost always found on the posterior edge of the protopolite. is. aecording to this methord of axplanation.

Cippredtumblu
sursuchludare and Asteropmether
deoneding to the second method of explanation the last-mentioned collection of bristles is to be considered as a remains of the exopodite, the two distal joints presmmably represent the condopodite: the protopodite has the same extension as according to the former method of explanation: fi. fig. V11: 2.

The collection of bistles that is in most cases to be found on the posterior edge of the part that has been explained as a protopodite is thus, in my opinion, to be considered as the mdiment of a homologon to the vibratory plate on the preceding limb. This assumption scems in he supported both by the position of these bristles and by the fact that they are sometimes

attached to a lohe-like process, though the latter is small. It seems, at least at present, to be impossible to prove this assumption. For the cause of a possible reduction of this vibratory plate see (.). IV. MİLLER, 1894, p. 198.

There is no part that might be explained as an endopodite according to the first method of explanation* (as in the fifth limb).

We must note the uncertainty that, in my opinion, exists in both the methods of explanation deseribed above, with regard to the boundary between the protopodite and the branch situated distally of this. Perhaps only the proximal joint, the one that in most cases is characterized by having two bristle-bearing endites on the anterior edge, is to be considered as a protopodite. Or does the exopodite (or the endopodite as the case may be) consist only of the large end joint? These are questions that probably cannot be decided with certainty, at least at present. Of the three alternatives mentioned above it seems to me, however, that the first, namely that the protopodite comprises the two proximal joints, is the most probable and it has been adopted in the present work. This statement is supported. it seems to me, by a comparison between the fifth and sixth limbs. It may be sufficient to refer to a comparison between the schematic figures, reproduced above, of the fifth limb in the sub-family Cypridininae (figs. IV: 3,4) and the figures,

[^6]reproduced here, of the sixth limb in the same group. From this comparison it will be seen that, in spite of profound differences, these two limbs have the same fundamental plan; it seems to me that the homologization of the clifferent parts of one limb stands or falls according to the homologization of those of the other. The great resemblance that exists between the fifth and sixth limbs in the families Halocypridue, Cypridae, Darwinulidae, Nesideidae and Cytheridae seems to justify us in drawing conclusions in the family Cypridinidae as well from a comparison between these two limbs.

This limb begins embryologically as a simple, unjointed, lamelliform process; in the next larval stage it ${ }^{\circ}$ is two-lobed distally, with one rather large outer lobe, the end joint of the complete limb and a smaller imer lobe, explained according to the interpretations given above as the first joint of the exopodite (or the endopodite respectively). It is only later that the proximal joints with their endites appear. Cf. G. W. Mtuler, 1894, pl. 34, figs. 21, 22 and 24. Whether these embryological facts justify us in drawing any fimal conclusions in the questions dealt with above I must leave unsettled.

In dealing with the morphology of this limb, just as in the ease of the others, the preceding writers have been rather superficial: most of them do not seem even to have tried to form any idea as to the morphological value of the different parts of this appendage. We find the following views in the previous literature: C. CLAts, 1865, p. 151, seems to have had it vague idea that the part of this limb in Cypridinidae that has been explained by me above as the end joint corresponds to the vibratory plate on the preceding limb; he expresses himself so cautiously, however, that one cannot be quite certain about this - ., welcher seiner Lage nach an die schwingende Platte des vorhergehenden Kiefers erinnert". C. Clats himself, however, took up a definite position against this assumption as carly as in his work of 1873 and this idea does not seem to have been serionsly adopted by any of the other writers either.* In the work just mentioned C. Chaus writes as follows of this joint (p. 218): ,In der That erinnert die Stellung und Form dieser mehr oder minder dreieckigen Platte an den sog. Maxillarfuß von Cypris, sowie an das diesem gleiehwerthige vordere Beinpaar ron Halocypris, ohne jedoch morphologisch diesem (5.) Glichmaßenparr zu entsprechen." The small collection

[^7]of bristles that is foumd in most cases on the posterior edge of the protopodite and that was taken by me above to be a remains of a vibratory plate appears, according to a statement on the same page, to belong to a reduced vibratory plate. I'his assumption has later been adopted by G. II. Mcoluer. Neither of these two anthors has tried, however, to give any proof for their views. - With regard to the morphological value of the vibratory plate - just as in the ease of the same organ on the fifth limb - we find two different views in the literature; most writers - if they have any opinion in this matter - take it to be an exopodite; G. W. Mulder assumes that it is homologous to an epipodial appendage. The backward pointing part of this limb, the part which is rod-shaped in Halocyprids, Cyprids, oDarwinulids, Nesideids and Cytherids, is taken by all writers to be an endopodite. With regard to this limb in the family Cypridinidae G. W. MUller assumes, 1894, p. 68, that the proximal joint, with two chelites, corresponds to the protopodite, the three distal joints to the endopodite. Curiously enough G. W. MULLER seems to have been very sure about the extension of the protopodite. Thus he writes on this point, loc. cit. ,so ist es wohl unzweifelhaft, daß bei Cypridina das 1. Glied, welches an seinem Vorderrand 2 Höcker mit Borsten hat, als Stamm . . . zu bezeichnen ist". The reason why G. W. Múller and I have arrived at somewhat different ideas as to the morphological value of this limb in the family Cypridinidae is probably to be found in our different explanations of the fifth limb in this family. Just as I have done above, G. W. Muller has completely applied the homologization of the fifth limb to the sixth one. Other investigators too have assumed that the distal part of the sixth limb in the Cypridinids corresponds to the endopodite, but they have not indicated the exact boundary between the protopodite and the endopodite.

Seventh limb.
Cypridae, Darwinulidae. गesideidae and Cytheridae.

Seventh limb: - This is not found in the Polycopidae and Cytherellidae.
The families Cypridae, Darwinulidae, Nesideidae and Cytheridae: In these families the seventh limb shows such a far-reaching agreement with the two preceding limbs that it seems to me that there are no serious objections to applying quite the same homologization to this limb as well. According to the first method of explanation the backward pointing rodshaped branch is to be considcred as an exopodite, according to the other it is to be taken as an endopodite and the part situated proximally of this branch is homologous to the protopodite. No organ is ever developed that could be considered as an endopodite according to the first method of explanation. The vibratory plate, which according to the first explanation is to be homologized with an epipodial appendage, according to the second with the exopodite, is always reduced; it can, however, be traced in most cases as single bristles on the posterior side of the protopodite, situated sometimes proximally, sometimes distally. No endites are developed.

It seems impossible to decide with certainty at present whether the very much reduced seventh limb in the Halocyprids is to be taken as a protopodite + an exopodite or only as an exopodite, according to the first method of explanation, or as a protopodite + an endopodite or only as an endopodite, according to the second.

It is rather probable that the peculiar worm-like cleaning organ in the family Cypridinitae is also to be taken as a rod-shaped limb consisting of a protopodite and Digitized by Microsoft ${ }^{(B)}$
an exopodite, according to the first method of explanation, or of a protopodite and an endopodite, according to the second; there is, is course, no proof of this as yet.

In the previous literature this limb has always been taken as being composed of a protopodite and an endopodite.

Is it possible to prove that any of the explanations put forward above is quite certain?

Which of these me. thods of explanation is correct?

As a matter of fact - as has been already shown on p. 35 ahove - it must be considered that the morphological value of the vibratory plate on the maxilla (in the families Cypridue, Darwinulidae, Nesideidae and Cytheridae) is far from being settled with certanty. It is true that in this work 1 have explained this organ as an epipodite, but I did so with reserve; the possibility of its being of the nature of an exopodite must still be considered as being present. Under these ciremmstances, in homologizing the vibratory plates on the three posterior limbs it is not convenient to pay too much attention to the results attained so far in attempting to homologize this organ on the maxilla.

To support his view that the vibratory plate on the posterior limbs is an epipodial appendage G. W. Meller thus brings forward, in the first place, the proximal position of this organ on the fifth and sixth limbs. As a matter of fact, however, the position of this organ on the posterior limbs varies rather considerably. In a number of forms this plate is certainly situated very proximally, as, for instance, on the fifth and sixth limbs of Haloeyprids, on the fifth limb of Nesidea and on the fifth, sixth and seventh limbs of Cytherids (cf. the accompanying fig. $V: 1$ of the fifth limb of Sclerochilus contortus [A. M. NORMAN]); in other forms, howerer, we find it situated rather near the distal boundary of the protopodite, as, for instance, on the sixth and seventh limbs in Nesidea; ef. the accompanying fig. V: 2 (G. IV. Múllere, 1894, pl. 15, fig. 35), on the fifth and sixth limbs of a number of Cyprids; ef. fig. IV: 7 above of the fifth limb of Macrocypris, and on the sixth limb of the family Cypridinidae, fig. VII above. (If G. W. Múller's explanation of the joints on the fifth limb of the subfamily Cypridininae is correct, the vibratory plate is also attached close to the distal boundary of the protopodite on this limb as well; cf. p. 46 above and G. W. Mưller, 1894, p. 60, fig. 2.) In those cases where the vibratory plate is situated proximally we need not, however - even presupposing that it is of the nature of an exopodite - by any means resort to so radical an explanation as G. W. Mctler has adopted, namely that the ,, Stammglied vollständig oder fast vollständig geschwunden ist" (and there is just as little need to explain the distal position of this organ - presuming it is of the nature of an epipodial appendage - by assuming that the distal joint of the protopodite has more or less completely disappeared). As has already been pointed out abore, the vibratory plate (probably always $=$ the epipodite) on the mandible is often more or less displaced; in a number of forms it is situated on the medial side of the second protopodite joint, in others on the lateral side of this joint; in other words the position of the vibratory plate is not always quite constant. If we apply this experience to the posterior limbs, we need consequently only assume - if we suppose that the vibratory plate on these limbs is of the nature of an exopodite - that in forms in which the vibratory plate has a decidedly proximal position this organ is displaced proximally more than is usual. (Whether we assume that the vibratory plate is an exopodite or an epipodial appendage, it seems to be necessary for us to assume that this organ has been displaced in one direction or the other in a number of forms.)
F. As another argument G. W. MULLER puts forward the occurrence of a forward pointing process distally on the protopodite of the fifth limb of Cytherella and Macrocypris. The significance of this process must not, however, he overestimated; no decisive value ean be attached
to it; it may very well be considered as an accessory appendage. Neither the position, size nor structure of this process form any decided argument in favour of its being a branch. The position is explained by its function; it is an organ for breaking up food or carying it to the mouth or towards the masticatory appendages that are situated in front; the distal endite on the maxilla has about the same position. The size is of very little value as an argument; in this connection it will be enough to point out that the endites on the maxilla are often of considerable length, sometimes almost as long as the palp that has been explained as an endopodite. The structure seems to be an argument against, rather than for, its having the nature of a branch; it is always unjointed, in most cases not even bounded proximally; (a proximal boundary need not, as a matter of fact, have much significance, as I have myself observed specimens of a species belonging to the gemus Mucrocypris in which the middle one of the three endites of the maxilla had a well-defined proximal boundary); finally it is practically always without muscles inside itself - contrary to the backward pointing branch; I only succeeded in observing these muscles in the Ifaloeyprids; cf. below, however, for the latter characters.

This investigator does not bring forward any other reasons for his view.
It ought to be clear from this that (x. W. Miller has not proved in any decisive way the assumption put forward by him as to the morphological nature of the vibratory plate on the three posterior limbs.

On the other hand we find that none of the investigators who adopt the view that the vibratory plate on the posterior limbs is of the nature of an exopodite has advanced any decisive proof for his view. The only one who has made a serious attempt to support his assumption by facts is G. Aly. This investigator has advanced a number of facts which seemed to him to support the idea that the forward pointing process on the fifth limb of a number of Cyprids and of C'ytherella has the nature of a branch. We read in this writer's work of 1915, pp. 9-10: ,Diese Bildung entspricht doch was Form und Lage anbelangt den Kauladen am Mandibel und der Maxille, zumal sie auch an der Innenseite des Beines sitzt, was nicht fiir den Exopodit gelten dürfte, und weiter vermißt man vollkommen etwaige Muskeln in derselben. was alles gegen die Deutung als Exopodit sprechen muk.."

I have tried to show above that the shape and position of this process camnot be used as proofs of its having the nature of a branch, but these characters are equally incapable of being used as evidence in favour of the opposite opinion. The position is distal on the protopodite. i. e. where one would expect to find it if it were a branch. It is trus that it is always unjointed. but in connection with this it may be pointed ont that the same thing is alway true of the exopodite on the mandible of which no investigator has yot denied that it has the nature of a branch. With regard to G. ALM's argument that this process has no muscles it may be pointed out, first, that these can be observed in the H alocyprids (cif. fig. 27 of Conchoccio symmetrica (i. IV. Mocmer, in this treatise). secondly that museles are also absent in the exopotite of the mandible of C'ypridinidue ote. (i. Ala assumes in the same work, p. 10, that the strong development and individualization of the forward pointing prowess on the fifth limb of $1 /$ acmcypris is connected with the faet that this limb is in this genus also used as a crawling leg and

wie es bei den höheren Cypriden, wo der Endopodit keme Bedeutung hat, der Fall ist. Statt dessen muß alsdann der bei der Nahrungsaufnahme zu verwendende Teil verlängert werden, auch ist ihre Beweglichkeit von Nutzen, um nicht von den Bewegungen des übrigen Beines abhängig zu sein." It ought to be obvious that this assumption cannot be used as a proof of the accessory nature of the forward pointing process; as an assumption it may be taken for what it is worth.

As a proof for the exopodite nature of the vibratory plate there has also been advanced the early appearance of this organ during ontogeny, as in other Crustacean groups the epipodial appendages usually appear comparatively late. We should note, however, that the forward pointing process on the fifth limb is also developed rather early; in a number of forms it is even more powerfully developed relatively in the larvae than in the mature individuals. It is probably impossible to draw any conclusions from these facts as to the morphologieal value of these processes. The early appearance of these two organs during ontogeny is presumably due less to their great phylogenetic age than to the fact that they are both of vital importance even in the early larval stages. E. Korschelt and K. Heider state in their „Lehrbuch der vergleichenden Entwickhngsgeschichte der wirbellosen Thiere", p. 389, that it can by no means be considered impossible that the early or late appearance of the epipodial appendages is closely comected with the needs of respiration.

No really decisive evidence in favour of either of the alternatives mentioncd ean thus be said to have been brought forward so far, nor, in my opinion, is it possible at present to find any. I have myself tried to find evidence both among the facts of comparative morphology and in embryology, but without any positive result. It seems most probable to me, however, that G. W. Muller has found the most correct solution of this problem. In the present treatise the vibratory plates on the fifth, sixth and sevenths limbs have consequently been taken to be epipodial appendages.

What was most decisive in causing me to take this view was the structure of the fifth limb in the fanily Polycopidae. It is true that the assumption that the two distal, verruciform, unjointed processes on this limb really correspond to an exopodite and an endopodite has not yet been proved; it is only a postulate put forward by G. W. MƯLler even with the addition of a query, and no forms have been found so far that have enabled this statement in any way to be changed into a proof. But it seems to me, however, as is pointed out above, fairly probable that this assumption of G. W. MULLER's is correct. It seems to be supported partly by the fact that the Polycopids show primitive characteristics with regard to the preceding limbs, partly because both these processes seem to appear constantly in all the forms belonging to this group, partly also perhaps because they are moved by special museles in the same way. If these two processes are homologous with the exopodite and the endopodite, the vibratory plate must of course, as has been pointed out above, be taken as an epipodial appendage. The shape of the vibratory plate in this group also seems to me to support the idea that it is of the nature of an epipodial appendage.

This riew is perhaps also supported by the fact that the forward pointing process on the fifth limb is developect best in a number of forms which are at the present time looked upon Digitized by Microsoft (B)
as more or less primitive in a number of respects, as, for instance, in Polycopids, $\mathrm{Halo-}$ cyprids, Maerocyprids and Cytherellids.

Finally the fact that the vibratory plates on the mandible and maxilla are presumably of an epipodial nature may also be advanced to support this explanation. With regard to the value of this argument see p. 52 above.

If we start from the assumption that the vibratory plates on the fifth, sixth and seventh limbs are homologous with epipodial appendages, how is that part of these limbs to be explained that is situated distally of the protopodite and is often pointed backward and rod-shaped? Is it to be looked upon as an exopodite or an endopodite? And how is the forward pointing process on the fifth limb to be explained?

The position of these organs in relation to the limb as a whole does not - I think - permit of more than one explanation, the one which has alrearly been put forward by me and called the first method of explanation. According to this the forward pointing process on the fifth limb is to be homologized with the endopodite; the part that is in most eases rud-shaped and pointing backward corresponds to an exopodite that is turned somewhat backward.

This is opposed to the results of all previous investigators; in all previous works, as is seen above, the distal part of these limbs has been explained as the endopodite. In the case of those investigators who homologize the vibratory plates on all limbs with exopodites this result is quite natural. But it seems to me exceedingly curious that G. W. Mellere, who has interpreted the vibratory plates on the three posterior limbs as epipodial appendages, should have been able to arrive at this result.

What arguments can G. W. Mưller bring forward in favour of a homologization of the two branches of the fifth limb that is quite the opposite of what is assumed by me abo ?

It is quite clear that the position of these organs does not support this view. (i. W. MULLer writes with regard to this, 1894, p. 196: ,Nicht unerwähnt will ich lassen. daß die Art der Einlenkung die umgekehrte Deutung befürwortet, doch wird man auf diese Thatsache wenig Werth legen, mit Rücksicht darauf, daß es nur einer geringen Verschicbung. einer sehwachen Verbreiterung des Stammes an der betreffenden Stelle bediarf, um die heutige Form herzustellen." In other words this author admits that the position shows his explanation to be quite incorrect. At the same time, however, he tries to diminish the value of the evidenee of the position by stating that a slight displacement of the parts in question would be enough to produce a position that would be suitable for the homologization accepted by him. When the foliaceous fifth limb of the Phyllopods is in a position of rest, the endites and the endopodite are pointing obliquely inwards and forwards towards the mouth; the exopodite is pointing obliquely backwards and outwards. On the foliaceous fifth limb in the family Cypridinidae, when the organ is in a position of rest, the endites point forwards and inwards. the part that G. W. MUlLER explained as an endopodite points obliquely backwards and outwards. On the same limb in the Cyprids and Cytherellids the process that was explained by G. W. Mcller as an exopodite is, when the limb is in a position of rest, pointing inwards and forwards; the rod-shaped branch which was explained by the same author as an endopodite, points backwards. The humplogation earried putseff. Al. Meller thus makes
it neeessary simply to assume that thocxopodite and the endopodite have changed places; the endites on the protopodite have, on the other hand, retained their original position. An alteration of position of this sort can scarcely be described as ,gering"!

The explanation adopted by me. on the other hand, makes it necessary for the different parts to have retamed their original position in a number of forms, e. g. in the families Cypridinidae and sarsidllatae: in the families Halocypridae, Cypridae, Darwimuldae, Nesideidae, Cytheridac and C'ytherellidue the rod-shaped branch would have been turned somewhat backwards, a turning that seems fairly easy to explain when one considers the comparatively great length of this branch in these forms and the presence of a shell that encloses the whole body; other parts have retained their original position in these groups too.

There seems to have really been only one argument present for G. W. Muller in favour of this homologization, namely the resemblance that he believed he had observed between the rod-like distal parts of the three posterior limbs and the endopodites of the anterior post-oral limbs. Thus he writes, 1894, p. 84: „Die Uebereinstimınung im Bau des Innenastes der genannten Gliedmaßen scheint mir von einigem Interesse. Bei der 2. Antemne unterliegt es keinem Zweifel, daß der fragliche Theil wirklich der Innenast ist; anders bei der 5.-7. Gliedmaße. Mögen andere Griinde die fragliche Deutung sehr wahrscheinlich machen, mir scheint der stärkste Grund in der Uebereinstimmung des fraglichen Theiles mit dem Innenast der 2. Antenne zu liegen." I cannot decide with certainty which characters this writer is here referring to. A more detailed comparison between these limbs will, in my opinion, convince anyone who has a thorough knowledge of this group of animals that any resemblance that may be observed must be said to be so superficial that it cannot properly be put forward as ,evidence" in this matter.

In an essay entitled ., Mittheilungen ïber Copepoden", 1893, W. GiesBrechit writes as follows p. 92: ,Man kann im Allgememen (vorbehaltlich einer Reihe von Ausnahmen) die äußere Hälfte der vorderen Gliedmaßen des Rumpfes als die locomotorische und respiratorische, die innere als die prehensile bezeichnen." This statement was only observed by G. IV. MíLler after his large Naples monograph of 1894 was nearly all in print and seems to have aroused in the mind of this author some doubt as to the explanation of the posterior limbs of the Ostracods that he had accepted in this work, but, all the same, it did not cause him to depart from the position he had already taken up. He writes on this point in the abovementioned work, p. 195: ,,Der Gesichtspunkt, von dem Giesbrecht bei seinem Satz ausging, ist wohl dazu geeignet, Zweifel an der Richtigkeit der pag. 84 vorgetragenen Auffassung der Gliedmaaßen zu erwecken. Doch liegen die Verhältnisse bei den Ostracoden in einer Beziehung anders. Das Vorhandensein einer 2klappigen Schale begünstigte die Ausbildung desjenigen Astes zum Bewegungsorgan, vor allem zu einem solchen, das aus der Schale hervorgestreckt wurde, welcher der Mittellinie am nächsten stand, also des Innenastes. Eine Thatsache scheint von diesem Gesichtspunkt aus beachtenswerth: wir finden nur einen umfangreichen Anhang, den wir mit Bestimmtheit als Außenast bezeichnen können, und der in Dienste der Bewegung steht, das ist der Außenast der 2. Antenne der Myodoeopa, und für diesen existiert fast durchweg eine Erweiterung der Spalte zwischen beiden Schalen oft als querer Schlitz (Rostralincisur), um ihm, Spielraum für seine Bewegung zu schaffen. Dieser Gesichtspunkt
seheint beachtenswerth fiir die morphologische Deutung der (iliedmaaben der Ustracoden. Freilich fuir entscheidend fiir die Anffassung gerade des fraglichen Beinpaares halte ich ihn nicht. Es sind da zahhreiche Möglichkeiten zu berücksichtigen: so kam die Gliedmaaße in den Dienst der Nahrungsaufnahme getreten sein. bevor die Schale den heutigen Umfang erreicht hatte. oder es kann der eine Ast sich an der Nahrungsaufnahme betheiligt haben, bevor der andere als Klammer- oder Schreitorgan Verwerthung fand, was durch die geringe Gröbe des nach hinten gerichteten Astes bei den Habocypriden und Cypriden eine gewisse Wahrscheinlichkeit gewinnt. Die Zahl der in Betraeht kommenden Aöghichkeiten ließe sieh leicht vermehren: aber bei der Unmöglichkeit. sich für die eine oder andere zu entscheiden, wird man am besten thun. ähnliche Gesichtspunkte bei der Frage nach der Deutung der Aeste aus dem Spiel zulassen. Die Aehnlichkeit der Aeste verschiedener Gliedmaaßen liefertimmerhin noeh den sichersten Anhalt. "

With regard to this statement of G. W. Mu'ller's we may first point ont the justice of his objection to a quite uncritical application to the limbs of the Ostracod group of the rule observed by \mathbb{W}. Aiesbrechty for the anterior limbs in the Copepods. The conditions in these two groups are certainly so different that what is a rule in one may very well be an exception in the other. On the contrary, every special case must be tested by itself as thoronghly as possible. The necessity of this is probably best illustrated by the second antemae of the Ostracods.

On the other hand there is, as far as I can see, no evidence at all for G. W. Muller's statement that the development of the epimeres on the posterior cephalomeres into a shell enclosing the whole body favours the development of the imner branch into a locomotory organ. It can searcely be thought that the shell was any absolute obstacle to an increase in the length of an exoporlite that was pointing obliguely backwards and outwards. It most, as is pointed ont above. this brancli was fored by the shell to turn slightly backwards. The ..evidence" in favour of this statement of his obtained by the anthor from the exopodite of the second antenna in C'ypridinids, Habocyprids and polyeopids is, of course, almost too weak and transparent to need further discussion. To judge from the reservation he added, (i. W. Mülier himself realized this weakness. It will probably be sufficient to point out that the exoporlite of this antenna is used as a locomotory (natatory) organ. wen in such forms as have no rostral incisur, e.g. in Polycopidue and Thatmotocypris. The rostral incisur is not to be considered as a structure that makes it possible for the exoporite om this amema to be used as a locomotory and natatory organ, but as a structure by mems of which the second antenna alone, without the help of the first antenna, may be able to fultil the function of a loenmotory (natatory) organ: for this it is necessary that this limbs shall be movect. not in the sagital plane, but straight outwards from front to back. This has already been pointed ouf by f. O. Sars. 186m, p. 6 (ef. chapter 1 ll of this work). With regart th the useless nature of the rest of the above statment l am quite in agrecment with its anthor.

I ean thus merely keep to my view as arcepted above with regad to the oxplanationi of these branches. In arriving at this I have been practienlly confinect to the relative pusitions of the parts. In these cases other characters have almost entirdy failed. Thus in the

[^8] called ihe first mothod of axplanation. It is perhaps best illustrated by the fig. \mathbb{I} given abowe.
1.me: atcuctasl rentrive at at the herepliorallomh.

I few more words may be added here with regard to the three posterior limbs in the families IIalocymidae. ('ypridae. Dermimuldae, Vesideidae and Cytheridae.

As is mentioned above almost all writers assume that in the Crustacea the rod-shaped limh has always or almont always arisen from the biramous type by a reduction of the exopodite: upon this reduetion the endopodite became - according to a number of writers - „was es am Blatthein war: zur direkten Fortsetzung des Protopodites" (W. Giesbrecit, 1913, p. 32). If the explanation adopted by me above is correct, the fifth, sixth and seventh limbs of the firo families mentioned above would thus form an important exception to a general rule. (It is. however. to be noted that in the case of the limbs of Leptostraca J. Thiele, 1905, p. 449 arrived at a result similar to that obtamed by me above; this investigator writes (loc. cit.): . I) ie übrigen Körperanhänge: vorn die vordere Maxille, die Mandibel und die hinteren Antemen, hinten die beiden letzaten Pleopoden haben den einen ihrer beiden Äste verloren, an den vorderen Anhängen wahrscheinlich den äußeren, an den hinteren vielleicht den inneren, etc."). This cannot. however. be considered surprising by thase who, like myself (p. 24), take the view that there was probably no far-reaching morphological difference originally between the different parts of the limbs in Protostraca.

In exceptional cases the rod-shaped limb would have developed directly from the foliaceous type. (Even in these eases the distal part of the limb would be homologous with the andopodte). As examples of such a development W. Giesbrecht, 1913, mentioned, as is seen from p. 24 above, the rod-shaped fifth, sixth and seventh limbs in the five Ostracod families just mentioned. This assumption of Giesbrecht's must be regarded as very problematical. It is. uf course, comected with this author's homologization of the vibratory plates on these limbs with the exopoclites. If we aceept my view that this organ is of an epiporial nature, the problem is obviously different; at least for the present it seems best to leave this assumption out of consideration.

Copulatory organs: -
I was doubtful as to the terms I should use for the male copulatory organs in the C ${ }^{\prime}$ pridinids.

We know that in this group the two vasa deferentia unite distally and open on an unpaired, papilla-like little swelling situated medio-ventrally somewhat in front of the furca. On both sides of this papilla there issue two more or less extensive appendages, in most cases bifurcated distally; these are the organs of copulation. These two organs do not include any part of the ducts of the sexual organs; they are nevertheless called penes by C. Claus, G. W. Müluer and nthers; no special reason for this terminology is given. A. RAMSCH, 1906, most frequently calls them penes. sometime genital limbs. On the other hand A. GARBINi, 1887, calls these organs ,zampe sessuali*; only the small papilla on which the sexual ducts emerge is called penis by this writer.

If the state of affairs had been the same in other Ostracod groups as in the Cypridinids it would undoubtedly have been most convenient to denote the small median
genital papilla as a penis, as A. Garbini has done; the copulatory organs might have conveniently been called ,genital limbs" or something similar. We know, however, that this is not the ease. On the contrary, in other groups* the distal parts of the ducts of the sexual organs do not emerge. between the copulatory appendages, but more or less distally on them; in other words the latter are to be taken as real penes.

The question now arises: are the copulatury organs in the Cypridinids homologous to the same organs in other $O s t r a c o d s$. It is exceedingly difficult to answer this question; a multitude of facts from comparative morphology and embryology, which unfortunately I cannot yet give, are necessary for this answer. G. W. MÜller does not attempt to give any defimite answer to this question. He writes, 1894, p. 77: ,.... So beschränke ich mich hier darauf, die verschiedenen Möglichkeiten der Homologisirung des Penis, die ich kenne, aufzuzählen, ohne damit behaupten zu wollen, daß damit alle Möghichkeiten erschöpft sincl. 1) Der Penis der Cypridiniden ist das umgewandelte 8. Gliedmaaßenpaar und dem biirstenförmigen Organ der Podocopa, nicht aber dem Penis der iibrigen Ostracoden (einschließlieh der Podocopa) homolog. Der Penis der letzteren ist nicht aus einem Gliedmaaßenpaar hervorgegangen. Hierfïr ließe sich das verschiedene Verhalten des Penis bei den Cypridiniden und den ̈̈brigen Ostracoden anführen. Beiden Cypridiniden nimmt er keinen Theil des Vas deferens auf, sondern steht nur neben der Mündung. Bei den übrigen Ostracoden umfaßt er den Endtheil des Vas deferens, ist selbst Begattungsrohr. 2) Der Penis der C y pridiniden ist aus einem Gliedmaaßenpaare hervorgegangen, das sich bei den Podocopa gespalten und den Penis nebst dem bürstenförmigen Organ geliefert hat, während bei den Halocypriden und Polycopiden mur die eine Hälfte erhalten ist. 3) Der Penis der Cypridiniden ist aus 2 Gliedmaaßenpaaren hervorgegangen, von denen das eine den Penis der Halocypriden, Polyeopiden und Podocopa, das andere das bürstenförmige Organ der Podocopa geliefert hat. - Ich finde keine Grïnde, welche die eine Annahme wahrschemicher machen, als die andere." As for several reasons 1 am fully convinced that the copulative organs are homologous formations in the whole Ostracod group - I regard the conditions in the Cypridiuids as primitive - it seemed to me best to use the term penes for these organs, thereby following the terminology aecepted by most previous investigators.

It will be necessary in the future to define and amplify the special terminolugy for this organ very considerably. The reason why this is not done here is that in the present work thin organ is dealt with very superficially. The complicated structure of this organ needs a very thorough and comprehensive examination a piece of work that probably needs a special treatise. Gills: -
I shall only mention in passing $\mathbf{~ I . ~ D o n t s ' s ~ h y p o t h e s i s ~ (G e s c h i c h t e ~ d e s ~ K r e b s - ~}$ stammes) that the gills in the genus Asterope are homolognons with epipodial appendages of limbs. the other parts of which have now entirely disappeared. No proof of this assumption can lex given, but it also seems, at least at present, impossible entirely to disprove it. It may, however; be pointed out that it seems much more probable that we are only concerned with aceessory folds of the skin without any comection originally with limbs; (on the other hand it is quite unecrtain

"he the these folds ate arranged segmentally or not.). Fir. Modder, 1870, p. 273, had abrealy (xpreseed thic view: as did C. Clats also, 1876, p. 96. As a proof of the probability of this Asamption it may be pointed out that weak transverse folds have been observed on the dursal side of the lack of the body in the males of a number of species belonging to other genera
 higr 』. In the male of Cypridina Mitgendorfi (r. W. MULLARR, 1890, we find at the corresponding plate gills in the form of comparatively high transverse folds, seven in number; as in the last-mentioned species but contrary to the gemus Asterope, these folds extend across the back without any median break; only the foremost one has a medial concavity. G. W. Mullerr, 1s90. p. 2.2. homologizes these gills with those of the genus Asterope, supporting his view especially by their number and position. It is, at any rate, certainly premature at the present time to describe these gills by the term "epipodial appendages".

Fiurer.

Furca: -
With regard to this wgan the terminology used by G. Wr. MÚderer has been adopted 1 this work. Consequently the fureal claws are counted distally-proximally, contrary to the practice of a number of other writers, e. g. G. S. BRaDY. This method is necessitated partly becanse in several forms these elaws vary in number, when it is always the small proximal claws that are subject to variation, and partly because they are formed ontogenetically distally. proximally, the proximal ones not appearing until the mature stage is reached.

Frontalorgan*: -
This is most frequently termed in the present work ,the rod-shaped organ", on account of its shape.

With regard to other organs the terminology used by G. W. Müller has been adopted in this work.

Terminology of the larval stages: -
By stage I in the present work is meant the oldest larval stage, the stage next to the mature stage. The stare immediately preceding Stage 1 is called Stage 11, the stage immediately preceding Stage II is Stage III, and so on.

This terminology has not been used by previous writers. C. Claus and G. W. Muller denote the youngest freely living larval stage by Stage I, the subsequent stage by Stage II, and so on. This terminology seems inconvenient on account of the deficiency of our present knowledge of the post-embryonal development of this group, especially with regard to the youngest larval stages. A consequence of the employment of this terminology has been that larval stages with the same numbers do not correspond to each other in the works of different writers or even in different works of the same writer. Thus Stage I of the genus Conchoecia in G. II. Mi'LLER's works of 1893 and 1894 - of which this author says, 1893, p. 376, ,Das crste mir bekannt gewordene Stadium, das ich geneigt bin, für das erste überhaupt zu halten" - corresponds to Stage IlI of the same genus in C. Clilus, 1893.

[^9]It is true that $\mathcal{G} . \mathrm{H}$. Fowler in his work of 1909 counts from the older to the younger stages, as I do, but he denotes the oldest mature stage, not the oldest larval stage, as Stage I. As a result of this the oldest larval stage in the genus Conchoecia is termed Stage III in this work, as this writer assumes that this genus is characterized by two mature stages which differ from ench other. It is to be noted that in several Ostracod groups moults - characterized by small growth-factors and inconsiderable morphologieal alterations - oceur after maturity is attained. So far, however, we do not know which groups are characterized by post-larval moults; it is not impossible that different species in the same genus differ from each other in this character. Nor do we know how many larval moults the different species are characterized by. From these reasons it may be evident that it is not convenient to follow the terminology used by (i. Il. Fowleri.

CHAPTER II.

Contributions to our knowledge of the natural system of the Ostracods.

During the course of the last century zoological classification has, as we know, - like the biological sciences in general - shown an enormous advance. The cause of this is probably to be found especially in the way in which the idea of evolution has asserted itself in biology. The purely' descriptive classification, whose main - and in many cases only - object was to try to get an arrangement and summary of the multitude of forms belonging to organic life, has given way to deeper and more scientific efforts. Natural scientists have laid down as their object an attempt to establish, by means of comparison, the laws of the phenomena in the animal and regetable kingdoms and an attempt to arrive at an understanding of these phenomena by means of exact methods and experiments.

It is true that even C. v. LiNNÉ spoke about ,,natural" and „artificial" systems, but it was only after the theory of evolution was put forth that the idea arose that a real consanguinity existed between the different systematic categories. The motto was formulated that ,,the degree of resemblance is a measure of consanguinity; the greater the resemblance is, the closer are the genealogical bonds, the greater the difference becomes, the farther away is the common original form".

During the first decades after DARilin's epoch-making work „On the Origin of Bpecies". 1859, the main interest of zoologists was directed to comparative morphology and embryology; they tried to obtain from these departments of study facts that might explain the genetic position of the different groups of anmals. But it was the great increase of interest in the field of theoretieal speculation as to evolution that probably left the greatest impression on this period of investigation. Both experts and laymen often devoted themselves freely to far-reaching speculations, hypotheses were often constructed on hypotheses, facts were often made to fit in with hypotheses previonsly arrived at. During this time the "pedigree" of the animal world was constructed and the hypothetieal original forms of the different groups were re-constructed.

Gradually. however, there eame a natural reaction against this mania for spectation. During the last few decades the interest of biologists has been concentrated more and more on more exact methods of investigation, especially experimental investigation. With the watchword ,, More facts, less theory" scientists have attacked, with brilliant results, such problems: as the conception of species, variability, heredity, the factors that produce species, cte. Beneath the pressure of the multitude of facts discovered by scientists during this period a great deal of the bold speculative fabric of the preceding period has collapsed piece by piece: many: ..perigrees" and hypothetical original forms have been proved to be untenable.

As a result of this reverse theoretical classification has been neglected, perhaps even more than it deserved. A number of investigators have even expressed a wish that classification should quite get rid of the theory of evolution and that it should only have as its aim a good characterization and a lucid arrangement of the organic world; in other words they desire a return to the tasks that the classifier formerly looked upon as his.

It is certain that this is going too far. Only after the introduction of the principle of evolution into classification can the latter be said to have been raised to the level of a science. To separate these two things would certainly be a retrogressive step. I should like to quote in this connection a statement of L. Plate, 1914, p. 109: "Von jeder größeren systematischen Abhandlung sollte man erwarten, daß sie mit phyletischen Betrachtungen abschließt und alle zurzeit vorliegenden Beobachtumgen aus dem eigenen Untersuchungsgebiot und aus verwandten Disziplinen (Anatomic, Embryologie) zusammenträgt und nach dieser Richtung hin prïft".

In dealing with the theoretical problems comected with evolution it seems to be most convenient to retain the method of working out hypothetical original forms - a crystallization of the qualities that are assumed to be original - and ,"pedigrees" - graphical presentations of the hypothetical genetic position of the different systematic units. The argument may gain considerably in clearness by the use of this method. But a far deeper criticism must be mado than was formerly the case; the hypotheses must be founded on a very broad basis of facts: it is best to stop when the facts cease to furnish distinct evidence.

I shall attempt below to give an exposition of the natural system and the history of the evolution of the $O s t r a c o d s$ according to the results given by previous writers and by my own studies of this group of ammals.

In all the works published before 1850 the 0 stracods were divided directly into genera. In this year there appeared W. Bamb's important work, ,Natural History of the British Entomostraca": in which this gronp of anmats was divided into three families:

> Family 1. Cypridae with the gemera Cypris ant Candona
> $"$ II. Cytheridae " " $"$ Cythere .. Cythereis.
> $"$ III. Cypridinadae " $"$ genus Cypridina.

In J. D. DANA's large work on the Crustacea collected by the .United statas Exploring Expedition" another important advance is to be noted, as the Ostracods are here divided into two families, both of which are again divided into two sub-families:

Fimily 1. C'ypridere. 11. Halocypridar. Cypridininar and Malocyprinae.

This classifieation mat be said to form the basis for the present system of the (1) stracods.

On the basis laid down by I. D. DANA (i. O. Sans went further. The elassification used be this later author in his work ..Oversigt af Norges marine Ostracoder ${ }^{6}$, 1s6.5. is particularly moteworthe partly because it established two new main groups based (n) forms quite or almost quite manown to precious writers, partly because in this work the names now used for the large main groups were used for the first time. This writer divides the Ostracods into four main groups, comprising six families altogether:
soerin 1. Podocopa. comprising the families Cypridue and Cytheridae.
11. Myodocopa. .. ., :. Cypridinatae and Conchoeciadne
111. Cladocopa. family Polycopidue
11. Platycopa. C'ytherellidae.

Mnst of the investigators who have worked in this field have adopted the foundation of the Oitracod system as accepted by (f. O. Surs without any alteration at all. G. W. Mutuler, who is undonbtedly our greatest Ostracod expert. has. on the other hand, somewhat modified this system. In his large monograph on the Ostracods of the Bay of Naples he has retumed to the classification into two main groups adopted by J. D. Dana. On p. 202 in this work he classifies the Ostracod world as follows:
Tribus 1. Myndocopa, comprising the families Cypridinidae, Halocypridae and Polycopidae
11. Poulserpa. :. .. Cypridae, Nesideidae, Cytheritue, Cytherellidae and Darwimulidae.
In other wonds. of G. O. Sips's four groups G. W'. Mưller combines Cladocopa and Hyodncopa on the one hand and Platycopa and Podocopa on the other. In his later works too: pen in the one pulbished most recently. 1912, (. W. MüLler uses this classification. Only che writer has adopter his view. namely T. R. R. Stebbing in a work of 1910.
(only one author, namely C. Claus, entirely rejects the main classification adopted by (i. (). Ans. While (i. W. Muller states in 1894, p. 188, that , die gesammten Ostra-(-口 d en sondern sich in zwei seharf getrennte Unterordnungen - Podocopa und Myodocopa". we find the following statement in C. CLits's work of 1876, p. 97: ,Sie" (Cypridinidae), wiirden den ("ythoriden und Cypriden des süßen Wassers gegeniiber in eine besondere Unterordnung zu bringen sein. wenn nicht die marinen Haloeypriden in der inneren ()rganisation den Cypridinen nahe verwandt, im Ban der Gliedmaßen ummittelbar zu jenen beiden Familien himfiihrten und somit als Uebergangsgruppe eine schärfere Scheidung der aufanstellenden Unterordmungen verhinderten". C. Clats also defends the same view in his later works, e.g. 1891a. p. 6. We thus see that this writer divides the Ostracod group directly into families.

Are we to consider that any of these three authors, G. O. SARs, C. Claus and G. Wr. MrtuFr is correct? In other words which fundamental elassification of the Ostracods is to beconsidered most natural?

In answering this question it will be best first to try to show which characters in the Ostracods are to be regarded as primitive. Or in other words what was the organization of the original Ostracods, the-Protostracods? On what lines has the development of the Ostracods proceeded?

In investigating these problems we get no help at all from palaeontology. Representatives both of G. W. Mưller's group Podocopa and of Myodocopa are probably found even in Lower Silurian. Almost always shells alone are known.

It is very difficult to draw any conclusions as to the structure of the Protostracods from the organization of other Crustacean groups, as our knowledge of the genetic position of the Ostracods is anything but certain. I shall only give here as examples the views of two of our foremost Crustacean investigators. * C. GRobper assumes, 1892, that the Ostracods and the Cladocers have come from the same forms as the Conchostraca. while ('opepods, Cirripeds and Branchiura are more closely related to Notostract. and Leptostraca and Malucostraca are joined to Anostract. IV. Ciesprecht assumes, om the other hand. 1913, pp. 230-233, that Phyllopoda Anostract, Notostraca and Conchostruca, Cludocera and Ostracoda form a special branch from Profostraca and that the Ostracods have branched out from this ,als dieser in der Richtung auf die Phyllopoden wtwas äber die Abgangsstelle der Copepoden hinausgewachsen war". Thus, according to this writer. Phyllopoda Anostraca, Notostraca and Conchostraca and Cladocera are comparatively elosely related to each other; on the other hand they are comparatively remote from the Ostracods even though they are nearer to this group of animals than any other recent Crustacea. According to \mathbb{W}. Giesbrechit it is difficult or even impossible at present to decirle which of the four groups just mentioned is most closely related to the Ustracods.

The prevalent uncertainty in our linowledge of the organization of the Protostraca, the hypothetical primitive forms of the Crustacea. onght also to be mentioned. I shall only point out here the uncertainty with regard to the structure of the limbs of these forms. It may be sufficient in this connection to refer to what is written on this problem on pp. $22-24$ above. The main object of this somewhat detailed exposition is to give the reader an idea of the great uncertainty with regard to this important problem.

In dealing with the problem of the organization of the Protostracods we are thus entirely or at any rate almost entirely confined to a comparison of the morpholugy and embryology of the recent Ustraeorl groups.

It ought perhaps to be pointed out at the very ontset that the result af this investigation is bound to be rather uncertain, both on accome of the great difficulties of the problem and the uncertainty and ineompleteness of our knowledge with regard to much that concerns the organization and embryology of these groups of animats.

The only author who has closely studied the problem of the organization and development of the Protostracods is G. WV. Mulder. In his large monograph of 1894, pp, 191-199. this writer has given a very detailed account of the results he obtained during these investigations. Other authors touch on this question more cursorily: I need only mention here among

[^10]Digitized by Microsoft ${ }^{\circledR}$

The organization of the Protostracods.
$111 / 10 \cdot r$ sapm ." t the frat - vpacuri: f. 1
 discossing this problem was to put my anser into the form of a eriticism of G. W'. Nitaber's Bxposition of the results gained hy him.
(6. W. Mixame depicts the lifr, organization and dovelopment of the Protostracods on the whole as follows:

The Protostracods were freely swimming organisms, but did not travel har from the bottom, often attaching themselves to hydrophytes ,ohne indessen wherzukriechen"*.

They already had a ealeified sholl which enclosed the whole body and which was shut ly a closing musele which went through the body. The shell was ,vermuthlich" characterized hy a mitral incisur ,fiur den Anstritt des Anßenastes der 2 . Anteme" and by an arehed ventral margin.

The borly was segmented externally: there were at least eleven segments behind the head. of which only some had limbs.

I hoart was developed. The alimentary organs were of the same simple type as in the recent C Cyridinids. There were well-developed compound laterat ores and an unpaired median eye divided into three parts.

There were eight pairs of limbs, and a ninth had perhaps already become employed as a copulatory organ. Only four of the limbs belonged to the head; the appendage corresponding to the second maxilla of other Crustaced was absent.

The first antenna had eight joints. It was probably most similar to that of the recent Cypridinids. which is a sensory and a locomotory organ at the same time. "Von ciner solchen Form konnte sich ebensowohl die vorwiegend der Bewegung dienende Form der Podocopu. wie die ausschließlich oder fast ausschließlich als Sinnesorgan fungirende mancher Myodocopa entwickeln. Unzweifelhaft hat ein Wechsel, der zum Ueberwiegen der einen oder anderen Function gefuihrt hat. wiederholt stattgefunden."
second antenna: - This had a two-jointed protopodite and a well-leveloped endo- and exopodite. The endopodite was four-jointed, the exopodite composed of a rather large number of joints. Of the recent Ostracods the Polycopids would have the most primitive second antenna; these forms would differ from the original type chiefly in the structure of the protopodite. The protopodite of this limb woukd have had a very different fate in the Cypridinids, Haloeyprids and Polycopids on the one hand and in the other Ostracods on the other. In the former groups the two protopodite joints have pointed in the same direction and then gradually have been quite united to each other. In the latter the protopodite was distinguished by the fact that the two joints together formed an upward pointing knce; in most of them it became single-jointed afterwards by the total disappearance of the distal joint; this joint is still fonnd only in the genus Cytherella. In the ('ypridinids and the Habocyprids the endopodite is more or less completely reduced. .Daß bri einer fast ansschließlichen Verwerthing der 2. Antenne als Schwimmfuß

[^11]der Innenast schwindet, scheint verständlich, demn er verdankt seine Erhaltung als kleiner Rest nur der Function als Greiforgan beim of und dürfte diese bereits bei der gemeinsamen Stammform der Myodocopa besessen haben."

From being natatory animals without any power of crawling the original forms of the group termed by G. W. Müller Podocopa developed into erawling organisms. During this the exopodite was reduced. „Dies führte zur Ausbildung des Innenastes zu einem naeh vorn greifenden, den Körper nachziehenden Fuß. Dieser Function entsprechend bildete sich rin scharfes Knie zwischen dem 1. und 2. Stammglied aus, an dessen Stelle später dureh Ausfall des 2. Stamingliedes das Knie zwisehen Innenast und Stamm trat. Weiter hatte sie die Versehiebung des Ursprungs nach vorn und die Ausbildung eines besonderen Fortsatzes. auf dem die 2. Antenne entspringt, zur Folge. - Vielleicht war bei dieser Art der Bewegung der Außenast geradezu hinderlich, jedenfalls entwickelte sich der Innenast stärker; er bewahrte sieh den Antheil am Schwimmen, wobei er durch die 1. Antenne unterstiutzt wurde. Rüekbildung des Außenastes und Betheiligung der 1. Antenne am Schwimmen stehen in enger Beziehung zu rinander: eines emöglichte das andere. Die weiteren Veränderungen der 2 . Antenne bei den Podocopa . . . bestehen in einem Verlust der Sehwimmborsten und in einer Streekung."

Mandible: - In the Protostracods this was composed of ,emem Basalglied mit Kaufortsatz und einem 4 gliedrigen Taster".* The peculiar type of endite found on the first protopodite joint of the Cypridinids, like the powerful endite on , the first palp joint" in the Haloeyprids seems to be a later acruisition ..die wir bereits bei den Polyeopiden vorbereitet finden". The palp in the C'ypridinids, which is , umfangreieh, sehr beweglich und eventuell eine hervorragende Rolle als Bewegungsorgan spielt" is taken by this writer to be of a more primitive type than the palp in the forms that are grouped by him under the name of Podocopa, which is ,mäßig groß, wenig beweglich und nicht oder sichm nur wenig zur Bewegung hilft". „Vielleicht stand er zunäehst fast ansschließlich im Dienst der Nahrungsaufnahme und betheiligte sich dam bei der Gewöhnong an ein Leben im Grund als Grabfuß an der Fortbewegung. Bei den Podocopa dïrfte er auch urspriunglich umfangreicher und geeigneter zum Ergreifen und Festhalten der Nahrung gewesen sein." The reduction of the palp in the latter forms would have been connected with the development of the second antenna as a crawling leg in these forms. G. W. MULLER gives no information as to the type of the exopodite of this limb in the Protostracods.

Maxilla: - C' W. Mitler stated that it seemed to him more probable that this limb had originally a three-jointed protopodite with three endites or at least a protopondite with three endites than a two-jointed protoporlite with two endites; in other words it seemed to this writer more probable that two of the endites have been united than that a cleavage has taken place. Endopodite: This had three joints. The exopodite was small: in a number of forms the exopodite disappeared. in others it became a vibratory plate. The most primitive type is represented by the Polycopudae.

[^12]Fifth limb: - This appendage would have been of about the same type as that "f Macrocypris, a recent genus belonging to Cypridac. but it was probably furnished, however, with a vibratory plate of about the same type as that which characterizes this limb in the Halocyprids. Its protopolite would have been fairly large and to a rather great extent united (1) the body. Distally-anteriorly the protopodite would lave been furnished with a shor process (explained by G. W. MeLler as the exopodite). Its exopodite*, which pointed backwards and was fairly long, was fonc-jointed, with a small end-joint armed with three bristles. This limb would have been used partly in taking up food and partly as a locomotory organ „(Auklammern?"). During its further development sometimes one and sometime the other of these two functions was prominent. When the former function predominated the forward pointing process on the protopodite was almost always completely reduced. When the taking up of food became the principal function of this limb it was necessary, owing to the reduction of the forward pointing process, for the limb to move forward to the boundary between the head and The trunk of the body (Cypridae) or even riglit up to the hypostome (Cypridinidae and Halocypridae), so that owing to its position it came to look like a limb of the head. In the males of the ancestors of the families that are placed by G. W. MULLER in one group under the name of Podocopa the exopodite of this limb would have been already developed as an auxiliary organ in copulation.

The sixth limb would in the Protostracods have borne the closest resemblance to this appendage in the females of the Halocyprids . This limb of the C'pprids. Darwinulids, Nesideids and Cytherids has been adapted to a crawling life and especially on account of this has been lengthened. With regard to this limb in the Cypridinids G. W. Mưller says that it is ,nichts weniger als eine ursprüngliche Form". „Bei den Polycopiden ging in Folge der starken Reduction der Körpergröße dieses, sowie das folgende Beinpaar verloren."

Seventh limb: - This appendage, which has two principal functions in recent forms namely those of a cleaning or a crawling organ, was already a cleaning organ in the primitive forms and had about the same type as in the recent Cyprids. We find it developed as the most complete cleaning organ in the Cypridinids; its chief task is to keep the broodchamber clean. In the Halocyprids it was originally a more perfect cleaning organ than in the recent Cyprids; it was then reduced, ,in Folge des Aufgebens der Brutpflege?". In the \mathbb{N} esideids and Cytherids it became exclusively an organ of locomotion.

Vibratory plates: - These are arranged as follows in the recent Ostracods: In Cypridinitae and Polycopidae on the fifth limb, in Halocypridee on the fifth and sixth limbs, in other Ostracods they are situated farther forward, on the mandible and the maxilla, less frequently on the fifth limb as well, in exceptional cases (Cytherella) on the sixth limb. G. W. Méler assumes that the Protostracods had vibratory plates on the fifth and sixth limbs of abont the same type as in the recent Halocyprids or perhaps on the fifth, sixth and seventh limbs. When these organs were reduced on the posterior limbs similar ones would have appeared :compensatorisch an Mandibel und Maxille". As evidence for this opinion

Endonodite acrording to this author's interpretation.
this author points to the reduced vibratory plates on the posterior linbs in Nesideidae and the conditions in the Cytherellids.

The brush-shaped organ is considered by this writer to be homologous with an eighth limb. This limb would have been found in both males and females of the Protostracods and have belonged to the segment behind that of the seventh limb. The josition of this organ near or just behind the fifth limb is considered to be a secondary one.

The furca of the Protostracods would have been of about the same type as this organ in Conchoecia.

This author does not express any opinion about the sexual organs.
In this connection he does not mention the rod-shapedorgan either. It is merely stated on p. 161 that this organ is , lediglich" homologons in Cypridinids and Halocyprids.

Although this view of the life, organization and the development of the Protostracods, as worked out by G. W. Muller, is very meritorious, it is, nevertheless, open to criticism in many details.

According to this anthor the Protostracods swam freely. How did they swim?

We can distinguish three types of swimming in the reecht Ostracods; first the method of swimming found among Cypridinids and most Halocyprids, secondly the method of swimming in the Cyprids and Polycopids, and thirdly that found in the genus Thaumutocypris. The Cypridinids and most of the Halooyprids use what one might call rostral meisur swimming. They do not use the first antenna as a natatory organ, a fact that was pointed out by G. W. MüLLER in 1894, p. 2:3: ,irgend welchen Antheil an der Schwimmbewegung nimmt hier die 1. Antenne sicher nieht." I have also been convinced of the correctness of this observation by examination of living animals. It is to be noticed, in addition, that the structure of this antenna makes it anything but suitable for a natatory organ. Thus G. W. MƯLler writes, 1894, p. 24: ,Auch ihr Ban macht mir eine Mitwirkung daran wenig wahscheinlich."* On the other hand the second antenna, which is the only natatory organ of these forms, is particularly well suited by its organization to fulfil this function. It is very powerful, its protopodite is very large and full of powerful museles which move the exopodite. This is long and cylindrieal and is fitted with long, powerful natatury bristles and joined very loosely to the protopodite. Each valve in these forms is furnished anteriorly with an incisur, the rostral incisur, and in swimming the exopodite rests with its hasal joint in this almost as an oar rests in a rowlock.** In swimming the exopodite moves almost straight out at the sides and baekwards, only slightly downwards; in this way a straight forward motion of the animal is produced. The endopodite of this limb is more or less reduced in these forms and does not play any part in swimming. In the ('yprids that have no rostral incisur both the first and the second antenna take part in swimming. The first antema is long, cylindrical

[^13]And armed with mmerous long, powerful natatory hristles; in swimming this limb strikes powerfully י יpwards and backwards and somewhat outward. The second antema is a combined crawheng and swimming organ. Its exopodite is retuced and does not seem to take part in swimming, of at any rate it does so only slighty. The function of swimming is carried out by the endopoelite. which is furnished with at claster of long, powerful natatory bristles distally on the first joint. In swimming this limb is moved powerfully downwards and backwards and somewhat outward. By tho combination of the upward and backward natatory movements of the first antemat and the downward and backward movements of the second antema the ammal is propelled straight forward. The same principle of swimming is found in the Polycopids. These forms also have no rostral incisur. Their first anteman are certamly rather short, but are furnished with long, powerful natatory bristles and in swinming strike mpard and backward. somewhat outward. The second antema is of about the same type as this appendage in the ('ypridinids, but its endopodite is better developed and is provided with long. powerful bristles. In swimming both the exo- and the endopodite are used; they both strike powerfully downward and backward and somewhat outward. In this they are assisted by the maxilla; this limb is provided with long and rather powerful bristles both at the end of the exo- and the endopodite and, like the second antema. it strikes powerfully downward and backward in swimming. In Thaumatocypris too, in which we find the third method of swimming. there is no rostral ineisur. This genus has a first antenna of about the same type a. is found in the Cyprids and a second antema of abont the same type as that of the Polycopids. In swimming both the first and the second antenna strike downward and backward (and probably somewhat outward). Such a method of swimming would obviously caluse the animal to have a rotatory motion if there were not special means for preventing this. lic have such means. however, in the long spines that issue from the shell (cf. the chapter on the adaptations for planktonic life in this treatise).

Did the Protostracods use any of these three methods of swimming?
(. II. MUUller himself does not give any direct information with regard to this. From some statements in his monograph of 1894 we can, however, indirectly get an idea of this writer's opinion on this subject. As we have seen above, he assumed that the first antema of the Protostracods resembled that of the Cypridinids most elosely. As in another part of this work he has pointed out that this antenna, on account of its structure, is not suitable as a natatory organ and has himself discovered that it is not used as such, he could not have been of the opinion that this appendage took part in the operation of swimming in the Protostracods. He thus seems presumably to have meant that in the latter conly the second antenna acted as a natatory organ, i. e. he seems to have had the idea that these animals swam about in the same way as the recent Cypridinids. That this was really his opinion is also shown by the fact that he assumed the rostral incisur to be a character belonging to the Protostracods. (Cf. also p. 67 above.)

Did the Protostracods have any rostral incisur? G. W. Mitler himself does not give any reasons at all for his assumption that they had. But this assmuption needs to be proved in more detail even perhaps more than most of the others.
(f. W. Miller seems to have suspected the weakness of this assumption hinself, as he writers ,"vermuthlich" before it. In dealing with this problem the following facts ought to be noted: There are only two groups among the recent Ostracods, namely the Cypridinids and the Halocyprids, which are characterized by having a rostral incisur. The C'yprids, Darwinulids, Nesideids, Cytherids, Cytherellids and Polycopids of which the latter group is considered, presumably correctly, to be rather primitive in many respects, and Thaumatocypris, presumably the most primitive genus among the Halocyprids , have not this peculiarity in their organization. The rostral incisur in the Cypridinids is presumably not homologons with that of the Haloc yprids. In the Halocyprids the rostral incisur has been partly formed by the outer lamella of the shell having been bulged out like a finger of a glove into a sort of rostrum near the dorsal boundary of the anterior margin of the shell; the margin of the shell continues, as t . W. Muller himself pointed out in his monograph of $1894, \mathrm{p} .101$, in the form of an s -shaped bent line, ..Buchtlinie" (C. ClaUS), situated basally on the inside of the rostrum. In the Cypridinids, on the other hand, the incisur is formed simply by a concavity of the anterior margin of the shell. In the face of these facts and as there seem to be no reasons to support (i. II. MutLler's assumption, it does not seem too bold to draw the conchsion that the rostral ineisur is not a character which belonged to the Protostracods.*

Whe thus see the failure of the strongest - and as far as I can see the only - argument in favour of assuming that the Protostracods had a method of swimming of the same type as that of the recent Cypridinids. There is, in addition, at least one more reason that seems to contradiet this assumption. (i. Wr. Molles assumed that the second antenna of the Protostracods had both the exopodite and the endopodite well developed and that both these branches were used in swimming (cf. G. W. MOLLER, 1894, p. 199): this antenna seems to resemble most elosely the recent $P o l y$ fop id f . The assumption that the second antenna originally had both the exopodite and the endoprodite well developed seems to me justified; there are several arguments in favour of this. First, the exopodite dominates: in a number of forms (Cypridinids and most of the Halocyprids), white the endopodite dominates in others (Cyprids, D) arwinulids. Nesideids and Cythw rids), sceondly, a number of forms. Thaumatocypris. Polycopids and ('ytherellids, have a second antenna with both the exopodite and the madopedite well developed. On the other hand it seems to be very unlikely that the two branches took part in swimming. at least if we assume the same method of swimming for the Protostracods as

[^14]that wheh charamerizes the recem C'ypridinids: there are both anatomical and meehanical reasoms against this. This method of swimming seems to presuppose the dominance of the "xopodite. This circumstance seems also to have been noticed by G. W. Múller; this author writes, 1894, p. 193, as follows:* ..1)aß bei ciner fast ansschließlichen Verwerthung der 2. Antenme uls Schwimmfub der Innenast schwindet, seheint verständlich, denn er verdankt seine Frhaltung als kleiner Rest nur der frunction ak (Greiforgan beim ô und diirfte diese bereits bei der gemeinsamen Stammiorm der Myodoropa besessen haben." It will probably be sufficient to point ont in this comection that all the forms that swim in this way (all the Cypridinids, all the genera of Halocyprids except Thoumatocypris) have the endopodite reduced; this branch cloes not help as a natatory organ. On the other hand, in Thaumatocypris and the Polycopids, which are, as we know characterized by another method of swimming, both the exopodite and the endopodite are atways well developed.

It seems to me most probable that the rostral incisur swimming is a later acquisition. lt even seems not impossible that this method of swimming has arisen and been developed independently in the two groups, C y pridinids and Halocyprids. This idea seems to be clecidedly supported by the fact that Thaumatocypris, the genus that is in many respects the most primitive of all the Halocyprids, does not have this method of swimming, but swims in quite a different way. It must, of course, be considered as very improbable - not to say entirely impossible - that the Cypridinids diverged from the Halocyprids after Thaum tocypris.

Can we :axume that any other of the three methods of swimming described above as occurring in the recent Ostracods is primitive in this group?

It seems to be impossible to assume that the method of swimming that characterizes the genus Thoumutocypris is original: as far as I can see this method needs long processes on the shell (cf. below, the chapter on adaptation to a planktonic life) and such processes could *carcely have characterized the shells of the Protostracods.

There remains consequently only the method of swimming that we found as characteristic of the Polycopids and a number of the Cyprids. But it does not seem possible to consider this either as primitive in the Ostracods, as both the position of the Polycopids and the Cyprids in the Ostracod system and the details in the development of this mode of swimming seem to support very decidedly the idea that this mode of swimming has arisen and been developed independently in these two groups.

Is it not really at least equally probable that the ancestors of the Ostracods were not freely swimming but crawling forms - although their powers of crawling were not quite so well leveloped as in a number of recent forms, e. g. Nesidejds and Cytherids? By this I do not, of course, mean to state decidedly that they had a crawling life and that they lacked all power of swimming, lut I only wish to point out that this possibility does not seem to me excluded. Befne we have succeeded in showing quite definitely that this possibility is out of the question it dnes not seem right to put forward an assumption that the opposite state of affairs is the correct one - at least the matter should not be put in such as definite way as

[^15]G. W. MUller has done. On the contrary, the facts of the case will probably make us admit that it is still impossible to express our opinions with any great degree of certainty on this important problem, that of the mode of locomotion of the Protostracods.

Shell: - G. W. Mưller's assumption that the Protostracods had a calcified shell, enclosing the whole body, and that it was shint by a muscle that went through the body, is probably correct. At least it seems to be supported by the fact that almost all the recent Ostracods so far known are distinguished by a shell of this sort. With regard to the assumption that the shell was characterized by a rostral incisur I shall only refer here to what has been said on this matter above, p. 71. It seems at present to be impossible to decide as to the correctness of the assumption that the shell had an arched ventral margin, which was gradually flattened in a number of forms ,entsprechend der kriechenden Lebensweise". G. W. MÜLLER has not produced any reason for this assumption and I cannot find any definite reason either for or against it. We can find shells with a flattened ventral margin both in swimming and in crawling forms. But the arched ventral margin predominates in the swimming forms, the flattened one in the crawling forms. Presumably the dorsal margin had no hinge teeth.

Segmentation: - As is seen above, the body would have been segmented externally;

Shell. at least eleven segments would have been developed behind the head, only a number of which had limbs.

In the same work, p. 18, G. W. Mutler points out that the recent Ostracods almost always lack external segmentation of the back of the body. Only in a single one of the genera investigated by him, the genus Cytherella, did this segmentation seem to exist. He writes as follows about this: „Nur Cytherella hat zu beiden Sciten der hinteren Körperbälfte eine Reihe von gelenkig verbundenen Chitinstiicken. Diese stehen in keiner directen Beziehung zu den Gliedmaaßen, wie etwa die Chitinstiitzen der Cytheriden, das beweist schon ihre Zahl. Vielmehr haben wir in ihnen unzweifelhaft Reste einer Segmentirung zu sehen. Von den Gliedmaaßen bei den Weibchen von C'ytherella gehört das cinzige wohl entwickelte des Thorax, das wir als 4. postorales deuten, dem zweiten Segment an, dann wäre dars 3. postorale auf den 1. gesonderten Ring zu beziehen. Es wïrden dann für den unsegınentirten Kopf 4 Cfliedmaßen bleiben, die gleiche Zah\}, die wir oben angaben. Gliedmaaßen lassen sich am Thorax der Ostracoden mit einiger Sicherheit 4 Paar nachweisen (auber den bekannten tiliedmaaßen betrachte ich als Gliedmaaßenrest das bürstenförmige Organ). Es würden dann beim Heibehen von Cytherella noch 7 Segmente ohne Extremitäten bleiben." A reference is given in the text to pl. 32, fig. 12, Cythcrella sordida, G. 11 . Mtller, of. As far as 1 can discover, G. W. Múlerer rests his assumption about the segmentation of the Protostracods exclusively on this genus, on a single species, or, more correctly speaking, on the female of a single species, C. sordida, of this genus. He has even only paid attention to the chitinous stripes he found on the back of the body in this form.

Unfortunately I have not had any opportunity myself of investigating closely any representative of this genus. In discussing this problem I was consequently confined to the description and figures given by G. W. Meller.

[^16]Thus the fourth post-oral limb, or according to the terminology used in the present work, the sixth limh, of this species belongs, according to G. Wै. M"Lubre, to the segment represented by the second chitinous stripe. No reasons are given for this statement; we are obviously concerned with a purely external position. If we turn to the figure to which G. W. Múler refer, we tind a certain difficulty in finding the orientation of the limb mentioned in relation to the chitinous stripes; as G. W. MUlLER himself points out, the latter are not directly comnected with the limbs, as is the case in the Cytherids. It seems to me to be most closely connected with the most anterior of the chitinous stripes drawn in the figure. If We start from this orientation we shall find nine more .segments" come after this ,segment", i. e. the number given by G. W. MULLER himself. (The most anterior chitinous stripe in this figure would thus represent the second ;segment", the most anterior one not being drawn). If we compare with this pl. 32 , fig. 5 , which represents the back of the body of the male Cytherella sordida, we find the following facts. The orientation of the sixth limb is, if possible, more difficult than in the figure of the female. It seems to be most closely connected with the next to the most anterior chitinous stripe. If we start from this orientation, only five more ,,segments" would come after the ,second segment", i. e. four less than the number given by G. W. MULLER; if we assume that this limb belonged to the anterior chitinous stripe, the number of ,segments" that follow would be three less than the number given by this author. In the male the number of the chitinous stripes at the back of the body is, at least if we are to judge from G. Wr. Muller's figures, considerably smaller than in the female.

Under these circumstances it is probably somewhat premature to draw conclusions as to the number of the segments in the Protostracods from the number of these chitinous stripes and to assume that the latter are remains of an original segmentation. Is it not equally likely that we are not concerned with a primitive segmentation, but with secondary chitinous stripes developed as a support for the movements of the back of the body? This assumption seems to me to be supported by the fact that these stripes are developed differently in males and females. In the males, in which the back of the body presumably has a relatively limited power of movement on account of the great development of the penis, the number of these stripes is considerably less than in the females, in which the back of the body is not obstructed in its movement by an appendage of this size. The difference in the shape of the stripes in males and females is also perhaps an argument in favour of this assumption. Chitinous stripes as a support for the movements of various organs are a fairly common phenomenon in the Ostracods. (Other species of Cytherella dealt with by other writers are unfortunately so incompletely described that it is impossible to take them into consideration in this question.)

In a number of Cypridinids we find on the back of the body a number of transverse folds. Whether these are remains of external segmentation is also uncertain. The number of these folds is different for different forms. Cf. also the bristles and hairs on the back of the body of the Polycopids (G. W. Muller, 1894, pl. 7, figs. 26 and 50).

The result of the above discussion seems to be that it is still too early to answer the problem as to the conditions of segmentation in the Protostracods. Whether this problem will ever be able to be solved I must leave undecided. In any case more far-reaching
and comprehensive arguments than those put forward by (. W. IV. MULLER are an absolute necessity. Above all the question as to whether the nervous system may, in spite of its changed condition, possibly afford some information on this subject must be investigated.

The assumption that the Protostracods were characterized by a heart, lateral eyes and an unpaired median eye with three parts seems to me very probable. It is now generally considered, as we know, that these organs belonged to the Protostraca. Other writers previous to G. W. MÜLler expressed similar views to his. As early as 1859 E. Grube pointed out, p. 326 , that the genera Cypridina and Asterope resembled the Cladocera by their lateral eyes, among other things. C. Claus, in his rork of 1865, p. 147, stated that by having a heart and by the development of the organs of sight Cypridina resembled the Daphnids; from his later works it is also clear that he considered these characters as being primitive for the Ostracods. Finally it may be pointed out that F. Mưrier, 1870, p. 273, assumed that the Protostracods had a heart. In this comection it may also be pointed out that L. LUDERS, 1909, pp. 117-118, assumes that the genus Gigantocypris, on account of its well developed system of blood-vessels and its development of blood-corpuscles, is to be considered as more primitive in this respect than other known Ostracods .

With regard to the assumption that the Protostracods had alimentary organs of about the same simple type as those of the recent Cypridinids it seems to me that no serious objection can be raised against it. We may note, however, that W. Giesbrecht, 1913, p. 228, states that Protostraca presumably had metamere coeca on the middle part of the intestines ,jectenfalls gab es coeca an seinem Vorder- und Hinterende". We find hepatic coeca among the Cypridinids (Asterope) and Halocyprids as well as among Cyprids, Nesideids and Cytherids.

Thenumber of the limbs: - The assumption that the Protostracods were without the limb corresponding to the second maxilla of other Crustacea is connected with the assumption made by this writer, and some others, that the recent Ostr a eods never have this appendage. With regard to this question I only refer liere to what has been shown in connection with this subject on p. 20 of this treatise; see also the brush-shaped organ and the penis.

The question of the nature of the so-called brush-shapedorgan is very difficult Brush-shaped organ. to decirle. It is perhaps a limb. But in this case which one?

In the Nesideids and the ('ytherids this organ is always found in the males, never in the females; in these groups we find it most frequently in the neighbourhood of the fifth limb, sometimes a little in front of and sometimes a little behind it. but it is rarely found so far back as between the sixth limbs. Among the C'yprids it has so far been observerl only in one genus, Maeroeypris. It has also been found in Cytherella. In the two latter genera this organ is also confined to the inales; it is not situated. however, at the same place as in Nesideidae and Cytheridae, but near or somewhat behind the seventh limb. Amonw the Cypridinids this organ has been observed by G. W. Mulder behind the serenth limb in the female of Cypridina squamosa G. W. Mctuer. In all other species of this group, as in all the Halocyprids and Polycopids in which this organ was sought for, even in the forms investigated by me, it was not found.

Digitized by Microsoft ${ }^{(B)}$

It mase howerer be pointed out here in passing that G. Wr. Mutder has assumed that the brush-shaped organ might possibly be found in the males of the Cypridinids; he writes as follows about this: ..Man mußan die Möglichkeit denken, daß der Penis der Cypridiniden daraus hervorgegangen ist, oder dabes in den Penis aufgegangen ist und emen Theil desselben bildet. An dem Penis verschiedener Cypridiniden, nicht aller, Jäßt sich eine borstentragende Platte nachweisen, welehe bei Cylindroleberis" ($=$ Asterope) ,entschieden an das hiustenförmige Orgin crimert, dem sic auch in ihrer Lage im Wesentlichen entspricht." Ilithout entering in any detail into this difficult problem I will only point out that these assumptions are to be considered as. to say the least, very uncertain - a fact that has, of course, been admitted by G. WI. Mermak himsedf. If we regard the penis in the Cypridinids as homolugous to the brush-shaped organ, we pre-suppose, of course, that the fomer organ is not homolugons with the penis in the Cyprids, Nesideids, Cytherids and Cytherellids. It is true that some investigators have devied the homology of these organs - because the penis in the Cypridimids does not include the vas deferens - but this view seems to be untenable for several reasons. It also seems to be very improbahle that the bristle-bearing plate on. for instance, the penis of Asterope is homologous to the brush-shaped organ. It seems more probable that it represents one of the two branches of the biramous limb from which the penis probably has developed; cf. for instance, (\%. W. MULLLER, 1894, pl. 5, fig. 41.

We thus fud that the brush-shaped organ is situated in a number of forms close to the fifth limb, in others close to or behind the seventh limb. Are these homologous organs? G. II. Mélum is of the opinion that they are because of the similarity in shape of the organs in all the groups and also because in almost all the groups in which it has been observed, Cyprids, Nesideids, Cytherids and Cytherellids, it is confined to the same sex. I have nothing to add to this. At any rate the possibility is not excluded. The position behind the serenth limb is taken by G. W. Míler to be the original one; the brush-shaped organ would represent the eighth limb. With regard to the cause of the hypothetical displacement this author writes as follows, p. 76: „Die Bedingungen, welche das Organ zwischen die anderen Beinpaare drängt, sind wohl in der Verkürzung des gesammten Körpers zu suchen. Nachdem es einmal zwischen die Beinpaare gerathen war, wurde es bei den Formen, welche seitlich stark comprimirt sind (z. B. Paradoxostoma) bei denen kein Platz mehr zwischen den der Mittellinie sehr genäherten Beinen blieb, bis vor das vorderste Beinpaar gedrängt." In support of the assumption that the position behind the seventh limb is the original one it may be pointed out that the forms in which this position has been observed are considered to be more or less primitive in several respects. It is perhaps also supported by the late appearance of this organ during ontogeny; it appears only, wenn alle Gliedmaaßen annähernd ihre definitive Form besitzen"; with regard to the last argument it may, however, be pointed out that reduced organs often appear comparatively late, as, for instance, the reduced second maxilla in the Cladocera. Other authors assume that the position in front of the fifth limb is original: according to these authors the brush-shaped organ would represent the second maxilla of other Crustacea. No reasons of any importance have been put forward in support of this view; on the other hand we must say, I think, that this possibility must be regarded as being present. This problem thus seems so far to be unsolved.

It seems to me very probable for several reasons that the penis is of the nature of a limb, as has been assumed by several investigators; I need only point out here the great resemblance this organ bears to a biramons limb in those forms in which it is characterized by a very simple structure, e. g. Asterope, Philomedes, (ef., for instance, G. W. Müller, 1894, pl. 5, fig. 41) and that it is innervated in the same way as other limbs.

First antenna: - This antenna would have had eight joints. The only reason for this assumption that I am able to find in G. W. Múller's work is that this number is the largest that is observed in all the known Ostraeods, ,wir finden diese Zahl als höehste bei den Podocopa und Myodocopa". It seems to be impossible to accept this reason as in any way decisive. From the point of view of the theory of evolution one can of course equally well imagine a cleavage of joints as a union of them. Embryology does not support this assumption at all, nor does comparative anatomy. The only resemblance between this limb of a Cyprid and a Cypridinid is really the number of joints. Both the equipment of bristles and the musculature are so profoudly different that they do not seem to indicate that the different joints of this antenna in one group are homologous with the corresponding joints in the other.

The same uncertainty applies to the assumption that this antenna was originally a sensory and a locomotory organ at the same time, ,,vielleicht glich sie am meisten der 1. Anteme der Cypridiniden". According to the theory of evolution there can scarcely be any reason against an assumption that even a first antenna that was originally used exclusively as a locomotory organ might gradually develop as a sensory organ and vice versa. It may be pointed out that among the Halocyprids, in the majority of which the first antenna is exelusively or almost exelusively a sensory organ, the genus Thaumatocypris, which in many respeets is to be considered as the most primitive, has a first antenna which, as far as one can see, serves exclusively or practically exclusively as a locomotory organ. As is seen above, G. W. MULLER assumes that during the course of development sometimes one and sometimes the other of these two functions has dominated.

In my opinion it is impossible at present to give an opinion with any great degree of certainty as to the type of this limb in the Protostracods.

Second antenna: - It seems to me probable that the protopodite of the second antema in Cypridinids, Halocyprids and Polyeopids is composed of at least two joints; traces of the original boundary between two joints have presumably been abserved by G. IV. Muther in the Polycopids (1894, p. 39). On the other hand this author's view with regard to the protopodite in other forms secms to me far less probable.

In an article, , Mittheilungen iiber Copepoden", 1893, Wr. Giesbrecht wrote as follows (p. 86) with regard to the maxilliped of the Copepoda: ,D)aß Glieder miteinander verschmelzen und die Gliederzahl sich auf diese IVeise vermindert, läßt sich häufig nachweisen; aber wie Glieder versehwinden können, zumal relativ so umfangreiche und muskelerfüllte und so nützliche wie die Basalia, das hätte Clats doeh irgendwie dem Verständnis des Lesers näher bringen mïssen" . . ete. However much ope nto criticism this statement may be, I should
like to start nut from it in judging (. IV. Mulleres siew in this case. The latter writer assumes that in (‘́prids. D) arwinnlids. Nesideids and Cytherids the distal protopordite joint has been quite lost. But where is the proof of this assumption? As far as 1 can see there is none. G. 11 . Mowder brings forward in this conncetion the fact that in the genus Cytherelle the bending into a knee takes place between the first and second protopodite joints. But this does not prove this assumption. The fact that this formation of a knee in the second antenna in the O stracods has actually taken place at different places - between the protopodite on the one hand and the exopodite and endopodite on the other in Cypridinids, Halocyprid and l'olyeopids and between two protopodite joints in Cytherella - may at least be explained hy assuming that this limb of the Protostracods was of so primitive a type that no definite formation of a knee had as yet taken place. This assumption seems to be supported by the fact that this limb differs very much in its type in the different Ostracod groups. The genus Cytherella is comparatively far removed from all other Ostracods by its whole organization (G. O. SARS as we know distinguished this genus as a special group, parallel to Myoducopa, Podocopa, ctc.). The ancestors of this genus presumably branched off from all the other Ostracods at a rather early period. Perhaps this differentiation even took place so early that the second antenna had not yet aequired a definite knec. At any rate this possibility must be regarded as being present. G. W. Mưller's view finds just as little to support it in embryology as in comparative morphology. I have never found any trace of the distal protopodite joint which, according to G. W. Mưllek, has disappeared in larvae of Cyprids or other forms in which, according to this author, it is absent in the mature specimens. Nor has G. IV. MC'Ller or any other investigator of this problem ever mentioned such a trace.

Moreover, according to G. W. MÜLler's assumption, in the forms whose distal protopodite joint has disappeared the place on the body from which this antenna issues has developed into a joint-like process. What has caused G. W. Muller to assume that this process, which resembles a joint very much by its type, has not been a part of this antenna from the very beginning? We are given no information at all as to this; I should like once more to quote from the above-mentioned work of \mathbb{W}. CiEs bRECITT. This author writes as follows with regard to the reduction of the basal joints of the maxillipeds that is assumed by C. Claus for the Copepoda (p. 86): . Wie ist dieser Verlust namentlich für den hinteren Maxillipeden zu begreifen, der doch durch seine Länge und die hohe Zahl (7) seiner Glieder bei den meisten der höher stehenden Copepoden zeigt, daß er eher einer Vermehrung als einer Verminderung seiner Gliederzahl bedurfte, als seine Function im Herbeischaffen von Nahrung zul bestehen begann?" One must necessarily follow \mathbb{W}. Giesbrecilt in trying to find out the reason for such a reduction in the number of joints. Why, one asks, has this limb, which needs to be relatively long in order to fulfil its supposed function as a locomotory organ, first reduced its length by the total disappearance of the second protopodite joint, and then (or at the same time?) made up for this loss in length by the development of an accessory process that does not belong to the original limb. Such a question as this may perhaps seem unscientific, but it seems to be foreed inevitably on the reader's attention.

Digitized by Microsoft ${ }^{\circledR}$

Why does not the proximal, joint-like process represent the first joint of a two-jointed protopodite? Or - if it were to appear that a similar process exists in the genus Cytherella as well, which does not seem improbable, first because of a drawing of this antenna given by G. W. MƯLLER, 1894, pl. 32, fig. 1, and secondly because of what I have observed myself in a preparation of a similar antenna* - why should we not assume a threejointed protopodite? This number is as a matter of fact assumed by H. J. HiNsen as the original one for all the post-oral limbs of the Crustacea (cf. Zool. An z. 1893, p. 194). In a new form (not described)**, closely related to the genus Macrocypris I observed that this basal part is composed of two clearly separated segments. Why then might it not be assmmed that this process is homologous with the procoxale and the coxale, so that the large joint that follows is homologous with the basale? The formation of a knee would thus in these forms too have taken place between the basale on the one hand and the exopodite and endopodite on the other. As in the ease of the mandible of the Cypridinids a ventrally pointing knee would have been developed between the coxale and the basale. Before it has been clearly proved that these homologizations are impossible we cannot accept the view put forward by G. W. MtLler.
G. W. MULLER's assumption with regard to the endopodite of this antenna of the Protostracods seems to me almost equally unfounded. This would resemble most closely this branch in the Polycopids.

The endopodite would have been four-jointed. According to G. W. Müller's statements the recent Ostracods have the following number of joints on this branch. Lear. ing out of consideration forms with a more or less reduced endopodite, the $\mathrm{C} y \mathrm{pridinids}$ have three joints. Among the Halocyprids the female (the male is unknown) of Thaumatocypris, which is in several respects presumably the most primitive genus, has only two joints; in the other forms of this group we always find in the males more or less distinetly three joints, in the females most frequently only two joints. The Poly. copids, the group that would possess the most primitive seenct antema, appear always to have three joints. The Cyprids sometimes have a four-jointed, and sometimes a threejointed, endopodite; in the eases where a three-jointed endopodite is found the end joint has either more or less entirely disappeared or else the second joint has arisen by a union of two joints; traces of this union ean still be observed in some forms. Damimulidue has three juints; the second joint would have arisen by the union of two joints, but there seems to be no traces of this union present; no such traces are at any rate to be seen on figures hitherto published, nor are they mentioned either by G. W. Mitlef or other writers. Nesideidne is characterized by four joints. The Cytherids have three or four joints - in the eases in which three joints are found the second joint would have arisen by a union of two joints; traces of this union can sometimes by observed. The Cytherellidac have three joints; the second of these would show ,deutliche" traces of a mion (1894, p. 43); no such traces can, however, be found on the figure given by G. W. MĽLLER (1894 , pl. 32, fig. 4), nor have I succeeded in observing any on a specimen investigated by me.

[^17]Are we to accept the homologization carried out by G. W. MCLLlse?
In answering this question I shall leave the Cypridinids, Halocyprids and Polycopids ont of consideration and turn to the groups, on whose number of joints G. IV. MCumar has obvionsly based the assumption mentioned above. Macrocypris, the gemus that is considered as the most primitive among the ('yprids, is characterized by a fourjointed endopodite. Its second joint is comparatively long and has on the posterior edge, proximally of the middle, one or a couple of bristles, on the anterior edge, near the third joint, two bristles situated close to each other. The third joint is comparatively short and is moved by two museles, a flexor and an extensor, both with a proximal attachment situated proximally in the second joint; this joint is always armed disto-anteriorly with a number of long, powerful claws. The fourth joint is small, issuing at about the middle of the posterior side of the third joint; it is moved by only one mmsele, which has its proximal attachment proximally in the second joint; and it is armed distally with several bristles, one of which is a sensory bristle. In other genera belonging to the family Cypridac the state of affairs is often somewhat different. The postero-proximal bristle of the second joint is almost always lacking, but, on the other hand, this joint almost always has, as in Macrocypris, on the anterior edge two* bristles situated close together; only in exceptional cases does one of these bristles seem to be absent. In some species the boundary between the seeond and third joints has more or less completely disappeared. In a number of these forms the two muscles which we found moved the third joint in the genus Macrocypris are missing; in others, however, they can be found; distally-anteriorly this joint, as in Macrocypris, always has powerful, claw-like bristles. The fourth joint may be more or less completely reduced in a number of species, but even in those forms in which this joint has quite disappeared it always seems possible to distinguish by their position the bristles that belong to this joint from those that belong to the original third joint, as they are situated distally-posteriorly on the end joint and are separated from the bristles of the original third joint by a swelling in the chitinous wall of the joint; in some forms a distinet gap can also be observed between these two groups of bristles. In the family Nesideidae we find the following state of affairs: All the three recent genera of this family that have been described so far, Nesidea, Bythocypris and Anchistrocheles, have a four-jointed endopodite, of about the same type in all of them. The genus Nesidea (cf. G. W. Mi'ller, 1894, pl. X V, fig. 29): The second joint is moderately long and has only one or a few bristles situated postero-distally. The third joint is relatively long; it is not moved by special museles and has, among other things, two bristles situated close together on the anterior edge a short distance from the distal boundary; distally-anteriorly this joint has no bristles at all. The fourth joint is short and is moved by two muscles, a flexor and an extensor, both having a proximal attachment proximally on the second joint; it is provided with five bristles, which, at least in a number of species, are situated in two groups, as I have had an opportunity of observing myself when investigating a couple

[^18]of species belonging to this genus; cf. also G. W. Mutler, 1894, pl. 15, fig. 31. One of these groups is situated antero-distally on the joint and comprises two claw-like bristles, the other is situated postero-distally and consists of three bristles, one of which is a sensory bristle of about the same type as the sensory bristle of the fourth joint in the gemis Macrocymis and other Cyprids. The two groups are separated from each other by a distinct swelling in the wall of the joint.

Can we, in the face of these facts, aceept the homologization worked out by G. W. Mutleer for these joints of these two families? I believe not. It seems far more probable - not to say absolutely certain - that the joints in the family Nesideidue that are denoted by G. IV. MUller as nos. 2 and 3 are homologons with the second joint in Macrocypris, the fourth joint in the Nesideids corresponds to the third and fourth joints in Macrocypris. If we assume this homologization we shall find the following points of agreement: The second joint is elongated; it has on the posterior side proximally of the middte one or two bristles and on the anterior edge somewhat proximally of the distal boundary two bristles situated close together. The third joint is relatively short; it is moved by two muscles, a flexor and an extensor, both of which have their proximal attachments proximally on the second joint; distally-anteriorly it is armed with claw-like bristles. In Nesideidae, as in several Cyprids, the fourth joint is completely reduced, but the bristles that belong to this joint can be distinguished from those of the original third joint by means of a swelling in the wall of the joint; one of the bristhes of the fourth joint is a sensory bristle. In other words the agreement is complete. The lack of resemblance if we aecept G . W. Muluer's homologization is as striking as the similarity if we accept that worked out above. The same correction must also be made in C . M. Méller's homologization of the endopodite of the second antema in the Cytherids . This will indicate the degree of certainty in the facts on which ($6 . W^{\prime}$. Mélefr has based his assumption with regard to the number of joints in the endopodite of the second antemal of the Protostracods!

It is quite impossible at present to carry out a homologization between the juints of the endopodite in all the groups of the Ostracods; we get no help at all from the characters of bristles and museles.

If, looking at these facts, we ask what is the number of joints that is to be taken as the most primitive for the endopodite, whether this branch was originally characterized by two, three, four or five joints, I think we shall be compelled to acknowledge that this is a question we cannot yet decide with any degree of certainty.

The exopodite of the second antenna of the Protostracods is supposed to have been composed of a rather large number of joints, about the same as in the case of the recent Cypridinids, Habocyprids and Polycopids. No proof of this is given by G. W. Méller. Among the recent Ostracods we apparently find nine joints constantly in all representatives of the three above-mentioned groups; the Cytherellids have a powerful, two-jointed exopodite; in all other Ostracods this branch has no joints and is more or less completely reduced. Thus from comparative morphology we cannot - at least at present prodnce any faets that indicate with any degree of certainty the number of joints that is to be taken as the origimal one for this branch. Nor can any such facts be obtained from com-
zoolog, bidraz, Cppsala. suppl-Bd. . \quad Digitized by Microsoft ${ }^{(B)}$
parative combrologe It sems, howerer, to be ly no means impossible, perhaps even rather probable, that G. II. Iftuab was pretty near the truth when he assumed that the Protostracods had a mime-jointed* exopodite, perhaps of about the same type as in the recent Polycopids. The reasons that seem to me to support this are, first, that the forms which are now characterized hy an antema of this sort, Cypridinids, Hallocyprids and polyeopids are in several respects certanly to be considered as the most primitive $0: 1$ it a cods. and, secondly, that the agreement in structure in these groups is altogether ton great to justify us in assuming a convergence, in the case of an organ of so complicated a strueture as this branch. At any rate the ancestral forms of these three groups probably had a similar exopodite on this limb.

The only statement about the second antenna of the Protostracods that we can make at present with almost complete certainty, is aceording to my opinion, that it possessed a welldeveloped protopodite and a comparatively strong exopodite and endopodite.

We ought perhaps to note the great rescmblances there is between this limb in the Cytherellids and the type that is presumably to be considered as the original one for the two following limbs, the mandible and the maxilla. Perhaps this indicates that the sceond antenna of this group represents a comparatively primitive type.

Was the endopodite in the males of the ancestral forms of $\mathrm{Cypridinids}, \mathrm{Halo-}$ cyprids and Polycopids developed as a seizing organ. as G. W. Miller has assumed? In the recent Cypridinids the whole of the end joint of the endopodite is pressed against the preceding joint in seizing. In the Halocyprids, on the other hand, the end joint has a process in the shape of a seizing arm, which issues proximally on the joint. The males of the Polycopids do not have the endopodite developed as a seizing organ; whether the wart-like process near the point of the endopodite which is found in this group (cf. (f. IV. MCLLER, 1894, pl. 7, fig. 10) is homologous with the seizing arm in the Haloeyprids, as Cr. IV. Mu'Ller has assumed, I must leave undecided; there is no certain proof of this homologization, G. W. MULLEER does not give any and I have not found any myself. In the face of these facts - that the Polycopids, in several respects presumably the most primitive of these three groups, do not have this branch developed as a seizing organ and that the seizing function has been carried into effect in different ways in the Cypridinids and the Haloeyprids - one must say that this assumption of G. W. Ilicler's is to be considered as rather uncertain.

Mandible: - G. W. Méller's assumption that this limb in the Protostraeods was composed of two protopodite joints and three endopodite joints seems fairly probably;

[^19]at least there seem to be no facts that are definitely against it. A grater number of joints do not appear in any forms; a two-jointed protopodite and a three-jointed endopodite occur in the most widely separated groups viz: Cypridinids, Halocyprids, Cyprids, Nesideids, Cytherids and Cytherellids. A smaller number is found in the Polycopids and in Darwinulidae. No trace of a procoxale has yet been observed in any recent forms; it is, however, not quite impossible that such a joint existed originally. Nor does there seem to be anything of importance to add with regard to this author's assumption about the endites on this limb. A powerful endite is found on the coxale in almost all groups. Without drawing any conclusions from this, I wish, however, to point out here that an endite or indications of such a process on the basale is found not only in Halocyprids and Polycopids but also in Asteropids and Philomedes as well, and in the Cypridinids, where traces of such an endite can also be observed, these traces are most strong in forms which are presumably to be considered as primitive (Crossophorus); cf. the remark on the group Cypritiniformes below. On the other hand there seem to be no reasons that support the assumption that the palp in the Cypridinids is of a more primitive type than in other forms becanse of its size. The group Polycopidue, which is presumably in several respects rather primitive, is characterized by a very short mandible. Might not this fact be considered to support an assumption that the elongated mandible papp in Cypridinids and Halocyprids represents a secondary type? The assmmption of a short mandible or at any rate of a morlerately long mandible as being the original one in the Ostracods seems to me to be supported by the fact that in a number of forms in this group the mandible has been developed as the most important crawling limb on the anterior part of the body, while in others the endopodite of the seeond antema has been developed for this function. It seems to me that the easiest way to explain this phenomonon is by assuming that in the Protostracods both the mandible and the endopodite of the second antema were relatively short. With regard to the exopodite of this limb G. W. MiluER makes no assumption, as has been pointed out before. In the recent Ostracods this branch is always very small; in a number of forms it is peeg-like, unjointed and almost bristleless; in others it is quite absent. It seems to me fairly probable that this branch was comparatively small in the Protostracods: on the other hand it seems to be more difficult to say anything certain about its type. As to whether the protopoctite had an epporlial appendage is very diffenlt to decide; it may be best to leare this question upen.

After having diseussed the problem of the mandible of the Protostracods G. W. MULLER put forward the question as to why the endopodite of the seeond antema had been developed into a powerful crawling leg in Cyprids, Wirwinulids, Nesidaids, Cytherids and Cytherellids; would it not have been more probable, he asks, for this function to have been taken over by the mandibular palp in these groups as in the ('ypridinids? In answer to this question this author writes as follows, p, 194: , , ou aufallend abhlich die Verwerthung des Mandibulartasters bei den C'ypridiniden und der 2. Antmme bei den Podocopa (natürlich abogesehen vom Schwimmen bei letzteren) ist, so existirt doch ein wesentlicher Unterschied: bei den cinen habendwig mitciuew (irabfuls, bei den anderen mit
einem Schreitful3 (urspriinglieh sicher iiberall) zu thun. Der erstere muß kurz und gedrungen sein. entspreehend dem großen Ẅiderstand, den er zu $\ddot{\text { ghberwinden hat; der zweite soll lang }}$ gestreck sein. Die Mandibulartaster hätte die hente von der «. Anteme ansgeiibte Function nicht iibernehmen können, ohne cine streckung und besonders ohne eine Verschiebung semes Ansatzpunktes zu orleiden, die mit seinen Beziehungen zur Nahrungsaufnahme unvereinbar gewesen wären. "It dues not seem to be going too far if we say that this statement has no seientific value whatever. Toillustrate the statement that the mandibular palp in the Cypridinids must. on aceomit of its digging function, be ,kurz und gedrungen", I may, in the first place, refer lece to (i. WV. MCLLER's own statement, 1894. p. 47: "Wenden wir uns zum Taster, so verdient in erster Linie Erwähnung sein großer Umfang und seine freie Bewegfichkeit, beides entsprechend der großen Rolle. die er fïr die Bewegung spielt, wonach man die ganze Mandibel als Kieferfuß, Kimbackenfuß (1)aNa) bezeichnet hat", and, secondly, to the figures that have so far been given for these limbs. If, for instance, we compare the mandible of Cypridina mediterranea (G. W. MéLJER, 1894. p. 45) with the second antenna of Eucytherura gibbera (G. W. Mrluer, 1894, p. 35) we seem to be compelled to admit that the former is at least as elongated and slender and fitted to be a crawling limb as the latter. That the mandible could not be developed as a crawling limb except after a forward displacement of its point of attachment had taken place seems to be a statement that it is very difficult for G. W. Muller to prove. For further details I need only refer here to what has been pointed out above (under the mandible) with regard to this matter.
Maxilla. Il axilla: - In the case of this limb too there does not seem to be anything of importance to remark about the assmption put forward by G. W. MULLER. The maxilla found in a number of forms of the family Polycopidae is presumably of a very primitive type. In any case, as will be seen from p. 31 of this treatise, the maxillae in Cypridinids and H alocyprids may fairly naturally be derived from the simply built type of maxilla that is found in Polyeopsis serrata G. IV. MU'leer (ef. G. IV. Mtller, 1894, pl. 7, fig. 5]; reproduced in the present work: fig. III: 1). An epipodial appendage was probably developed on the coxale; about the occurrence of this organ on this limb sce above.

In passing 1 wish to point out here that it does not seem to me improbable that the mandible and the maxilla were of about the same type in the Protostracods; they were probably moderately long, with powerful protopodites, and exopodites and endopodites with rather few joints. It is not impossible that they had three more or less distinctly separated protopodite joints, a two-jointed exopodite and a three-jointed endopodite. The second antenna may also have been of about the same type (of course apart from the fact that the two first-named were possibly provided with endites), but this assumption seems to me more uncertain than the former onc; cf. p. 82 .

Fifth limb: - There seems to be greater uncertainty with regard to the struc-

In the recent Ostracods this limb shows very different types. In the Cypridinids - I leave out of consideration here the family Asteropidae, which is certainly very much metamorphized, and also the family Sarsiellidae, in which this limb is
presumably to be considered as having undergone a secondary simplification - it is of the foliaceous type. Its protopodite, which dominates somewhat over the exopodite, is broad and powerful, in most cases more or less distinctly two- or three-jointed and is closely joined to the body; each of the three protopodite joints is armed on its inner edge with a short but powerful endite. On the outside of the procoxale-coxale part of the protopodite there is an epipodial appendage that is developed into a very large and powerful vibratory plate. The exopodite has in most eases four or five joints; of these joints the two proximal ones are in most eases very strongly chitinized and are each provided on the inner edge with a low, but powerful, endite, armed with powerful bristles and teeth; the following two or three exopodite joints differ in most eases very considerably from the preceding ones in their structure, as they are very slightly chitinized and their bristles are most frequently rather soft and phumous; the end joint has a somewhat varying number of bristles. There is no endopodite on this limb. In the Haloeyprids the protopodite of this limb is moderately large and sometimes has two joints; the boundary between these two joints is, however, rather weakly developed; the proto podite is somewhat less elosely united to the body than in the preceding family; the basate has only one or two very small endites. On the outside of the procoxale-coxale part of the protopodite there is an epipodial appendage that is developed as a vibratory plate; this is somewhat smaller than in the preceding family. The endopodite is developed as a short, unjointed, powerful masticatory process. The exopodite is elongated and rod-shaped, with three or four joints (Thaumatocypris has four joints, all the other forms only three), its distal joint is small and has three bristles. In the Polycopids the protopodite is very powerful and dominates very strongly over the exopodite and the endopodite; in most eases it is more or less distinetly three-jointed, without endites. On the ontside of the procoxale-eoxale there is a rather large vibratory plate, the epiporlite. The exopodite and endopodite are short verruciform, unjointed, the exopodite has a somewhat varying number of distal bristles. In Cypridae, Darwinulidae, Nesideidae and Cytheridae we find a fifth limb that reminds us very much of this appendage in the Haloeyprids. The protopodite is unjointed; in most cases it is much more free than in the preceding gronps. The endopodite is sometimes developed as a more or less powerful, unjointed, masticatory process: often, however, it is more or less completely reducerd. The exopodite is more or less elongated and has at most four joints, e. e. in Macrocypris, often three joints and sometimes two or one; in many forms it has three bristles distally, in others only one or two, but the evidence seems to show that three bristles is the original number for these families. The protopodite sometimes has a fairly well-devoloped epipodial vibratory plate, but this organ is often more or less completely reduced. Cytherellitae (in the male): The protopodite is unjointed, the endopodite is developed as a rather long. unjointed process for introducing the food into the month. The exopodite is elongated, threejointed; its end joint is small and has only two bristles. The epipodite, the vibratory plate. is well developed and large.

Which of these types is the most primitive?
Most investigators of this subject assume that the foliaceons type that we find in the Cypridinids is the most primitivg:tomethetherhand tow (1)Tuler assumes, as we
sere above that the Drotostracods had a fifth limb of about the same type as that of the recent gems. Macrocypris, but with a well-developed vibratory plate on the protopodite. It seems to me very diffinlt to decide with certainty which of these views is correct. On the one hand 1 consider it by means impossible that the foliaceons type in the Cypridinids may be original: this assumption agrees, of course, with the hypothesis that is almost universally adopted nowadays. namely that the foliaceons type is the original one for this limb in the Crustucea and that the roct-shaped limb is a secondary type developed from the foliaceous one - in must casis ciat the biramons stage. On the other hand I think it far from impossible that (r . W. MI'Llef is nearest to the truth and that the foliaceous type is of a secondary nature in the Cypridinids, that in this group this limb was shortened in connection with its development as the most important or at any rate one of the most important masticatory urgans. It is obvious that (i. W. MƯLAER based his assumption on the agreement found between the fifth limb in the Haloeyprids on the one hand and this appendage in Cyprids, Darwinulids, Nesideids and (ytherids on the other. This agreement is certaimly striking. but this is such a relatively simple organ that I can by no means consider it quite impossible that the resemblance is due to convergence. See also below, the sixth and the seventh limbs.

It is possible. however. that the foliaceous type is the original one and that the rod-shaped type was developed from it, without it being necessary to assume that the resemblance between the fifth limb in the Haloeyprids and the Cyprids, ete. is necessarily the result of convergence. This presupposes, however, that the ancestors of the C!prids. Darwinulids, Nesideids and Cytherids branched off from the ancestors of the Halocyprids after the latter had been differentiated from the ancestors of the C ypridinids.

With regard to G. W. Mulden's assumption that the original number of joints on the exopodite* of this limb was four I only wish to point out that this is partly based on presumably incorrect homologizations. This writer states that the Cypridinids have four joints on this branch: in doing so he counted the basale of the protoporlite as the first endopodite joint, the first and second joints of the exopodite as joint no. 2 ; on the other hand this writer has not paid attention to the fact that there is sometimes an additional joint distally of joint no. 4, semsu (f . W. Míleri. According to this author the Halocyprids also have four joints on this braneh; he arrived at this number by counting the endopodite as the first exopodite joint: cf. G. IV. MULLLER, 1894, p. 60. It is, however, to be noted that in one genus of this group. which was not known to this writer when he put forward the assumption discussed here, namely the genus Thaumatocypris, the exopodite has four joints; cf. G. W. ML'LLER, 1906 a, p1. VI, fig. 3. This is noteworthy, as this genus is in many respects to be considered as the most primitive among the Halocyprids . With regard to the uncertainty of the homologization of this limb compare p. 54 above.
G. W. Metler's assumption that this limb was developed as a seizing organ in the males of the ancestors of the forms which he groups together under the name of Podocopa

* Explained by (. W. Miller as an entopodite.
seems to be quite unsupported. With regard to this it ought to be enough to point out that this limb is not developed as a seizing organ in two of these families, namely Nesideidae and Cytheridae, and that the sixth limb in the males of Cytherella even shows a closer resemblance to the fiftl limb of the Cyprids than does their fifth limb.

It is possible that the position of the fifth limb of Cypridinids and Halocyprids, where it is placed far forward, is, contrary to G. IV. Múller's view, to be considered as original. This assumption of (\%. W. Mưllef's is, of course, connected with his supposition that the limb corresponding to te second masilla of other Crustacean groups has disappeared in the Ostracods.

Sixth limb: - There is the same meertainty with regard to this limb) as with the preceding one. The assumptions that the foliaceons type of the Cypridinids is original and that the rod-shaped type is the most primitive are opposed to each other in this case as well. The fact that with regard to this limb too there is a very great agreement between the Halocyprids on the one hand and Cyprids. Darwinnlids, Nesideids and Cytherids on the nther makes the assumption that the resemblance between these limbs is due to convergence seem very improbable.

It seems to be impossible to make any detailed statement at present as to the cause of the disappearance of this and the following limb in Polycopitue. G. WT. Mitler assumes that it was due to the smallness of these forms. It is to be noted that these limbs are also reduced in the Cy therellids, although these are comparatively large forms.

Seventh limb: - Contrary to the two preceding limbs the seventh one never has a foliaceous type in the recent Ostracods. In Cyprids, Darwinulids, Nesideids and Cytherids it is of abont the same type as the fifth and sixth limbs; in the Halocyprids it is certainly short, but all the same it is rod-shaped; in the (yprid in ids, the gromp in which the fifth and sixth limbs are of the foliacoons type, it is dereloped as a long, vermiform ammlated appendage. (In the Polycopids and C'ytherellids this appendage is, as we know, not found at all.) These facts seems to support (t. M. MiLLare's assumption that this limb was originally of the rod-shaped type; it, was pertaps, as this investigator assumed, of about the same type as in the recent ("yprids. This fact may also perhaps be considered to support the assumption that the rod-shaped type was also original for the two preceding limbs.

Was this limb developed as a crawling limb in the Protostracods or did it act as a cleaning organ? G. W. Mitlere assumes, as we have seen above, that it was used as a cleaning organ; other investigators, e. g. G. ALM. 1915. assume that it only adopted this function later. Which of these views is to be considered ats correct?
G. Aly puts forward the following reasons for his view (pp. 18-21): In the Nesideids and Cytherids this appendage is used as a crawling limb, not as a cleaning organ. In the Darwinulids it is possibly used as a cleaning organ. but probably, at any rate, this function is only to be considered as secondary, crawling being the most important function. In the Cyprids we find in the lower forms that this appendage, although developed as a cleaning organ, "nach ihrer Lage zu urtcilen sowohl als Bein wie als Putzfuß anwendbar ist"

Digitized by Microsoft © ${ }^{\text {B }}$
(ci. (i. II. Medle: 1894, p. 16), while in the higher forms it is exelusively a cleaning organ. In the Cypridinids this appendage is developed into a complicated eleaning organ; in the H a loeyprids it certainly functions as a cleaning organ, but still it is comsiderably less suited to this function than in the Cypridinids. "Stehen mun, wio MULAFK meint, die C'ypridiniden entwickelungegeschichtheh anf riner höheren Stufe als die Halocypriden. so wïrde dies in Bezug auf den Putzfuß bedeuten, daß dieser bei den höheren Formen mehr veraindert und seiner Funktion besser angepaßt ist als bei den niederen." In other words in several groups this limb is not developed as a cleaning organ, in others it is most complete as a cleaning organ in the most metamorphosed forms. In both high and low C'yprids, in Nesideids, ('ytherids and Halocyprids* it begins embryologically as a downward and backward pointing process; only in the Cypridinids does it point upwards from the beginning. In the Cyprids it is developed pretty far without its position being altered; only at a rather late stage is it bent upwards. On the other hand G. IV. Mchler gives no reason for his riew; nor does it seem to me possible at present to find any: We seem to be compelled for the present to adopt the view assumed by G. Ala, but is does not seem to me impossible that G. W. MÚller may be right.

The question of why the cleaning limb has been reduced in the Halocyprids is one that can scarcely be answered yet. At any rate C. WV. Mútuler's assumption that the reduction was connected with ,des Aufgebens der Brutpflege" seems to me, however, impossible**, as this organ almost always or at least in most cases is as well developed among

* It is to be noted that this limb in the Ilalocyprids is oiten still kept pointing backwards and downwards even in the mature stage, with only its small end joint pointing upwards. It is often foum in this position even in dead specimens. Sometimes its end joint also points downwards.
** In this connection I shoukd like to say a few words with regard to the funtion of this limb in Cypridinids, II aloeyprids and Cyprids. Hl. E. Strans. the first author to investigate this appendage in the Cyprids,
 discuss the Cypridinids, assumed (1890), presumably influenced by fl. E. Strats, that this pair of limbs functions as pgghearers; he calls them , , pattes oviferes". Several succeeding authors, e. g. W. Bard, I. D. Daxa, D. Grube and even C. Clus in his earlier works. accepted this assumption. W. Zenker. in his work , \boldsymbol{H} onographie der Ostracoden, 1854", pointed ont.p. 17. that H. E. Straus's assumption could not be correct. ..Die Eier aber brauchen keine L־nterstutzung. da sie von der Wandung des Eileiters und außerdem noch von der Chitinhaut bedeckl sind." This author assumed that this appendage served as a cleaning organ for . die große hiemenplatte mit ihren gefiederton 1laren". F. Jliler, in his work of 1870 , expressed the view that this limbs functions as a eleaning organ in the Cypridinids as well. He writes on p. 257 as follows: , Beobachtet man eine lebende Cypridina nitidula oder eine C. Agassizii mit nicht zu undurchsichtiger Schale. so sieht man dic geringelten Anhänge, die mit ihrem meist rechtwinklig abstehenden Borstenbesatz fast wie die Bursten aussehen, deren man sich zum Reinigen von Glascylindern bedient, in fast ununterbrochener, lebhafter Bewegung. Einem Ringelwurm vergleichbar, der aus seiner Röhre weit vorgestreckt nach allen Seiten umhertastet, kriechen sie und biegen sie sich nach allen Richtungen; namentlich an den hiemen und in deren U'mgebung fegen sie und putzen sie fleißig hin und her. Nit den Eiern, die allerdings wenigstens bei C. Agassizii innerhalk, der Schale der Mutter sich entwickeln, haben sie nichts zu schaffen. Sie sind bei beiden Geschlechtern in völlig gleicher Weise ausgebildet." The same observations were afterwards made by other investigators, e. g. G. W. Muller, 1894. p. 2 . for the Cy pridinids, and I too have had occasion to verify them. As a further proof that we are here concerned with a cleaning organ G. W. Mëller (l.c.) states that in the genus Sarsiella he often found ,den I. Fuß des © arg verschmutzl, ja, einmal war es auch die Athemplatle der Maxille und die hintere körperhälfte": we know that in the males of this genus the ith limb is quite absent. In Cyprids too it has been observed that this appendage is, as it were, continually combing and cleaning. With regard to the Halocypids G. W. Nüller pointed out. 189\%. p. 23, that this limb carries out movements that closely resemble the cleaning movements of the corresponding appendage in the Cypridinids and he assumes that these movements thave the same furpose here
males as femalcs. As far as we know the males have nothing to do with the brood charge in the Ostracods. Moreover it is, as we know, developed as a cloaning organ among the Cyprids as well, a group which has no brood charge.

After having discovered that the development of the seventh limb as a cleaning organ in Cyprids and Cypridinids is presumably not to be taken as a result of common inleritance but that we are probably concerned in this case with a phenomenon of convergence, (i. Alm, in his above-quoted work, puts forward the question as to why this appendage is not developed into a cleaning organ in the families Nesideidae and Cytheridae. On this point he writes as follows: , Wras die soeben bemerkte Eigentiimlichkeit der 1. und 3. Beinpaare betrifft. so ist zu bemerken, daß augenscheinlich eine gewisse Korrelation zwischen diesen beiden Extremitätenpaaren vorliegt. Ich halte es nicht für mmöghich, daß wir die Erklärung derselben in der Lebensweise und Nahrungsaufnahme der verschiedenen Gruppen zu suchen haben. Wem man den Putzfuß als ein Reinigungsorgan betrachtet, was mir ganz sicher erscheint, darf man wohl annehmen, daß das Tier da, wo ein solehes Bein auftritt, mehr dem Beschmutzern ausgesetzt ist, als in dem Falle, wo das 3. Bein keine Putzfunktion hat. Es ist da bemerkenswert, daß gerade bei den Cypriden das 1. Bein in Bezug zur Nahrungsaufnahme tritt, und da diese Formen gerne von kleinen toten Tieren und in Verwesung begriffenen Tieren und Pflanzen ihre Nahrung entnehmen, ist es leicht denkbar, daß bei der Nahrungsaufnahme kleine Teilehen der Beute umhergestrent werden und an den Körperseiten und Innenlamellen haften bleiben.
as well. But, he adds, the result seems to be very poor. . Der Theil des kimpers, weldurd das Bein mit sejner horste mreichen kann, also der Rücken über der Furea und die Immenseite der hinteren Sichatmhalfte. ist nambich ammanma ghatt und so der Gefahr des Verschmutzens wenig ausgesetzt. Die benarhbarlen themplaftrm, fur weldhe kin krinigungsapparat am ersten nölhig scheint, kann aber das Bein nicht erreichen. Halt man eitue conchorm in Wassor, in wohthm leine Carminkörnchen suspendirt sind, so kan man sehen, wie sich badd kimmen, verkdat dureh das seotef dep

 zusammen, sließen sich ab, und die Plat te war bald witder rein, whe dab das letate Pein oder cin anderes cine direct reinigendn putzende Bewegung ansgeführt hälto. In diesum Fall war rine Mitwinkung des fraghichen boines anch schon dadure h

 larval stage, when the larta has idreaty attained two-thinats wh the length of the mature sperimen. Duriug ath this time the larva lives. like the mature female, digging in the sam and mut of the hottom. lus spite wf this it shows no sign of dirt; on the contrary it is as rean before tho development of the seventh limb ats aftop. I hate fomad the same

 fact that this limb is devoloped solatemay perhaps indicate that it has a sperial fundion in comertion with propa atime

 siella rudimentär geworden ist." liut this can, of course, only he a secmblary funtion, as in most forms this limht

Does there extst a orrelation betsseen the derelopment of the Sth and 7th limbs? Which fators hase influenced the develupmont of these tumbs". (Some aeressor? remarks.)

The assmmption that the fifth and seventh limbs are cormedated to each other, that the later has been developed into a cleaning organ when, owing to the development of the former as an masticatory organ, the breaking-up of the food had been intensified seems to be upen to criticism to a considerable extent. G. Alsy seems, as a matter of fact, to have realized bhis, and his assumption is put forward very cantiously.
let us first examine the family quoted, the Cymidae. The fifth limb in, for instance. a Cypris - or C'andona - species certainly seems to help pretty considerably in the breaking up of the fond, both direetly by chewing and indireetly by holding the food fast and by pushing it in under the two anterior masticatory appendages. There are thus reasons that support the idea that in these forms, owing to the co-operation of the fifth limb in the process of chewing, the breaking of the food is intensified and that. in connection with this, a rather considerable increase of the defiling particles is produced. These forms thus seem to support G. ALM's statement. On the other hand, however, there is in this family a number of forms which decidedly contradiet this assumption. Thus the mastieatory part of the fifth limb in the genera Pontocypris and Pontocypria is sometimes not developed at all and often only slightly developed and is furnished with a few weak, often soft and plumous bristles (as examples may be mentioned Pontocypris pellucida G. W. Mcher and I^{\prime}. pirifera G. W. Motmer; the males of these species have about two to four bristles on the reduced endopodite of this limb; ef. G. W. MáleER, 1894, pl. 9. fig. 54 and pl. 10. figs. 23. 24). In these genera the fifth limb does not take any part, - or at any rate only a very slight one - in holding and breaking up the food: we have not. wen in the forms whose fifth limb is characterized by a somewhat greater number of bristles than in the species mentioned above any well-grounded canse to assume any essential increase of the small defiling particles produced by mastication. In the males of the genus Erythrocypris. (.) Ur. those of the E. pallida (i. W. Mơlefer (cf. G. W. MÜLleer, 1894, pl. 11, figs. 43, 44) the most projecting part of this limb is quite without bristles; in the ease of these forms any discussion of the use of this appendage in the service of mastication may be considered superfluous. Ithongh in these genera it is thus impossible to think that we are justified in assuming that any real increase in the number of the small defiling particles is prodnced by the activity of the fifth limb. yet the seventh limb is in them apparently developed into an effective eleaning organ, at any rate as effective as in the genera Cym is and Candona. Althongh a certain difference may he observed in different forms with regard to the development of the seventh limb (the degrer of pectination of the end bristles), this has no connection at all with the development of the bristles on the anterior side of the fifth limb. In the genera Argilloecia and Macrocypris, and to a still greater extent in Paracypris the masticatory part (the endopodite) of the fifth limb is furnished with mumerous bristles and is also developed as a long branch pointing forward (ef.. for instance, Cr. IV. Möller, 1894, pl. 12, fig. 41, 42); in these genera this limb seems to help' considerably in intensifying mastication and thus possibly in increasing the number of the small defiling particles as well. But the seventh limb is apparently not so well developed as a cleaning organ in these forms as in the precerling genera; for instance it has no pectination at all on the end bristles. In Paracypris rara (G. W. MULLER), a form with a very powerful mastimatory part on the fifth limb. we even find a seventh limb that is almost completely without
such characters as distinguish a cleaning limb from a crawling leg (cf. (i. II. Mollesi, 1894, pl. 12, fig. 49). If we turn to the family Darwinulidue, which is closely related to the Cyprids, we find that although the fifth limb has been developed as a presmably rather (ffective masticatory organ, the seventh limb is not differentiated as a cleaning organ but has entered the service of locomotion. Nor do the conditions in the Uypridinids support the assumption put forward by G. Ald. The fifth limb in, for instance, the genera Cypridina and Philomedes certainly helps considerably in breaking up the food, even to a far greater extent than in some Cyprids; this idea is supported by the extremely powerful musculature and armature of this appendage. As in these genera the seventh limb is developed as a presumably effective cleaning organ one would think, of course, that the conditions in these genera support G. ALM's hypothesis, but, as we know, the fact is that in these genera the mandible does not at all help or at any rate only helps very slightly in the breaking up of the food, which quite makes up for the development of the fifth limb as a masticatory organ. The Asteropids are characterized by a method of taking up the food that is quite unlike that of other Cypridi inids. As we know, a rather strong current of water from front to back is produced in the ('ypridinids by the movements of the vibratory plate on the fifth limb; this is for respiration - as is generally assumed and appears very probable. While in most Cypridinids this stream is allowed to pass freely along between the shell and the body without losing any of the organie and inorganic little particles that naturally accompany it, whirled up from the bottom, this is not the case in the Asteropids. As has been deseribed in another place in this treatise, the limbs of the mouth have been differentiated in a very strange way in these forms. The maxilla has been developed into a sort of baleen-like organ, which, with its epipodial appendage and its long, fine ventral bristles fills the anterior opening of the canal through which the respiratory water has to pass. By means of these baleens the water that runs through is cleaned of a great many of the defiling particles; a number of these particles constitute the food of these forms. The water that, after passing the maxilla, continues backwards between the shell and the wall of the body, is thus presumably much cleaner than the respiratory water in other Cypridinids. It is true that the fifth limb is developed as a month organ in these forms, but it does not act as a masticatory appendage and thus does not increase the number of the defiling particles. The food is not broken up at all and the respiratory water that passen is eleaned from small defiling particles before it penetrates into the part that is cleaned by the seventh limb. In spite of this this limb is well developed as a cleaning orgat in these forms. The H aloeyprids have in their mandible and maxilta puite as powerfut masticatory organs as any representative of the family Cypridae; in addition they have a rather powerful masticatory part on the fifth lints. In spite of this their eleaning limb is very much reduced; cf. the remark above. p. 89. Finally it ought to be noted that among the families whose fifth and seventh limbs are developed as typical crawling legs there are certainly forms that have more powerful and more intensive mastication than a number of forms whose seventh limb is developed as a cleaning organ and whose fifth limb helps more or less in intensifying the mastication. The methods by which

for these families (1) be taken into consideration in this connection. See also the remark abore. 1. s?

From what has been shown above it seems to follow that (6 . Ala's assumption that the seventh limh was developed as a cleaning organ in the cases where the mastication had been intensified by the development of the fifth limb as a masticatory organ cannot be maintained. Nor have 1 succeeded in establishing any condition of correlation between the development of the masticatory parts of the mandible and maxilla on the one hand and the seventh limb on the other.

Does there not exist, however, a certain corrclation between the fifth and seventh limbs:" Ur. as I should prefer to put the question: Which factor or factors have exerted an inthence in the development of these appendages? What is more natural in dealing with this problem than first to try to discover whether this development has not been comected with the method of locomotion of these animals?

Let us once more take the case of the family Cypridae first. If one observes it Cypris in motion on the bottom one can casily discover that with the help, of the first antennae, which strike regularly upwards and backwards, and the second antennae, which either strike downwards and backwards or carry out crawling movements, it seens rather to glide than to crawl heavily over the sub-stratum. Owing to the natatory movements of the first and sceond antemate the representatives of this genus naturally have less need of effective assistance from the posterior limbs for locomotion. This applies, of course, still more strongly to the powerful swimmers in this family, e. g. the genera Cypria and Cyclocypris. The same method of locomotion as in the genus Cypris is found in a number of representatives of this family; I need only mention here as examples the genera Pontocypris, Erythocypris and Iliocypris. G. IV. MÜLLER writes about the representatives of the sub-family Iliocyprinae in , Deutschlands S ii β wasserOstracoden" 1900 , p. 90 . that besides freely swimming they generally , sich rasch gle itend ïber den Grund bewegen". There are, however, representatives of Cypridae that are mable to swim at all; I need only mention here as examples the genera Candona and Macrocypris, as well as the females and partly the males too of the genus Argilloecia. But this does not exert very much influence on what might be called the principle of crawling, as these forms also have rather long, stiff bristles on the first antenna - though not so long as in the swimming species. These forms use the second antenna and the sixth limb in crawling. This movement would, however, be very heay and uncertain mess in these genera too the first antenna struck upwards and backwards in the same way as in the swimming forms and so help very much both in keeping the animal in equilibrium and in propelling it forward. Thus in all the forms belonging to the family Cypridae the first antenna is used in crawling in a way that gives both comparatively great rapidity and also good stability to the movement.

The mode of life of the family Darwinulidae is too little known for us to use it in this argument. It has presumably about the same method of locomotion as the Nesideids and Cytherids, so that I shall only refer here to what is said in connection with these families.

The family Cytherellidue is also very little known oecologically; they are slow, digging forms without any power of swimming. The digging life has to a great extent left its impression
on the two pairs of antemnae. These have been developed into real small digging shovels. If one leaves the furca out of consideration, these limbs are on the whole to be considered as the only locomotory organs.

The families Nesideidae and Cytheridae are, as (. . IV. MULLER wrote in his monograph, 1894, p. 16 ,,vollständig an den Grund gefesselt und durchaus unfähig zum Schwimmen". They are, however, not slow like the Cytherellids, but in most eases crawl about fairly rapidly on the bottom or on water plants. Unlike the Cyprids they obtain no help or only very slight help from the first antema in crawling. In a number of forms, e. g. Cythere. Cythereis, Krithe, etc., this antema is used chiefly for thrusting obstacles to the side, e. g. grains of sand, etc.; in other forms, e. g. Nesidea, Selerochilus and Paradocostoma, etc., it is to be regarded almost exclusively as a sensory organ. But whatever may be the case, this limb does not help to produte a stable and comparatively easy crawling movement in these two families. Looking at it from this point of view it is not surprising that in these families the limbs that have a rather slight significance or none at all in locomotion in the Cyprids, namely the three posterior ones, have been more differentiated as locomotive organs. The fitth limb has been lengthened and does not take any part in mastication. The seventh limb is a typieal, elongated crawling leg and does not point upwards as in the Cyprids. The second antenna in these forms is one of the most important crawling organs; it is this appendage especially that draws the body forward. As G. W. Mưluer has pointed out, this limb has in the Cytherids a powerful spinning gland, opening out on the point of the exopodite. From this gland a fine thread of a sticky, quickly stiffening, substance is pressed out (as in spiders) and is attached to the sub-stratum. These threads are, as G. W. Múluer has shown, of great importance in locomotion, especially in climbing down steep and smooth objects, c. g. algae. ete., as it is on them that the posterior limbs obtain a hold during climbing. It is obvious that there must be several pairs of legs to keep the animal safely attached during the altemate seizing and releasing that takes place while climbing along these steep objects and to prevent it from falling outwards and sinking to the bottom, as these animals have not, as has been pointed out above, any first antema. like that of the Cyprids, which by means of its natatory movements is able to keep the body pressed against the sub-stratum. The three posterior limbs can, however, be also used in crawling on horizontal sub-strata. They are, as we know. built in such a way that they might seem to be best fitted for a backward crawling movement. a structure that is presumably to be considered as an adaptation to the climbing movements described above. SøREX JENsEA* even assumed that they were situated in a direction quit, the opposite of that which they actually have and he aceordingly also assumed that they were used as ordinary crawling legs. Atter a correct idea of their direction was notained, the idea
 dienen zum Anklammern. Auch hier schemen sie gewöhnlich nicht zum Fortsehiebon bonutat zu werden. Doch ist es kaum möglich, sich darüber Gewißheit zu verschatfen." G. ALM, in his work quoted above, describes how the Cyprids use their sixth limb in crawling. The same crawling movements are carried out by the three posterior limbo of the ('y heyids

and Šesideids. a fact that l ohserved myself and that is by means difficult to verify: In this mode of crawling too it seems expedient for several pairs of legs to co-operate.

The ('ypridinids pass their lives - provided they are not exclusively swimming (Ir digging forms - partly in swimming about frecly in layers of water just above the bottom, partly in eligging in the sand and mut of the bottom. ,'/u einer eigentlich krieehenten Bewegner auf dem Grund sind die Cypridiniden vermöge des Baues ibrer Gliedmaaßen durchans mfähig: ich habe sie dem anch niemals in der Gefangenschaft sifh in ahnlicher Weise bewegen sehen." (G. IV. Muther, 1894, p. 14.) In swimming and in digging the three posterior limbs have no function to fulfil; swimming is carried out exclusively by the second antenna, digging, as in the Cytherellidae, by a couple of the anterior limbs (the mandible, sometimes the second antemna as well) and the furca.

The Halocyprids are exclusively pelagie forms; they swim only with the second antema.
The Polycopids camot crawl. They either lie still on the bottom or take short swimming trips to the layers of water just above the bottom. They swim with the first and second antennae and the maxilla; as in the case of the Halocyprids , the other limbs are not used in locomotion.

We thus find that the fifth and seventh limbs do not take part or take only a very slight part in locomotion in the case of freely swimming forms or in crawling forms in which the crawling motions are helped by the more or less powerful upward and backward natatory movements of the first antenna. In crawling forms whose first antenna does not take part in locomotion the fifth and seventh limbs are developed as crawling legs.

I do not mean by this, of course, that the method of locomotion was the only factor that influenced the development of the two limbs just mentioned. Presumably, though not certainly, other factor's - both internal and external - have, as G. Alm also supposes, cooperated; among such presumable factors may be mentioned the nature of the sub-stratum on which these animals live and presumably the nature of their food as well. In any case the method of locomotion must be considered to have been an important factor.

After this excursus I return to my discussion of G. W. Mưlder's exposition of the organization of the Protostracods.

I have nothing to add about his assumption as to the vibratory plates; it is not impossible that in this G. IV. Muller has come very near to the truth, but it is by no means proved.
G. W. Muller assumes that the furca of the Protostracods was of about the same type as this organ in Conchoecia. This seems presumably to be a some premature assumption.

Comparatively short and powerful furcal lamellae, armed with several strong claws, i. e. about the same type as in Conchocia, is found in Cypridinids, Polycopids and most of the Halocyprids . In the other Ostracods we find furcae of very varying types. A number of forms, viz. Cytherids, have a very short and weak furea with a few weak bristles. Others, viz. Cyprids and Nesideids, are characterized by relatively long int narrow furcal lamellac, armed with a comparatively small number of bristles and

Digitized by Microsoft ${ }^{\circledR}$

claws. Finally the $\mathrm{C} y$ therellids have, it is true, rather short and broad and powerful fureal lamellae, armed with rather numerons claws, but the furea in these forms is of quite a different type from that found in Cypridinids and Halocyprids.

Which of these types is to be considered the most primitive?
I consider it rather improbable that the very small furca in the $\mathbb{C} y$ therids represents a primitive condition. Presumably a reduction has taken place in these forms (possibly in connection with the powerful development of the posterior limbs). The different development and type of the furcal lamellae and the great variation in the number and development of the furcal claws in the other groups seem to indicate that, in spite of the fact that it presumably had comparatively well developed lamellae, the furca of the Protostracods was. all the same, very slightly differentiated; presumably it was armed with only a few claws. The following facts also seem to support this assmmption. Thaumatocypris, which is, in many respects presumably the most primitive genus among all Halocyprids, has a furca that consists of two relatively short, broad and powerful lamellae - like that of other Halocyprids. Each of these lamellae is armed with only two claws, situated distally; behind these claws there is onty a number of short spines. What perhaps strikes the observer of this furca more than anything is its great resemblance to the furca in a closely-related group of animals - the Cladocera. Without going so far as to say that this fureal type is the most primitive, I wish, however, to point out one fact that may perhaps be considered to point in this direction. In investigating the post-embryonal development of the C'rpridinids I observed that both in the sub-genera Doloria and Vargula and in Philomedes the voungest freely living larval stage is characterized by a furca consisting of two relatively short and broad, but powerful, lamellae; each of these lamellae is armed distally with two rather long and powerful claws, behind which there follow a number of short and weak spine-liki claws; cf. the special part of this work. fig. 21 of Philomedes globosa ant fig. 14 of Cypridine (Doloria) pectinata; only during the larval stages that inmediately follow do these claws grow, so that in these stages the transition between the distal and the proximal claws becomes unjform. G. IV. MCller made the same observation (1894, p. 185) in the representatives of the ('ypridinid group investigated by him, species of V'argulu. Phitomerdes, Pseudophilomedes. Sirrsiella and Asterope; cf., for instance, G. W. MULLER's figure of a larval furca of the genus Asterope, 1894, pl. 34, fig. 53. C. Chus, 1893, showed that the same condition is also charaleteristic of the Halocyprids (p. 2s6). , Das jüngste der boobachteten Stadien, leider mur cin einzigesmal aufgefunden . . . besitat nur 2 Patre von Furcalklanen." During the first freely living larval stage these forms thus have a furca whose type differs very much from that of the mature individuals, but which shows, on the other hand. a comparatively close agrmment with the furea in Thaumatocypris. - It is to be noted that the genus Thaumatocyprix was mbnown to G. W. MCllefr in 1894.

As will be seen from what has preceded, (r. W. Mimbler does mot say anything about the sexual organs of the Protostracods. This problem has rather great difficulties. On aceount of the conditions in the recent Ostracods and closely related Cnustacean groups, it seems to me mostyprohahlg thathoth the fustighes and the ovaries in
the Protusiracods emsisted of two simple sacks sitmated in the pesterior part of the body: from each of these sacks there was a simply constructed duct, opening ont ventrally just in front of the furea: on the other hand it seems to me to be quite uncertain whether the sexual ducts oproned outwards with a simple or a paired orifice. In the mates the posterior pair of legs was used in eopulation and was developed into the two penes. The fate of this pair of legs in the females is uncertam; there is possibly a remans of them in the genital verneac. Among the recent Ostracods the most primitive conditions seem to be fomm in amber of Cypridinids, possibly, for instance, in Philomedes and Asterope.

Did the Protostracods have a rod-shaped ofgan?
(i. II. M'llifR does not make any statement on this point either. C. Claus expresses himeelf ($1876, \mathrm{p}, 97$) in such a way that one can scarcely doubt that he considered that they had. I seareply think, however, that they had. Among the recent Ostracods this organ is absent not only in Cyprids, Darwinulids, Nesideids, ('ytherids, but also in Cytherellids and Polyeopids, which we are acenstomed (1) consider as being in many respects rather primitive and in the genus that is in several respects presumably the most primitive among the Halocyprids , namely Thaumatocypris. ()nly in the Cypridinids and most of the Halocyprids is it developed. I mysell have only had an opportmity of investigating one species of Polycopidae. This was charaeterized by two bristles. situated rather near each other on the front of the head, on each side of the place where the rod-shaped organ is situated in the Cypridinids. Do these bristles correspond to the similarly situated bristles in other lower Crustacean groups? Is this a primitive stage? It seems to me by no means impossible that this is the case. It seems difficult to assume that a rod-shaped organ existed originally and was then completely reduced in all these forms. The fact that this organ is absent in the most primitive genus of the Haloeyprids even seems to indicate that the appearance of this organ in Cypridinids and II alocyprids is not. as C. Clacs has assumed, the result of common inlieritance, but that we have here once more a phenomenon due to convergence.

This investigation has thus shown that while it is true that we ean say with some degree of certainty in the ease of a number of characters that they are original, our whole knowledge of the organization of the Protostracods is very incomplete and uncertain, a good deal more uncertain than one would imagine from G. W. Múller's exposition.
G. Wr. Muller gives the results of his investigation of the mutual relationships of the recent Ostracods in his monograph of 1894, pp. 188-191.

The most important of these results is that the recent Ostracods are to be divided into two main natural groups, sharply divided from each other, Myodocopa and Podocopa. To the former belong Cypridinids, Halocyprids and Polycopids, to the latter ' 'yprids. Darwinulids, Nesideids, Cytherids and Cytherellids.

The view that these animals can be divided into two natural, sharply differentiated - ,scharf getrennte" - main divisions is, as is shown above, decidedly opposed to the views of C.O. Shrs and C. Chats. As a matter of fact (A. IV. MC'LAFR is ahmost alone in this view.

Digitized by Microsoft ${ }^{\circledR}$

Is it possible to maintain these two main groups?
Myodocopa, as this group is taken by G. W. Mirler, is, according to the same author, 1894, pp. 188-189, characterized by a rostral incisur on the shell, the great number of joints

Can the two moun groups. Myjodicopa ated Poduropa bp maintained? on the exopodite of the second antena, the large, mostly very mobile, mandibular palp, the absence of a large vibratory plate on the maxilla, the presence of one on the following limb and finally by the type of the furca. This author diagnoses this group as follows in his work of 1912: .,Schale meist mit Incisur am Vorderrande; Ventralrand meist gewölbt. Stamm der 2. Antenne umfangreich, schinkenförmig, mgegliedert; Exopodit gestreckt. meist 9-gliedrig; das 1.. selten 1.-3. Glied des Exopodit gestreekt, die folgenden Glieder (mindestens 6) sehr kurz, einander ähnlich, jedes mit 1 umfangreichen, meist gefiederten Borste, das Endglied mit mehreren Borsten; Endopodit mit 3 oder weniger Gliedern. meist viel schwächer als der Exopodit, beim ơ gewöhnlich als Greiforgan entwickelt, bisweilen in beiden Geschlechtern rudimentär. Naxille mit meist deutlich 3 -gliedrigem Taster. ohne Atemplatte. Das 1. Thoraxbein steht fast durchweg im Dienste der Nahrungsaufnahme, auch die Glieder seines Endopodit können zu Kaufortsätzen werden: scin Stamm, in großem Umfange mit den Seiten des Körpers verschmolzon, trägt eine umfangreiche Atemplatte. Das 2. und 3. Thoraxbein zeigt außerordentlich verschiedene Formen; beide können fehlen. Ein bürstenförmiges Organ fehlt fast stets. Furea stets whl entwickelt, breit, lamellös, mit wenigstens 3 starken, dornartigen Anhängen.'

Porlocopa, in the sense in which it is taken by G. WI. Mullesk, is. according to this writer. 1894, p. 189, characterized by the fact that the ventral margin of the shell is flattened, by the strncture of the second antema, above all by the reduetion of the exopodite and the position of this limb, and finally by the vibratory plates on the mandible and the maxilla. This writer diagnoses this group as follows in his work of 1912: ,Schale stets stark verkalkt, miemals mit Incisur oder Rostrum, Ventralrand abgeflacht, oft mit Einbuchtung, ausnahmsweise lionvex. Die 2. Antenne entspringt zu beiden Seiten der Oberlippe auf cinem Forrtsatze, der vou maneheu Autoren als 1. Stammglied betrachtet, hier aber nicht zur Anteme gerechet wird: sie besteht aus dem ein- selten zweigliedrigen Stamme, dem höchstens 4 -gliedrigen Fondopodit und dem Exopodit, welcher ausnahmsweise aus 2 deutlichen. borstentragenden (aliedern zusammengesetzt. ist, meist nur als kleine, borstentragende Platte oder als einzelne Borste orhalten ist ; das 1 . Stammglied ist cylindrisch, in der Rohe mach vorn und dorsalwärts gerichtet: es bildet in der Ruthe mit dem 2. Stammgliede und dem Endopodit oder beim Fehlen des ersteren, unr mit dem Endopodit einen meist scharf ansgeprägten, ventratwärts offenen Winkel: Findopodit moist gestreckt. terminal stets mit Klauen bewaffnet, im übrigen sehr verschieden gestaltet. Mandibel meist mit deutlich gezähneltem Kaufortsatze des Basalgliedes unt höchstens t-ghedrigem Taster. der selten ganz fehlt; sein 1. Glied trägt eine Atemplatte. Haxille mit 3 moist gestreckten Kinnfortsätzen des Stammes und diesen ähmich gestaltetem Taster, der solten 3 -gliedrig, meist durch Versehmelzung des 1. und 2. (itiedes 2-ghedrig oder mogergiedert ist. Kanfortsïtze und Taster kömen zum Teil oder vollständig vertoren gehen: mit umfangreicher Atemphatte, welche radiär angeordnete, gefiederte Strahben trägt, ein Teil derseblben, und zwar in erster Linie dis ventralen des Hinterrandes, seltemer des Vorterrandes. sind häufig abweichend gestaltet und gerichtet. Das 1. Thoraxbein hestehtiustien ungegliedumestamen der batd seitlich dem

[^20]Rumpfe angeheftet und in großem Umfange mit ihm verbunden ist, badd mehr ventral ontspringt und frei eingelenkt ist: derselbe trägt den nach vorn gerichteten.als Kanfortsatz dienenden Exopodit (?), weleher häufig mit dem stamme verschmolzen oder ganz geschwunden ist; der hintere Ast (Taster), den ich als Endopodit bezeichne (obwoh] die Dentung nicht sicher), ist da. wo die (iliedmaße als Hilfsorgan bei der Nahrungsaufnahme dient, beim of kurz, tasterartig, selten t-gliedrig, meist wenigergliedrig oder ungegliedert, beim ot als (ireiforgan entwiekelt, wohei die meist verschmolzenen 2.-4. Glieder als beweglicher Finger gegen das 1. Glied eingeschlagen werden können; der Finger liann mit dem Stamme verschmelzen; die Greiforgane sind meist auffallend asymmetriseh gestaltet. Wo dic Gliedmaße nieht als Maxillarfuß dient, ist der Exopodit geschwunden, der Endopodit gestreckt, 4- oder 3-gliedrig, selten wenigergliedrig. Der Hinterrand des Stammes kam in beiden Gruppen eine Atemplatte tragen, die aher häufig der Riickbildung verfällt. Der Stamm des 2. Thoraxbeines weist beziiglich der Inheftung ähnliche Unterschiede auf wie der des 1. Beines; Reste eines Exopodit sind nicht nachweisbar: der Endopodit ist fast ausnahmslos nach hinten gerichtet, gestreckt, 4- oder 3-, selten wenigergliedrig; er trägt terminal eine große Klaue; eine Atemplatte findet sich nur sehr selten. Das 3. Thoraxbein zeigt beziiglich der Anheftung des Stammes ähnliche Unterschiede wie das 1. und 2. Bein; Reste eines Exopodit fchlen ganz; der Endopodit ist stets gestreckt, t- oder 3-gliedrig: er ist als Schreithein ventralwärts gerichtet, dem 2. oder 1. und 2. Thoraxbein ähnlich. oder als Putzbein dorsalwärts gerichtet; den Cytherelliden fehlt es gauz. Bïrstenförmiges Organ auf die ô beschränkt, auch diesen fehlt es bei den Cypriden fast ganz: es steht bald hinter, bald zwisehen, bald vor den Thoraxbeinen. Begattungsorgane des os paarig, umfangreich. Furea von sehr wechscluder Form." - In the following discussion the terms Myodocopa and Podocopa are used in G. W. MÚLler's sense.

The ralue ni the chararters used by (${ }^{2}$. 11°. Miller. .shell.

How much value from a classificatory point of view can be assigned to these characters used by G. W. Méller?

Shell: - With regard to the rostral incisur, a character to which G. W. MúlLer rlearly attached great importance, we may note, first, that it is not common to all Myodoropids. being absent in Polycopidae, and secondly that the rostrum in Halocyprids scems, as has been shown on p. 71 above, not to be homologous with the corresponding organ in the Cypridinids. Nor can any importance be attached to the calciferous nature of the shell or the shape of the ventral margin. Presumably, as G. W. Muller pointed out, the Protostracods had a calciferous shell enclosing the whole body; this is also the condition found in practically all recent forms. both Myodocopa and Podocopa. The shape of the ventral margin varies pretty considerably both in Myodocopa and Podocopa, even though on the whole it is more convex in the former group, more flattened or even concave in the latter: the shape seems, at least to some extent, to be connected with the mode of life; finally we must note that $(r$. If. MÜLLER assumed that the convex ventral margin was characteristic of the Protostracods.

First antenna: - This appendage varies so much in structure both in Myodocones and Podocopa that no attention can be paid to it from a elassificatory point of view. It may be noted in passing that the first antenna in. e. g., Thaumatocypris, shows a greater
resemblance to this appendage in the Cyprids than to the corresponding organ in the other Halocyprids.

Second antenna: - It is true that this antenna issues at the same place ,zubeiden Seiten der Oberlippe", but in other respects it shows rather far-reaching differences in Myodocopa and Podocopa. It is this organ, from the structure of which G. O. Sars has given the names to the two groups, that really seems to me to be the best support for G. W. Muller's classification. There are, however, a number offactsthat seem to deserve eloserobservation. According to G. W. MUller, an important difference between Myodocopa and Podocopa is that in the former group a knce has been formed between the basale of the protopodite on the one hand and the exopodite and endopodite on the other, while in the latter group a knee has been formed between the coxale and the basale. In the families among Podocopa in which a knee is now formed between the protopodite and the endopodite, i. e. in Cyprids, D) arwinulids, Nesideids and Cytherids, in other words in all the families of this group except Cytherellidae, the distal protopodite joint would be absent and so the lnee would not be formed between the basale and the endopodite, but between the coxale and the endopodite. The jointlike process from which the second antenna in Podocopa issues would not originally have belonged to this limb. It seems, however, as is shown on p. 79 above, far from impossible that $\mathbb{G} . \mathrm{W}$. MUller is quite mistaken in this matter. As a matter of fact it seems not at all improbablo that the large distal protopodite joint in C'yprids, Darwinulids, Nesideids and Cytherids corresponds to the basale, and that a knee has thas been developed in these forms at the same place as in the families belonging to Myodocopa; in this way the formation of a knee between the coxale and the basale would only have arisen in the C y therellids. The part of the second antema that seems specially to support the affinity of the Cypridinids, Halocyprids and Polycopids is the exopodite. The agreement in structure is, as has been shown, too great to justify the assumption of convergence. It is, however, to be noted that G. W. MÚLLer himself assmmed that this antema had in the Protostracods an exopodite of the same type as in the Polycopids. Although this assumption is by no means proved yet, it is nevertheless, as has been pointed out above, not impossible that it is correct; on the contrary there seems to be a certain amount of probability that it is so, cf. $\mathrm{p}, \mathrm{s} 2$. If this is correct it is obvious that this character will lose a great deal of its chassificatory value. The endopodite of this family cannot he used as a basis for a classification of the som assumed by (G. W. Mullek. The fact that this branch is developed as a clasping organ in Cypridinids and Haloeyprids seems to be of little importanee. This is probably. as is shown on p. 82 above, a convergence phenomenon; at any rate it is not impossible that this is the case.

Mandible: - According to G. W. MCller's statement, 1s94. Myodocope is dist inguished from Podocopa especially by its extensive and often very movable mandibukar palp. This character is certainly of very slight elassificatory vatuc. As a mater of fact this limb, is subjected to not inconsiderable variations buth in Myodocopa and l'oducoper. The mandible of the H alocyprids really approaches more closely to the type that is characteristie
for Patocopa than to that of Cypridinids and Poty copids．－th his work of 1912 （i．IV．Methebk does not mention this limb in the diagnosis of Myodocopa，a fact that seems to indieate that he has arrived at the same opinion about the elassificatory value of this organ as that adopted in the present treatise．

1／arilla

II a xilla：－With regard to this limb it may be said that it shows less dillerence in Myodocopa and Podocopa than one would be inclined to believe from G．W．Muller＇s statements．In Polycopidae．especially in a number of forms belonging to this family，we find a maxilla of so simple a type that from it we can quite naturally derive the types found in other families．In most of the forms belonging both to Myodocopa and Podocopa the protopodite is armed with three endites，in most cases powerfnl（in the Haloeyprids two of these are， however．almost completely joined）．In almost all recent Ostracods the endopodite ol this limb has two or three joints：the number of joints varies，however，somewhat，both in Myodocopa and Podocopa．The most important difference according to G．W．MÜLLER would undoubtedly be that in Podocopa the exopodite is developed as a vibratory plate，while in Myodocopa this limb has no such organ．In this matter（F．W．MULLER is，however，probably quite mistaken；see p． 34 above．
Fifth limb：－As has been shown on p． 85 above，this appendage appears in very different types in the recent Ostracods．The type found in the Haloeyprids differs very much from both the Cypridinids and the Polycopids，and has a striking resem－ blance．on the other hand，to the fundamental type in Podocopa．We must note，however， that，according to G．W．Mưller，the Halocyprids are to be regarded as primitive with regard to this limb，an assumption which，although not at all proved，cannot，as we have seen above，by any means be considered impossible．The Myodocopa would be characterized by a powerful vibratory plate on this limb．This character is，however，of slight significance． In the first place the vibratory plate is of rather moderate size in the H alocyprids； secondly we also find a rather powerful vibratory plate on this limb in forms belonging to Podocopu．e．g．a few Cyprids，all Nesideids and Cytherellids．

Sixthlimb：－This limb is absent in Polycopidae and apparently also in the females of the genns Cytherella．In Haloeyprids and Cypridinids it appears in very different types；the type found in the former group shows a far－reaching agreement with the fundamental type in Podocopa．In the males of the Cytherellids we find a type that differs very much from both Haloeyprids．Cypridinids and other
 primitive type．

Seventh limb：－This appendage is absent in both Polycopidue and Cytherellidae． In other forms it varies fairly considerably，but it may also be said of this limb－though with a certain amount of reserve－that in the Halocyprids it shows a greater agrec－ ment with Podocopa than with the Cypridinids．

Brush－shaped organ：－This organ is found both in Myodocopa and Podocopa． It is presumably of a comparatively slight classificatory value as it probably existed，as G．II．Muller has pointed ont，even in the Protostracods．

It is true that the furca in Myodocopa is of a relatively umform type, but, as is shown on p. 95 above, it is by no means impossible that we are dealing here with a phenomenon of convergence. In Podocopa this organ is subject to very considerable variations.

The sexual organs vary very considerably in both Myodocopa and Podocopu and it is certain that they cannot be adduced as evidence either for or against the classification made by G. W. Mưller. These organs seem to be rather primitive in Myodocopa.

Nor can the alimentary organs be used in support of G. W. Müller's view. The type found in Myodocopa seems in all probability to be conparatively primitive. These organs are not known in the Cytherella.

A heart is found in Cypridinids and Halocyprids. but is absent in Polycopids and Podocopa. It existed in the Protostracods.

Lateral eyes are only found in Cypridinids. They were certainly to be found in the Protostracods. A median eye is found in Cypridinids and most Podocopa. It existed in the Protostracods.

The rod-shaped organ is found in Cypridinids and Halocyprids, but is absent in the others. In the two former gromps we are presumably comcerned with a phenomenon of convergence; see p. 96 above.

Are there any other organs that might be used to support this classification of (i, W). Múller's? This question must, I think, be answered in the negative.

It will be seen from this that G. W. Mollee's statement that the recent ()stracods can be divided into two sharply differentiated natural main groups can seareely be considered as justified. The characters on which he based his assmmption are partly such as he himself considered primitive and partly such as we have reason to believe hawe arisen by convergence.

In my opinion the Uypridinids Halucyprids. Pulycopids and Cytherellids form four well differentiated gronps. Tho Cyprids, Darwinulids, Nesideids and C'ytheridsara.onthe other hand, comparatively chosely retatedto each other; theymight conveniently be inctuded in a higher celassifieatory unit. by the side of the four groups mentioned abovr. Thus, in my opmon, the Ostracods ought to be divided into five main gronp:*.

This view coincides on the whote with that of (i. () s.sur: it really differs from this author's view only by the division of the Myodncope into two groups. "guivalent the theren other groups, the Cypridinids and Haloeyprids having been separated. It agren with C. CLaus's view inasmuch as the II alocyprids are ont grouped with the ('yprit dinids in a higher classificatory mit but differs from it becamse these two grombse are taken as sub-orders and because each of them is considered the be parallet to the gretup) (omponsen of the united lamilies Cypridue. Darmimulidae, Desideidue and ('ytheridap.

The question as to whether these five groups are to be considered as being of quit" thu same classificatory value cannot be answered at present with certainty.

I did not think it convenient to use the nomenclature introduced by (i. O. Sars for these groups. It seems unsuitable for the following reasons. The names Myodocopa and Pendocopa have been used by preceding writers in different senses; if the name Myodocopa is retained for the Cypridinids or for the Halocyprids, it would be used in anew sense, differing from buth (: O. sals' and G. IV. MƯLLER's view. If we retain the names Myodocopa. Claducopa, Poducopa and Platycopa it would be impossible to introduce a thoronghly consistent nomenclature. (i. O. Sars took these names from the strmeture of the second antema in the different groups: Myodocopa refers to the muscular structure of this limb, rondr: et \%(õr, ., the muscular oar"*. Cladocopa refers to the fact that both the exopodite and the endopodite are developed as natatory implements, жx́xdos et xinter, „the branched oar". Podocopa refers to the fact that this limb is developed as a crawling leg, Tojos et nóny, the
 ..the thattened oar". It seems impossible to find a suitable analogons name for (C y pridinids and Halucyprids, as these groups have second antennae of almost quite the same type. It is also to be noted that the term Cladocopa suits one genus among the Halocyprids as well, namely Thaumatocypris.

For these reasons it seems to me most convenient to give quite new names to these five घroups: which, according to G. W. MULLER, may be termed sub-orders. I have chosen for them the terms: Cypridiniformes, Halocypriformes, Polycopiformes, Cypriformes and Cytherelliformes.

The difference between (G. O. SARs', G. W. MéLLER's and my classification is shown in the following table:

Myodocopa (r. IV. Mutalar	Myodocopa G. O. Sirs Cladocopa	Halocypriformes Cypridiniformes Polycopiformes
Podocopa	Podocopa Platycopa	Cypriformes Cytherelliformes.

The question of the mutual relations between these groups scems to be exceedingly difficult to answer satisfactorily.
(8. W. llutler assumes that Haloeypriformes and Polyeopiformes are more closely related to each other than they are to Cypridiniformes; Polycopiformes are to be considered as a small branch of the first-mentioned group, a branch that has preserved primitive features in a number of respects. The characters that show the closer relationship of these two groups would be the position of the first antenna high up on the forehead and the unsymmetrical exit of the sexual organs. I think that G. W. MCLLLER has been somewhat too hasty in this deduction. These two characters, the place of attachment of the first antenna and the way in which the sexual organs open out,

[^21]should not be given too much importance. With regard to the value of the former character the following facts may be instructive. In Thaumatocypris the first antema is situated somewhat deeper down than in other Halocypriformes. In Cypriformes we find forms with both high and low places of attachment; this antema of the Cyprids is fixed ,hoch oben an der Stirn" (G. W. Mứller), while in the Cytherids and Nesideids it shows a resemblance to that of the Cypridinids , besonders in der tiefen Einlenkung an der Stim" (G. W'. MÚller, 1894, p. 29). With regard to the way in which the sexual organs open, we may, in the first place. mention the important differences that are actually to be observed between Polycopids and Halocyprids, and, secondly, that the Cytherellids are also characterized hy an msymmetrical exit of these organs (Note too the resemblance - superficial, it is trne - that exists between the copulation organ in Cytherellids and Haloeyprids). I do not think G. W. MULER would bring forward this character as a sign of close relationship between Cy therellids and H a l_{o} cyprids. In my opinion it is not at all impossible that we have here a phenomenon of convergence.

Halocypriformes, Cypridiniformes and Polycopiformes are probably to be regardech as three groups fairly independent of each other. That nevertheless they resemble each other not inconsiderably in a number of characters is due, first, to the fact that in several resprects they show primitive featurs, and, secondly, to convergence.

It seems difficult to decide which of these three groups is to be taken as the most primitive. The facts of the matter are probably that each group is in a number of respects more primitive than the two others, while in other respects, on the contrary, it is more developed. Thus, for instance, Cypridiniformes are presumably primitive inasmuch as, let us: say, the lateral eyes, median eye, the heart and the two posterior limbs are developed, but they differ from the original type in having a rostral incisur and a rod-shaped organ, and in the structure of the second antema and the maxilla. Polycopiformes, which have no lateral cyes. median eye, heart or two posterior limbs are, on the other hand, presumably primitive with regard to the rostral incisur, the rod-shaped organ and the structure of the second antema and maxilla.

It is at least equally difficult, perhaps even more so, to determine with certainty the natural position of the Cytherelliformes in the Ostracod system.
G. W. MỦLLER placed this group together with the families ('ypridae. Darwinuldae. Nesideidae and Cytheridae. The same author points out in his work of 1894. 1. 1!0, that the ('ytherellids show, wenige, aber immerhin beachtenswerthe Beziehungen zu den Cypriden". The characters by which this group would show agrement with 'ypmiformes are the following: Second antema: The gromp of sensory bristles on the first joint of the endopodite and the group of five bristles distally on the inside of the same joint. The use of the fifth limb as a clasping organ in the mates.

What value can we assign to these characters from a classificatory point of virw?
Second antenna: With, regard to the second antenna it ought to be pointed out that similar sensory bristles are alsolfomid-and hev Cyther enfide proximo-posterionly on
the recond and third emdopodite joint of this limb. I do mot, moderstand at all what (: W. \mathbb{W}. Sianas means about the other character. In the first place the number five is not at abl miwesal for these hristles in the ('yprids: ef.. for instance. fiys. 1.2 and 13 of ph. 13 in G. II. Midalan's work of 1894. The first two figmes show the second antemae of Paracypris rare
 place. Fige 13 of Murrocypris succiven (i. WV. Mémase, shows four bristles at the corresponding place. If we examine more closely (r . WV. Mollesi's figure of the second antenna of Cytherelle sometder (i. II. Mohds. 1894, pl. 32, fig. 33, we shall find that the first endopodite joint has a dense row ol powerful bristles aloug the whole of the inside of the distal boundary; I think as many as eleven can be counted. The same was trne of a species of this genus that I had an "pportmity of investigating: there 1 counted twelve bristles. A row of similar bristles is also found. in addition. distally on the inside of the first exopodite joint of this antenna in the Cythrerellids. From a structural point of view too the distal bristles on the first endopodite juint in ('ytherella show nor resemblance to those similarly situated in the family Cypridue.

Fifth $1 \mathrm{i} \mathrm{mh} \mathrm{h}^{\prime}$: - With regard to the strength of the evidence afforded by the lastmentioned character of G. W. MU'J.ER's it will perhaps be sufficient to point out, first. the great difference that exists between the male fifth limb in Cytherellids and Cyprids, acondly, that in the families most closely related to the Cyprids, mamely the Nes ideids and the Cytherids, this appendage is not modified in the males as a clasping orqan. but is developed as a trpieal crawling leg and, thirdly, that in the males of Cytherello the sixth limb too is developed as a clasping organ, perhaps resembling in its trpe the fifth limb of the C'yprils ewen more than the fifth limb does.

This seen.s to show that we have every reason to consider that the classificatory widenee afforded by the characters brought forward by G. W. Millese is rather uncertain.

On the same page of the work quoted above G. W. Müleer states that there is possibly a close relationship between ('ytherellids and Darwinulids , in der Vermehrung der Borsten des 1. Tastergliedes der Mandibel und ihrer Anordnung zu cinem Kamm". A similar eomb of bristles also oceurs on the maxilla of Cytherella, but not, on the other hand, on this limbin D) ar winulids. Might not this be explained as a sign of relationship with

- Asterope:! I think that we shall not arrive very far with such uncertain assumptions. it is whougs that \mathbb{Q}. WI. Mélefr himself does not attach much value to his surmise. He writes (p.190) as follows: ..Legt man Werth auf diese Beziehnng, so wird man zu der Annahme gedrängt. daßdie Darwinuliden die Vorläufer der C'ytherelliden waren, imen nahe stehen: dies halte ich aber wegen der übrigen starken Abweichung fïr unwahrscheinlich."

I do not mean by this to say that Cytherelliformes are not more closely related to Cyprijormes than they are to any other group. As a matter of fact I consider that this is by no means impossible. What 1 wish to say is that the position of this group, which is aberrant in almost all respects. is very uncertain and that so far no evidence has come to light that allows Ils to assign to it with any degree of certanty a place in the natural system of the Ostrocods.

With regard to the classificatory position of the four families belonging to Cypriformes (i. W. Muller assumes that the Cyprids are nearest to the original type; the Nesideids

Digitized by Microsoft ${ }^{\circledR}$
would have issued from the Cyprids, the Cytherids from the Nesideids. The Darwinulids would be rather closely related to Cypridue. He obtained his arguments for this view from the three posterior limbs and the furca. With regard to the former he points ont that the protopodite is elosely joined to the body in C y prids, is somewhat more free in Nesideidae, and is most free in Cytheridae. The distal joint of these limbs is distinet and is armed with three well-developed claws in the Cyprids; it is very small and is armed with only one long claw and two small bristles in Nesideidae; in the Cytherids it is quite joined to the end claw and traces of the two bristles can only sometimes be observed. The fifth limb is used in the C'yprids as a masticatory implement and consequently it is provided on its anterior side with a masticatory process armed with bristles, or clse with a number of bristles; at the corresponding place the fifth limb in Nesideider has a number of bristles; it is not used, however, as a masticatory organ; in the Cytherids the number of these bristles is still more reduced. The furca is well developed in the C'yprids; in the Nesideids it is somewhat smaller; in the C'ytherids it is always very small. G. If. Mulleri then writes, p. 190: "Ich brauche kaum zu sagen, daß ich die Bairdien" (= Nesideidae) ,in ihrer hentigen Form nicht für eine getreue Copie der Stammform der Cytheriden halte, ebensowenig wie ich in den heutigen Cypriden die Stammform der Bairdien oder der gesammten Podocopa sehe, sondern glanbe nur, daß unter den heute lebenden Arten die genannten jenen hypothetisehen am nächsten stehen, daß also die Aehnlichkeit der hentigen Bairdien mit jener Form besonders groß ist."
G. Ala, in his work of 1915, pp. 17-18, subjects these arguments put forwarl by G. W. MưLler to a eritical examination, which seems to me fully justified. He argues as follows: It is certainly true that the protopodites on the three posterior limbs in the Cytherids are more free than in the Nesideidae, but in the Cyprids one can detect a tendency in the opposite direction. ,Hier ist nämlich der Stamm ungefähr gleich bei den niederen wie bei den höheren Formen und sollte die Beweghiehkeit verschichen sein, su wären es die niederen Formen, die Unterfamilien Pontocyprinae und Macrocyprinae, wo man die größere Beweglichkeit finden sollte. Noeh mehr ist dies der Fall bei der den Cypriden nahestehenden, aber vielleicht nieht so weit wie diese vorgeschrittenen Familie Daraimuldue. wo der Stamm beinahe so frei ist wie bei den Nesideid on." With regard to the second reason that G. W. Mutler adduces, namely the reduction of the number of bristles on the end joint of these limbs, G. Alm writes: „Das letztere Verhältnis ist ähnlich imnerhall der beiden Typen" (on the one hand Cypridae, on the other Nesideidae-C'ytheridae), "nnd zeigt alsn mur, daß es eine Tendenz zum Versehwinden der Börstehen bei den Podocopa gibt." This author writes as follows about the fifth limb: .. Während dieses Beinparar bei den nieduren Cypriden sowohl als Freßorgan wie als Bein fungiert, hat es bei den höheren Cypritlen mur die erstere Aufgabe. Bei den Nesideiden und Cytheriden wieder ist es vollständig als Bein ausgebildet, hat aber bei den Nesideiden mehrere Borsten an der vorderen seite, obgleich das Beinpaar wahrscheinlich nieht mehr zur Nahrungsanfnahme dient. Hier haben wir also wieder entgegengesetzte Tendenzen, ete." According to C. ALat the furcat must be considered as of little value as elassifieatorizevjdengy, pisichis organ (iy often developed very
differently in very chsely-related forms. - I may state here in passing that I have found a hitherto modeseribed gemus*. quite without any furca; this genus is certainly closely related to Macrocypris. a Cyprid gems which is considered, probably quite correctly, to be a primitive one. This facts of eourse supports G. ALM's view. - Other reasons too, obtained from the seventh limb and the sexual organs, have been adduced by G. Alan against G. W. MúlLER's riew (ef. (i, A1, 1., 1915. pp. 18-21).

In (i. ALy's opinion the four families belonging to Cypriformes have ,beinahe glechzeitig" entered on two separate lines of development; Darwimuldue and Cypridae have developed in one direction, Nesideidae and Cytheridae in the other. He thus denies ,daß der eine oder der andere Typus von dem zweiten abstamm" (p. 17). He considers that it is difficult to decide the question as to whether the Nesideids or the Cyprids are more closely related to the original forms, but he adds, curiously cnough, that this is ,bei meiner Auffassung nicht von größerer Bedeutung".

This author sums up his view in the following words. „Das verschiedene Aussehen von HetLeR's und meinem Stammbaum liegt also darin, daß nach ihn die Nesideidae-Cytheridae ziemlich hoeh oben am Cypriden-Stamm ihre Abstammung hat, während nach meiner Auffassung diese beiden Gruppen, einerseits Cypridae mit der kleinen Familie Darwinulidae, andererscits Nesideidac-Cytheridae, ziemtich bald nach der Abgrenzung von Myodoeopa, sich voneinander getrennt und nachher vollkommen selbständig entwickelt haben." These forms would consequently have branched off fairly soon after the Cytherelliformes. The genealogical tree of the Ostracods has thus, according to this writer, the type shown in my fig. VIII. This may, of course, appear to be rather similar to the genealogical tree drawn up by G. W. MI'LLER 1894. p. 191; the difference is, however, perhaps better shown by a comparison between this diagram and that of G. W. MULLER's as re-constituted by me in the present work, fig. IX.
C. Clats, in his work of 1876, p. 98 , puts forward another view. According to him the Cyprids have developed from the Cytherids. A. Kadfmann took the same view in his work of 1900 , p. 244, ,wenn wir die marinen Cytheriden . . . als direkte Stammformen der Cypriden ansehen". Neither of these two authors has tried to give any detailed reasons for their views.

According to C. Clats (loc. eit.) the Cytherids have developed from the Halocyprids ,oder vielleicht besser von einer nahestchenden, bislang nicht näher bekannt gewordenen ausgestorbenen Ostracodengruppe". According to this writer the pedigree of the recent Ostracods is thus of the following type: (fig. X). (This writer does not say anything about the position of the Polycopids, Nesideids and the Cythorellids.)

It seems exceedingly difficult to decide how far the , p cedigrees" of these three a uthors are to be considered correct. It seems to me not impossible that G. Aly's vicw as to the classificatory position of the four families belonging to Cypriformes is nearer to the truth than G. W. MÜLLER's. On the other hand it

* This form will be described in a following part of this work,

Fig. VIII. - The pedigree of the recent Ostracods. according to f. Aim's exposilion 1915.

Digitized by Microsoft ${ }^{(B)}$
Fias. 1X. -- The perligree of the recent Ostiracods, acenclinç to (: IV. Müller, 189' (somewhat modified).
 hare deroloped from marime C’y eride is correct. But it is quite impersible to solve this problem detinitely in the present state of affairs.

It scems tome by no means impossible that Capriformes have branched oft from the ancestotsof the llalocyprids after the latter had been differentiated

Fin. X. - The pedigree of the recent Ostrac゙ods according to C. Clats' statements. from ('ypridinids and Polycopids. This question will only be able to be solved after the solution of the problem as to Whether the foliaceous type of the fifth and sixth limbs of C'ypridinids is a primary or a secondaryone. A number of features inthe anatomyof the Polycopidsseem to indicate that this group branched off from the othergroups at avery carlystage, presumably beforethe Cypridinids, and eonsequently long before the time indicated in the pedigree drawn up by G. W. ML゙ber. Onthe other hand it seems to me quite impossible at present to deeide when the original forms of the Cytherellids were differentiated from other Ostracods.

It will be seen that t he result of this enquiry has been to a great extent negative. Only in a comparatively few respects has it seemed to me possible to follow more or less without reservations the views of previous writers as to the organization of the Protostracods and the natural grouping of the recent Ostracods; in most cases I have been compelled to doubt or even to reject the suggestions made by them. I did not think I could construct any ,genealogieal tree", nor did it seem possible to accept any of those previously drawn up. I have only been able to bring a small number of new facts into the discussion. This is due especially to the fact that only a few plylogenetically important forms have been included in the literature of late. Only one such form has, as far as I know, been added; I refer to the curious genus Thaumatocypris. But I hope that this investigation will not prove to be of no importance.

CHAPTER III.

Contributions to our knowledge of the Ostracods' adaptation to a planktonic life.

It was at first my intention to put forward even in this part of my work all the results at which I had arrived during my studies of the $O \mathrm{str}$ acods' adaptation to a planktonic life. But because of the great space demanded by the other chapters of this work and the difficulties in printing that are now prevalent, it seemed to me best to postpone for the present the publication of a portion of these results. Here I shall only try to show briefly the relation of the Ostracod group to the theory put forward by R. Woltereck, 1913, of the function of the ,sogen. Sehwebe-Fortsiatze pelagischer Cladoceren", as the results attained by me with regard to this question seem to be of such general interest that a rapid publication of them seems desirable.

First I shall give an account of R. Wolterech's view:
A number of forms in the Cladocere are at present, as it were, at a transitional stagn between littoral life and planktonic life. This transition can perhaps be best studied in the genus Chydorus, for instance in Che sphaericus. This species still lives to some extent the life that is presumably the original one for the Cladocera, namely a crawling and jumping life at the bottom or on the water vegetation in the littoral region. sometimes, however, it swims. and then it oecasionally penetrates into the pelagian region of the lakes. .' 'hydorus sphaericus bewerkstelligt die Erobermig der pelagisehen Region dadurch. daß er semen schweren Körper mittels kräftiger Ruderschläge durch clas Wasser trägt." This form is. however. not entirely independent of the substratum even during its polagian exemrsions; now and then it has to rest on forcign floating objects, e. g., clusters of algae, etc.

The method by which this form prevents itself from sinking down during its pelagian excursions, i. e. self-motion, swimming, is, according to R. Wolterbeck, certamly the original one for the group Cludocera.

This method of preventing sinkingrepresents, however, a serious consumption of anergy: - A closer study of the plankton world of our seas and lakes shows how the organisms

Introductory
remarks.
try in many ways to decrease this consumption of energy by increasing their power of passive huesaney.
decording to 11. ()stwama's works ($1902,1903 \mathrm{a}$ and b)
.. Winkeschwindigkeit $=\frac{\text { Ubergewicht }}{\text { Formwiderstand } \times \text { Viskosität des Wassers". }}$
Of these thre factors the orerweight and the form-resistance have been denoted as the biological ones. beeause they are dependant on the organism. An increase in the power of buovancy is thus produced (if the viscosity $=$ the inner friction in the water is constant) by the overweight being decreased and the form resistance increased.

Acending to A. Steler, 1910, p. 190, a decrease of the organism's overweight in the plankton wortd has been produced in the following ways:

1) by the secretion of mucus and the development of jelly substance, by the development of strongly aqueous tissues,
2) by the formation of vacuoles,
3) by the accumulation of specifically light metabolic products, e. g. gas, fat and oil.

An increase of the friction resistance in these organisms has been produced, according to the same writer (loc. cit.):

1) by an increase of the whole (relative) surface of the organism (."Trommeltypus" according to SCHzÖTER),
2) by the organism obtaining a lamellar form („Discoplankton" according to OSTENFELD),
3) by the extension of the body in one direction (rod-shape),
4) by the development of ,,regelrechter Schwebeapparate", e. g. the long processes in ('haetoceras. a multitude of spines and bristles in Crustacea, etc.,
5) by the formation of colonies (,.Froschlaichtypus").

What is strived after in these five cases is obviously an increase of the horizontal cross-section.

What is the relation of the planktonic Cladocera to these two factors?
A tendency to decrease the overweight can be observed in all of them. This decrease has in most cases been brought about by the chitin and the tissues of the body becoming finer and by the development of fat. In exceptional cases (Holopedium) it has been produced by the development of a covering of jelly. In a number of species, e. g. Diaphanosoma, the decrease of specific gravity has proceeded so far that the latter has almost coincided with that of the water; these forms can ,in scheinbar beliebiger Lage im Wasser .stehen bleiben*. In most of the planktonic Cladocera, however, the specific gravity has been decreased rather inconsiderably.

By what means are the latter forms kept buoyant?
According to R. Woltereck (and C. Wesenberg-Lund, 1908), in these forms, as in the genus Chydorus, the principal factor in preventing sinking is self-motion (swimming).

The first-mentioned writer has in the case of these forms accordingly written the abovequoted bnoyancy formula established by W. Ostwald, in the following way:

$$
\text { "Sinkgeschwindigkeit }=\frac{\text { Ubergewicht } \times \text { Abwärtsbewegung }}{\text { Reibung } \times \text {-steucrung }} \times \text { Aufwärtsbewegung und } \text {-stenerung". }
$$

The factor "Reibung" in this formula, which includes both the viscosity of the water and the friction between the sinking body and the water, i. e. the form-resistance, appears, according to this author, in these forms (as in the actively swimming forms of Crustacea in general) not to have ,eine besonders große Bedeutung", p. 480.

The shape of the body in the pelagian Cladocera varies, however, to a very great extent; many of them are characterized, for instance, by more or less excessively developed processes of different kinds.

How are these processes to be explained?
The most widely spread view seems to be that these processes are to be explained as buoyancy organs.

A view that differs somewhat from this is put forward by C. Wesenberc-Lunir; in a work of 1908 this eminent anthor writes as follows (p. 12): "I am inelined to believe on the whole, that many of these buoyancy-organs which have hitherto been considered of importance only in as far as they increase the eross-section resistance and surface-area, play a by no means small role in shifting the centre of gravity of the body", i. e. a number of these processes function as balance-organs as well as buoyaney organs. In support of this view observations made on the genus Bythotrephes are given in the work mentioned; thus we read ($p .12$): ,As mentioned above I have never seen Bythotrephes floating; it hops about ahways in the aquaria with innumerable, small and short jumping movements; it gives one the impression of being an exeellent swimmer but not a floating organism. I have never seen it use its long, posterior legs as outriggers; it drags the long spine behind it during swimming and we might think on a entsory glanee that this was rather a hindrance. The direction of movement is as a rule distinctly horizontal. If we now remove the spine, which can easily be done with a good pair of scissors, we change the Bythotrephes to a dancing figure, waltzing round and round in spirals or closed circles; they finally end at the bottom, from which they never again rise. The spine has then actually been a balancing organ, which has played the role of moving the centre of gravity, so that a horizontal movement could be possible; further it is a buoyaney organ, which according to its point of insertion and the position it gives the body in the water augments the eross-section resistance."

The same view (which was afterwards adopted by F.E. RCHE, 1912, among other writers) had already been previously (1896) expressed by C. CHus with regard to a number of other pelagian Crustacea. After an expression of this opinion we read in the work mentioned ($\mathrm{p}, 103$): ,,Sind die betreffenden Formen mit kräftigen RuderfïBen versehen, so liegen die Balaneirstangen horizontal in der Mediane und bedingen bei dem Durehsehneiden des IVassers cine geradinige Fortbewegung und einen geringen Widérstand "by Microsoft (B)

How are the more of
less extensise pro
cesses on the shell "
the Cladocera to be erplained?

1) Buoyanry organs.
R. Womplabek contests buth these views in his work quoted above. The reasons that seem. in the opinion of this writer, to controvert the explanation of these processes as buovaney organs are as follows ($p \mathrm{p}$. 485 and 486):
2) I number of the extremely developed processes. e. g. the crest in Hyalodaplmia, the horns in bosmima, are carriad during swimming more or less vertically, i. e. they do not contribute or contribute only very slightly by their position to increase the horizontal cross-section of the urganism.
3) Such processes in animals with variable energy of motion and variable specific gravity can seareely be explained as arrangements merely for increasing the power of buyancy moness they are extensive becanse otherwise their importance compared with the two former factors is too slight to be decisive.
4) The main argument in favour of the buoyancy function, namely the temporal variation in Hyulodaphmia. is not absolute evidence for this explanation. It is true that the erest becomes longer in summer, but this does not prove the function postulated, as the head often becomes considerably shorter in the late summer water, which is often very warm. This corresponds to the experiments carried out by Woltereck; in warm water a low crest can be obtained and a ligh crest in cold water according to the intensity of the assimilation.
5) Busmina longirostris and B. (coregoni) longispina are characterized in many places in summer by short and in winter by long processes, i. e. exactly the opposite of what one would expect according to the principle of bnoyancy (the viscosity of the water decreases, as we know, with a rise in temperature). Woltereck carried these Bosmina from water with a temperature of about $12^{\circ} \mathrm{C}$ to water of $25^{\circ} \mathrm{C}$ and gave them abundant food; the anterior processes (first antennae) in these experimental animals were very considerably shortened, ahost 50%.

In order to test whether the explanation of these processes as balance organs was correct R. WOLTERECK carried out the following experiments:

1) The long crest in Dapmia cuculluta was removed. The result of this was that the animals got on the average a more vertical position, such as is characteristic for the short-crested Daphnids. A consequence of this was that the operated animals swam in more steeply ascending courses. No disturbance of the equilibrium, which must show itself in an unatural position and direction of movement, occurred after the loss of the crest. This consequently has not the function of rendering possible the retention of the typical Daplinid position, i. e. of making up for (,ansbalancieren') an otherwise one-sided weight. On the contrary it has the function of altering the typical Daphnid position (for the originally crestless forms) in a definite way. Because of this we cannot explain it as a balance organ, although it influences the position of the centre of grarity:" The removal of the spina in these animals had, on the other hand, no essential effect on the position of equilibrium; the motion of the operated animals became, however, less straight.
2) After the removal of the first antennae in Bosmina longirostris the motion of the experimental animals was altered from being in a straight line to a continuous backward rotation. „Die Störung beruht aber nicht in einer Verschiebung des Schwerpunkts: operierte wie unoperierte "Tiere sinken, wenn man sie betänbt oder tötet, mit dem Rücken nach muten."

Digitized by Microsoft ${ }^{\circledR}$

In other words these experiments certainly seemed to show that a number of processes in these animals influence more or less the position of the centre of gravity, but, as R. Woltereck points out, this influence was often so slight that it not, ,geniugt zur Erklärung".

What are then the functions of these processes? According to R. Woltereck they ought to be looked upon as stability and stecring organs, i. e. organs for bringing about swimming in a straight line. As a matter of fact a similar explanation had been put forward more in passing by G. Burchilardt, 1900, p. 282, in the case of the anterior antennae and the mucrones in Bosmina and the spina in Daphnia; when WolTERECh worked out his treatise this statement of G. BurchifardT's was, however, unknown to him (see p. 525).

Wolterech supports his theory especially by a very thorough analysis of the swimming of the Daphnids and of the genus Bosmina. The result of this analysis is briefly as follows:

1) In the Daphnids, which take up an almost vertical position when at rest, the second antennae, in which the animals are, so to speak, hung up, strike upwards and backwards during swimming. On account of this a continmous displacement of the longitudinal axis is produced during swimming. This displacement is illustrated by Woltereck by the adjoined figure XI.

The following explanation is given of this figure: ,,Instead of the longitudinal axis of the body one may imagine a rod, which is first (phase 1) suspended at the point b and receives a blow against this point from the direction B. The result of this is, first, a progressive movement in the direction B and, secondly, a

Fig. Xl. -- The displamment of the longitudinal axis of the body of Maphuz duing swimming (from K. Woletiorech. 1913.) displacement of the forepart of the body in the direction B_{2} and of the back part of the body in the direction B_{1}. Phase no. \because : We imagine that the progressive motion is finished and thus the body is now suspended (with its anternae extended) at point b in a position caused by the blow last mentioned. Now gravitation exerts a downward drag in the direction G_{1} on the heavier back part of the body and an upward pull on the head in the direction G_{2}. (The dotted line denotes the position of the centre of gravity.) Phase no. 3: This shows the result of this effect of gravitation at the moment when a new thrust is made by the natatory antennac in the direction B. As the axis has not yet reached the position of equilibrium (the centre of gravity is under b), it is affeeted simultanenusly by gravitation and the natatory thrust in directions opposite to each other."

In Bosmina, which in its normal position is suspended by the second antennae and has the ventral side downwards, the natatory strokes are directed downwards and backwards. In these forms too a continual displacement of the longitudinal axis consequently takes place during swimming. Woltereck illustrates this displacement with the following figure XIl. The following explanation is given of this figure: ,Plase no. 1: Normal position in swimming. The natatory stroke influences fhéflongitidinal ixispuspended at point b forward in Zoolog. bidrag, Uppsala, Suppl.-Bd. 1.
the direction B. It also produces a displacement of the axis in the direction B_{1} and B_{2}. At the same time the foree of gravity produces an effect in the same direction, (i, and (r_{2}. Phase no. 2: The result of 1. Phatse no. 3 (not realized): The result of the forees B and (4 during phase no. 2 ."

In other words both in Daphnids and Bosminids a displacement of the longitudinal axis of the body is produced by the strokes of the matatory antennae. In the former this disphacemont is opposed, in the latter

Fir. All. - The displacement of the longitudinal axis of the lody of Bosmina during swimming. (From. R. Woltereck. 1919.) assisted, by the foren of gravity.

In the genus Bosmina, provided there are no obstructing forces, an overturning backwards ought consequently to result. If, however, we watch a Bosmina swimming, we see, as R. Woltereck has pointed out, that it goes forward rather swiftly and in a straight line through the water, usually with its ventral side downwards. The factor that makes a straight-lined progressive movement possible and prevents overturning is, according to the same writer, the resistance of the water. Wolfereck illustrates the resistance of the water with the following figure XIII.

The following explanation of figure XIII is given: .,a) The influence of the resistance of the water (II) on the direction of the motion of a body that is driven forward by a force applied at a point b in the direction $B . W_{1}$ and $W_{2}=$ the deviation of the longitudinal axis due to the greater pressure against the upper half of the body. This results in a continual deviation of the direction of motion from B to F. b) This illustrates the same case as fig. a, but a steering surface (S) is developed, which makes the resistance of the water equally great against the upper half and the lower half of the body. Result: The retention of the direction of the force as direction of the motion. If the stecring surface is somewhat longer or wider the body is made to move forward in the direction of its longitudinal axis (F_{1})."

The co-operation of these three forces, the natatory strokes of the antennae, the force of gravity and of the resistance the water, in the swimming of the D a phnids and Bosmina is illustrated by Woltereck by the accompanying figures XIV and XV.

This explanation is supported by the above-mentioned amputation experiments that Wolterech carried out on Daphnids and Bosminids. The fact that in many places Bosmina longirostris and B. (coregoni) longispina have short processes during summer and long ones

Fig. Xlll. - Liagrams showing the influence of the resistance of the water. (from R. Woltereck, 1913.)
in winter is also explained in this way. „In summer these animals swim", as Wolterech points out, p. 505 , ,in warm water and when abundantly fed they have swift and energetic natatory strokes; in cold water and with less intensity of assimilation in winter they swim , at half speed ${ }^{6}$ and consequently need longer steering surfaces."

Fig. XIV. - The factors of the direction of motion in the high-crested Hyalodaphnia (Reproductron of fig. "8 in R. Woltereck's work of 1913).
a) ..Effect of self-motion (direction D) and deviation due to gravitation (diertion (i). The resultamt of the parallelogram of fores is the direction of motion B. G.."

1) , The totat effeet of the propelling force, the twisting of the axis, the resistance of the water, the spina and the crest. The dotted arrows show the displacement of the points $G 1-4$, when the head is presesed up atoul as much as the width of an eye. In this ceases the spina acts as a ventral rudder pressing down the head. When, on the other hand. the head is pressel just as much down in the natatory movement (fin. X1: 2) . the spina is ratisul to the same extent and then has a titting effect on the head (dersal rudder); it is thene here. on aceome of its position in the direction of the motion, a typical stabibity surfare. The body abays ants as a wentral mader betanse of the different resistances met by the water in the case of the head and the hody. The bumber of the arrows drawn at equal distames from each other only shows the difference of pressure in one phane As a mather of fact the brond hody is subject in a much stronere pressure that the marow heme."

Fig. XV. - Ftwtors in the direction of motion of Rosmena (Reproduction of fig. 18 in R. Woloterfek's work of 1913). a) ..The effect of selfemotion (direction B) amd deviation owing to gravitation (dimetion (i). The mesultant of the parallelegram of femers is the diention of motion B. (A."
b) .,The axis-lwisting , ffent of gravitation at toun different points uf the body. when the hed has beren pressed up
 of the boty of the fod displatedy sinion omant: (B)
lamatt, n firrect

This explanation given by R. Wobtareck of the erest and spina in the Daphnjas and the anterior and posterior proeesses (the first antemate and the morones) in Bosmina as sterring and stability organs is certainly very interesting, but is it correct?

Esen for the reasons put forward by this writer it seems to me very probable that this question must he answered in the affirmative. We may grant that they do not posses these functions alone. but it seems certain that these are among the most important.
senll from this point of view the experiment with Bythotrephes quoted on p. 111 above carried out by C. WESENBERG-LUND seems more comprehensible. It seems surprising that the removal of the fine spina should have so powerful an effect if it only influences the position of equilibrium. If, on the other hand, the function of this process as a steering and stability organ is taken into consideration, we have a different state of affairs.

Fresh light is also thrown upon the statement of C. CHON quoted on p. 111 above with regard to the connection between the force of the natatory movements and the direction of the processes. No causal comection seems to exist between these two factors; on the other hand the direction of the processes is presumably dependant on the direction of the natatory movements.

How does the Ostracod group stand in relation to this problem?
In answer to this question I must say that all the facts that I have ascertained during my investigation of this group decidedly support R. Wolterech's view as given above.

In all the planktonic forms of this group, as in the Cladoccra, a decrease of the overweight ean be established. This decrease is often brought about by a reduction of the amount of lime in the shell, by the chitin and a large number of tissues becoming finer and by the development of fat. We find a good example of the reduction of the lime in the genus Philomedes: while during life at the bottom the species of this genus are characterized by heavy and very calciferous shells, during the pelagian period, i. e. the time just after the moult at which maturity is reachet, they have shells comparatively poor in lime. A number of pelagian forms, e. g. Gigantocypris, Thaumatooypris, even seem to be quite without lime. With regard to the development of fat (oils) C. Chus* wrote as early as 1896, p. 101: , Weit verbreitet ist hingegen das Auftreten von Oeltropfen, welche durch ihr geringes specifisches Gewicht das Schweben ermöglichen. Die Cladoceren, Ostrakoden etc. sind oft so überreich und so constant mit Oeltropfen ausgestattet, daß gerade den mit relativ glatten Oberflächen versehenen Organismen das Schweben ermöglicht wird." - In a few cases (the species of the genus Gigantocypris) the decrease of the specific gravity has gone so far that we may speak of passive buoyancy. In this genus - which lives both at very great depths (2700 - 3600 metres) and near the surface of the ocean (about 200-150 metres in the Sargasso sea, consequently in water of comparatively slight viscosity) - the specific gravity seems practically to correspond to that of the surrounding medium; the tissues are fine and exceedingly aqueous; when one dissects the animal from the shell there is an exceedingly

[^22]abundant effusion of liquid, the lamellae of the shell come together and the body collapses. G. W. Múller writes as follows with regard to this genus, 1895, p. 162: ,Wie gesagt, fehlt der Schale jede Spur von Kalkablagerung, zudem tritt die feste Substanz der Leibeshöhlenfliissigkeit gegenüber sehr zurück, das specifische Gewicht kann kaum höher als des umgebenden Mediums sein. Flächenhafte Ausbreitungen fehlen so gut wie bei anderen Ostracoden, doch ist, wie gesagt, der Umfang im Verlältnis zur Körpermasse ein sehr großer, so daß man sich sehr wohl denken kann, daß das Thier ohne Zuhülfenahme seiner Ruder wie eine leichte Blase durch das Wasser treibt, ohne unterzusinken." To judge from the development of the second antenna (cf. the description of G. Mïlleri below), the species of this gemus seem, however, to be at the same time fairly good swimmers. - In most pelagian Ostracods, however, the specific weight has been rather moderately decreased.

As in the case of the Cladocera we are here faced with the question: by what means are these forms kept buoyant?

To this question I must return the same answer as C. Wesenberg-LuND and R. Wolterech gave in the case of the Cladocera: chiefly by swimming. Thus, for instance. a non-swimming Halocyprid sinks to the bottom "like a stone". The natatory power of these forms is in point of fact very well developed; this is especially true of the Halo cyprids; a very good illustration of this will be found in the information given below in the descriptions of species worked out in the special part of this work.

Contrary to what is the case in the planktonic Cladocera the shape of the shell in the planktonic Ostracods is subject to rather slight variation. The shells in the planktonic Cyprids (only a couple of species, mentioned by C. APsteln, 1907) and the Cypridinids are of about the same types as in the representatives of these groups that live on the bottom; thus all of them are quite withoutspines and large processes. Even most of the H aloeyprids have shells of a very simple, moderately elongated shape without any large processes or spines. A number of representatives of this group are, however, characterized by more deviating types of shells. As examples of forms of the latter kind I may mention the following species:

Conchoecia daphoides (C. Claus). This species is distinguished, as is shown by the accompanying fig. XVI, by an elongated fish-like type of shell, the posterior part of the shell is very much lengthened and flattened at the sides, the rostrum is long and wide.

Other species (e.g. Euconchoccia aculeata (T. SCOTt) var. elongutu G. WI. MÜLler, see G. IV. MỨlerr, 1906 a, pl. XXXII, fig. 21) resemble this type of shell but are less extremely developed. Conchoecia cuudata G. W. Múller is characterized by having the posterior dorsal comer of the right valve and the rostrum on both valves

Fig. XIt. - The shell of Conchopcia daphnoides (C. Clats), - 1, Sorn

By what means are the Ostrarods with relaticely high specifir weight kept buoyant?

The shape of the
drawn out intu very lond spine-like processes situated in the same direction as the longitudinal axis of the boty: see the acompanying fig. NVIt.

In some species. ©. g. ('onchoccia imbricata (6 . S. Brinne) and C. symmetrica (i. II. IIthalk (swe lig. 1 of the latter species in the special part of this work) the rostrum is well developed and the posterior dorsal comer of both the right and the left valve is

furnished with a spine-like process situated in the same direction as the longitudinal axis of the body but considerably shorter than in C. caudata; in addition some of these species have weak processes, pointing about in the same direction as the first-mentioned processes and corresponding to the mucrones in a number of Cladncera. The characteristic feature of all the processes so far mentioned is consequently that they point in the same direction as the longitudinal axis of the body. In others the shoulder ridges on the shell are differentiated as more or less powerful wing-like processes; these are found, for instance, in Conchocciu
 figs. 1 and 2 and pl. VIll. figs. 1 and 3).

Only in one speries (Thaumatocypris echinata G. Wr. MULLER) do we find on the shell a number of spines pointing in different directions; see the accompanying fig. XVIII.

I'ig. XVIII. - The shell of Thaumatocypres echinata
(r. W. Müller. jus.. seen from the side.
(From (G. W. Meller, 1906a.)

What view are we to take of these pro-
cesses and spines?

The only writer who has touched on this question is A. Steder. In this author's work of 1910 they are denoted (p. 208) as buoyancy organs. It will soon, however, be obvious to anyone who studies these matters in detail that this explanation cannot be an adequate one. If we look, for instance, at the posterior part of the shell in Conchoccia daphnoides, we shall see that this is rather decidedly flattened at the sides, i. e. its horizontal section is rather slight. That the two pairs of spines in the genus Thaumatocypris cannot be explained as adaptations of buovancy is shown quite clearly by their position, as they are not, as one would expect according to the buoyancy theory, both
placed in the horizontal plane in order to bring about an optimal increase in the horizontal projection; only one of them is in this plane - pointing almost straight forward - the other points almost straight downward; moreover, both pairs are concentrated on the anterior side of the shell.

By a closer investigation of the methods of swimming in the different Ostracod groups and by putting the results obtained in this inquiry into relation with the facts mentioned above I think we are enabled to understand this problem.

All Ostracods swim, at least as far as is known up till now, with the ventral side downwards. With regard to the methods in which the limbs function in swimming three different types can be distinguished:

Type I: There is only one representative of this type, namely the peculiar species Thaumatocypris echinata. The first antenna and the exopodite and endopodite of the second antenna co-operate in swimming; they all carry out downward and backward natatory strokes; in this the backward component is presumably the predominant one. (The species in question is, at least as far as we know so far, a deep-sea form; up till now it has only been canght once, with an open horizontal net at 1100 metres' depth. Observations as to its mode of swimming have certainly not been carried out hitherto on living material; the information given above is based exclusively on the structure and position of these limbs in pl. V7, fig. 3, (r. W. MƯLLER, 1906a; all the same I have very little suspicion of the correctness of this information). Because of this in this genus, as in Bosmina, the body is pressed forward and upward in swimming; in order to bring about a progressive motion in a straight line it is thas necessary for other regulating factors to co-operate.

Type II: To this type belong Cypridinids and Halocyprids (except the genus Thaumatocypris). The first antenna and the endopodite of the second antema do not take part in swimming. Only the second antenna, which - apart from the endopodite has in these groups about the same structure as in the genus. Thaumatocypris, functions in swinming. Unlike what is the case in the latter genus, the exopodite of this limb does not strike downwards and backwards in swimming, but outwards and backwards and somewhat downwards. By means of this a progressive motion in a straight line is produced. Alteration in the direction of motion is produced chiefly by increase and decrease of the force of the stroke in the exopodite of one side or the other and by twisting of the joint between the protopodite and the exopodite.

Type III: To this type belong only the Cyprids*. In swimming the first antema strikes upward and backward and somewhat outward, the endrpodite of the second antema

[^23]downard and backward: in this way a progressive movement in a straight line is produced. Alterations in the direction of the movement are brotght about chiefly by modification in the force of the strokes of one or more of these pairs of limbs.

If we combine these facts with those put forward on pp. 117 and 118 above, we obtain the following results:

1. In all planktonic Ostracods whose natatory limbs give the booly a progressive movement in a straight line the shell has no processes that effect the direction of the motion. Such forms can be divided into two eategories:
1) Thuse whose shells are quite without any large processes (Cypridinids, most of the Halocyprids* and all Cyprids).
2) Those whose shells have processes. These processes, however, either point in the direction of the movement (the longitudinal axis of the body) or are developed as lateral, symmetrically situated, wing-like formations (a number of H aloeyprids).
II. In the only planktonic Ostracod (Thaumatocypris echinata) whose limbs do not give the body a progressive motion in a straight line the shell has processes that effect the direction of the motion by their position.

With regard to the processes that are found in the representatives of category I : 2 it seems to be beyond doubt that they function as buoyancy organs, as they all contribute more or less to increase the resistance of projection. But this does not seem to be the only funtion. perhaps it is not even the most important one. That this is the ease seems to be shown partly by the fact that many of them do not have their maximum extension in the horizontal plane and partly because the forms in which they are developed are very strong swimmers. It is certain that they also function as stability organs. The way in which the posterior part of the shell and the rostrum point in Conchoecia daphnoides - see fig. XVI above - resembles as a matter of fact very much the arrangement of the metal plates that we see on submarines, plates that do not increase the buoyancy power in these vessels, but are designed to inerease the stability of the motion (besides influencing its direction). A study of the shape of the shell in this species will show that it very closely approaches the ideal of a swift and stable swimming organism.

It thus remains to analyse the function of the spines on the shell of Thaumatocypris echinata. In this species, as is seen above, the mechanical arrangements for swimming resemble rather closely those of the genus Bosmina. The body is pressed forward and upward by the natatory strokes of the first and second antennae and for the same reasons as in the last-mentioned species a continual backward rolling movement would be produced if there were no special organs to prevent this. As in Thaumatocypris the natatory limbs are not,

[^24]as in the case of the genera Daphnia and Bosmina, extended at the sides by a shell incisur, and as the body of this species is not, as in the last-mentioned species, suspended during swimining in these excentrically situated appendages, its rotatory axis is not, as in Daphnia and Bosmina, situated through the points of attachment of the appendages in question, but presumably just in front of the middle of the shell. The following factors prevent a backward rotation and render possible a progressive moton in a straight line. The most important factors are the two pairs of spines on the shell. These are situated, as is shown in fig. XVIII above, almost on the continuation of the radii of the almost circular shell, one pointing almost straight forward (perhaps somewhat downward), the other almost straight downward. As the axis of rotation is presumably situated, as is shown above, just in front of the middlle of the shell, this position of the spines as a continuation of the radii of the shell seems to be almost ideal; during rotation the resistance of the water will be directed practically at a right angle to them. The resistance produced by the water against the progressive motion of the body obviously has no effect at all (or at any rate only an exceedingly slight one) on the forward- (or possibly slightly downward-) pointing pair of spines, and, on the other hand, it exerts practically a perpendicular influence on the downward-pointing pair of spines. Thus the lower pair of spines, like the first antennae in the genus Bosmina, operate like a pair of oars that are held] out on one side of a moving boat. Just as the oars try to turn the boat in the direction in which they point, so the downward-pointing pair of spines in Thaumatocypris press the anterior part of the body downward, in other words this force, too, opposes the natatory strokes of the antennae, which give an upward turn to the body. Both pairs of spines thus make a passive resistance against a backward rotating movement; the lower pair of spines exercises. in addition, an active downward pressure on the auterior part of the body. One more factor seems presumably to help to prevent a backward rotating motion; this is the force of gravity, for, as is seen from pl. VI, fig. 2, G. W. MULLER 1906a, the centre of gravity in this species is presumably somewhat in front of the middle of the shell.
R. Woltereck's theory, which has, of course, by no means been mopposed * thus seemstome, as I have pointed out above, to obtain very strong support from the conditionsin the Ostracod group. For scarcely anything more striking can be imagined than that of all the many planktonic Ostracod species, whose natatory limbs produce a progressive movement in a straight line, not a single one has processes that influence the direction of the motion, while the single form in which the natatory appendages do not produce a movement of this sort has a shell that is equipped with these processes.

All the same it seems to me that R. Wolterbcik - like many other investigators before him, when they have hit on a productive idea - is inclined to overestimate the importance of his new principle. A careful analysis of the importance of the more or less peculiar shapes of the different plankton organisms will probably show that the different prineiples, the principle of 1) buoyancy, 2) balance, 3) direction and 4) stability all play a very great part.

[^25] Zoologiska Bidrag frán Upp‘ala, Bd. VI.

With regard to the spines that are fombl along a prart of the margin of the shell in Daphnia (see the acompanying figure $\mathbb{X} 1 \mathrm{X}$) R. WoLTERECK writes as follows in his abovementioned work (p. 530): "Beide Stadien" (of development of these spines)

Fig. XIX.
Daphnia obtusa.
..Die verschiedeneu Rildungsstellen von .pelagischen Fort -atzen." From R. HOEtERECK. 1913. .kommen z. B. am ventralen Sehalenrand vor: und zwar sind hier die Dornen mach hinten gerichtet, während dic ganz analogen Chitinfortsätze des Nackens am worderen Winkel der Raute entstehen und dementsprechend nach vorn gerichtet sind. Aus dieser Verschiedenheit läßt sich die Funktion der so gerichteten Dornen wahrscheinlich ablesen: sie dienen dazu, das Zariickpendeln des hiupfenden Daphnienkörpers zu verlangsamen, indem sie dieser passiven Bewegung des Körpers viele kleine Flächen entgegenstellen und damit die Reibung vergrößern, also die Gesehwindigkeit der Axendrehung vermindern, ohne doch die Vorwärtsbewegnng allzuschr aufzuhalten. Das ist aber schon eine sekundäre oder tertiäre Funktion; die ursprüngliche Bedeutung der Chitinrauten und ihrer dornartigen Winkelverstärkungen ist wie bei anderen kricehenden Cladoceren die des Schutzes durch Festigung und Bestachelung des Chitimpanzers."

I will not say anything in detail as to this hypothesis; it seems to me, however, not to be very probable. It should be pointed out that similar spines are found in young specimens of the species Thaumatocypris echinata. A number of these spines point in a direction that agrees with what this theory of WOLTERECK's necessitates, other do not; see fig. XVIIl above.

CHAPTER IV.

BROOKS's Law.

With a general description of the post-embryonal development of a few species of Cypridiniformes and Halocypriformes.

Among the material of the Stomatopods that was collected during the Challenger expedition, $1873-1876$, there was also a very rich collection of pelagian

Introductory noles.

$4.16 \mathrm{mm11}$.	$5,29 \mathrm{~mm}$.	6,49 mm .		10,21 11111.
4.16 ..	5.20 ,	6,50 ,	$8,13 \mathrm{~mm}$.	10,16

The specimens that were examined were measured from the tip of the rostrum to the tip of the telson. I. e. ., the lengthof the larvat increases uniformly at cach moult by one-fourth of its length before the moult" (p. 105). Hare we here a principle that can be applied Do the larvae increase by a constant percentage of their length in other Crustacean groups as well?
IV. K. Broons gives no answer to these questions. And almost all other investigators have, curiously enough, left this question almost entirely untouched, although it seems to merit the greatest possible attention. If we are concerned here with a universal principle, a law, we shall have discovered a method of investigation that would to a very great extent increase the possibility of determining with certainty the species and relative age of the larvae of the Crustacea. - apparently quite independently of W. K. Brooks - made use of the principle described above in order to calculate approximately the number of moults of the shell that a lobster of a given, arbitrary length has undergone.

As F. H. Herrick's exposition of this point seems particularly interesting l shall give a verbal quotation of it from the work mentioned. Thus we read, pp. 96, 97: „In table 24 I have recorded the molts of eight lobsters varying from $5 \frac{1}{2}$ to $11 \frac{1}{4}$ inches in length. The actual increase in length varied from 1 inch to $1 \frac{1}{2}$ inches, and the increase percentage (that is, the ratio which the increase bears to the total length before molting) from 6,66 to 18,18 . The average percentage of increase in all these cases is 12,01 .

Table 24. - Increase in the length of lobsters at the time of molting.

So.	Date.	Sex.	Length before the molt.	Length after the molt.	Increase in length.	Increase per cent.
			Inches	Inches	Inches	
1	Oct. 22, 1890	Female	$51 / 2$	61 \%	1	18,18
2	Oct. 29, 1890	Male	11	12	1	9,09
3	Nov. 6, 1890	do.	$71 / 4$	$81 / 2$	$3 / 4$	9,68
4	Nov. 10, 1890	--	9	$101 / 2$	$11 / 2$	16,66
5	Nov. 11, 1890	-	$71 / 2$	8	1/2	6,66
6	June 8, 1891	do.	$9^{9} / 32$	$10^{1 / 2}$	$1^{2} / 32$	13,13
7	July 13, 1891	do.	$111 / 4$	$121 / 2$	$11 / 4$	11,11
8			$61 / 2$	$71 / 4$	3/4	11,54
	Average					12,01

The increase per cent in the growth of larvae is recorded in table 34. Sixty-six molts belonging to more than half as many individuals are tabulated. The average increase per cent in length in stages 2 to 10 varied from 11 to $\mathbf{1 5 , 8 4}$. The average for stages is $\mathbf{1 3 , 6 7}$; for individuals, 13,89 . These facts seem to warrant the conclusion that the increase percentage in the young is very similar to that of the adult, a result of considerable interest. The average length of the young lobster during its first ten molts is given in the following table. The data are taken partly from table 34 :

Table 25. - Actual length of lobsters during the first ten molts.

Number of molt or stage	Average length. mm .	Extremes in length. mm.	Nimber of lobsters examined.
1	7,84	7,50 to 8,03	15
2	9,20	$8.3 \quad 10,2$	47
3	11,1	10 122	79
4	12,6	$11 \quad 14$	64
5	14,2	$13.4 \quad 15$	1.5
6	16.1	$15 \quad 17$	12
7	18,6	18 19.5	4
8	21,03	19,75 22	5
9	24,5	24 25	\because
10	28,03	26.6 20.5	3

The rate of growth expressed by the average of lengths in the second column of table 25 implies an increase per cent of about 15,3 instead of 13,67 (the average increase in stages recorded in table 34). Assuming the average length of the first larva to be 7,84 (the average of 15 individuals, table 25), and allowing the increase in length at each molt to be 15,3 per cent of the length before molting, we would have the following series of lengths attained during the first thirty stages.

Table 26. - Estimated length of lobsters during the first thirty molts.

Stage.	Length. mm.	Stage.	length. mm.	Stage.	Lemgth. mm .
1	7,84	11	32.5.5	$\because 1$	13.5,17
\cdots	9,04	12	37,54	22	155.86
3	10,42	13	43.28	23	179.70
4	12,02	14	49,90	$\because 4$	207,201
5	13,86	1.5	57, 5,53	25	-38.911
6	15,98	16	66,34	26	-275.45
7	18,42	17	76.4!	27	317.5 !
8	21,24	18	88,1!	28	:366, 16
9	24,49	19	101,68	$2!1$	422.21
10	28,23	20	117,24	83	486.81

The agreement between the lengths of the first ten larval stages as actually determined by F. H. Herrick and given in Table 25 and the calculated lengths must - when one considers the comparatively small number of specimens measured - be described as striking.

These facts seem, of course, to a great extent to support the idea that the principle used by \mathbb{W}. K. Brooks for the Stomatopods is of universal application.

The only writer who has dealt in more detail with this problem is G. H. Fowler in a work, 1909, on the plankton Ostracods collected during the cruise of H. M. S. Research in 1900. The result of this study is particularly noteworthy, as G. H. Fowler was of the opinion that he could show that the above-mentioned principle applied thronghout the whole Halocyprid group. It was also applied to Cypridina (Macrocypridina) castanea. G. S. Braby, Homarus americamus Mhne Edwards and Carcinus maenas Leach.

On p. 224 of this work G. H. Fowlelr suggests that this principle should be called ,, Brooks's $\mathrm{La} \mathrm{w}^{\text {" }}$, ,in honour of one of the most ingenious of recent naturalists" and he formulates this law in the following general way: , During early growth, each stage increasesat eachmoultby fixed percentage of its length, which is approximately constant for the species and sex."

The following examples of the applicability of this ",law" in the Halocyprid group are given in this work:

Halocypris globosa (C. Claus).

	$\begin{gathered} \text { Stage I. } \\ \text { Moan } 2.01 \end{gathered}$								Stage 11 . Vean 1.á						$\begin{aligned} & \text { Stage III } \\ & \text { Hean } 0,95 \end{aligned}$		$\begin{aligned} & \text { Stage IS } \\ & \text { Mean } 0,61 \end{aligned}$		Stage V Mean 0.40
1.0neth in mm.:	2.8	2,2	2.6	2.5	2,'	-,3	2,2	2.1	1.7	1,6	1,5	1.1	1.3	1,2	1.0	0.9	0,5	0.6	0,1
Vimmber of of nurasured:	1.	12	107	83			8	5	$\mathfrak{6}$	13	1	8	1	1	,	'		9	1

Total specimens measured: 315 우.
,Considering the scarcity of the smaller specimens, the response of the mean to Brooks's law is good: $-0,37 \times 1,62=0,59 ; 0,59 \times 1,62=0,95 ; 0,95 \times 1,62=1,539$; $1,54 \times 1,62=2,49^{*}(\mathrm{p}, 278)$.

Conchoecia spinifera (C. Claus).

'Total specimens measured: $59++32 \hat{o}$.
..The females, although few, respond well to Brooks's law: $-0,98 \times 1,47=1,44$; $1,44 \times 1,47=2,11$. There were only three males at Stage IV., a number which cannot be
expected to yield a satisfactory mean；the mean is too low to fit with the ratios between Stages III．and II．： $1,08 \times 1,30=1,40 ; 1,40 \times 1,30=1,82^{"}($ p．275）．

Conchoecia procera G．W．Müller．

	stage 11. Mean 1，16			Stare III． Mean 0,9			stage 1 V ． Mean 0,64		？Stage V ： Mean 0．5
Sumber of of measured：	1	89	$\because 7$	1.11	$\begin{gathered} 8 \\ 0.9 \\ 14 \end{gathered}$	1.8	$\begin{gathered} 1 \\ 0.7 \\ \vdots \end{gathered}$	$\begin{gathered} 5 \\ 0,6 \\ 1 \end{gathered}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$
Length in mm．：	1.3	1.2	1.1						
Sumber oll ${ }^{\text {a }}$ measurat		6	85						
					an			110	

Total specimens measured： $85 \circ+620$ ．
，＂Taking the females first：$-0,64 \times 1,36=0,87 ; 0,87 \times 1,36=1,18$ ．On morpho－ logical grounds the specimen at 0,5 appeared to belong to an earlier stage than those at 0,6 and 0,7 ；and by the same growth－factor this stage would have a mean at 0,47 ．－In the males there is an overlap of the Stages II．and III．at $1,0 \ldots$ the numbers are too small for accuracy： $0,7 \times 1,26=0,88 ; 0,88 \times 1,26=1,10$ ．＂（p．271）．

Conchoecia Haddoni G．S．Braliy and A．M．Norman．

stage 1. Mean 2．79．	Stage II． Mean 1，66．	Stage III． Mean 1,1	stage バ。 Mpall 0,66 ．	？Stage V． Mean 0．4．

Latugth in mma：	8.1	3.9	2.8	9.7	2.6	2.5	1，7	1.6	1，1	11.8	11.7	0,6	0.5	11.
\ombrer of of measurd：	2	t	＇t	3	6	I	2	1	1	t	1.	3	1	：

Total specimens measured： $37+? 3=40$ o．
＂In the females the usual proportions between the means appear，the second place of decimals being somewhat vague，presumably owing to the paucity of specimens．Thus， $0,62 \times 1,64=1,01 ; 1,01 \times 1,64=1,656 ; 1,66 \times 1,64=2,72$ ．The observed mean of 0,66 for Stage IV．is perhaps too high，and the growth－factor employed a little larger than the true factor＂（p．265）．

Only 5 males were measured，representing two different stages．
Conchoecia hyalophyllum C．Claus．

	slage 1. Mean 2．3．			Stage 11. Mean 1．58．				Slage III， Vean 1．0\％．			
Vumber o！¢ meatmed：	1		？ 1	8	$\because{ }^{\prime}$	13	\because	1	s	．	
Leugth in mm．：	2.4	\cdots	2.1	1．2	1.6	1.5	1.1	1.2	1.1	1.11	11.2
Viuntmer of ${ }^{\text {a measured：}}$		1			：	\because	：		F	1	1
		tage				$\begin{aligned} & \text { :14e } \\ & \hline \text { an } \end{aligned}$			V10，		$\begin{aligned} & \text { tage } 110 \\ & \text { leau } \\ & 0 \end{aligned}$

Total specimens measured： $62+? 1+433$ ．

The ratios for Brooks's law come out sufficiently clearly, although the total numbers ate small, and in spite of the difficulty of separating this species from magna at the lower stages.

Taking the means as a basis for ealculating:
又 $1.07 \times 1.48-1.58 ; 1,58 \times 1,48=2,33$.
; $11,77 \times 1,40=1,078: 1,08 \times 1,40=1,51: 1,50 \times 1,40=2,10^{66}(1,51 \times 1,40=2,11)$, (p. 2(i6).

Conchoecia rhynchena G. IV. MULLER.

	Slage 11 . Mean 2,				slagn III. Mean 1,60 .			Stage 15 Mean 1.0 i.			Stage V. 1 Mean 0.70.		
Lenuth in mm.	2.6	2.5	\because	2.3	1.7	1.6	1.5	1.1	1.0	0.9	0.8	0.7	0.6
\umber of O measured:	2	8	\because	\because	1	2	1	:	1	1	\because	1	2

Total specimens measured: 28 우.
..In the females the reaction to a growth-factor is very close: $-0,7 \times 1,54=1,07$; $1.04 \times 1.54=1,60 ; 1,60 \times 1,54=2,46$. As there are only three males to represent Stages III. and IV.. it is useless to discuss their growth-factor." (p. 272).

Conchoccia imbricata (G. S. Brady).

Total speeimens measured: 65 우 +360 .
.,Now, taking the mean lengths of the females at the different stages: $-0,62 \times 1,56=$ 1,96: $0,96 \times 1,56=1,497 ; 1,50 \times 1,56=2,34 \ldots$ The males are much fewer and therefore respond less accurately: $-1.0 \times 1,45=1,4 ; 1.4 \times 1,45=2.03$." (pag. 225).

Conchoeciu daphoides (. Cla,

Stage 1.	Stage UR.
Vean 3.18.	Mean 19.

Length in mom.	3.6	\therefore : ${ }^{\prime}$	$3 .: 3$	3.2	3.1	3,0	2.9	2,8	2.7	2.6	1.2
Vumber of o measured:	1	1	.	il	1.7	:31	9	5	2	1	1

Total specimens measured: 112 우.
.,In addition to the numerous specimens of Stage I. there was a single female specimen of (apparently) Stage III.; this with the aid of a slide-rule enables one to make an empiric guess at the mean of Stage II. With a growth-factor of 1,6 for females it appears that $1,2 \times$ $1,6=1,92 ; 1,92 \times 1,6=3,07$; and we may fairly presume that the mean of Stage II. will be a little more or less than $1,9^{\text {"6 }}$ (p. 263).

In a footnote on the same page the author adds: ,Since this was written, I have measured the two specimens of "lacerta" taken by the "Researeh" in the Faeroe Channel (Proc. Zool. Soc. 1903, p. 122) and now in the British Museum. They were females of 2.0 mm . in length."

With regard to other species of the family Halocyprudae that are dealt with in this work we may note the following:

In the ease of three species, C.elegans (t. O. Saps, (\%. rotumtata (x. IV. Mitlerer and C. curta J. Lubbock it was impossible for the author to set satisfactory average longths for the different stages because the curves for these were overlapping, p. 263: ., the differences in length between the successive stages are so small that measurement to only one place of decimals does not bring out clearly the boundaries between stages" The average ralues obtained by approximation agreed very well, however, with BROOKA's law. (17. pp. 263. 27t and 261 .

Conchocciomagna C. Clals, p. 268, gave less satisfactory results. (4. H. Fowler himself tries to explain this by the impurity of the material; no attempt is made to fit this species in with Brooks's law.

It is true that three stages both of males and females were found of Conehoccia loricate (C. ClaAls), p. 267, but the specimens of Stage III were ,too few to give satisfactory growthfactors". Only four specimens of this stage were canght, two males and two females. The following average lengths were found: - Females: Stage I, 2,58 mm., Stage II 2.0 mm. Stage 111, $1,3 \mathrm{~mm}$. Nales: - Stage I, 2,31 mm., Stage II, $1,75 \mathrm{~mm}$. Stage I11, 1,2 mm. These averagn figures give the following coefficients of growth: - $2,58: 2,0=1,201: 2,0: 1.3=1.54$. $2,31: 1,75=1,32 ; 1,75: 1: 2=1,46$.

With regard to Conchoecia ametra G. W. Muller p. 259 the individuals that were caught were also too few to give satisfactory growth-factors: three stages of lonth sexes were fomm.

	Stage	II.			stage 11.	
		j		,	\ddagger	j
Stated means in mm.:	3,30	3.111	2.3	2,16	1,42	1.19
Number of specim. measurect:	11	4	1	3	こ	1

From these means the following growth-lactors are arivel at: - 3.30: 2.3-1.43: $2,3: 1,42=1,6$. $-3,10: 2,16=1.43 ; 2.16: 1,6=1.35$.

Of three species probably only two stages were captured: these species wre: C"onchoectu
 p. 276.
 seribed and figured (Naples Monngraph, p. 183, ph. XXX1V, figs. 1. 2. 3. 5) form young -tigem of this species, of which the two older at least were male: Mnasured without the rostrmm, they were $0,33,0,44,0,59,0,79 \mathrm{~mm}$. Now 0,33 1,35 $11.44: 11.44$ 1.3.5 $0,589(0,59) ; 0,589 \times 1,35=0,79$; these are therefore related as in other fpecte.

Some species were represented by one stage only. viz. Archiconchociot mendutw
 p. 240 and C. tylode (G. II. MULler, p. 253.

Zoolog. bidrag, Cppsala. suppi.-Bd I.

This writer": investigations with regarl to Macrocypridina. Homarus and Carcimes gave the following results:
('ypridinu (Macrocypritina) castanea C. S. Brabs.
Unly tive specimens wore recorded: they measured $6,0,4,0,1,9,1.8$, and 1.8 mm .
... pparently three stages. I.. II., and IV., were represented in the five specimens; with a growth-factor of 1.5 , the lengths $1,8,2.7$ (missing), 4,0 , and 6,0 are related as in the other spectes" ($\mathrm{p}, \stackrel{2}{ }-9$).

Homarus emericames Mhane Edmards.

This investigation is based on the statements as to length given by F. H. Herrack in the work of 1890 yuoted above. The result ol this study quite coincides on the whole with the result previonsly obtained by F. H. 1HERRICK. cl. p. 125 above. It is noteworthy, however, that (i, H. Fowlir peminted out that there must be a difference between the carly. larval moults and the moults at a more advancel age, p. 280: ,If a lobster continued to moult at the same brief intervals, and to grow by the same increment as did Ifmarich's larvace it would be $10^{1} 2$ inches long at the end of its first year (instead of $\simeq-3$ inches), and in five years would be a dangerous monster of portentous size."

Carcinus maenas Leaca.
(i. H. Forlmer hased this investigation on measurements of the greatest breadth of the carapaces that were thrown off by eleven individuals kept in aquariums; the measurements were previously published by H. C. WillitMson, 1903. „The observed breadths seemed... to fall into groups round obscure medians." Although the average values for these classes of breadths seem to be anything but certain, they agree in quite an amazing way with Brooks's law. In the following table the left row represents ..the means of these vagnely indicated groups". the right row ,the successive products, by an empirically - found growth-factor, of means starting from 4,80, the lowest observed mean of the series" (p. 281).

| 4,80 | $4,80 \times 1.27$ | $=6.09$ |
| ---: | :--- | ---: | :--- |
| 6.05 | $6,09 \times 1,27$ | $=7,73$ |
| 7.75 | $7,73 \times 1,27$ | $=9.81$ |
| 9,61 | $9,81 \times 1,27$ | $=12,45$ |
| 12.65 | 12.45×1.27 | $=15,81$ |
| 16,62 | $15,81 \times 1.23$ | $=19,44$ |
| 19.50 | $19.44 \times 1.23=23,91$ | |
| 23,89 | $23,91 \times 1,23=29,40$ | |
| 29.30 | 29.40 | |

As will be seen from the above table G. H. Fowler was of the opinion that in this case too a smaller growth-factor could be observed for older stages. For more details see this anthor's account, pp. $\because 80,281$.

One of the reasons why I submitted this ..law" to a fresh test was that a mumber A crmictsm of ci. If. of the proofs given by G. H. Fowler seemed to be altogether too grod.

As is seen from the account given above, out of all the Halocyprids of which two or three stages had been found by ($1 . \mathrm{H}$. Fowler all except three, Conchoecin magna, C. Loricata and C. ametra, agreed very well with Brooks's law.

In the case of C. magna (G. H. Fowler tried. as will be seen above to explain this deviation by assuming that the material investigated was not pure. This explamation is certainly correct. Stage I $\left(=\right.$ Conchocciu macrochcira (i. IV. MitlLER) and Stage II $\left(=\left({ }^{\prime}\right.\right.$. magnu C. Clats) are (as is pointed out in the special part of the present treatise) certainly two quite distinct species.

In the case of the two other of these three species the cause of the deviation is to be sought, according to the same author, in the small number of individuals that were investigated. Whether this explanation is correct for C. ametra 1 must leave undecided: it is to be noted that the growth-factors obtained from the average lengths that were actually observed vary a good deal; cf. above. With regard to C. loricata it ought to be pointed out that the material investigated was presumably impure. Stage I (= Conchoccia ctonophora G. W. MCLLER) and Stage II (= C. loricata [C. CLALs]) are presumably to be regarled as two closely related species: ef. the special part below.

All the other of these species agreed very well with Bronns's law, as has been mentioned above; these species were: Halocypris globrsa, Comehociut spinifera, ('. clegans. C. procera, C. rotundata, (.. curta. ('. Huddomi. (.) hyalophyllum, ('. rlynchena, ('. imbricata and C. daphnoides.

In spite of this agreement it is probable that the materialof some of these species was not pure. Thus in the case of Conchopcien curtu Nage I (= C. stigmatica G. W. Müler) and Stage II (= ('. curta J. Li bibock) wertainly represent two well differentiated forms. The same is true of stage I and Stage II of ('. hyaloplyghtem:
 that a mixture has also taken place in the case of the laryae of C. rhymeheme, as this writer points out on p. 248 that, it is probable that C. Kampta or C. tylode may be the oldest stage of this species". It seems to be beyond all doubt that C. kampta (i. II. Móluder and ('. fglode G. W. Moller are forms that are well differentiated hoth from each other and from (1 . phymenem. Both these species occur in the material investigated by (i. H. Fownem - according to this author - only as mature individuals. Were there also larvae of these two species among tho larvae of C. rhynchena? For the reasons why C. stigmatica, (${ }^{\text {. curta, ('. lophura. ('. Ieyntophyllum. }}$ C. rhynchena, C. kampta and C. tylode represent different forms I shall only wher here to what is written in the special part of this work.

For Stage I and Stage II of C. rotundute the reater is referred to what is written about this species in the special part of this work. The result of (i. H. Foll Lelk's investigation of C. daplmoides and Halocypris globose seems also to merit further verification. The length of the first stage of C. daphonodes varied from $2,6-3.5 \mathrm{~mm}$; onlt a single specimen of stage III was found and yet the law agreed perfectly!

> Digitized by Microsoft ©

These mitamees ought th show herter than many words the necessity of procereding with the greatest calution in applying the ..law".

The wak proint in the proofs whtained by this anthor from the gemus Conchoceio is that they are based on a material that was caught at a region so rich in similar and closely-related -pectios as the Bay of Biscaty In earlier stages it is almost or quite impossible to distinguish chocly melated species of this arens with certainty by means of morphological characters. Investigations of this kind moght, of course, to be based either on material in aquarimms or, preferably. on material from localities at which there are no forms that are closely related to the species investigated, and the material should be submitted to a very careful morphological invetigation.

On the other hand it must be definitely pointed ont that some of the examples given by (i. H. Fulleze strongly support Bronks's law as it is formulated by this writer. Imong these forms there is especially Conchoecio imbricata; this form is very characteristie and wen during the earliest larval stages it seems to be distinguishable with certainty from ather forms found in the region investigated. The result of this author's measurements of ('ypridina (Macrocypritina) castanea, which is mentioned alsove, also seems particularly noterorthy: but the material of this species was unfortmately too sparse for the result obtained to have any decisive importance.

I now pass on to give an account of some observations made by myself, which may to some extent help, to increase our knowbedge of this ,law". For the terms given to the different larval stages see.p. 60 above, the chapter on general terminology; for the method of measuring the leugth of the shell see p. 13 above of the introduction.

> sub-order: Cypridmiformes.
> Cypridina (Dotoria) pectimata.
. 11 the individuals whose measurements are given below were canght at the same time and at the same place: S. A. E. station 60, the eastern exit of the Beagle (hannel. Tierra del Fuego, 100 m . deep. It seems certain that all these specimens belonged to this species, partly because of morphological reasons, partly because this species seems to be the only or at any rate quite the dominant representative of the sub-family Cypridininae in this region.

Six free-living larval stages could be distinguished:
General description of the larval stages: -
*tage 1: —
II ale: This is very like the mature stage. Shell: Average length, 2 mm ; length: height - abont 1,5: 1. The first antenna is of about the same type as that of the mature female; it is quite withont secondary sexual characters. Second antenna: The endopodite is of about the same type as that of the matmre male but has a rather decided larval appearance; its end joint is somewhat straighter and it is obvious that it cannot be folded back on its predecessor: cf. fig. 12 of this species. The posterior limbs differ from those in the mature stage only by having a more larval appearance and having the bristles

Digitized by Microsoft ${ }^{\circledR}$

somewhat fewer and less differentiated. The penis is small and simple and of an embryonal appearance, resembling somewhat the simple type in the genus Phitomedes. The furca has only nine claws, which in most cases decrease fairly uniformly in length the more proximally they are situated. The lateral eyes, the median eye and the rod-shaped organ aré well developed.

Female: This too is very like the mature stage. Shell: Average length, 2,1 1 mm .
 of about the same type as in the male of this stage. The furea has eleven claws - i. e. the same number as in the mature stage - decreasing in most cases fairly miformly in length the more proximally they are sitnated. The lateral eyes, the median eye and the rod-shaped organ are well developed. The character by means of which this stage is most easily distinguished from the mature stage - apart, of courser, from the size - is the larval appearance of the tissues.

Stage II: - I was not suecessful in distinguishing with certainty between males and females in this stage by means of dissection; this may be due to the fact that the sexnal characters have not yet begun to develop or that all the specimens investigatel were actnally females. Shell: Average length. $1,75 \mathrm{~mm}$. length: height $=$ about 1,5 : 1 . With regard to t he limbs it need only be mentioned here that they were all well developed, but they had, especially the posterior ones, a still more larval appearance than in the preceding larval stage; thus the cleaning limb - although it had proportionately about the same size as in the mature stage - is armed with only about half the number of cleaning bristles. Lach fureallamella is armed with only nine daws, in most cases decreasing fairly uniformly in length the more proximally they are situated. The lateral eyes, the median eye and the rodshaped organ are well developed.

Stage II l: - Shell: Average length, $1,4 \mathrm{~mm}$; lmgth: height about $1,5: 1$. All the limbs are developed in this larval stage too, but the cleaning limb is only represented by an upward pointing appendage that is certanly rather long. but very slightly differentiated; it has no deaning bristles at all. The sixth Iimb, although of about the definitive shape, is of a decidedly larval type; along the ventral margin of its end joint there are, for instance, only six bristles, three anteriorly on the joint and three posterionly; the former are seqarated from the latter by a sharply marked gap. ()ther limbs also have about a definitive shape. while at the same time they present features that are even more laryal than in the preceding stage. Eath furcal lamella is fumished with eight claws, of wheh the fourth is relatively short and weak, the others decreasing almost unilormly in length the more proximally they are attached (note that only one specimen of this stage was investigated: among larvae belonging to Stage I and Stage II single individuals were also wherved with the fourth furcal claw comparatively short and weak). The lateral eyes, the median eye and the rod-shaped organ are well developed; the median ey however, has rather weak pigmentation.

Stage IV: - Shell: Average length, $1,2 \mathrm{~mm}$.; length : height $=$ about $1,5: 1$. In this larval stage too all the limbs are present, the cleaninglimb exists, however, omly
as a tery short, upward pointing peg, without bristles. The sixth fimb has a more markedly larval type than in the preceding stage: it is represented only bye a romded, minointed or almost minjointed. Weakly twolobed little phate, of about the same type as is shown in fig. 22. pl. 34, (: 11 . Miadma 1894: the poximal joint usually has only one bristle; the distal one has no bristles. only mumeroms stiff hairs. Each fureal lamella has six or seven claws, of which the two distal ones dominate rather decidedly over the others: ef. fig. 13 of this species in the special part of this work. The lateral eyes, the median eye and the rod-shaped organ are rather well developed, the median eye, however, is only rather slightly pigmented.

Stage V: - Shell; Average length, 1 mm . length: height $=1,4: 1$. While the preceding larval stages were characterized by a shell whose length was somewhat greater in proportion to its height than in the mature female, this stage, like the following, shows a shell in which the proportion hetween length and height is about the same as in the mature female. The seventh limb is quite absent. The sixth limb is developed only as a small undifferentiated, downward pointing peg with stiff hairs. The other limbs have about the definitive fundamental type, but have a somewhat more larval appearance than in the preceding stage - especially in the case of the bristles. Each fureal lamella has only five or six claws. the two distal of which dominate over the others even more strongly than in the preceding stage. The lateral eyes are large and fairly well developed, the median e fe and the rod-shaped organ arę developed but have a decidedly larval appearance; the median eye has scarcely any pigment.

Stage VI: - This is the youngest free-living larval stage that I found. Shell: Average length. 0.9 mm ; length : height $=$ about $1,4: 1$. Even in this stage the shell has about the same trpe. When looked at from the side. as in the mature stage. It agrees fairly elosely with the preceding stage; the sixth limb is ahmost as much developed here as in this stage.

The next stage that I found had not yet left the brood chamber. Its length was only $0.6-0,7 \mathrm{~mm}$. The 1 ateral eyes were large and well pigmented but had no ommatids developed. The limbs were searcely developed. Possibly it ought really to be termed an embryo.

Although the length classes that were observed were thus in a number of cases rather closely related to each other morphologically, there can be no doubt that each of them represents a moult.
(11. . Mcler in his Ostracod monograph, 1894, gives a short description of the three youngest larval stages of Cypridina mediterranea O. Costa. According to this author the larva of this species leaves the brood chamber as soon as it has been latehed from the egg. The youngest free-fiving larval stage has abont the same shape of shell as the mature specimens, only ..etwas kiirzer und höher": The five anterior limbs have about the definitive type, but the fifth limb , mit wesentlich geringerer Anzahl von Borsten und zahnartigen Gebilden". The sixth limb is already formed, but is very simple; it has a ,bereits an die definitive Gestalt crinnernde Form",* and has no bristles at all. The furea has five claws, the two distal of which dominate strongly over the others.

[^26]The following larval stage is very like the preceding one, but the fifth limb is somewhat more differentiated. The sixth limb is distinctly two-jointed; its proximal joint has one bristle, its distal joint none. The furca has the same number of claws as in the preceding stage, but the difference between main claws and secondary claws is less striking.

The next larval stage is characterized by the fact that the sixth limb has almust a definitive shape, but it has comparatively few bristles; according to pl. 34 , fig. 24 the end joint has only five bristles, three anterior ones and two posterior ones; the cleaning limb is developed as a short, unjointed, upward pointing appendage without bristles. The furca has eight claws.

With regard to the further development of this form this author writes as follows, p. 185: "Ueber die weiteren Entwicklungsstadien kamn ich fuir C'ypridimu mediterraner keine Angaben machen. Nach Untersuchungen an Pyrocypris diurften noch verschiedene Häutungen folgen. Die Veränderungen witurn, abgeselen von einer allgemeinen Größenzunahme und einer Vermehrung der Borsten an verschiedenen Gitedmaaßen, in einer Streckung des Putzfußes bestehen, verbunden mit dem zunächst nur audeutungsweisen Auftreten von Gliedern und dem Erscheinen einzeher Borsten an der Spitze."

According to C.(LLALT, 1865, p, 153, the youngest larval stage (which is still in the brood chamber) is quite without the two posterior pairs of limbs.

It follows from this that the results olstained by these authors agree very well, on the whole, with what I observed above for ('ypridina (Doloria) pectimata. There are however. some small differences to note: thus, for instance, in the third larval stage of Cypridina (J'argula) mediterranea, which seems to correspond to Stage III of Cypridina (Doloria) pectinata, the tleaning limb is very short. Stage V and Stage VI seem to have been confused by G. W. Mellet; they seem to correspond to the youngest larval stage given by this author.

Measurements: -
Sixty free-living individuals of Cypreitina (Doloria) pectimata from the above-mentioned station were measured. The results of these measurements are given in fig. XX.

The column 17-21 comprises the embryos in the brood chamber: when these leave the mother they probably have a length of about twenty divisions. A mature male measured 62 divisions. The inature females are represented by columns $73-76$ and 77 .

The grow in liactor determined empirically $=1,22$.
The arerage lengths calculated theoretically are:

C'ypridina (Vargula) norregica.

All the specimens of this species that are dealt with below, mature males and females and larrae, were collected at Lofoten at the same locality and on the same oceasion by Professor (i. O. Surs. There seems to be no doubt that all the speeimens investigated really belonged to this species. Only two representatives of the sub-family Cypridininae seem to exist at the west const of Norway, namely Cypridina (Vargula) norvegica and C. (V.) megalops. There seems to be no great difficulty in distinguishing these forms even during the larval stages; see for instance. the endopodite of the second antenna.

Five free-living larval stages could be distinguished.
Gencral description of the larval stages: -
In the case of the four youngest of these five larval stages I did not succeed in distinguishing with certainty between males and females by means of dissection. Even in the last larval stage it is almost impossible to distinguish the two sexes except by means of a close investigation of the rudiments of the sexual organs. In the mature stage there is, as will be seen in the special part of this work, a close agreement between males and females; differences are merely to be found in the shape of the shell, the first antenna, the mandible and the furea. These differences are almost entirely absent even in the oldest larval stage. In this stage the shape of the shell is almost the same in both sexes, closely resembling that of the mature male, i. e. with a distinetly marked posterior corner; the first antenna is practically alike in both sexes and the mandible as well. In this larval stage, as in Stages II-IV, fureal elaws nos. 2 and 4 are united to the lamella, as on the furca of the mature female; claw no. 3 is, like the others, well marked off basally. In Stages I-IV, as in the mature individual, furcal claw no. 3 is somewhat shortened and weakened. In the youngest stage observed by me, Stage V, the two distal furcal claws dominate very decidedly over the proximal ones, from which they are also separated by a rather well marked gap. In this stage furcal claw no. 2 is united basally to the lamella; the other furcal claws are well marked off basally. The number of the fureal claws increases by one for each stage: Stage V has 4 , Stage IV has 5 , etc.

Apart from this these larval stages agreed very well with the above-deseribed five oldest larval stages of Cypridina (Doloria) pectinata. It seems to me quite certain that they correspond to five moults.

Measurements: -
From the above-mentioned locality i2 specimens of this species were examined. The measurements of the shells gave the following results:

Digitized by Microsoft ${ }^{\circledR}$

Mathrofamales：
1 specimen with a shelf－lengeth of $3,65 \mathrm{~mm}$ ．
万s specimens ，．，．．，，．．，3，6 ．．
3 ．．．．．，＂，．，．． 3.5 ．．

Maturemales：
10 specimens with a shell－length of 3.3 mm ．
：3 ．，．．．，．．．．．．3．2．5 ．．

1 specimen ．．．．．．．，．． 3.2 ．．
1 ．．．．．，．．．，．．：3． 1

Mean ：3．2－7m．
harralstages：
Stage I：Firea with 8 claws（males and frmalesc）．

+ sperimens with a shell－length of $2,9 \mathrm{~mm}$ ．

$4 \quad$ ．．\quad ．．．．．．$\quad . . \quad . .2 .8 \quad$ ．．
3 ．．．．．．．，．．．．2，7
Stage II：Furea with 7 claws．
3 specimens with a shell－length of $2,4 \mathrm{~mm}$ ．
5 ．．．．．．．．．．．．2．．3 ．．\ean 2．．アン m！
1 specimen ．．．，．，．，．．2．2 ．．
Atage I II：Furea with 6 claws．
1 specimen with a shell－length of 2.11 mm ．
5specimens ，，．．．．．， 1.9 ．．Hean 1.91 mm．
1 specimen ．．．，．．．．．．1．s．．．
内tage IV：Fiurea with olaws．

Stage I：Furca with 4 claws．
1 sperimen with a shell－length of $1,3.5 \mathrm{~mm}$ ．｜Noan 1.3 l mm．
4 specimens ．．．．．．．，．． 1.3 ．．
Growth－factor．fomme empirically 1.21 ．
Fistimated lengths of the last five larval stages：

Length of Stage 1， $2.81 \mathrm{~mm} .1 .21-3.4 \mathrm{~mm}$ ．
Zoolog．binrag，Upmala．Suphl－Rd．I．

Philomedrs (Ph.) globosia.

All the specimens of this species dealt with below, mature females and mates as well as larvate were eollected dming the Swedish (ireenland Expedition, 1890. all on the same oceasion, the 17 thof July, and at the same place. lat. $74^{n} 10^{4} \mathrm{~N}$., long $20^{n} 8^{6} \mathrm{~W}$. depth $2 .-40 \mathrm{~m}$. It seems to me certain that they all really belong to this species, partly for morphological reasons and partly because at the locality in question probably only this species of this gems is fomd. Cf. this species in the special part below.

Six free-living larval stages could be distinguished.
(ieneral description of the larval stages: -
心tage I: -
Il ale: As has already been pointed out by preceding authors (cf. the special part of this work), this differs strikingly from the mature male. Shell: Average length, $2,4 \mathrm{~mm}$. It agrees entirely with the shell of the mature female. The first antenna, the mandible, the maxilla and the fifth. sixth and seventh limbs are also of the same type as those of the mature female; the posterior limbs have perhaps a somewhat smaller number of bristles. Second antenna: The protopodite and exopodite have the same appearance as in the mature female, but the bristles on the four distal joints of the exopodite are primarily short and without natatory hairs; for the endopodite see the figure of this organ of this species in the special part below. The fure a has eight claws, which decrease fairly miformly in length and strength the more proximally they are situated. The lateral cys: are almost of the same size as in the mature male, but are only very slightly pigmented.

Female: This agrees completely with the male of this gemus except in the scxual characters, the endopodite of the second antenna and the lateral cyes: in the latter characters it resembles the mature female, but is more larval in type.
stage II: -
II ale: Shell: Average length, $1,9 \mathrm{~mm}$. The endoporite of the second antenna is considerably smaller and much less differentiated than in Stage I; its second joint has conly two bristles. The posterior limbs have somewhat fewer bristles and the lateral eyes are considerably smaller than in the preceding stage. The furca has eight claws. Otherwise this stage agrees with Stage I.

Female: This agrees completely with the male of this stage except in the sexual characters, the endopodite of the second antenna and the lateral eyes; in the latter characters it resembles the female of Stage I, but is more larval in type.

In the following larval stages I did not succeed in distinguishing with certainty between males and females by means of dissection.

Stage I I I: - Shell: Average length, $1,5 \mathrm{~mm}$. In this stage too all the limbs are present. The seventh limb, however, is only represented by a long, injointed, upward pointing appendage. which is quite withont bristles. Sixth limb: The end joint is furnished ventrally with only about eight bristles. Other limbs are also furnished with fewerbristles than in the preceding stages. but, like the sixth limb, they have about the definitive type. Each

Furcallamella has seven claws, which decrease fairly uniformly in length and strength the more proximally they are situated.

Stage I V: - She11: Average length, $1,2 \mathrm{~mm}$. In the thind larval stage the bristles on the surface of the shell are somewhat fewer than in the first and second stages; this decrease is still more striking in this stage, the surface of the shell being almost smooth. The sixthlimb is represented by a rounded, unjointed or almost unjointed, two-lobed plate; cf. fig. 20 of this species in the special part of this work; the proximal lobe is only furnished with one bristle, the distal one has no bristles, armed only, with long, stiff hairs. The seventhlimb is also found; it is represented, however, only by a small, nodifferentiated process pointing upwards. Each fureal lamella has six claws, which decrease fairly uniformly in length the more proximally they are situated.

Stage V: - Shell: Average length, 1 mm . Even in this stage the shell has about the same shape as that of the mature female. The dorsal margin is, however, somewhat more uniformly rounded. The sixth 1 imb is less flattened and is simple, peg-like, without bristles, furnished only with stiff hairs. The cleaning limbis quite absent. The anterior limbs are also of a decidedly larval type, with a very much reduced number of bristles, but yet of about the definitive type. Each fureal lamella is armed with from three to five claws, of which the two distal ones dominate very decidedly over the others in size and strength; the proximal ones are very weak, spine-like; cf. fig. 21 of this species in the special part. The roclshaped organ and median eye are well developed as in the preceding stages, but have a very pronounced embryonal character.

This was the youngest freely living stage 1 found.
Stage VI: - This is hypothetical, as no specimens have been found so far. The average length of the shell, as calculated theoretically, $=0,83 \mathrm{~mm}$.

Stage VII: - This is still in the brood chamber of the mother. She 11: Averant length, $0,7 \mathrm{~mm}$. It is oval; the rostral incisur is broad and rather shallow. The sixth and seventhlimbs are absent. The other limbs are developed with about the definitive type; the posterior ones have, however, rather few bristles.

Measurements: -
142 speeimens of this species from the above-mentioned station were measured. The measurments of the lengths of the shells gave the following result as shown graphically, fig. XXI.

It follows from this figure that the specimens investigated could be divided into six distinct elasses of length. In each class the length differs by about three divisions. The class $80-82$ consists of mature females (there were no mature males in this sample), the wthers consisted of larvae. I succeeded in distinguishing males and females only in the two oldest larval stages, as is shown above; both sexes appeared to lave the same length of shell. Thus classes $54-56$ and $68-70$ include both males and females.

The growth-fater as determined empirieally was 1,23 ,
With this growth-factor the following average lengths are to be expeeted theoretically:

Stage V Stage IV	Stage III Stage II	Stage I Mature individuals.	Ma		
29 d	36 d	44 d	54 d	66 d	81 d
$28-30 \mathrm{~d}$	$34-36 \mathrm{~d}$	$43-45 \mathrm{~d}$	$54-56 \mathrm{~d}$	$68-70 \mathrm{~d}$	$80-82 \mathrm{~d}$. Actual lengths.

Digitized by Microsoft ${ }^{\circledR}$

In the sample that was investigated there was, as is shown above, no free-living larval dan fommer than that of ead. But the latter is probably not to be taken as the youngest tree-living stage. In a nmber of females harve were observed which were apparently rearly to leave the browe chamber. These tavate were only $0,9 \mathrm{~mm}$. (=20d) long. If, using Brooks's L.N": we divide 29 d by 1,23 and the quentient again by 1,23 , we shall obtain, of course, the

1埌, AXI. - Cinro showing the resulto if me measure ments of the l-ngiths of the shells of a number of - winnuts of Phutunedes globosa lrom Cireenland. The mesits, repreemts the length of the shells expressed 11 divisions of a mineromeli.er (29 divisions $=1 \mathrm{mmi}$.); the ordin to mprestate the mulube of specimens measureat.
 theoretical average lengths of the two next yomngest stages. Areording to this method of calculation these stages onght to have an average length of 24 d and 20 d respectively. In other words the younger of these two stages ought theoretically to have the same average length as that which was determined empirically for those larvae that are about to leave the brood-chamber of the mother. This stage ought consequently to be presumably taken as the seventh; on the other hand the larval stage representing the sixth was quite absent in this sample.

Corresponding classes of length were also found in other samples, but in these the absolute measurements were different with different external conditions. In all these samples, however, the younger larval stages were represented still more sparsely than in the one dealt with abuve.

Althongh, as in Cypridina (Doloria) pectinata and Cypridina (Vargula) norvegica, the classes of length that were observed were, at least in a number of cases, very near each other, it seems to me certain that each represents a moult; the agreement with the postembryonal development of the preceding species is too great to leave any doubt.

The agrement between the development of the larvae in Philomedes globosa and Cypridina (Doloria) pectinata is, as is shown above, very great. When to this it is added that quite a smilar post-embryonal development is observed in Cypridina (Vargula) norvegica, it ought not to be too bold to assume that the post-embrynal developed is, on the whole, quite simitar in, all representatives of the family Cypritinutae (perhaps in all the species belonging to the sub-order of ('ypridiniformes).

All representatives of this family presumably go through seven postembryonal moults. At any rate the number of moults is not subject to variation in this family, a result that is of the greatest importance in judging of Brooks's law.

The number of pess embryonal mesults un thas groulle.

All the individuals described and measured below were calloght at the same time and at the same locality, on the 1st. of Feb., 1911 off the west coast of Sweden, S. Koster, at a depth of 125 m .

Only two larval stages could be distinguished with certainty.
General description of the larvalstages:-
Stage I: -
Male: Shell: Average length, $1,74 \mathrm{~mm}$. It is of about the same type as that of the mature female; cf. fig. 5 in the special part. The shoulder ridge is somewhat less distinctly marked. The rod-shaped organ is of about the same type as in the mature female: shows about the same variation and projects almost the same distance beyond the first antema as in this sex. First antenna: The e-bristle is, as in the mature female, about twice at long as the four other distal bristles; the latter are subequal or else the b- and d-bristles are somewhat shorter than the a- and e-filaments; the b-and d-bristles are rounded distally and somewhat narrower than the a- and e-filaments, and unlike these they are anmulated; the bristhe on the second joint is straight. Seeond anten n a: This is fike that of the mature femake: the e- and d-bristles are developed; laterally and somewhat distally of the latter there is a rather powerful peg, see fig. 9 of this species in this work. The sixth limb has the same number of bristles as in the mature stage: of the bristles of the end joint the middle one is somewhat longer than the total length of the two distal joints, the two others are about a third or a guarter shorter: the remaining bristles are mose like those of the mature femake than those of the mature male. The serenth limb hats the definitive type. The penis is about
 which decrease fairly uniformly in length and strength the more proximally they are situated.

Female: shell: Average length. $1,5 \mathrm{~mm}$. It is of the same type as that of the male in this stage. The rod -shaped organ amd the fimbs are alout the same an in the mature female. The furea is like that of the male in this stage

Stage11:
 the preceding stage; length : hoight = about $2,2 \pi: 1$. The shoulder ritge is searedy developed at all. The postero-torsal corner of the shell has a point that projeets rather less, hut the latter
 is somewhat more stender than in the precoding stage. The first ant wana hat quite the same type as in the femate. The serond anternat is the same is in the precerling stage, hut one of the e- and d-bristles is very small. Sixill limb: The three bristhe of the end joint hase about the same relative lengthe as in the matum femate; as in the last
stage. these lengths vary somewhat. The seventh limb is of the definitive type with two distal bristles. one long and one shom one. The momber of bristles on the ot her limbs is only very shaytly deepased. The penis consists of two sery small embryonal processes. Fand fureal lamella has six claws.

Fig. XXII. - Curves showing the results of my masurements if the lengthe of the shetts of a number of specimens of Conchocen Abone from Koster. West roast uf Sweden. $-=$ the females: the males. The abscissa represents the lengths uf Hew shells expressed in divisions of a mierometur (27 divisions 1 mom.): the ordinate represents $H 1$ mumber of suremous measurel. which dectonse fairly regularly in length and strength the more proximally they are situated.

Female: shell: Average length. 1.00 mm . It is of the same type as in the male of this stage; the secondary teeth on the postero-dorsal spine are, however, somewhat less developed. The rodshapedorgan is simitar to that of the male in this stage. The limbs are about the same as in the female of the preceding stage. The furea is similar to that of the male in this stage.

There cannot be the slightest doul)t that these two larval stages really belong to C. elegans, as in the region from which these specimens were obtained there are, except the species mentioned, only two forms of the genus Conchoecia, namely C. obtusuta (1. O. sars and C. borealis G. O. SAms; there is no risk of confusion with either of these species during the two oldest larval stages.

It seems also to be quite certain that they represent two moults. The agreement with the observations of (. Clabs and G. II. Múller is complete; ef. the latter author, 1894, pp. 183, 184.
lleasurements: -
258 specimens of this species from the station mentioned were investigated and measured. The measurements of the lengths of the shells gave the following result. as shown graphically in fig. XXII.

The above table shows that the specimens could be divided into three distinct male and three female classes according to the lengths of their shells. The male class $58-61$ and the female $53-60$ represent mature specimens.

Average lengths, expressed in divisions of the micrometer: males, mature - 60d, Stage l 47 d , Stage $\mathrm{II}=30,7 \mathrm{~d}$. Females, mature $=57 \mathrm{~d}$, Stage $\mathrm{I}=40,2 \mathrm{~d}$, Stage $\mathrm{Il}=27 \mathrm{~d}$. Growth-factor: Males: - $60: 47=1,277 ; 47: 30,7=1,53$

$$
\text { Feinales: }-57: 40,2=1,41 ; 40,2: 27=1,5
$$

Sub-order: Cypriformes.
('ynulfarmes.
In this group eight post-embryonal larval stages have been observed, according to the investigations of C. Chats and G. W. Müler. The number of moults seems to be constant within the whole group. The development is very similar in the different families; cf. G. II. Míller, 1894, pp. 175-183.

The species of this group investigated by me have a post-embryonal development that corresponds exactly to that which has been established by C. Clats and G. Wr. Mélefif for other forms in this group. Because of this I have omitted to give descriptions of the observed classes of length below.

Krithe sp.*

All the specimens of this species dealt with below were collected at the same lorality on the same occasion: the Bay of Villefranche (Maritime Alps, France), at a depth of $95 \mathrm{~m} . \mathrm{m}$ January 19th, 1916. A considerable number consisted of empty shells. This facet does nout. however, make their determination less certain, as this species differs greatly from all other. species from the locality mentioned by the shape of its shell. The Ostracod fauna from this locality was not at all rich in species, and I had notained a thorough knowledge of it by means: of a large number of dredgings.

Neasurements: -
428 specimens of this species from the locality mentioned were examined and measured. The measurements of the lengths of the shells gave the following result, which is presented graphically in fig. XXIIl.

As this table shows, the specimens that were investigated may be divided into six distinct classes according to the length of their shells. Of these class $43-4 \mathrm{~s}$ represents mature individuals.

The males and the females were of about equal lengths.
It is practically quite certain that each of the five larval classes of length really represents a moult. A decided argument in favour of this is the fact that I succeeded in observing in an aquarium how individuals of one class attained the length of the next largest lengtla class by one monlt. Two females in stage 1, with shells 36 and 36,5 divisions long respectively, attained a longth of about 44 divisions after one moult. One larva of Stage II, with a shell abont 28,5 divisions long, had after one monlt a length of about 35 divisions. On all the oecasions the moult ofenered from two to five days after the begimning of the aquarium life.

Average lengths for the six classes of length mentioned above:
Mature $=45, \mathrm{~J} d$; Stage $\mathrm{I}=36,12 \mathrm{~d}$; Stage II - 28.8 d : Stage II I $23,23 \mathrm{~d}$; Stage I
$19,2 \mathrm{~d}$; Stage $\mathrm{V}=15,5 \mathrm{~d}$.

Fig. XXIJ. - biagram to show the mesults of my meaturneuts of the leng the of the shefls of atmber of specimens
 miomoter (hit divisions -1 mm.) : all the measurements ape romedel off to the meapest half division. The ordinate represents the bumber of the specimens measured.

The relation between the different succecding stages, i. e. the growth-factors, is as follows:
$45,1: 36,12=1,248$
$36,12: 28,8=1,254$
$28,8: 23,23=1,24$
$23,23: 19.2=1.21$
$19,2: 15.5=1,24$.

How do the examples given by me above stand in relation to Brooks's law, if the latter is taken as formulated by G. H. Fowler, 1909, p. 224?

Cypridina (Doloria) pectinata: The agreement between the lengths as calculated theoretically and those actually found is striking. The males increase, however, comparatively less

Digitized by Microsoft ${ }^{\circledR}$

at the transition from Stage II to Stage I and between the latter stage and the mature stage. $57 \mathrm{~d}: 51 \mathrm{~d}=1,108 ; 62 \mathrm{~d}: 57=1,109$.

Cypridina (Vargula) norregica: In this the agreement between the thenretically calculated lengths and those actually observed may be said to be surprisingly great. Here too the males increase somewhat less rapitly at the change to the mature stage; $3,27: 2,81=1,16$.

Philomedes globosa: The agreement between the theoretically calculated lengths and those actually observed is striking; only the oldest larval class of length is somewhat longer than it ought to be theoretically.

Krithe sp.: In the ease of this species too it can be said that the growth at the different moults is very similar. The relations between the mature stage and the oldest larval stage, between the latter and the next oldest larval stage, between this and Stage III and between Stage IV and Stage V are really very similar, $1,24-1,254$; average, 1,245 . Only at the transition from Stage $I V$ to Stage III does the growth seem to have been less, the growth-factor being 1,21 .

In passing I may point out here that a smaller number of specimens of the investigated material of this species might have given a considerably more striking agreement with Bhoohs's law. Growth-factor $=$ the average found above, 1,245 .

15,5

$15,5 \times 1,245=19,29$

- $19,29 \times 1,245=24,0$
$24,0 \times 1,245=29,88$
$29,88 \times 1,245-37,2$
$37,2 \quad 1,245=46,3$.
In other words, if we use this growth-factor, we obtain theoretically average lengthe, all of which are within the boundaries of the length classes that were established emprically.

In passing I may point out here that other Ostracol species as well, of which unfortunately I had at my disposal only a rather slight material, showed a good agreement with Broons's law. I shall only mention a single one of these here, as it gives a rather good illustration of the applicability of this law.

In a tube of Ostracods from the Falkland 1slands that I investigated there were, besides mature specimens of a Cythereis species* not previonsly described, a number of larvae which, in spite of a number of differences, were, on fairly good grounds, assigned to the above species. At the locality in question the mature specimens of this species were characterized by great constancy with regard to the length of the shell: mature males - 0,80 - 0,83 (1 sually $0,83) \mathrm{mm}$. Mature females $=0,77-0,79$ (usually 0,78) mm. A number of the larvaw in cquestion measured $0,49-0,51$ (average 0,50$) \mathrm{mm}$., others $0,40 \mathrm{~mm}$. For anatomical reatons I conduded that they represented stage II and stage IIJ. The growth-factor was consequently 1.25 .
(1.40)
$0,40 \times 1,25=0,50$
$0,50 \quad 1,25=0,625$
$0,625 \times 1,25=0,781$.

* To be described in a later part of this work.

The agreement between the last number and the length of the mature female is of eourse striking. There were, however, no larvate with shells $0,625 \mathrm{~mm}$. long in this tube. In order, if possible, to be able to eomplete the chain of development of this species, I went, however, to the sample of sand ete. from which the specimens dealt with above had been picked ont. In this I fomel two complete individuals. clearly larvae in the last larval stage, and one valve wheh certainly belonged to this species; these individuals had shells from $0,62-0,65 \mathrm{~mm}$. in length. The largest specimen was a male; $0,65 \times 1,25=0,8125$, i. e. about the length of the mature male.

This example seems to show that in the ease of species with a relatively constant length of shell we mar expect a far-reaching agrecment even in those cases where only a small material is present.

We must note the very slight difference in the growth-factor in different species: Cypridina (Doloria) pectinata $=1,22$, Cypridina (Vargula) norvegica $=1,21$, Philomedes globosa $=1,2 \%$, hrithe $s p .=1,245$.

If thus a number of cases agree particularly well with Brooks's law, there are, on the other hand. a great many exceptions to this law to be noted. It is certain that the law is by no means absolute. It obviously applies only with a number of restrictions and with certain assumptions.

This has already been pointed out by G. H. Fowler himself. This investigator pointed ont, 1909 , p. 258 , that it seemed to him possibie that not only the average lengths and the growth-factors employed by him but also ,,the law itself, as here phrased" are approximative. As is seen above this author has shown that the same growth-factor does not presumably apply to all stages in large forms with many moults (Homarus, Carcinus). He states on p. 258 that this is presumably true ,even in Ostracoda of small size and few stages". We find this latter assumption true in the case of the males of Cypridina (Doloria) pectinata and Cypridina (J'argula) norvegica. On the other hand there are no such cases in G. H. Fowler's own examples.

Krithe sp. shows obvious variation with regard to the growth-factor. The larvae of Conchoecia elegans can certainly be divided into well distinguished categories of length - contrary to what Cr. H. Forver observed - but they do not permit of any simple application of Brooks's law. Males and females have different growth-factors at the change from Stage II to Stage I and at the change into the mature stage. It is to be noted that the growthfactor is about the same for males and females at the transition from Stage II to Stage I. I have also observed other cases that do not conform to this law, for instance Asterope Gimaldi, a form that I caught in rather large numbers in the harbour at Monaco.

We must note that in the cases in which there was agreement with Broons's law all the specimens that were investigated were eaught at the same locality and on the same occasion. On the other hand the water in the harbour at Monaco is subject to great yariations and the same is true, though not to such a great extent, of the water in the Bay of Villefranche.

On pp. 227 and 228 (. . H. Fowler points out (1909) that it will probably appear that the growth-factor is not quite identical for the same species and sex , at every
geographical position and sea-climate". It remains as a fact that the same species has different sizes at different localities. Thus the specimens of Philomedes globosn measured by me were only $2,4-2,6 \mathrm{~mm}$. at Skager Rack while the same species attained a length of $2,9-3,1 \mathrm{~mm}$. at Greenland. This difference in length is not due to the species undergoing a different number of monlts before maturity under different external conditions. The number of larval monlts in the Cypridinid group seems to be constant for every species, as is shown above. Corresponding classes of length were found at the different localities, but the absolute measurements are different; ef. Philomedes globosa. This difference in length really seems often to be accompanied by a difference in the growth-factor. Unfortunately my material was not large enough to work out a definite answer to this problem by means of it. A fact that supports, however, the idea that there is sometimes an alteration of the growth-factor is that the embryos in the brood-chamber of large individuals are often not essentially larger than those in small individuals. (In the large individuals, on the other hand, the number of embryos is often larger than in small individuals.)

The final result of my investigations is thus that the growth-faetor during the post-embryonal development of the Ostracods is presumably an inherited factor, but it is rather

Summary of the results of my in. sesugatuon of thus problem.

SPECIAL PART.

Order：Ostracoda．

For synonymy，see（f．W．Muller，1912，p． 1.
Diagnosis and description：－Cf．G．W．MíLler，1912，pp．1－4．

Historical：－C．YON LINNÉ was the first to denominate scientifically a form belonging to this group of animals，and although still earlier investigators，even the Nestors of microscopy， SWammerdan and Leevwenhoek，had already been occupied to some extent with the study of Entomostract－and in this could of course scarcely avoid coming across some species belonging to the group in question－yet this master of science was，at least if we are to judge from the results to be seen in the literature，the first to make an attempt，even though a groping one，at a closer investigation and description of an Ostracod．－O．F．MLler states in 1772 that H．Baker in his work，Mieroscope made eas y^{*} ．1743．had already mentioned an Ostracod；this statement is，however，due to a mistake．

In his ，，Fauna Suecica＂， 1746 ，LINXÉ gives on p． 344 a species called：，．，IImoculu，＊ antennis capillaceis multiplicibus，testa bicalie＂，with，one must admit，a very superficial de－ scription，and this form，certainly a Cyprid，occurs again in the author＇s ．Whetema Naturae ${ }^{6}$ ，10thed． 1758 ，p． 635 and in ，Famna Suecica＂of 176 J ，p．W9s，under the name of Monoculus conchaccus．In ，Systema Natarac＂，175s，are also given two other Ostracod species；these also presumably C＇yprids．Monoculus lenticularis and M．trlomus． which are also only superficiatly described．

Even in the later part of the 18 th century we come across a number of works which mention，among other things，forms belonging to Ostracoda；examples are H．Bubek．17．．3．3． L．Joblot，1754，Il．F．Ledermilleer，1760，（\％．de Rivilide，1760，N．Porl．1761．E．L．
 and B．E．Mancel，1792．－Most of these comparatively numerous works，however，did little ro nothing to increase the knowledge of this group of animats．Only O．F．MCLLER＇s two last works，especially ，Entomostraca seu Jnsecta Testacea＂．1785，an extensive work for his time，indicate a real step forward．In the last－named work ML゙LLER gave two genera，Cypris and C＇ythere，the former with eleven species living in fresh water，the latter with five marine species．By this classification the foundation may be said to be laid for the great

Digitized by Microsoft ${ }^{(B)}$

and certamly quite natural families Cymbidae and Cytheridac. - G. de Rivilue's work, a small article cotitled ... Memoire sur la mer lumineuse" is noteworthy because in it are to be found the first aceount and - for his time comparatively good - figures of a species belonging to the sub)-order ('ymidiniformes. The author, however, gives no name to the form investigated hy him, nor does he try to classify it; he merely points ont that it seems to him ..ressmbler. . . . des Puces d'ean"; his work does not seem to lave given mueh stimulus to new investigations: on the contrary it seems until recently to have been forgotten.

During the earlier part of the 19th century, a rather great number of writers devoted themselves to some extent to the study of the Ostracods, but they too obtained comparatively insignificant results. As examples may be mentioned such works as those of L. A. (. Bosce,
 1825. P. A. Lettreille, 1829, C. M. A. Kocil, 1837, H. Milae Edwards, 1840, A. Philifpi, 1840. and (4. \%adDaciI, 1844. - Although most of the works during this period were purely classificatory, devoted principally to describing species, yet as far as the natural classification of the Gitracod group is concerned, scarcely any results were obtained beyond those arrived at in O. F. Méller’s work 1785. - H. Mllae Edwards' and A. Philippr's above-mentioned works are, however, noteworthy because in them were for the first time seientifically denominated and classified forms belonging to the sub-order Cypridiniformes; in the former of these two works the genus Cypridina was established, in the latter the genus Asterope; the descriptions of these genera were, however, exceedingly incomplete and, in addition, contained serious errors, so that our knowledge of the forms belonging to them was but slightly increased. L. JuriNe's ,Histoire des Monocles", 1820, may be said to be the most important of these works, at least as far as comprehensiveness is concerned. In it are described no less than 18 fresh-water Cyprids, and in addition it contains rather important statements about the oecology of these forms, especially about the conditions under which they propagate. With regard to the acuteness of both morphologieal and occological observations, however, H. E. Strats seems to be quite as capable as or even somewhat superior to the last-mentioned investigator. The ralue of this author's abovementioned work, ,Mémoire sur les Cypris", 1821, is also increased by the fact that it was in it that the Ostracods were first separated from the other Entomostraca as an independent group.

Abont this Strals writes as follows l. c. pp. 33, 34: „Les deux valves qui recouvrent le corps des ejpris aroient fait illusion aux naturalistes, qui trouvant des parties semblables chez les daphnia, les lynceus, etc., ont rémi ces divers genres dans une même famille, quoique la différence de leur organisation soit très-considérable; je crois cette différenee assez grande, non-seulement pour considérer les c ypris comme appartenant à une famille distincte de celle que j'ai établie sous le nom de D a phnides, mais même pour devoir former un ordre nouveau dans lequel je place encore les cythere." On p. 58 in this work the name :Ostrapodes" is proposed for the new group.

In passing we may diseuss a problem of nomenclature which is rather important. We see that Ostrapoda is the name first given to this group. Ought it to be kept?

The first time in literature that we come across the name Ostracode, which is mowalays practically guite the accepted name for this group, is in P. A. latheille's work, ,H istoirn naturello des Crustacés et des Inseets", 1802. The , "ordre quatrimeme" of Entomostract, under which the author includes the genera Lanceus, Dapknia, ('ypmis and Cythere, thus both Ostracods in the modern sense and Cladocera, is called Ostruchode in this work (p. 17). The same classification is employed in this writer's later works (1806 ant 1810); the name is written, however, somewhat differently: Ostracode (pp. 17 and 89), thus with the now generally accepted spelling. In his work of 1829 this author divifles , be premier ordre des Entomostracés", Branchiopoda, into two branches, Lophyrope ant Phyllopa. Lophyropa is divided (p. 151) into three divisions: Carcinoida, Ostracoda and Cladocera. Of these three groups Ostracoda includes two genera: Cythere and Cypris; Cladocera consists of three genera Polyphemus, Daphnia and Lynceus. In other words this author thins follows H. E. StRaus's example in differentiating between Dapheia ete. and Cythere and C'ypris but rejects his nomenelature. He writes Ostrapoda SThaus as a synonym for Ostracoda Latio., but this is elearly not so. In his work ,Cours d'Entomologi e", 1831, this author is, however, more consistent; in it he employs (p. 429) the name Ostraporda Srisits for the grom, formed by the genera Cythere and Cypris. A. G. Desmarest (1825) follows H. E. STRAL's consistently. - In passing it may be mentioned that A. Philippi, 1840, p. 186, uses a variant of H. E. Smaus's term, namely Ostracopoda. - The name Ostrapota is obviously the right one for this group, but it has been so completely forgotten, the name Ostracoda has come into use in such a great number of works and has been so completely admitted into scientific literature that it would be quite impractieal at this late date to adopt the older name again, especially as the rules of nomenclature that are now followed do not make it absolutely necessary to use the prineiple of priority in this anse. Accordingly inthe present treatise I have retained the uamm Ostrucode, and I must take the risk of doing the inventor of the name Ostrapode what T. R. R. Stebbing in his work published in 1910 - in which the name Ostrepode is again uset - ealls on p. 495 ,a great injustice ${ }^{64}$.

From the middle of the 19th century the investigation of (1)stracods may be said to begin a new epoch. This is especially the ease with regard to the study of the salt-water representatives, i. e. that part of this gromp to which the present work is devored.

In the following portion of this historical résume attention will be paid practically exclusively to progress in the study of the salt-water 0 stracods.

While up to 1840 practically all investigations were concemed exclusively with freshwater forms and only a few investigators such as O. F. MClulele, (i. de Riville. H. MhAREdwards and A. Philippi, the three latter only cursorily, were directly oeenpied with the study of salt-water forms, towards the middle of the 19 th century there appeared a number of seientists with comprehensive and illuminating works on the sea-Ostracods, and after interest was once seriously roused, investigation has continually been direeted to them, even though it must be said that this study, compared with the very intensive work on many other animal groups during the same time, has always been rather badly treatert.

Wh the bery momens works on the mane Ostratods that have appeared sine the beammine of this perinal only a few of the most important can be mentioned here: W. Bambe,

 and N. HHRCHMASN. 1912.

The worles from the earlier part of this period are for the most part purely classificatory. Questions of veeology and comparative momphology seem ats a rule to have been outside the suhere of intersit of the anthors of this time, or were at least only cursorily discussed. These works are certainly not noteworthy for any great acuteness and preciseness in establishing details of morphology, on the contrary the species described during this time are treated so superficially, the diagnoses often consist merely of generally formulated descriptions of the shell, that in most cases it is quite impossible to identify them with eertainty nowadays. Our knowledge of the ()stracod system was, however, rather rapidly enlarged, the main features of the natural classification of this group were already during this period brought within the limits of our knowledge.

Among the earlier works of this epoch one may without hesitation point out that of II. Lhluemorg, published in 1853: „De Crustaceis ex ordinibus tribus: C'ladocera. Ostracola et Copepoda, in Scania oceurrentibus" as the foremost, both as regards the excellence of the drawings and the number and exactitude of the morphological details given. On the other hand this work is not distinguished by any systematic acuteness: a striking weakness is shown, for instance, in the complete absence of any classification into families; the Ostracods are in this work divided directly into genera; in the morphological interpretation of some organs of the Cypridinids this author was also not so fortunate. In these two respects this work is far inferior to J. D. DANA's work 1852. With regard to the forms belonging to the group Cypriformes \mathbb{W}. Liljeborg attained much better results; these may be said to be a very great advance; unfortunately; however, they could not be used to any great extent because most of the work was written in Swedish.
(f. 0). SJRs' two above-mentioned works, F. Iluller's essay on the genus Cypridina, 1870, and C. CLALS' different works all show a fairly big advance in the department of morphological study. G. W. MíLLER is, however, beyond all comparison the most important author for the development of this study. His monumental monograph , Die Ostracoden des Golfes von Neapel", 1894, dealing with the marine Ostracods in an exceedingly comprehensive and exhaustive way both from the systematical, phylogenetical, morphological, and oecological standpoints, immediately made this group one of the best known among the marine invertebrates.

After this work of (\mathbf{i}. W. Méller the study of the marine Ostracods may be said to have entered on a barren period. The succeeding works - even those of C. W. Mctleer himself -- are practically all mere descriptions of specjes. There are, however, a few exceptions, for instance N. Hirschmatis meritorious little work in 1912, especially valuable for the
thoroughgoing study of the organs of copulation in the Cytheridue, one of the most diffienlt problems presented by this group of animals.

For more detailed information with reqard to the progress of the study of the 0 stracods' special classification, morphology, etc. I may refer the reader to the historical résumés to be found in the succeeding part of this work in comnection with the discussion of the various units of the system.

During this period the fundamental features of the natural system of the 0 stracods underwent the following development:
W. Bamb was the first to divide this group into families. In his above-mentioned work 1850a, ,Natural History of the British Entomostraca" a rather eminent work for its time, this author divides the Ostracod group into three families*:

$$
\begin{aligned}
& \text { Family I. Cypridue with the genera Cypris and Cundona. } \\
& \text { " II. Cytheridae ". " } \text { " Cythere and Cythereis. } \\
& \text { " III. Cypridinadae .. ", genus Cypridina. }
\end{aligned}
$$

The families are classified by this author directly into genera.
J. D. Dana makes a further very important advance. In his monumental work on the Crustacea brought home by the , United States Exploring Expedition" of 1852, he divides the Ostracods, called Cypriducen or ('ypronder, into two families, both composed of two sub-families:

Family 1. Cypridae, comprising the sul)-famities ('yprince and r'ytherinae.
C'ypritinimae and IInlocyprinue.
The last-named sulb-family comprises the two interesting gemera discovered by this author, IHalocypris and ('onchoccia. The sub-families are divided in this work directly into genera and species. This classification may be said to form the basis of the present systen of the Ostracods.

The classification employed by (f, O) S. Sks in his work on the () stracods of Norway 1865, certainly follows that worked ont by J. D. Divi. but is. however, notewertly partly on account of the far-reaching extention of the new gromps by the establishment of a rather large number of new genera, partly by the fonding of some now main groups. based on forms that were completely or ahmost completely mbnown to fomer anthers, partly the becallose in this work the names nowadays adoped for the large main gromps were nsed for the first time. G. O. Sans divides the Ostracods into four sections, comprising altogether six families: Sectio I. Podocopar comprising the families Cypridue and C'ytheridue

$$
\begin{aligned}
& \text {.. II. Myodocopa. } \\
& \text {.. } \\
& \text { III. Cladocopa. } \\
& \text {.. } \\
& \text {.. } \\
& \text { II. Platycopa. } \\
& \text {.. } \\
& \text {.. } \\
& \text {. }
\end{aligned}
$$

 of the arrangement of the british Entomostraer which I proposs to adogit" this author, cmiously emough, makes the Ostracods comprise only one family, named Cyprifldere including all lyw fise abmomentioncal whera. This

The sectio c'ladocopu included a genus Polycope that was quite manown before; the sectio Matyenper was based on a genus ('ytherella, previonsly known only incompletely from Lossil specimens. The families were divided bey this anthor directly into genera and species.
(i. A. Brath in his work 1868 b adopts the above-mentioned elassification ol s.ats's; his work is noteworthy becaluse of the establishment of a new family, Futomoenchidue, comprising wo genera. Fintomoconchus and Meterodesmus. The guestion of the value of this family I shall mot disens:: I only wish to point ont here that the genus Ileterodesmus, which is placed by (: II. M"LbER, 1912, among , Ostracodum genera et species incertar sodis". may possibly be regarded as a typieal Cypridinid genns: ef. the note below on the suh-genus siphonostra. Entomoconehs is only known from fossil specimens.
(i. O. Suns carried out a rather important improvement of his above-mentioned system in his work on the Ost racods of the Mediterranean, 1887: in it he arranged the genera Pesider and Bythocypris as a separate family within the group Pordocopa.

Another important thing was the establishment of the family Dorwinuldae as a new unit within Porlocopa ((G. S. Bramy and A. M. Norman, 1889).

Most of the imestigators who have worked on this group have adopted unaltered the fundamental principles for the Ostracod classification used by (i. O. Sars. G. W. Mither, however, adopted this system only in a modified form. In his large monograph, 1894, this author classifies the Ostracods in the following way:

Tribus 1. Myotocopa. comprising the families Cypratinidue, Malocypridte and Polycopitue.
11. Podocopa. ., .. ., C'ypridae, Nesideidae, C'ytheridae, Cytherellidae, and Demwimuledue.

In other words, of (t. (). Sins' four sections (i. IV. MOLLER mites ('Yadneope with Myodocopa and Platyona with Podocopa.

Only one author, C. Chas, entirely rejects the basis given by J. D. DANA for the Ostracod system. He looks upon the Cypridinids, Halocyprids, Cyprids and Cytherids as equivalent families. See (. CLAUs, 1876, p. 97 and 1891a, p. 6.
(i. S. Braby and A. M. Norman; 1896, who, like G. O. Saki, look upon the l'olycopids and the Cytherellids as groups systematically equivalent to Myodocspa and Polocopa, classify Myodocopu in no less than five families:

$$
\begin{array}{cl}
\text { Family } & \text { I. Asteropidue } \\
\text {.. } & \text { II. Cypridinitae } \\
\text {.. III. Rutidermatidue } \\
\text {.. } & \text { IV. Sarsiellidue } \\
\text {.. } & \text { I. Halueypridue*. }
\end{array}
$$

In other words these authors do not, like G. W. MíLLEER, look upon the H a locyprids as a group systematically equivalent to the Polyeopids and the C'ypridinids, but as

[^27]equivalent to the sub-groups of the (y ypridinids. A. SCott, 1905, and A. M. Norman, 1905, also employ the same classification.
G. II. Muller, however, even in his later works, among others that of 1912, which to some extent may be said to form a conchsion to an epoeh of the history of Ostracod investigation, uses maltered the fundamental classification that he worked out in 1894. In this he is only followed by T. R. R. Strabini, 1910.

Since then the system has been enlarged by a momber of families being divided into a greater or less number of sub-families. For this development I must refer the reader to the historical résumés given under the sub-orders.

At a very early date it was sumised that the Ostracods would prove to be one of the gromps riehest in species within the Entomestraca and time has not disproved this. Thus G. IV. MUllef in his synoptic work 1912 records no less than 1719 deseribed recent species. To judge, however, from the latest works and from my own experienees in working out the present treatise, this figure seems by no means to be the linit. At the present time there seems to be on the earth an Ostracod kingdom enomonsly rich in forms. Under these ciremmstances it is, of course, absolutely necessary to take the utmost care in introducing new forms into the literature, otherwise this will soon br quite unwieldy. This seems, however, not to have been recognised by most of the investigators who have been occupied with the systematization of the Ostracods. This may perhaps best be ilhustrated hy (i. W. Mr"Llerens statement (1912) that only 921 ont of the 1719 specjes recorded by him coukd be considered as .,certain"; in reality the proportion between ,certain" and ,,uncertain" species is probably. aven more discouraging. This lack of care applies especially to the works of (i. S. Bkath, one of the most productive authors in this departement. It must be admitted that mont, ahmost all, the descriptions of species that this industrious author has published are so incomplete and uncertain that they are quite insufferent for full certainty of identification. Instead of advancing our knowkedge of the 0stracods most of this anthor's work has only rendered the study of this group of animals more difficult. But even the most aminent of our ()stratod investigators - G. W. MüLLER not excepted, this applies especially to some of this author's later works - can searcely be aequitted of the eharge of superficial descriptions. ()ne must admit, unfortunately. that the method of description of species within this group is still at rather a low level.

Remarks: - As appears from the preceding historical survey, there are, with regard to the main lines for the systematie classifieation of the Ostracod group, three separate and mutually opposed views present in the literature of the subject, namely these of (: O. SARs. G. IV. MUleer and r: Claus.

According to (t . O. Sals this group is to be divided in the following way:

.. II. Myodocopu.
('ypridinitue and Halorypridue
., III. Cladocopa.
.. family Polycopidue
.. IV. Platyeopa

Descripleon of the speries.

Aceording to (i. W. MCLLER: view, the following is the correct classification:
Tribus I. Myodocopa. comprising the families C'ypridinidue, Hatocypridae, and Potycopidae
II. Podocopa. ('ypridae, Darwinulidae, Nesideidae, Cytheridae, and Cytherellidae.
C. CLats, on the other hand, divides the Ostracod group directly into families. According to this anthor the Halocyprids form a transitional group between the Cypridinids and the families grouped under Podocopa.

Which of these methods of classification is preferable? Is any of them to be regarded as completely right?

I have tried to answer these questions in the second chapter of the general part of this work, entitled: .. Contributions to onr knowledge of the natural system of the Ostracods." As is seen in p. 101 the result of my study has heen to show that it does not seem guite convenient to adopt any of these three methods of classification quite maltered. It appeared to me to be necessary to divide (i, O. Surs' sectio Myodoeopa into two main groups equivalent to P'odocopa, Cladocopa and Platyeopa, but apart from this SaRs's view has been accepted. The main classification of the Ostracod group that is employed in this work is as follows:
sub-order I. Cypridimiformes, comprising all ('ypridinids

$$
\begin{aligned}
& \text {.. .. II. Halocymiformes, .. , Halocyprids } \\
& \text {.. .. Ill. Polycopiformes, Polyeopids } \\
& \text {.. .. IV. ('ypriformes. .. C'yprids, Darwinulids, Nesideids, } \\
& \text { and (!ytherids } \\
& \text { V. 'ytherelliformes. ('ytherallids. }
\end{aligned}
$$

In what order onght these groups to be placed? In other words, is it possible to decide which groups are most primitive?

As is shown in the abovementioned chapter in the general part of this work, the facts of the matter are presumably that each group is in a number of respects more primitive than the others, in other respects more developed. It is difficult to decide with certainty which of these groups has the greatest number of primitive characteristics. Under these circumstances it seems to me most convenient to adopt the arrangement used by G. W. Mullerer.

Sub=Order I. Cypridiniformes.

Gen. ,C'ypridines", H. Matae Ebwaras, 1838, p. 178.
Cypridinu. H. Mlane EdWabds, 1840. p. 409.
Fam. Cypridinadue, W. Balst, 1850 a. p. 176.
Sub-Fam. Cypridininue, J. D. DANA, 1852, p. 1281.
Fam. Cypridinidae. G. S. Brady, 1868 b, p. 462.
G. IV. MULLER, 1894, p. 203.
.$"$ Asteropidue + Fam. Cypridnidue + Fam. Rutidermatidae + Fan. Sarsiellidae, (t. S. Brady and A. M. Nolkial, 1896, pp. 628, 638, 673, 675.

Cypridinilae, (i. II. M'LA, 19, 1912, p. 7.
Diagnosis: - in hell: - Has most often on the anterior border a more or less welldeveloped rostral sinus, placed at or a little beneath, rarely a little above, half the height of the shell; its dorsal and ventral margins most often more or less convex: the hinge very seldon with teeth; within the free edge of the shell a greater or less number of nedial bristles*; the edges of the valves without or with comparatively few glands; most often with a strong incrustation of lime.

First antenna: - Originates rather deep down on the front. Strong, more or less elongated, with $5-8$ joints; first joint quite without bristles is directed more or less upwards. and together with the next joint forms a decided knee. open downwards. The original fifth joint has, in the male always, in the females most often, distally at the back a powerful sensory bristle, always (?) furnished with sensory filaments, termed ..the sensory bristle of the fifth joint", but apart from this this joint has no bristles at all. This limb is principally a sensory and locomotory organ, as an organ of locomotion, however, it never co-operates in swimming.

Second antenna: - The protopodite is situated on the side of the upper lip. With a rather narrow base, very movably united to the body; large, relatively high, heartor pear-shaped flattened at the sides, with very powerful musculation, unjointed, without any obvious traces of the boundary between the original joints; sometimes with a short bristle

* These medial bristles prevent foreign barticles from ontoring the cavily of the shell but allow a free exit. being, at least the outer ones, almost always directed outwards.
situated distally. Exupodite: Very monably joined to the protopodite, with which, in a position of rest, it forms a decited, ventrally open knee; developed into a powerful, long, cylindrical. (ahwas:) 9-jointod locomotive organ (in all the species of this group investigated by me for this treatise leonstantly fond nine joints); almost always used for swimming. Its first joint always extended. forming distally-laterally a powerful, almost reetamular process which extends over the base of the serond joint (functions as a ratehet), is either entirely without bristles or has distally-sentrally an extremely short and weak one. The suceceding joints grow narrower the more distally they are sitnated; the distal one is very small; at least the six distal ones of them are short; the seeond to the eighth joints each have a bristle distally-ventrally and somewhat medially; on the third to eighth joints these bristles are long and powerful, annulated along the greater part of their length; most of them most frequently provided with natatory hairs arranged in feather shape; the bristle of the second joint generally rather long, powerful. ammlated, in exceptional cases almost completely reduced; the end joint has distally more than one bristle, one of which at least is long and powerful. A greater or less number of the distal joints have a more or less powerful spine situated ventrally-distally and somewhat laterally. Endopodite: Always considerably shorter and weaker than the exopodite; of a rather varying type, with never more than three joints; sometimes more or less reduced in one or both sexes. In the male often developed into a clasping organ by which the female is held fast: never used as a locomotory organ.

II andible:- This is always very powerful, and elongated, chiefly used for crawling and digging. Protopodite: This is always two-jointed. The coxale, which is fixed at the sides of the body just behind the second antenna, has most often a comparatively weak endite directed backwards-torsally (used only for inserting the food into the oesophagus, never as a masticatory organ?); this endite is sometimes, however, entirely absent. Anendite is sometimes found on the basale in the Asteropids, but there is usually no well-developed one; traces of an endite in the form of an accumulation of bristles proximally-ventrally-medially on this joint can most often, however, be stated to exist. Epipodial appendage always absent. Exopodite: Is fixed distally-dorsally-laterally on the basale, always more or less dimimutive (reduced?), unjointed, often including the openings of a powerful gland; sometimes entirely absent. Endopodite: Is always powerful, 2-3-jointed, forming together with the protopodite a decided knee open downwards.

Maxilla: - Very varying in type; always used in taking up food. With a welldeveloped endopodite. Its exopodite always more or less reduced, sometimes even quite absent. Epipodite sometimes developed, forming a lamelliform appendage, most often with fine hairs and quite without bristles.

Fifth limb: - Similarly of very various types, always used in taking up food. Fixed at the sides of the body, just at the boundary between the head and the body. Always with a relatively short exopodite. Endopodite often not developed. With a large and puwerful oval epipodial appendage developed as a vibratory plate, attached vertically to the protopodite along its whole length and furnished with very numerous marginal bristles, not divided into distinct groups; these bristles are furnished along
the greater part of their length with close, fine, stiff, rather long hairs, arranged in shape of feathers.

Sixth limb: - Forms a comparatively short, lamelliform, very slightly moveable or sometimes immoveable, plate of somewhat varying type, situated ventrally on the borly between the mouth and the furea; is apparently never used as a locomotory organ.

Seventh limb: - Originates rather high up on the side of the back of the body. Very elongated and mobile, annelid-like, with very mumerous joint-like, ring-shaped chitinous stripes (like the structure of the trachea), but with no real division into joints; flattened distally and here armed more or less abundantly with cleaning bristles arranged in a single row along the dorsal and ventral edges of the limb. The cleaning bristles are of about the same type within the whole group, rather powerful, amulated and provided distally with bell-shaped segments, overlapping each other somewhat; these segments become more and more narrow the more distally they are situated, and are armed along the distal edge with a dense serios wh moderately long, fine, stiff spines. This limb is often fitted at itn point with teeth arrangod in the shape of a comb. It is absent in mates of the genns Sarsiella.

Brush-like organ: - Is absent ammst throughout. For the possible ofentrence of this organ on the penis see p. 76 above.

Copulatory organ: - Paired, varies a good deal in type; compared with the same organ in other Ostracod groups it is in most rases of a rather simple strueture. The vasa deferentia do not pass through it.

Furca: - Always well developed, large, powerful. with comparatively shomt, bromb lamelliform rami, atways armed with several powerful claws. The posterior part of the dorsum lorms a rather strongly chitinized, oval, somewhat spon-shaped fureal field, which is well defined from the furcal lamellae and furnished with a well developed moseular systom: ser (i. W. Míllefe, 1894; pl. XXXV, figs. 5 and 11. Proximally to the furcal chaws there is mo mpaired bristle (such as is found for instance in Halocyprids and polyoupids).

Alimentary organs: - Mouth wide, narrowing rapidly towards the interiors. Itrinm relatively weaky defined. Jabram varying in trpe, sometimes rery large. sometimes rather small. Lower lip very small, may be quite absent. Paragatates most frequently quite absent, and if developed. small and weak. The glands of the upper lip most frequently developed but very varying in type and development: may be absent. Oesophagns rather long, most frequently very strongly muscular, somewhat varying in type. Stomach large, oval, most frequently without hepatieal appendages: surrounded by a layer of pigment cells, outside which is to be foumd a stratum of wide-meshent comective tissue. Rectum very short, opening out in fromt of the furca. Noparts of the digestive organs ever penetrate between the lamelace of the shell.

Sexualorgans: - Male: The testes are paired and comsist of lwo bayshaped oval bodies situated posterionly in the body. From each of the testes there rums a mathor short, wide canal, vas deferens; the vasa deferentia emerge with a commom porn just in front of the anus, i. e. between the two penes; they mite mather near the onter pxit; see

are paired and are situated posteriorly in the body. In young sperimens they are hag-shaped.
 They gradmally pass into the thin-walled oviducts (which are widened distally only in (werptional (ases): these emerge paired. in most cases on small genital lobes situated in the corresponding places as the copmlatory organs of the male. Two reeeptacula - 0 minis are developed, one on each side: each receptaculum consists of a chitinous capsule. Which is sometimes sumk deoply in the body, hat in most cases, however, projects freely (in the wenital lolve) and emerges close to the oviduct. No parts of the genital organs pemetrate between the lamellae of the shell.

Heart always developed.
Organs of sense: - Lateral eyes most frequently well-developed. less often more or less reduced, seldom quite absent: the momber of ommatidia varying greatly. - The nauplius or median eye situated rather deep down on the forehead. always developed. sometimes (Gitgomtocypris) extremely large. Ventrally close to the namplius eye there is a rod-shaped frontal organ, often rather long, sometimes rery small (or exen mot developed at all?). - Some of the limbs have sensorial bristles.

Branchiae sometimes developed dorsally on the back of the body.
The eggs are carried contimusly after laying between the shell and the back of the broly until they hatch.

Salt-water forms of moderate size or sometimes peen very large (maximmm length so iar found: 21 mm . ('igantocypris). Most frequently more or less completely eonfined to the hothom: sometimes, howerer. they belong entirely to the plankton.

Special terminology: - Second antenna: - The spine at the base of the natatory bristles of the exopodite is called ,,hasal spine".

Mandible: - It does not seem to be quite right to follow most writers in calling the endite of the coxale a ., masticatory process" since, at any rate as far as we know, it is not nsed directly in dissecting food. In the present work it is ealled (except in the family Isteropidue) simply endite.

Seventh limb: - The bell-shaped segments distally on the cleaning bristles are called ,bells"; the most distal of these segments often ,the end-tongue". The comb-like formations distally on this limb are called ..end-combs".

Historicul *: - Some of the first publications about forms belonging to this group consist mercly of descriptions of species written in very general terms, based exclusively on the onter characteristics of the shell. But even the earliest writers on this subject made an attempt at

[^28]a closer study of the morphology of these animals and the main features of this became rather well known comparatively soon.

At first rather serions mistakes were made in interpreting the limbs, the organs which, after the shell, quite naturally aroused the greatest attention; this is, of couse not so surprising when one remembers the frequently peeuliar type of these organs, how chosely together they are situated and the small size of the forms investigated.

Thus H. Mhne Edwards in his work of 1840 denotes these organs as follows: ,antemme supéricure pediforme" ($=$ first antenna), „patte natatoire" ($=$ second antema), ,antemme inférieure" ($=$ mandible), ,mandibule" (this organ is interpreted by C. CLAL's, 1873, p. 214 as ., einen paarigen Seitenfortsatz der Oberlippe"; it seems to me impossible to decide with certainty whether this assumption is correct or whether the organ described by Mune EDMARDs may possibly be the maxilla), ,machoîre de la première paire" ($=$ fifth limb). , machoirre de la denxièm" paire" (presumably the sixth limb; it seems to me rather improbable that it should be the maxilla; if it were so the sixth limb, which is rather conspicuons, would not have been observed at all) and ,patte ovifère" ($=$ seventh limb). The descriptions and drawings of these organs are extremely incomplete and uncertain. This author writes on p. 410: , Les deux paires d'antennes . . . constituent des rames natatoires . .. - In W. Bann's work of 1847 we find the following interpretation: ,anterior antema" (- the mandible), ,natatory foot" ($=$ the second antema), ,second pair of antemae" ($=$ the maxilla), ,the mandible I did not sueceed in seeing". .first pair of jaws" (the fifth limb), the sixth limb is not mentioned, the ,oviferous foot" ($=$ the seventh limb). Compared with this interpretation the one we find in the same author's work of 1850 a may be considered as an advance, even though a small one: "first pair of antemac" ($=$ first antenna), "second pair of antemate" ($=$ mandible), „natatory foot" $(=$ second antenna), ..the mandible is a flat plate armed at its extremity with three or four sharp teeth", p. 177, (it is difficult to decide which limb or part of a limb is referred to; it may possibly be a part of the fiftlu limb), "the first pair of jaws is composed of a large body with three or four appendages. like fingers, armed with stout cilia, and having attached to each a large branchial plates, p. 177 (here tow it is difficult to decide which parts are refered to, possibly the sixth limb with the vibratory plate of the fifth: it scems improbable that it should be merely parts of the fifth limb that are referred to, whe reasm among others being that it is certainly a species belonging to the genus Philomedes that has formed the basis for these statements), ,second pair of jaws" (- maxilla), and , oviferous foot" (seventh limb) - S. Fisciner may be said to have been still more unfortunate in his work of 185.5: ,"erste Anteme" (- first antema), ,zweite Antenne" (- mandible), ,,Mandibel" (- the fifth limb or the masticatory part of the fifth limb + the sixth limb), "Maxille" (- maxilla), ,hinter ihm" (maxilla) "liegt die ziemlich grobe und starke Kieme" (either the vibmatery plate of the fifth limb or the sixth limb), ,und umittelbar unter (lerselben zwei nach rückwärts. geriehtete, mit starken befiederten Borsten versehene Pilpen" (the seventh limb?). This writer is especially unfortumate in the interpretation of the second antema; the exoporlite of this limb is interpreted as the ,erste Fuß"。 its endopodite as , aweiter Fuß". Fischera ako surpasses the two first-named writers in the indomplefentes andancernanty of the lescriptions:
 uf these forms takes the sambe standpoint as H. Mane bollimas, except that he interprets the maxilla correctly - this pair of appendages is called the first pair of maxillae, the fifth and cixth pairs of limbs the seeond and third patirs of maxilate - is a good deal superior to his contomperaries in acomacg and atheness in observing details and in the clearness of his deacriptions as well as in the elagance of his drawings. - It may be pointed ont as at curions fine that U. ('esta in 1845 exphaned the exopodite of the seeond antemae as branchiate, an assumption that was decidedly rejented by E. GRUBE already in his work of 1859 , p. 326.

As carly as 185%, thas before the above-mentioned works of S. Fischer and Wr. Lildeborit,
I. D. D.IN. howerer gave the first correct interpretation of the limbs of this group, and bis view senn found general acceptance*.

With rearat to the differences in opinion that have appeared in literature as to the terms for the varions limbs and with regarel to the various opmions that have been put forwared ats to the interpretation of the different parts of the limbs I merely refer in this comnection to what has been stated above in the chapter on terminology and the morphology of the limbs.

In 1838 H . MLAE EDMABD verified the existence of the lateral eyes and correctly described the structure of the furea. In a work of 1840 the same author found that the month Was provided with an upper lip. IV. LILJEBORG finds (1853) the median eye and the rodshaped organ** and surmises that the latter is a sensory organ; he writes about this l, c. p. 175: ., Hidt emellau ögonen sitter en lảng, utåt afsmalnande papill, som framskjuter mellan de öre antennerna. Vid basen ïr den uppsvälld, med en uppståente utvidgning, som innesluter ptt ämne, som myeket liknar ögats pigment. Möjligen torde denna papill vara ett känselmrgan****. This diseovery seems to have been quite overlooked by most of the succeeding writers. In 1864 F. MCluER stated (p. 72) that Cypridina, contrary to Cypris and Cythere, had a heart. - In passing it may be pointed out that (F . W. MUlllar, 1894, p. 169 writes that (. Clats was the first to observe this organ. It is certainly true that in his work of 1865, p. 143, C. ('Latus says that he had discovered this organ quite independently of other investigators. but when he published the work in question he had already (cf . p. I45) seen the above-mentioned publication of F . Méller.

The year after this work by \mathcal{F}. Mullel there appeared almost simultaneously two very impmetant treatises, first C. CLAUs's, Ueber die Organisation der Cypridinen" and shortly afterwards G. O. Sans's ,Oversigt af Norges marine ${ }^{1}$: tr racuder". ln both these works clear and also rather detailed descriptions were given of both the exterior and interior morphology of these animals, which may be said to lave become fairly well known through these works.

[^29]By his work „Ostracoda mediterranea", 1887, (t. O. Natin also helped in a high degree to make this group of animals known. This work together with (. W. Mütasil's big monograph of 1894 - especially the latter - are the publications that, broadly speaking, may be said to have earried our linowledge of the forms belonging to this sub-order to its present standpoint. Not only did the latter work, with its multituele of details, fill many gaps in our knowledge of the morphology of these animals, but in it, generally speaking, they wre treated, for the first and only time, from standpoints other than a purely morphologitalclassifieatory one; even their oecology was the subject of a rather thorongh study.

Of the other publications that deal with this group we may only mention here: A. GABbiAI, 1887, in which Cypridina mediterranea (). Custa was submitted to a morphologitalhistological investigation; the following organs were dealt with: the first antenna, alimentary organs, central nerve system, sensory and sexual organs. It is quite a meritorious work. ('. CLat's (1891 b) dealt with the median eye, A. Ramsch (1906) the female sexual organs in Cypridina; L. LUDERS (1909) made a rather thorongh study of the organisation of Giguntocypris.

The first to give a scientific name to and describe a species belonging to the sub-order Cypridiniformes was H. Mane Ebwariss in his treatises of 1838 and 1840. As is seen from the historical summary given above this author distinguished the new form from the other then known recent Ostracods - divided into two genera, C'ypris and Cythere by taking it as a representative ai a new genos, Cypridine. W. Bamb, 1850a, separated the then known forms of this group as a special family C'ypridimalae, by the side of which he put the families Cytheridae and Cypridae. (.. Claus suggested, 1876 (p.94, note 1)), that the gemus Asterope should be distinguished as a speeial family ,der Asteropiden" from other genera of this group then known, namely Cypritina, Monopia and Philomedes. (i. S. Brams and A. M. Norman, 1896, divided the known forms of this group into four families:

Family I. Asternpilae with only one genus Asterope

Crossophomes
Streptoleberes
Tetragonodon
Paramekiodon
Rutiderme
Eurypylus
Sarsiella
Vematoherm

G. W. MÜLLER in his later works ($19006 \mathrm{~b}, 1912$) empluys the following division of this group:

C'ypridimu
P'yrocypris
('rossophorers
C 'ondomocerare
Gieguntocypuis

Sub-liamily 1. Cypridemimere with live qeareat

Sub fambly	11. Philomedinur	three generat	Pseredophilomedes Rutidermue
..	111. S'ersiellimu'	onte gemus	Sarsiella
..	11. Asteropinur	.. two genera	$\left\{\begin{array}{l}\text { Asterope } \\ \text { Cyclesterope. }\end{array}\right.$

If these genera (i. W. MéLeli writes:

Phitomedes	ats :	syonyom of	T'etragomodon
P'seudophilomedes	P'uramekodon'
Sursielle,	Streptoleberis Eurypylus Nematohamme

 species of this sub-order, 105 of which would be ,ecertain", 50 ,uncertain". The proportion between "certain" and ,uncertain" is, however, much more in favour of the latter category, a fact that I haveunfortmately been only too often reminded of during my study of this group. Ifter this work of G. W. MUller some additional species, though only a few, have been incorporated in the literature of this group.

Remurks: - The difference between the two above-mentioned divisions of this sub-order worked out by (i. A. Brady-A. M. Norman and G. IV. Mülder is, as is seen at the first glanee, not profond. Two divergencies are to be noted. First G. IV. Mthema has removed the genera Philomedes and P'seudophitomedes from (i. S. Brams's and A. II. Nonas 's's family Cypridinidae and of these has formed a new systematic unit, the sub-family Philomedinae, ranged with the sub-family Cypridinmae, which includes all the remaining genera of the above-named family, and with the sub-families Sarsiellinae and Asteropinae. Secondly the same author has adopted the genus Rutiderma in the new sub-family Philomedinae, which genus had formerly been distinguished by (t. S. Beans and A. M. Nomanc as a representative of a special family Rutidomatidae, ranged with the Cypridinids, Sarsiellids and Asteropids.

Which of these divisions is preferable? ls any of them quite natural or is none at all suitable to be accepted without alteration?

I thorough study of the forms belonging here las led me to the following conclusions:
The separation attempted by G. IV. Mílle: of the genera Philomedes and Pseudophilomedes from the genera Cypritina, Pyroeypris, Crossophorus, Codonocera and Giguntocypris is undoubtedly at least partly justified. The two first-mentioned genera are, as is clearly shown by the descriptions givell by G. W. Müller and by those I have worked out below, decidedly opposed to the genera enumerated after them in so many respects that they must necessarily be separated systematically from the latter.

This, however, does not prevent the division given by (G. s. Briduy and A. II. Nonadx from having its adrantages. The sub-families Cypridinimae and Philomedinae are, it is true, well clifferentiated from each other, but on the other hand they are considerably more closely

Digitized by Microsoft ${ }^{\circledR}$

related to each other than to the sub-fanilies Sarsiellinae and Asteropinae: the similarity between the two latter sub-families is, in addition, considerably less than that existing between Cypridininae and Philomedinale.

With regard to the classificatory position of the genus Rutiderma the following information, taken from G. W. Müldel's work of 1908 , p. 91, may be put forward. (I have mofortunately had no opportunity myself of personally investigating any form belonging to this interesting gemus):

The shell reminds one strongly of the shell of some species belonging to the sub-family Phitomedinae, but on the other hand it undoubtedly approaches the type of shell in the sub-family Sarsiellinae.

The first antenna shows entirely the same structure as that of the females of Sarsiella.
Second antema: The reduction of the endopodite of this antenma reminds one of Sarsiella; the bristles on the exopodite of the females of Philomedes.

The mandible has a structure that differs greatly from all other Ostracods. but still it shows a certain relationship both to Philomedes and to Sarsiellet.

The maxilla shows a type rather similas to that of the females of sarsielle; it has, on the other hand, no close resemblance to Philomedes.

The fifth limb is, on the eontrary. considerably more like this appendage in the sub-family Philomedimae, it has no close resemblance to this appendage of Sarsiella.

The sixth limb is about half way between Philomedes and Sarsiella.
The remaining organs, ,scheint bei der Beurteilung der Frage nach den verwandtschaftlichen Beziehmgen kaum von Wert".

Finally on the page just mentioned G. IV. Moldeble writes as follows: ,Versuchen wir an der Hand des gegebenen Materials die Frage nach der Zugehörigkeit zur einen oder anderen Unterfamilie zu beantworten, so scheint es nicht leicht, diese Antwort zu geben: mit beiden Unterfamilien stimmt sie in Organen überein, deren Bau für die Unterfamilic besonders charakteristisch, mit Philomedes im Ban des ersten und zweiten Thoraxbeines, mit Sarsiella im Ban der ersten Antn., der Mandibel und der Maxille, doch ist zu bemerken, daß sich die erste Antn. auch nicht allzuweit von der von Philomedes of entfernt, und dab die Ubereinstimmung mit. Sarsiella im Ban der Mandibel keineswegs eine vollständige ist. Im ganzen ist unzweifelhaft die Übereinstimmung mit den Philomedinae größer, und halte ich es fiir angebracht, sie diescr Unterfamilie einzureihen. Aber sehließlich ist das etwas Geschmackssache, dil die verwandtschaftlichen Beziehungen zu beiden Familien unzweifelhaft"

This result, the grouping of the genns Rutiderma with Philomedes and Pseudophitomedex into one sub-family, seems to me incorrect. For even if Rutiderma were to turn out to agree somewhat more closely with the two latter genera than with the sub-family Sarsiellinue, it represents, all the same, a rather divergent type. It seems to me, therefore, more convenimat to follow the example of G. S. Brady and A. M. Norman and to distinguish this gemus as a representative of a higher classificatory unit.

The result of this discussion is consequently that neither of these two divisions is to be arerepted unaltered. The following combination of the two has been used by me in the present work:

> 11. Rutidermantitur
> III. Sarsiellitur
> 11. Asteromilas.

It is phobable, howewer that there is not complete a mivatence between these four families: yet this smons to me to be the division that best reproduces their mutual relations. In this ease it might be sad as (i. II. Wuturer wrote about the systematie jresition ol the gems: Putiderma: . Aber sehließlich ist das etwas Geschmackssache

Here it may be pointed out that all the above-mentioned groups, Cypridininue, Philomedinare. Putidermatidae, Starsicllidue and Asteropidue are certainly to be considered fuite natural.

Which is the mutual relation of the above-mentioned four families?
It still serms to be ton carly to try to enter more closely into this problem. For the presem 1 shall therefore confine myself to merely a passing reference to it.

The mily writer so far who has dealt with the mutual relationship of the forms belonging (1) these families is (i. II. Mơadse. In his work of 1890 this athor suggested on p. 224 that the genus Philomedes would form is conneeting link between the genus Cypridina s. l. and the genus Asterope. The reasons that seemed to this author to support this assumption were as follows:

The shell: In the genera Phitomedes and Asterope there sometimes appears a seulpturt of the shell in the form of prominent ridges, ,die wir nach ithem gesammten Verlanf als homolog bezeichmen miissen"; such ridges are, on the other hand, not found in Cypritima. The selvage is smooth-edged in Cypridina, in Philomedes it is broken up into hairs at the margin, in Asterope it is quite broken up into hairs.

Handible: The endite on the coxale is small and simple in Cypridina, somewhat larger and bifureated in Philomedes. large and very deeply bifureated in Asterope. The endite on the basale is large in Asterope, somewhat weaker in Philomedes, almost compotely or quite completely absent in Cypruina.

With regard to the maxilla and the fifth limb the males of Philomerles wonld from a lind of transitional type between Cyprutine and Asterope.

The sixth limb is jointed in Cypridina and in this genus the different joints are moved by special museles, in Philomedes this appendage is jointed, the different joints would, however, not be moved by special muscles, in Asterope it is quite unjointed.

Seventh limb: In the genus Cypritina ,sind beide Schenkel der Zange sehr ungleich, boi Philomedes sind die Unterschiede geringer, bei Asterope sind sie fast ganz geschwunden".

The rod-shaped organ, like the upper lip, would be atike in Philomedes and Asterope: the upper lip in these two genera would he specially characterized by the absence of slantular fields.

On the furca there sometimes appear secondary claws, "Nebendornen" in Phitomedes and Asterope: in the genus C'Ipridima there would be no such daws.

Digitized by Microsoft ${ }^{(B)}$

Proceeding from these facts G. Wr. MÜLLER then put forward the following hypothesis (pp. 225 and 226): „Der auffälligste Charakter der Gattung Asterope liegt (abgesehen von den Kiemen) in der Gestaltung der beiden Maxillen; die Formen dieser Gliedmaaßen, welche wir mit den bei Asterope* vorkommenden glaubten in Verbindung bringen zu können, treten bei Philomedes nur als secundäre Geschlechtscharaktere der Männchen auf, als ziemlich auffällige Abweichungen vom Typus. Um diese Formen zur Ableitung von Asterope heranziehen $/$ können, miissen wir zu der Annahme unsere Zuflucht nehmen, daß diese Charaktere des Männchens sich bei einem Zweig der Gattung auch auf die Weibehen übertragen liaben, aus welchem Zweig dann die Gattung Asterope hervorging. Nehmen wir diese Hypothese an, so bietet sich eine bequeme Handhabe für die morphologische Deutung der beiden Maxillen von Asterope, die Kluft, welche Asterope von den übrigen Cy pridiniden zu trennen schien, ist geschwunden (let\%teres auch mit Rücksicht auf die Kiemen); nehmen wir sie nicht an, so wird man immerhin nicht leugnen können, daß übrigens eine Reihe von Thatsachen existirt, welche wähere verwandtschaftliche Beziehungen zwischen Philomedes und Asterope wahrscheinlich machen, was wiederum als Grund für die Richtigkeit der oben geäußerten Hypothese angeführt werden könnte."

In his large monograph of 1894 G. W. Múller deals with this question in only a cursory manner. He merely writes (p. 204): ,Ob nun aber Cylindroleberis" ($=$ Asterope), ,,wie ich früher annahm, näher mit Philomedes verwandt ist, oder nicht vielmehr einen besonderen Zweig darstellt, der sich schon sehr friih von Philomedes abgetrennt oder ganz selbständig entwickelt hat, ist schwer zu entscheiden."

In his later works this author does not touch on this problem at all.
Is the genus Philomedes to be considered a transitional type between the genera Cypridina and Asterope, or, perhaps more correctly, is the sub-family Philomedinae to be accepted as a comnecting link between the sub-family Cypridininae and the family Asteropidae?

With regard to the characters that G. W. MÜLler has brought forward as evidence of a closer relationship between Philomedes and Asterope the following may be pointed out: The shell: The sculpture of the shell in the Ostracod group is subject to such profound variations and shows so many instances of more or less obvious convergence that this character can certainly not be a suitable one to adduce in this connection. In addition it may be pointed out that most reasons indicate that shells without prominent seulpture, shells with practically a smooth surface represent the primitive stage both in Philomedinae and Asteropidae. - In the genus Cyclasterope the selvage is smooth-edged on the right valve, and partly edged with hairs on the left (see the description of Cyclasterope fascigera given below). In addition it does not seem to me impossible that the selvage has originally arisen by fusion of hairs situated in a row. Free selvage bristles (Asterope) would in that case denote the most primitive stage, selvage with an edge of hairs, i. c. selvage hairs joined at their bases, (Philomedes) the next stage, and selvage with smooth margin (Cypridina) the most developed stage. As a support for this assumption it might be mentioned that the selvage is almost always - even when it is quite smooth-edged - eross-striated. Full certainty in this question is, of course, still not to be obtained.

[^30]Handible: In the sub-family C?gritiminue there alse sometimess appears on the coxale an endite of about the same type as in the females of phitomedes, namely in Crossophorts.

The maxilla and the fifth limb in the makes of the grems Philomedes do not form any transitional type the same organs in the gemus Asterope; they are, on the contrary, of quite the same type as in the females, with the only difference that most of the parts. especially the masticatory parts, are very much reduced, a reduction that is closely connected with the pecularity that the males of this gemes do not eat food after attaining sexmal maturity, but die comparatively sonn after fertilization.
sixth limb: The statement that the different joints of this limb are not moved by speeial muscles in the genus Philomedes is also due to a mistake; at least in all the species of this genus investigated by me this appendage possessed as well-developed a mascular sistem as the species of the sub-family Cypridininae that I have had the opportunity to study personally.

Seventh limb: The distal armament of this limb in Philomedes cannot be said to form a transitional type between that of the sub-family Cypridininae and that of the family Asteropidae; on the contrary it forms an independent type, strongly resembling that of the sub-family Cypridininae.

On the furea secondary claws. ,.Nebendornen", may also appear in the sub-family Cypritininae.

The rod-shaped organ cannot apparently be used as evidence either for or against a closer relationship between Philomedinae and the Asteropids, as this organ is subject to far too profound variations within the sub-order Cypridiniformes. In addition it shows but a rather slight agreement in Plitomedes and Asterope.

The upper lip both in Philomedes and Asterope has a glandular field, though a small me. The small size of this organ in these two genera may be considered a primitive feature.

The charaeters that G. IV. Mưler put forward as evidence for his hypothesis may consequently be divided into three eategories:

1) those in which f. II. MULLLER was mistaken,
${ }^{2}$) those which cannot be used as evidence in this problem on account of their great variability, and
2) those which may possibly be suspected of appearing in Asteropidae and Phitomedince under a comparatively primitive type.

To the first of these categories the following characters would belong: the maxilla, the fifth. sixth. and seventh limbs and the furea. - This author was also mistaken with regard to the selvage of the shell and the glandular field of the upper lip.

Ton the second category would belong the seulpture of the shell and the rod-shaped organ.
To the third eategory: the selvage of the shell, the upper lip and the characters taken from the protopodite of the mandible.

It may be impossible at present to prove with full evidence that the charaeters included in the last eategory really bear an impression of primitiveness in Philn-

Digitized by Microsoft ${ }^{\circledR}$

medes and Asterope. It appears to me that there is a support for this assumption in the following facts:

That the endite on the coxale of the mandible was originally bifureated in the Cypridiniformes seems to be supported by the fact that bifureation is found not only in the sub-family Philomedinue and the Asteropids but also in Cypridinimae and Sarsielldtur. Horeover, in the sub-family Cypridininae the bifureation of this process is best developed in that genus which we have rather good reasons to assume as the most primitive, viz. Crossophorus, cf. below, p. 182. In most species of the family Sarsiellidae this process seems: to be absent, but when it does occur it is deeply bifurcated at least according to f. S. Brady and A. M. Norman, 1896, Pl. LX, fig. 10. This endite is not developed, so far as is known, in Rutidermatidae. - I must not refrain, however, from stating that there are facts that might be considered to point in the opposite direction; ef. below p. 182. - The supposition that the basale of the mandible in Cypritiniformes originally had an endite is supported by the fact that an endite on this joint occurs in Halocypriformes, Polycopiformes and Asteropidae, and traces of one in Philomedinue, Cypridininue, Sursiellidue and Rutidermatidae; in the Cyridinenes the traces are best developed in the genus Crossophorus, which was pointed out above as being presumably the most primitive type of this sub-fimily.

The occurrence of glandular fields on the upper lip in both Cypridinimut, Phitomedinae and Asteropidue seems, of course, to support an assmption of the primitiveness of this character.

With regard to the eventual primitiveness of the selvage of the shell in the Philomedines and Asteropids I content myself with referring to what has been stated above.

Other characters in Philomedes could be brought forward, in which this genus agrees morn dosely with the Asteropids than does the sub-family Cypridininae. Among these the following may be mentioned:

The first antema: The second joint always has a distal-lateral bristle; the posterior edge of the original fifth joint is in the male so much shortened that the sensory bristle of this joint seems most frequently to be placed next to the posterior-distal bristles of the fourth joint. In the males the bristles of the distal joints are always without suctorial organs; the e- and f-bristles (ef. the terminology for the sub-family Philomedinae) are very much lengthened in this sex.

The second antema: The endopodite is always developed as at elasping organ in the mates.

The penis is always of about the same type, small with weak musenlation, more or less clearly bifurcated distally.

It is, however, to be noted that at least some of these characters may be considered old. presumably belonging to the ancestral forms of Cypridiniformes. Such characters are: the absence of suctorial organs on the first antema in the male, the development of the endopodite of the second antemal as a dasping organ in the male (we find buth these characters in the
(ypridinid genus (rossophorus, pointed out above as primitive), the slight differentiation and size of the penis and its shape like that of a biramons limb (what is the state of affairs in Crossophorus with regard to this is not known).

From what has been stated above it may be clear that there are not adequate reason to justify an assmption that Philomedinae is more closely related to the Asteropidae than are wher forms belonging to the sub-order Cypridiniformes. On the other hand, it is, of course, by no means impossible that it is so. It does not seem to me impossible that those of G. IV. MULLER's characters which were placed in the third category above and at least a few of the characters put forward by me above really indicate a closer relationship between the two first-mentioned groups. The fact that there is a possibility that these characters are more or less primitive causes us, however, to use them only with the greatest caution as evidence in this matter.

The absurdity of G. W. MUluER's assumption that the family Asteropidae has arisen from Philomedes-like forms in which the reduction of the maxilla and fifth limb appeared in both males and females ought in point of fact to be so obvious to every one who knows these forms intimately that a refutation in addition to that which has been given above seems scarcely to be necessary.

On the other hand, according to G. W. MUlLER, loc. cit. p. 224 , there were characters to be observed that seem to indicate a closer relation between Cypridina and Asterope; these characters were:

The first antenna: In Philomedes this has six joints, in Asterope and Cypridina seven; Asterope is, however, strongly differentiated from Cypridina by the type of the joints „während in Bezug auf Schlankheit wieder Philomedes in der Mitte steht".

Gills, which are characteristic of Asterope, occur, although rarely, in Cypritina but, on the other hand, are never found in Philomedes; this last-mentioned fact loses accurding to this author - in importance, however, if we assume that gills were characteristic of the ancestral forms of the snb-ordo Cypridiniformes.

It must be clear to every one who has closely studied the last-mentioned group that the number of joints on the first antenna cannot be used to support an assumption that the Asteropids approach the sub-family Cypridininae. The number of joints is, in reality; not infrequently different in males and females of the same species of these groups. The importance of the gills for the solution of this question may be said to be very small; these simple organs may very well have developed by convergence in Cypridininae and Asteropidae.

Aecording to G. W. Mưller's statement, 1890, the genus Sarsiella also resembles Philomedes. The characters brought forward to support this assumption are as follows (p. 226):
,, In einigen Punkten erinnert sie an die Männchen von Philomedes, so
im Fehlen des Kaufortsatzes der Mandibel und
im Bau der zweiten Maxille.
Beachtenswerth erscheint die Reduction der Glieder der ersten Antenne, das Fehlen jeder Gliederung am Maxillarfuß,
das Auftreten von erhabenen Leisten auf der Oberfäche der Schale."

In his large monograph on the $O s t r a c o d s(1894) G$ G. II. MÚLLER makes a reservation to this statement (p.204) in the same way as he does to his statement with regard to the relationship of the genus Asterope to Philomedes quoted above. He writes: „Achnlich gilt für Sarsiella." - After having investigated a species belonging to the genus Rutiderma, this author states once more, 1908, pp. 91 and 92, that Sarsiella is closely related to Philomedes. The geuus Rutiderma is assumed to be an intermediary form of these two genera. He writes as follows: „Die verwandtschaftlichen Beziehungen denke ich mir so, daß Rutiderma von der Reihe, welche von Philomedes-ähnlichen Formen zu Sarsiella führte, sich abzweigte; sie als ein unverändertes Glied der Ahnenreihe von Sarsiella zu betrachten, scheint mir durch den Bau der Mandibel ausgeschlossen."

Is the genus Sarsiella to be considered as relatively closely related to the genus Philomedes?
With regard to the characters put forward by G. W. MUULLER in 1890 to support this assumption the following may be mentioned:

Mandible: The endite on the coxale of this limb is not to be put forward as evidence; the males of the genus Philomedes are not (or at least are not always) withont this process; besides, a process of this sort is also to be found in some species of Sarsiella, cf. G. S. Brady and A. M. Norman, 1896, Pl. LX, fig. 10.

The fifth limb in Sarsiella shows no striking resemblance to the same appendage in Philomedes, rather the other way about.

With regard to the number of joints on the first antenna, the sixth limb and the sculpture of the shell it is certainly enough to refer to what I have said above, during the discussion of the relations of the genus Asterope. In other words these characters cannot be used as evidence for an assumption that Sarsiella shows agreement with Philomedes.

In short, facts have not yet been brought forward to prove this assumption. We must answer the question in the negative.

Whether the genus Rutiderma can be considered as a link between Sarsiella and Philomedes I must leave quite open. In any case it is certain that this genus, as was pointed out by G. W. Múller, is not an unchanged type in the genealogical table of Sarsiella.

In my opinion the four families, Cypridinidae, Rutidermatidae, Sar- siellidae and Asteropidae, arevariations of one and the same type and were separated from each other presumably rather early, afterwards differentiating independently. E In some characters a family shows a rather eloss resemblance to one family, in others to another (partly due to convergencies?); in some characters, on the other hand, it is more or less aberrant.

Family Cypridinidae.

Fam. C'ypritindae, (i. S. Brams and A. N. Norman, 1896, p. 638.
Sub-Fan. Cypridminae + Sub-Fam. Philomedinue (part.), G. W. Mưller, 1906 b, p. 12.
1912, 队р. 8, 24.

Hescription: - Shell: - With or without sexmal dimorphism. - The rostral incisur is in most forms rather deep. in others, on the contrary, more or less shallow, but is never. however, quite absent: the upper lip of the incisur does not grow over the under one. The selvage varies in type. but is always lamelliform and most frequently well developed both on the rostrum and along the greater part of the ventral margin of the shell; it runs abont parallel to and somewhat within the free edge of the valve. The list runs from the rostral incisur in an even. unbroken bow along the ventral and posterior edge of the shell, and finishes at the back near the hinge of the shell (exception among the hitherto known forms: Siphonostra and C'ypridinodes, cf. below, the diagnoses of these sub-genera); it is sometimes narrow throughout its whole length or else somewhat broader at the back; the distance from the list to the edge of the shell is, on the average, somewhat greater along the back edge of the shell than along the ventral edge. The valves, as in all forms belonging to the Ostraeods, are joined atong less than half the periphery; in only a single one of all the genera so far known, the genus (riguntocypris (cf. below, the diagnosis of this genus) are they joined along more than half the periphery of the valves. The males never have a ring of hairs round the posterior part of the shell.

First antenna: - This has more or less strongly marked sexual dimorphism. - The sensory bristle of the fifth joint developed very variously, sometimes entirely absent in the females. The original sixth joint has always only one bristle, placed distally-medially: Distally this limb has seven to eight bristles, three to four of which are probably to be considered as belonging to the original seventh joint and four to the original eighth joint. The anterior bristle on the original seventh joint (a-bristle, ef. below, the terminology for the subfamily Cypridininue) is never developed in the shape of a claw.

Second antenna: - In a number of forms this limb is characterized by sexual dimorphism, in others it is almost or entirely withont it. - Endopodite: In the female most frequently rather small and weak, sometimes even more or less entirely reduced. In the male this branch is sometimes of the same type as in the female, sometimes it is develuped as

Digitized by Microsoft ${ }^{\circledR}$

a powerful, three-jointed clasping organ. The end joint in the female - and atso in the mates in which this branch is not developed as a clasping organ - is always furnished with only one bristle; this bristle is fixed at or near the point of the joint, often attains a rather considerable length, is finely amulated. naked and more or less rounded distally (a sensory bristle?). To the males in which this bramd is developed as a clasping organ this joint is furnished with a similar bristle, fixed ventrally, near the proximal boundary of the joint (homologous with the bristle in the female?) and most frecpuently with a few (always two?) short distal bristles, placed close together.

Mandible: - With or without sexual dimorphism. - The protopodita joints, like the two proximal endopodite joints, are always comparatively large and powerful, the ent joint of the endopodite is, on the other hand, very small. Protopodite: The endite of the coxale is most frequently (always? ef. below in comnection with the description of the males of the genns Philomedes) developed in both males and females. small but rather powerfully built, not lamelliform and hyaline, simple or more or less bifurcated distally. Basale: Has no well-developed endite proximally-ventrally-medially but, on the other hand, always or almost always traces of one in the form of a number of bristles. This joint always has two bristles dorso-distally. The exopodite is always developed, always bas two most often rather long bristles situated ventero-distally and always the openings of a large gland. The endopodita is three-jointed, its end joint has practically always seven bristles.

Maxilla: - Cf. fig. III, p. 32. With or without sexual dimorphism. - In most cases it is developed as a masticatory organ, short and powerful, with strong musculature. The males of the sub-family Philomedinae are exceptions, in them this limb is very weak and certainly not used for mastication of fond. It consists of a powerful, thick but rather short protopodite with three joints, a rather large and strong, two-jointed endopodit and a more or less reduced. weak and mointed exopodite. Between the coxale and the basale this limb forms a ventrally open knee. Protopodite: All the three joints are generally well defined and moveably joined with each other; procoxale and coxate are most Prequently rather large basale is rather small or of moderate size. It is not liumished ventrally with numerous long bristles arranged in a row like the plates of baleen of a baleen whate (as in the family Asteropidae). The procoxale and coxale are armed with three in exepptional cases (Pseudophilomedes) with only two, large, powerful masticatory processes, fitted distally with powerful bristles. In the males of the sub-family Philomedinne these matites am rather large, but nevertheless extremely weak, cf. above. The masticatory processes are flattened, situated with their flat sides pressed rather (losely against one another. overlap each other a little, and are somewhat turned outwards in relation to the longitudinal axis of the limb. When the maxilla is in a position of rest, i. e. pointing obliquely forward and outward the endites point about straight out to the sides, in other words they are placed about transversally to the longitudinal axis of the body. (Their position may perhaps best be illustrated by means of the annexed diagrammatic drawing, representing a horizontal section through this limb.) The basale is without traces of an endite. The exopodit e is fumished with
the beristles. Of the two joints of the a n dopodite the proximal one is large and powerfut: the distal one is directed somewhat inwards, small, but rather powerful, armed with mumereus powerful bristles (with the exception of the males of the sub-family Philomedinae).

With regard to the differenees between the previous authors' interpretations of the different parts of this linh and that which is followed in this work, see above p. 31.

Fifth limb: - Cf. fig. IV, p. 39. With or without sexual dimorphism. - It is short. foliaceous and dereloped as a powerfnl masticatory organ. Exceptions are the males of the sub-family Philomedinae, in which this, like the,preceding limb, is fitted with very weak masticatory parts and in which it can certainly not be used for mastication of food. The protopodite is powerful, dominates somewhat over the exopodite, is mited rather much with the body, is generally only rather weakly divided into two or three joints and is directed

Fiy. XXI: - 11 orizontal section of the inaxilla wif form belonging fo the sub-genms Vorgulo.diagrammatic. vertically. On the imner edge it is armed with three powerful, although rather slightly projecting endites, one on the pro-coxale, one on the coxale and one on the basale, all three of which are armed with bristles. The marginal bristles of the epipodial plate most frequently diminish rather regularly in length the more dorsally and ventrally they are fixed. The exopodite is four- or five-jointed, directed obliquely backwards and outwards. Its two proximal joints are powerful and serve as masticatory organs, most frequently rather well defined both from each other, from the protopodite and from the third exopodite joint; on the inner edge both are furnished with a greater or less number of more or less powerful bristles, the proximal one has in addition a more 'or less powerful tooth, consisting of several constituent teeth placed in a row. The following exopodite joints generally differ very greatly in their structure from the two preceding ones, they are very slightly chitinized and take no part in the mastication of the food. The fourth joint is deeply sunk in joint no. 3, so that the latter is divided into an outer and an inner lobe, the connection of which is often to be seen only in rather young specimens; the inner lobe is sometimes more or less reduced. The endopodite not developed.

With regard to the differences between the interpretation of the different parts of this limb that have already appeared in the literature and the interpretation accepted in the present work see above p. 37.

Sixth limb: - Cf. fig. VII, p. 48. Withont or with rather weak sexual dimorphism. - It is always rather large yet rather moderately lengthened in the longitudinal direction of the body, directed ventrally. It consists of a rather well developed, more or less obviously two or three-jointed protopodite and a rather powerful exopodite; the endopodite seems always to be lacking. Protopodite: Armed on the anterior edge with three endites, of which at least the two distal ones are well developed; one of these is placed on the basale, the two others on the procoxale-coxale. The endites are furnished with a varying number of bristles, most frequently rather powerful, some of which are placed distally, some medially, generally somewhat more proximally (measuring from the top of the
endites) than the former; the distal and the medial bristles generally are of different types. Distally on the posterior edge the protopodite has a reduced epipodial appendage, generally represented only by a small number of short bristles. Exopodite: The proximal joint is comparatively short, well defined both from the protopodite and from the distal exopodite joint; it is armed on the anterior edge with a powerful endite, most frequently of about the same type as the distal endite of the protopodite. The distal exopodite joint varies somewhat in shape and size; furnished with a varying number of bristles along the ventral edge; of these bristles the posterior-distal ones are most often of a type differing somewhat from the rest inasmuch as they are densely plumose along almost their whole length. Sometimes this joint has a trace of an endite on the anterior edge; most frequently, however, it is quite without anything of this sort. The bristles of this limb seem to be subject to a somewhat greater variation than the bristles on the preceding limbs.

For the differences in the interpretation of the various parts of this limb in preceding authors and in the present work see p. 47 above.

Seventh limb: - Without or with rather weak sexual dimorphism. -- Armed distally with an unpaired comb, which is comparatively constant in type, is placed longitudinally, is more or less horse-shoe shaped and most frequently rather powerful; when the limb is held in its natural position of rest, i. e. directed upwards and curved backwards, the points of the teeth of the comb are directed upwards.

The brush-shaped organ is lacking almost throughont.
Penis varying in type.
The upper lip varies in size and type, with a glandular field of varying size.
Gills are exceedingly seldom developed; situated dorsally at the back of the body.

Special terminology: - Mandible: - The two bristles situated dorso-distally on the basale are simply called: , the dorso-distal bristles".

Fifth limb: - The large tooth on the first exoporlite joint, composed of several teeth placed in a row, is called, "the main tooth".

Sixth limb: - Of the bristles of the endites the distal ones (distal-proximal is measured from the top of the endite to its base) are called ,distal bristles", those placed medially, often somewhat proximally to the former, ,,medial bristles".

Remarks: - I have had some doubt as to which of the two sub-families Cypridininae and Philomedinae should be placed first. In other words, which of these two groups is to be regarded as the most primitive?

It is certainly true that in several respects the sub-family Phitomedinae is probably more primitive than the sub-family Cypridininae. Among its primitive characters may be mentioned:
the absence of suctorial organs on the end bristles of the male's first antenna,
the differentiation of the endopodite of the second antenna in the male into an organ for seizing the female,

Viatural arrang, ment of the two sub-fomilups.
the simple structure of the penis（efe，in addition，the remarles unter Cigmerimiformes abowe）

In a mumber of wher characters it is．howerer，undubitably considerably more divergent dhan the lattor grenup，for instance with regerd to
the first antemat in the femate．
the devedopment of the second exopodite joint of the fifth limb into a lage tooth and experially：
the great sexmal dimomphism．which is shown principally in the strongly reduction of all the masticatory orgens in the mates．

Under these circumstances it seems to me most convenient simply to follow G．IV． Miblak in placing the sub－fanily（＇ypridinince first．

Is thare any trons． whenal type herase＇t the two sub－jomblere？
（＇an any of the foms su far described be regarded as a transitional type between these two sub－families？
（i．S．Bran＇s assumption，1898，p．437，that the genus Pyrocypris（Cypritina，s．str． semsu men）would form a transitional trpe of this kind is of course due merely to this author＇s lack of sulficient！${ }^{-}$thorough knowledge of the forms belonging to it．

As early as in his work of $1880, \mathrm{p} .158$ ，the same anthor suggested that the genus Crosso－ phorus would resemble the gemus Philomedes．This assmuption has since been repeated by
 cautiously in this matter：he writes：．．Ueber die Stellung der（attung Crossophorus BRaDY wage ich kein Urtheil auszusprechen ．．．SARS glaubt，daß die Gattung näher verwandt ist mit Philomedes，wofiur auch cinige Thatsachen sprechen wiirden．＂It seems at present to be rather difficult to decide whether this opinion of G．S．Brady and G．O．Sars is justified．It may， however，be pointed out that the characters by which Crossophorus seems to approach Philo－ medes are probably to be regarded as being comparatively old．Of these characters we may mention here the absence of suctorial organs on the end bristles of the first antenna，the development of the endopodite of the second antenna in the male into a clasping organ and perhaps also the rather decply bifurcated endite on the coxale of the mandible，ef．p． 171 above．－In any case the genns Crossophoms does not form any maltered transitional type between these two sub－families．

As far as I know there is so far no form described which may be pointed out as a certain connecting link between these two groups．It is，however，impossible to answer this question with any certainty on account of the incompleteness and uncertainty of most of the descriptions hitherto published．
＊See also C．Clats， 1×88. p． 151.

Sub-Family Cypridininae.

Sub-F a m. Cypridininae, G. W. Mutlerr. 1912, p. 8.
Description: - Shell: - Sexual dimorphism, in most eases, weak, sometimes searcely noticeable or even entirely undeveloped. - The type of shell varies very much. The surface sculpture is, in most cases, not at all or else rather weakly developed. Seen from inside: The part of the shell between the list and the posterior margin is flattened in most forms, not curved inwards in the shape of a siphon, so that, when the shell is closed, the two valves are here pressed rather elose to each other; an exeeption to this last rule among the forms so far certanly known is the sub-genms Siphomostra, ef. below; to judge from the descriptions it seems, hoiwever, to be possible that other forms as well are distinguished by a similar pechliarity. Hinge very seldom with teeth.

First antenna: - With rather considorable spxual dimorphism.
Female: - Most often with eight joints, less often with seven owing to a more or less complete union of the fifth and sixth or the seventh and eighth joints, or it may even have only sic owing to a more or less complete union of both the fifth and sixth as well as the seventh and eighth joints. The proportion between the joints seems to be subjeet to but slight variation; the following are the usual proportions (the figures are from measurements of Cypricina [Doloria] leris):

$$
\mathrm{I}_{14}^{17} ; \mathrm{Il}_{13}^{23} ; \mathrm{HI}_{3}^{6} ; \mathrm{IV}_{10}^{10} ; \mathrm{V} \frac{6}{6} ; \operatorname{V} \frac{3}{3} ; \operatorname{VIl}_{1}^{1} ; \operatorname{VHI} 0,5 .
$$

When in the deseriptions of the forms belonging to this sub-family no special information is given as to these proportions the form in question agrees pretty nearly with the example given ahove. All the forms of this group investigated by me showed the same momber and also almost exactly the same situation of the bristles. All the eharacters of the bristles given below are to be taken as common to all these forms. To judge from the literature, the type described here seems, however, not to be quite general; the genus Crossophorus. for instance, is in exeeption (cf. G. W. Mo'Ller, 1906 a, pl. XXXIY, fig. 4). The seeond joint is quite without bristles; the third joint has two bristles, one placed anteriorly and one posteriorly-distally; the fourth joint also with two bristhes, one placed anteriorly-distally and one posteriorly-distally. All these bristles, like the single bristle on the origimal sixth joint (see above. p. 174) are simple, pointed, annulated, naked or with only short and usually very fine secondary hairs: they are comparatively short or of moderate longtly and, as far as I have ohservod. never differentiated into specific sensory organs. The smsory bristle of the fifth joint is alwats very powerfully developed; its proximal part is strongly annulated, the annulation beoming mere and more fine distally and sometimes quite disappeating. in which case the end of the bristle seems quite hyaline; the filaments of this bristle are also finely annulated or distally even quite hyaline; distally both the prineipal bristle and the filaments are finely rounded and furnished with a short, fine sensory hair. The origimal seventh joint has three distal bristles, sitmatert in abont the position shown in fig. 16 of C'ypridina (l'ergele) norvegica, in other words one is

Digitized by Microsoft ${ }^{\circledR}$

sitmated on the anterior meder one modially, somewhat anteriorly and one on the posterior edge of the joint. Wf these there bristles the first-mentioned is relatively short or of moxerate length and of about the same type as the bristles on the third, fourth and the original sixth joints; the two other bristles are generally of abont the same tope as each other, typical sensory bristles, rather powerfully annatad proximally, more and more finely annulated distally, near the point sometimes even 'puite hyaline, chatacterized hy simple, fine sensory filaments, generally of atont the same thickness throughout their whole length, situated dorsally and distributed fairly equally along the greater part of the length of the bristles. Like the distal part of the prineipal bristles these sensory filaments are very finely ammated or even quite hyaline; in addition. like the prineipal bristles they are finely rounded distally and furnished there with a short, fine sensory hair. The one of these bristles that is situated medially, somewhat anteriony, is of moderate length and fitted with relatively few sensory filaments; exeeptionally, for instance Cypridina (Cypridina) semuta (G. IV. M"tuen) var. affimans, f, (ef. the description of this form, given below) it is even quite withont any appendages; the posterior one of these bristles is comparatively long and furnished with a relatively large number of filaments. The small (original) end joint has fom bristles. Two of these, situated close to each other distally-laterally on the joint. are of quite the same type, narrow or moderately thick, distally romded sensory filaments, of about the same thicknoss thronghout; proximally they have rather powerful ammulation, distally with increasingly elose and fine annulation or more or less completely hyaline; both are quite naked. The remaining two bristles, both comparatively long, are of about the same type as the posterior bristle on the preceding joint; they both issue distallymedially, one a little in front of the other.

II ale: - Often more extended than that of the female. The sensory bristle of the fifth joint is developed in about the same way as in the female, with exactly the same or else with only an insignificantly larger number of sensory filaments. Of the bristles of the original seventh joint the posterior and the one placed distally-medially and somewhat anteriorly are, in almost all genera so far known (exeeption: Crossophomes), furnished with suctorial organs for seizing the female. (These suctorial dises were interpreted by G. O. SARs, 1887, p. 39, as sensory organs - he writes: ,et ciendommeligt klart, baegerformet Appendix, aabenbart of sensorisk Natur"* - a view whieh has, however, not been accepted by suceeeding writers. It had already been interpreted correctly by C. ClaUs, 1873, p. 22l.) The different genera vary not ineonsiderably with regard to the type, number and arrangement of these suctorial organs. Is in the females the two bristles in question differ from each other in their length; the one that is situated distally-medially and somewhat anteriorly is comparatively short in this sex as well, the other is long. Sometimes the bristles of the seventh and eighth joints are of about the same length in males and females, sometimes two or three of them are more or less lengthened in the former sex. This lengthening is found in different bristles in different forms; in some forms the posterior bristle on the original seventh joint and the anterior one of the two distal-medial bristles of the eighth joint are lengthened, in others it is both the distal-medial bristles of the eighth joint and in others all these three bristles.

[^31]Second antenna: - In some forms with sexnal dimorphism, in others it is without or almost withont it; in most cases it is somewhat more powerfully developel in the males than in the females. - Exopodite: This branch usually shows a very close agreement in the two sexes. Of abont the same length as the protopodite. The proportion between the joints, which always seems to be about the same in males and females, certainly varies a little, but the variations are rather slight. The first joint often attains to about the total length of all the succeeding joints, the second joint is about as long as the total length of the two or three following joints, the third and fourth joints are of about the same length. The first joint has no bristles. The bristle of the second joint is relatively short in comparison with those of the following joints, generally not much longer than the total length of the seven distal joints of this branch, and in some forms even almost completely reduced; in addition this bristle has no natatory secondary hairs, it is either naked or in most cases armed with a varying number of short and more or less powerful, smooth spines and -at least in all the forms of this sub-family described in this work - fitted at the top with a very short and fine hair (sensory hair?). The bristles of the third to the eighth joints are developed into long natatory bristles, usually fitted with secondary natatory hairs along the greater part of their length. In a few forms some of these bristles are armed with short and more or less powerful spines along a part of their length. In all the forms of this sub-family that are described in this work the distal part of the natatory bristles was more or less hyaline, somewhat rounded at the point and there fitted with a short and very fine (sensory?) hair. The end joint usually has four bristles, in a small number of forms only three and in exceptional cases, as, for instance, in the genus Crossophorus, a somewhat larger number. Of these four bristles the two ventral ones are long and powerful natatory bristles, not at all or else only rather slightly shorter than the bristles on the third to the eighth joints. The two dorsal ones of them, especially the one situated most dorsally, are, on the other hand, as a rule rather considerably shorter - their length varies, however, pretty considerably in different forms - and generally fitted with a few short secondary hairs; in some forms, however, these bristles too earry numerous long natatory hairs. In most species smooth basal spines are developed; the end joint is also armed with such a spine. Medially-distally on the third to eighth joints there is usually a series of spine- or hair-like formations, situated more or less closely together, usually rather fine, short, more or less hyaline, most frequently rather difficult to diseover; this character seems to vary pretty considerably. so that it is scarcely practical for characterizing the genera and species; nor has it been included in the descriptions given below of forms belonging to this sub-family. Endopodite: This branch sometimes shows strong sexual dimorphism, sometimes, howerer, it is developed similarly in both sexes. In a number of forms it is developed into a powerful three-jointed clasping organ in the male; it is usually rather long and distinctly three-jointed, sometimes more or less rudimentary, verruciform and quite unjointed.

Mandible: - This limb is either withont, or in some eases with only very weak, sexual dimorphism. - It is comparatively long and slender. The endopoolite is moderately flattened at the sides, its second joint generally eonsiderably narmed distally. The proportion between the joints. which seems to be about the same in
 (loderia) levis.):

l'rutopodito: Coxale: The endite is alwise well developed in both males and females. simple or msmally weakly bifureated distally, sometimes, as, for instance in the gemus ('rossophoms. wen rather depply hilureated*: it is fitted with a barying, gemrally very large, momber of smoth spines varying in strength and mamer of arrangement: in the cases when it is hifureated distally the two distal points are almost always armed with lateral spines. [Exeeption among the speces seen here: Momopia (C'ypridinodes) acuminute]. Dorsally at the hase of the emdite there is. in addition. (always: observed in all the species of this sul)-family deseribed in this treatise a single, short bristle. Apart from this this joint seems always to be entirely withent bristles (with the exception of the gemus ('rossophoms, see C. S. Brall), 1880, pl. NXIVIII. fig. 6i). Basale: The bristles on this joint are certainly subject to variation both as to their number and development, but. as far as I have found, the variation is, in most foms, rather insignificant. Along the ventral side of the joint the bristles are comparatively few in mumber. nsnally about six to nine in exceptional cases, as, for instance, in the genus Crossophores, somewhat more. The situation of these bristles in the species examined by me was pretty constant and as follows: (One group is placed in the proximo-ventral corner of the joint, somewhat medially: somewhat distally of this group and somewhat laterally, there is often a single bristle: a little proximally of the middle of the joint there are a couple of bristles and somewhat distally of this point a couple more. Dorsally this joint seems in most cases to have only three bristles, viz. the two dorso-distal bristles which are, as is pointed out above, characteristic of the whole family and another one, placed about at the middle of the joint or a little in front of this point. In the genus Crossophorus, however, the latter bristle is replaced by a whole series of rather long and powerful bristles. Exopodite: Most frequently about as long as or very stightly shorter or longer than the anterior side of the first endopodite joint; it is drawn out to a rather fine point and has dorso-distally a sort of cushion of rather short, exceedingly fine hairs placed closely together in a ring (exits of the glandular retls). Endopodite:

[^32]First joint: In all the forms of this sub-family examined by me the hoistles were confined to a single group of four bristles, placed ventero-distally on the joint; in exceptional cases this group contains a somewhat larger number of bristles (the genus Crossophoms see (i. S. BRADY, 1880, pl. XXXVIII, fig. 6). The length of these four bristles was, as a rule, fairly constant in the species investigated by me; apart from a rather slight individual variation they had in most of these species about the following proportions: The two ventral were either about the same length or of somewhat different lengths, comparatively long, about as long as or somewhat longer or shorter than the length of the posterin side of the second endopoctite joint; of the two remaining bristles one was about as long as the proximal breadth of the second endopodite joint, the other was exceedingly short, sometimes rather difficult to get sight ol. Second joint: This joint is armed anteriorly with a larger or smaller number of bristles placed closely together, of which the proximal ones are always situated a little way from the proximal boundary of the joint and the distal ones somewhat from the distal boundary. Among these bristles there are some, situated on the anterior edge of the joint, with short and fine hairs; nthers, situated on the medial side of the joint, mostly somewhat posteriorly of the former bristles, are generally comparatively shorter than these and fitted with rather fine or more or less powerfut hairs or spines, placed closely together and arranged in the shape of a feather; these latter bristles seem presumably to function as a sort of cleaning organ. Posteriorly this joint has always only a few short, generally naked or almost naked bristles, placed distally to the middle of the joint. Of these bristles the two distal ones are always situated close to each other; in some of the species of this sub-family described in this treatise the medial one of the two bristles last mentioned showed sexual dimorphism, being a little, sometimes considerably, more powerfully developed in the males than in the females [see figs. 12 and 13 of Cypritina (Varguta) norregica]. The little end joint is most frequently (as in the sub-family Philtomedinae) furnished with seven bristles, of which even the longest are relatively short, as a rule not exceeding half the length of the second endopodite joint. The relative strength and the mutual proportion of these bristles is subject to rather great viariation; in most cases, however, the two middle ones are claw-shaped, a good deal more powerful and somewhat longer than the rest; the three posterior ones are. on the other hand, weak, the most posterior one, as a rule, even excreedingly weak and short; of the two situated anteriorly one is, as a rule, more or less claw-shapect, the other weak.

Maxilla: Without or at any rate with only scarcely discernible sexual dimorphism. - Protopodite: The basale is rather small or of moderate size and most often more or less closely united to the first cudopodite joint. The three well-developed masticatory processes are most frequently immoreably joined to the procoxale and the coxale. Only in exceptional cases is the part they all emerge together from developed as an appentage with an independent power of motion (see the sub-gems. (ypridinodes in this tratise). The species of this sub-family investigated by me showed the following numbers of distal bristles on the masticatory processes: On the first masticatory process $7-13$, on each of the socond and third processes 5-7 bristles. These bristles are modified somewhat differently in the different species, but within each species they show, on the other hand, a rather striking constancy; they are often amed at about the middle with rather long and stift. secondary bristles amanged
more or less chearly in weathe and are more or less strongly pectinated distally. Proximally on the mutside of the third masticatory process there is usually a single bristle. The coxale often has dorsally a lamelliform epipodial appendage often fine-haired, and distally of this often a single bristle. On the homdary between the protopodite and the endopodite there are often some bristles to be fomb: one placed just close by the exopodite, one at about the middle of the inside of the endopodite and one on the anterior edge of the latter; sometimes a somewhat larger number of hristles is dereloped at this place. Exopodite: This branch is most freyument to be fomm at its original place, distally-biterally on the basale, seldom (in the sub-gems: ('ypridinodes) displaced distally. Endopodite: The first joint is generally of moderate length. but very broad and rather strongly compressed laterally-medially (the limb is thought of as turned straight outwards). Its posterior edge is most frequently more or less strongly chitinised distally. often more or less projecting and forming a sort of cutting edge: the shape of this part varies somewhat both in different species and within each species, so that it is scarcely suited for the characterization of species. Distally this joint has some bristles both on the anterior and the posterior edge, often two on the anterior and two or three on the posterior. The small end joint is often rather strongly chitinized and armed with a rather large number of bristles. In most of the species of this group that I have had an opportunity of closely investigating these bristles showed such strong agreement both in number and situation that it ought to be possible to carry out a pretty certain homologization of them in the different forms. In most species 13 bristles were found, placed as follows: One group, whose bristles (often four in number) form a transverse row, is found on the outside of the joint, somewhat towards the baek; its bristles are most frequently of moderate strength and diminish somewhat in length towards the anterior edge of the joint; they are also but weakly or else not at all armod. The other bristles are situated more or less distinctly along the distal edge of the joint and are very different from each other in size and type in the different species; within each species they show, however, a rather great constancy, so that fairly good classificatory characters may be obtained from them. In most species some of them at least are developed into very powerful masticatory bristles. A group of these bristles is placed distally-anteriorly on the joint; it consists most frequently of three bristles. Distally-medially on the joint somewhat behind this group there is another group; it too has in most cases three bristles. Finally, posteriorly-distally on the joint, usually somewhat laterally to the last-mentioned group, there is a third group of three bristles: generally including the most powerful masticatory bristles of this joint. While the first group mentioned is comparatively isolated, the three latter groups are at no great distance from each other, on the contrary they are in most species rather close to each other, sometimes (as, for instance, in the sub-genus Cypridinodes, see below) even so close to each other that I could carry out homologization only with the greatest hesitation.

Fifthlimb*: - Without sexual dimorphism or at least the dimorphism is extremely weak, scarcely noticeable. - The protopodite: The first masticatory process is armed with a somewhat varying number of bristles: 5-14 (generally 7-9) were found in the species

[^33]of this sub-family that are described in this treatise. The type of these bristles is somewhat different in different species; within each species, on the other hand, they seem to beeharacterized by rather great constancy. They are most frequently arranged in a transverse row, sometimes, however, as in the genus Gigantocypris, in two elosely set and parallel rows. Second masticatory process: In all the forms of this group that I have examined with the same mumer of bristles: Five placed in a rather close transverse row on the inner edge of the process and one, usuatly very short and weak, placed at some distance from the others on the anterior side of the limb. Together with this uniformity with regard to number there is the comparatively slight variation with regard to type that these bristles are subject to within this sub-family. Third mastieatory process: This, too, has a quite uniform number of bristles in all the species of this group investigated by me. There are seven bristles arranged in a somewhat irregular, transverse row; these bristles also show within this group a comparatively slight variation with regard to type. The bristles on the two last-mentioned masticatory processes show, with regard to their types, a not ineonsiderable mutual parallelism, the types found on the one reappear, with comparatively slight variation, at about the corresponding places on the otleer. Distally on the anterior side, near the onter edge of the limb, the protopodite generally has an irregular, powerful spine which forms, so to speak. a ventral conclusion of the chitinous skeleton of the epipodial plate (this spine seems never to be present in the sub-genus (Cypridinu, (.f. below); dorsally, ton, the chitinons skeleton of the epipodial plate has an irregular swelling (not, however, freely projecting as the ventral spine). The exopodite has four or five joints. The two proximat ones (developed as powerful masticatory organs, see the diagnosis of the family) are of about the same strength and size, the distal one of them not developed into a powerful, tooth-like process. First joint: The main tooth. the most important mastieatory organ of this limb, is fixed transversally and somewhat obliyuely on the joint and is always very large and powerful. It seems to be subject only to comparatively slight variation within the sub-family. In all the speeies of this gromp described in this treatise it is composed of six to eight, usually seven, constituent teeth; of these the one situated most anteriorly is the longest and most powerful, the rest diminish fairly uniformly in length aecording as they are situatel more posteriorly. The strength of these terth also diminishes somewhat, even though sometimes only very slightly, according as they are situated more posteriorly. The posterior one of them is short, conical and smooth, the others are bent somewhat backwards and armed along the concave posterior edge with mumerous rather powerful teeth, placed close to each other. This joint has also a number of bristles: In all the species of this sub-family that were investigated by me a single bristle was found on the posterior side of the joint, close to the main tooth, and a number of bristles placed in a transvise row on the anterior side of the joint (in most species two of the latter were siturted close to the main tooth, one farther out on the limb, a short distance from the former). Second joint: On the inner edge armed with a large number of bristles. Some among these, situated next to the main tooth of the preceding joint, somewhat posteriorly on the joint, are, like the constituent teeth of the main tooth, arranged in a close row, running obliquely and transversally on the joint and are distinguished by their strength; the anterior one of them is rather fong, the others decrease fairly uniformly in length according as they are situated more posteriorly; they are
armed with prwertul lateral berh, wif whe the distal ones, begmong lirst a lithe way from the penint of the bristle, are natally the most powerthl: they are never formished with long, siff side-bristhe and in mest alses contrary to atl the wher bristhes of this joint - and most
 form a ..fenth" thedher, "omparable to the ,main tooth" wit the precerling joint; see
 of procedure - althongh it is comprehensible - becaluse these bristles do not together form quite so pronomoned a morphologieal unit as do the bristles throngh the mion of which the ..main tenth" must be reganded as having arisen. They are, om the eontrary, quite free basally, at least in all the species of this sub-fimily that. I myself have hat oceasion to investigate. somewhat outside and in front of these bristles there is a somewhat irregularly arranged collection of. for the most part, rather long and powerful, strongly pectinated bristles; in these, too, the anterion ones are rather eonsiderably longer than the posterior ones; in addition the imner ones of them are most frequently somewhat longer than the outer ones; their peetination, which continues right to the point of the bristles, is somewhat weaker distally than in the mitdle: like the bristles in the last-mentioned group these bristles, too, are without long seeondary bristles (one exeeption: Cypridimu (Cypritina) serrata var. uffirmans). Besides these bristles there are in all the species of this sub-family described in this treatise two alditional bristles on this joint, one elose to the last-mentioned group of bristles on the posterior side of the joint and one on the anterior side of the joint close to the following joint. The two or three distal joints are fitted with a somewhat varying number of generally rather weak bristles.

Sixth Jimb: - Without or at any rate with only very weak sexmal dimorphism. - It varies rather much in type.

心eventh limb: - This has no or only very weak sexual dimorphism. - The number of the cleaning bristles varies very much: in some species there are only a few ($8-10$), in others they are very numerous, as many as a few hundred being found. The teeth of the end comb vary similarly very greatly in number; while in some species only a small number (5-6) are to be found, they are in other forms very numerous ($100-150$); their usual number is about $14-20$. Within each species the variations in number of the cleaning bristles and the tecth of the end comb are rather limited. In most forms the distal teetli of the end eomb are distinguished from the proximal ones by their type. The former are in most eases somewhat longer and narrower than the latter and are rounded or even pointed distally; the latter, which are situated proximally close to the former about symmetrieally on each side of the extremity, are distally cut off more or less sharply. In other respects the distal part of this limb varies somewhat in type.

The brush-shaped organ is very seldom found; among all the species of this sub-family included hitherto in the literature only the female of Cypridina squamosa G . W. MÜLLER has been established as possessing it; cf. (i. IV. MỨller, 189t, pl. ㅇ, fig. 31. I have not succeeded in finding this organ in either the males or the females of any of the species of this sub-family that are deseribed in this treatise.

Penis: - Although it is subject to considerable variation, this organ seems to be formed on the same fundamental type within the whole of this sub-family. It is oval, very strongly musenlated and in most cases of eonsiderable size. Distally it is split in the shape of tongs; the ventral leg of the tongs is often larger than the dorsal one and is romnded distally; the dorsal leg, which is moved by powerful muscles, varies in shape; in most cases it is siekleshaped, curved ventrally and rounded distally. When the dorsal leg of the tongs is pressed against the ventral one it is situated most frequently medially to the latter. Large or small glands are often to be found in the penis. In addition there are also at different places on this organ large or small groups of short bristles. As a support a powerful chitinons skeleton is developed, varying somewhat in different species. The dorsal leg of the tongs artieulates to the dorso-distal part of this skeleton.

Furea: - In some, presumably the majority, of the speeies of this group this organ agrees in males and females, in others it shows weak or sometimes even not inconsiderable sexual dimorphism. - The type of the lamellae varies somewhat in different forms, but seems to be fairly uniform within each gemus. The number of the claws is also subject to a rather considerable variation; in some genera it seems to be quite uniform, in a number of forms it varies somewhat, even within the speeies; usually the number varies between four and twelve; sometimes, however, as in the genus Crossophorus, a somewhat larger number is found. In some species main claws and secondary claws can be distinguished. in others it is impossible to carry out this division. The armament of the elaws seems to be very similar; at least in the species belonging to this group that were exammed by me there was very little variation shown in this respect. Rach claw is armed ventrally along the greater part of its length with two rows of teeth situated rather elose together, one row runing somewhat laterally, the other somewhat medially; on the posterior claws the teeth are somewhat weaker than on the anterion ones, otherwise they are of about the same size and shape as eachother, conical, pointed distally, smooth. and pointing obliquely ventrally-distally. Thedistal teeth in the medial row of the distal ($=$ first) claw are, however, exceptions; these teeth differ from the others partly because they are considerably. stronger, partly beeause they are displaced dorsally and point almost straight distally: see fig. $\because 4$ of Cypridina (Macrocypridina) castenea. The distal jart of the daws is sometimes smooth, sometimes the teeth contimue right ont to the point of the claws: thiscondition is, however: witensomewhat variable even within the species. Dorsally the claws are most frequently furnishol with fine hairsor else amostsmooth. Between the claws and basally on them there are no long, stiff bristles.

The upper lip is large and mere or less strongly helmet-shaped. Numerous glands open on it; the glandular fietd varies very much in typer, often more or less distinctly tripartite. - Similar in males and females.

The rod-shapod organ, modian oy eand latoral ayes vary in development and type.

Special terminology: - In a number of cases when, on acoomt of striking agreements both with regard to number and sitation. I thought I could carry out a safe
homonerization of the bristles. I have for the sake of brevity, simply denoted the latter by leters in the deseriptions that follow.

First antenna: - Tha bristles on the origimal sewenth joint: The one stmatert anterionty .. the a-bristle": the one placed distally-medially and sommewat anteriorly $=$, the b-bristle": the posterioredistal one = ..the e-bristle". The fome bristles on the original eighth joint: 'The anterion of the two simple sensory filaments which are sitnated laterally, close to each where is ealled ..the d-bristle". the posterior one of them is called , the e-bristle ": ol the two distal-medial bristles, the anterior one is called, "the f-bristle", the posterior one - .the $\underline{2}$-histle": see the fig. 16 of this limb of Cypritina (Vargula) norvegica.

Il andible: - The ventral bristles on the basale have in the following descriptions been denoted by the following letters: The gromp of bristles proximalty-ventrally-medially - ..the a-bristles": the solitary bristle, somewhat distally of this group -. .the b-bristle"; the bristles situated somewhat proximally of the middle of the joint $=$, the e-bristles": those sitmated somewhat distally of the middle of the joint - ", the d-bristles". Of the bristles on the secomd endopodite joint the comparatively short ones, armed with more or less powerful secondary bristles and situated anteriorly-medially on the joint are called after what is presumably their function often simply .,cleaning bristles".

Ilaxilla: - Bristles of the end joint: The group whose (often four) bristles form a row placed across the outside of the joint, somewhat posteriorly and somewhat proximally to the distal edge of the joint is called ,a-bristles": the group distallyanteriorly $=$..b-bristles": the group distally-medially. somewhat behind the last-mentioned group $=$..e-bristles" : the remaining bristles. situated posteriorly-distally on the joint. somewhat laterally- ..(l-bristles".

Fifth limb: - Second joint of the exopodite: The bristles in the group which
 tooth" on the precerling joint, are called ,a-bristles"; the irregular group of bristles somewhat outside and in front of the ..a-bristles" $=$. .b-bristles"; the single bristle close to this group on the posterion side of the joint =..e-bristle"; the bristle on the anterior side of the joint close to the third exopodite joint $=$..l-bristle".

Neventh limb: - Of the teeth of the end comb the distal ones, those of the more or less extended type. are denoted ..distal teeth", the ones situated proximally to the former are ealled ..proximal teeth".

Remarks: - Althongh a great number of the forms of this sub-family that have hitherto been introduced into the literature are very incompletely and vaguely described, we may, all the same. say with rather great certainty even now that this group is, from a classificatory point of view, to be regarded as being fairly uniform. On the other hand it must, however be pointed ont that. compared with the sub-family Philomedinae, it comprises rather heterogeneous elements.

Are the genera natural unts.?

Are the genera that have been so far established of this sub-family in their modern conception to be looked upon as natural, well-defined systematic units?

So lar seven* gencra of this group have been establisherl, namely:
Cypridina, H. Maxe Follaras, 1840.
Momopia**, ('. (LLAUS, 1873.
Crossophorus, (G. S. Brady, 1880.
Pyrocypris, (1. IV. M'ilek, 1890 ($=$ Eupathistoma, (. S. Brabli, 1898, p. 437).
Gigantocypris, (i. W. Mrtlek, 1895.
Codomocera, G. S. Bramy, 1902: a.
Cypridinodes, G. S. BranM, 1902 a.
Of these it seems as if the genera ('rossophorus, Gigantocypris and Codmocere may without hesitation be characterized as natural classificatory units, well definet from each other and from other genera, as has already been pointal out lyy (i. W. Mibldese, 1906 b. pp. 12 and 13.

The genus Pyrocypris ($=$ C'ypridina, s. str., et s. meo) comprises a rather large number of very closely related species. These species are presumably more closely related to the forms that have been grouped by (x, W. MULAER under the name of Capridina than are the three above-mentioned genera Crossophorus, Crigantocypris and Codomocera. This does mot, however, prevent their breaking-out as a higher systematic unit from being considered as quite justified. G. IV. Mëlame himself seems, however, to have had doubts as to the compectness of establishing this genus: he writes on this point, $1906 \mathrm{~b}, \mathrm{p}$. 13, as follows: ., Die Gattung Pyrocypris . . . steht der (iattung C'ypridine s. str. viel näher als die genamiten" (C'rossophorus, Gigantocypris and Codonoccra), ,man kam in Zweifel dariber sein, ob nicht manche Vertreter von Cypridina ihr näher verwandt sind als anderen Vertretern der (iattung. und ob ihre Abtrenmung die natiorliche Verwandtschaft zum Ausdruck bringt." Then he adds: .. Wuf jeden Fall vereinigt sie eine größore Zahl nahe verwandter Form, läßt sich auch schart characterisieren." - In his last large syoptic work on the ()stracods. 1910. this investigator certainly quite correctly retains this mit, in spite of this doubt of his. ln the present work I have followed him in this procedure with the exception that the group in question has been considered a sub-genus of the genus Cypridime***.

Of the three remaining geners, ('ypridimu. Monopit and Cypridimonles, (i. IV. Mistapis always rejects the two latter: all three are mited by this author moder the generic name Cypridime. He gives the following reasons for this method of procedure of his (1906 b, p, 13) :
 reiche Frontalorgan. Beriucksichtigen wir nur das Frontalorgan, so miforn wir nïchst verwande Formen, wie z. B, C'. flaveole ('Las und farus Brabs - Cypmidmodes furns Brabs ansemander. Brams hat l. e. die Crattung Cypridinodes aufgestellt, doch bernht seine Charakteristik wanz oder fast ganz auf Beobachtungsfehlem: an der laxille sind die auch bei anderen Vortretern der Gattung Cypridine kurzen Kaufortsätze der Maxille abgerissen, der schlamke Maxillartaster

[^34]
 Resultat einer perspeetivisehen Verkibrangs sem. beim as. Maxillarfuk diarfen sieh die beiden dieken math hinten gerichteten Borsten (vergl. Tal. G, Fig. 7) derart amemadergelegt haben, daß sie fior einem oborthehlichen Beobachter wie ein Fortsatz erscheinen. Wollen wir die fragliche Form ans der (iathong ('ypmitima ent lernen, wofiir allerdings Brabr's Diagnose keinerlei Anhalt, gewähr. so miissen wir sie mit Monopia vereinigen, doch mißßte dam die Diagnose dieser Gattung ganz anders latutem."

Is Cypridina. in the conception that G. Wr. Melder has given to this genus, to be regarded as a classificatory unt as homogenems and as well-defined as the other genera of this sub)-family?

The incompleteness and incorrectness that are characteristio of the descriptions of the majority of the species belonging to this genus result in our being able at present to submit these foms to omly a comparatively superficial comparative buestigation. But even a rather superficial study of them is. howerer. sufficient to show us that this genus comprises rather heterogeneous mements. It seems to have been a sort of lumber-room in which were thrown together all the forms that it was impossible to arrange under any of the genera Crossophorns, Pyrocypris, Grigantorypris and ('ondonocera. - F. IV. MíluER himself has pointed out the umatmral character of this emus amb the urener of splitting it up into smaller systematie units. Statements pointing in this direction are found both in this anthor's work of 1906 a (p. 130) and in that of 1906 b (p. 13). In the former we rear (loc. cit.): „Die Cattung umfalit anch nach Ausscheidung einiger abemanten Formen noch recht heterogene Elemente. Line Auflösung der Gattung in natioliche (iruppen erscheint dringend erwïnscht, aber zur Zeit nicht durchführbar."

Is there any form or forms that call be said to contribute more than others to making this gemus heterogenems:"

This question must be answered in the aflimative
Cyprittina asymmetrica (i. W. MCLLER is in a great number of the characters of the shell, maxilla. sixth and serenth limbs, furca and upper lip decidedly opposed to the great majority of the species included in this genus. To this species Cypridina Bairdi G. S. Brady and C. farus ((i.s. Br.mb) $)(=$ Cypridinodes forus) certainly appear to be rather closely related. Unfortunately these two species are very incompletely known. In C. Bairdi we only know, out of the organs in question. the shell, maxilla and furca, and these stow very great agreement with the corresponding organs in ('. asymmetrica. In the ease of C. farus we know, out of the organs mentioned, the shell, maxilla, sixth and seventh limhs and the furca; of these the shell (as I myself have verified during my re-examination of the type-specimen of this species; see below, note on the sub-gems Cypridinodes) the maxitla, spyenth limb and furea show close agreement with the corresponding organs in C. asymmetrica; the differences with regard to the sixth limb are as (i . 11 . Mothen has pointed out, probably due to incorreet observation on the part of (H . S. Bran). These threr species eartainly constitnte a distinct and quite natural group. (E . WV. Miblele seems already to have verified this; in this investigator's work of 1912 these three forms are placed tugether. To place them in the gems Cymidina (sensu (: WV. MCLER1) seems undoubtedly to be a mistake.

The fact that, in spite of this. (i. IV. Mullate chose this comerse is dure as is shown by the quotation given above, partly to the imeompleteness, werertainty and mububted inewe rectness of several of the charaeters included in the diagnosis of the gemus ('ypridinodes given by G. S. BRass, partly perhaps, above all, to the strange form Monopie flecede deseribed by C. ClaU's: 1873.
 undoubtedly quite justified. From this, however, it by no means lollows that we are justified in including the three species montional above in the genus Cyprilina (semsu MCALFA!)!

In several respects - such as the type of the shell, the sixth and seventh limbs, the fiaca and the upper lip - Monopia thecola agrees so strikingly with the three species mentioned that there can scarcely be any doubt of the existence of a real relationship.

Under these circumstances is it not most convenient to follow G. W. MCluere's intications: quoted abore, that, in the case of an evental breaking-out of Cypridina asymmetrice, C'. Bairdi and ('. factes we should unite these forms with Monopaid fleceola into one genus, Monopia?

1 think this is true only with an important restriction. Although lonopia fleveola - as is mentioned above - shows in several respects rather far-reaching agreement with the three species in question, yet it differs from them in several characters of such importance that it seems to me quite correct to distinguish it as a representative of a special higher classificatory unit. Thus this form is tharacterized by a frontal organ of a type that is very different from other known species, by rudimentary lateral eyes (these are certainty represented by a pair of rathor short, short-stalked, somewhat 'T'shaped appendages, fixed near the base of the first antena; these appendages have been interpreted by (. CL.ILs, rurioush enough and certainly incorrectly, as gills (see 1873, p. 225) : and G. W. MCLLER (1890, p. 204) considered them to be remains of the gills of the primitive (y pridinids!) and especially by the slight modification of the maxilla. Contrary to the maxilla in Cypridinet asymmetrica. C. Bairdi and C. facus, but similar to the same organ in all the other representatives of the group Cypridiniformes hitherto known, the maxilla in Monopia flacola has immoveable endites on the protopodite and an endopodite of fairly moderate length. On account of this limb this species may be said in a way to occupy an intermediate position between the three above-mentioned divergent forms and other species included in the genus Cigpridina (sensu (. W. MƯluleri).

For these reasons it seems to me best to retain both Monopia and Cypridinodes. I consider them, however, as sub-genera of the same genns, Monopiu. - The formersub-genns is at present only represented by a single species, M. flaceole; in the latter are inchaded C'ypridina usymmetrica, C. Betrdi and C. (.. Cypridinodes) facus; in addition, as is sem below, I have deseriberl another species of the latter sub-gems, Monopia(C'ypridinoles) acumente, a form that in its whole organization shows a very striking resemblance to the representation of this sub-genu* deseribed by (i. W. MitLER, - With regard to the distinguishing characters of thesu two sub-general 1 memely refer here to ('. Clats, 1873 and to the diagnosis of the sub-genus ('ypridinotes that is given later on in this work.

Afer the "hmation of then divergat ehements the gemas 'ypridinat (semsu
 I further division of it appears, homerer, fo be particulary desirathe - The incompleteness

 of all these forms must be considered premature and incomsenient.

I fairly lare number of species belonging the this genus wew found in the material that formed the hasis of the present treatise. Because of this it sermed to me necessary, in spite of the difficulty of the task, to attempt even now ocary out a partial division of the gemas in question. In doing this I have, of eomse, chiefly taken into acoount the forms that I myself have had oceasion winvestigate closely, I hase tried, howerer. als far as possible, to show the relations of these forms to species that have been previonsly dealt with in the literature.

Asaresult of this attempt I hase established lour new sub-genera, as shown below; these sub-gencral are:

Iotorice
 I'argute
 Wacrocypridima
 Siphomostra.

The sub-genus Forgula is based on three speeies investigated by me but already deseribed previonsly, namely ('ypridina norregica IV'. B.ans, C. antarctica (G. W. Millear and C'. megalops (i, U) sims, Besides these three species a large number of the forms included by (A . W. Mulder under the name of C'ypridinu are probably to be referred to this sub-genus. That under these circumstances the name Cypridina has not been retained for these species, but that in the present work this name has been made to replace the entirely rejected generic name Pyrocypris, will be found explained below: see note under the sub-genus Cypridina. - Macrocypridina comprises only one species. C'ypritina castanea established by (i. 内. Bradr, 1897. - The two remaining sub-genera, Doloria and siphonostre, are based on species previousty unknown to science. Whether any previously described species belongs to the sub-genus Joloriat, I eannot say: Tor the sub-genus Siphonostra possibly belongs. besides C. (S.) spinifere described below, Cypritlina notilis P. T. CLEA E. With regard to the relationship of the last-mentioned sub-genus to Cypritina hirsuta (i. W. Mébler and the extremely incompletely known genus Heterodesmus established by (i . S. Btinss see below, note under the sub-genus Siphonostra. - With regard to the characters by which these sub-genera are distinguished I merely refer here to the diagnoses of these groups given below.

It is true, on the one hand, that all these four sub-genera are undoubtedly fairly closely relaterl. but on the other hand they show such great differences from each other that it seems to me quite correct to distinguish them. I have had some doubt as to whether it is most convenient to denote these groups as genera or sul)-genera. The relatively close relationship that exists between these groups in comparison with most of the previously established genera of this sub-family has induced me to put forward these new units as sub-genera. The question is, however, not a very important one.

This sub-family consequently comprises at the present moment in my opinion five natural recent genera altogether, one of them consisting of two and another of five sub-genera.

Genus Crossophorus
Codonocera
:. Gigantocypris

Cypridime	Sub-genus	Doloria
	..	Vargula
	,	Macrocypridinn
	.,	Cypridina
	.	Siphonostru
Monopia	-	Monopia
	"	Cyprilinodes.

Is it possible to establish the mutual relationships of these units? Are there any forms within this sub-family that can be indicated as being more primitive than the others? On account of the great uncertainty and incompleteness that, as I have pointed out

The mulual relation. ships of the units.
mifficulties. above, distinguishes a great many of the descriptions of the forms belonging to this sub-family, it may perhaps seem too early to attack these difficult problems already. The result is destined a priori to be both meagre and uncertain. In spite of this 1 shall make an attempt in this direction on account of the importance of the enquiries.

To obtain an answer to these questions I have undertaken as detailed a comparison between these groups as is possible with the incomplete diagnoses at my disposal. In doing this as great a number of characters as possible have been taken into consideration. If I were to put forward here all the results arrived at during this work it would be a verrcomprehensive statement. It may, however, not be convenient to do so on account of the great incompleteness and uncertainty of the greater part of the diagnoses in question. Only the main results of this investigation will be given below.

Besides the incompleteness and uncertainty of the majority of the diagnoses of genera and species previonsly given, the difficulty in deciding the classificatory value of the different characters is an obstacle in determining the phylogenetic position of the various units. The question continually arises: is the resemblance the result of common inheritance or of convergence:

According to what I myself have observed, convergence appears to be by no means rare within this sub-family. In any case it is quite certain that it occurs, rather good evidence of it being found, as for instance in the furca.

The furca seems originally within this group to have been characterized by the fact that its claws were well defined from the lamellae and decreased uniformiy in length the more proximally on the lamellae they were fixed. The fact that this furcal type prevails in all the families belongiug to the sub-ordo Cypridinformes supports this assumption. Within the sub-family Cypridininae we find a furca of this type.in apparently all species of (iigantocypris. Codonocera, Doloria, Macrocypridina, Monopia and Cypridinodes. Within the sub-generat Cypridina (sensu meo), Vargula and Siphonostra we find, however, other furcal types as well. In the first of these three sub-genera the following fureal types may be distinguishert:

Trpe I: All the fural daws are well delimed from the lamellat and deerease uniformly it lengthand stength the more proximatly ther are situated. - This type is fonm in O. (C.) acamenta

Thpe 11: The second furcal claw is mited with the lamella, the others are all well defined proximally : all the chaw decrease uniform! in length and strength the more proximally they are situated, sometimes. perhafs, the third of them is somewhat weaker than one would expeet from

Tyre 111: The second furcal claw is united to the lamella, all the others are well defined proximally: all the claws decrease faily uniformly in length and strength the more proximally they are situated, with the exception of the third, which is considerably shorter and weaker than one would expect from its position. - This type is found in ('. (C.) amphiacantha (G. W. M(illef). Cf. this anthor. 1906 b. pl. 11 l ., fig. 11.

Type IV: The second and fourth furcal claws are mited to the lamella, all the others are well defined proximally: all the claws decrease uniformly in length and strength the more proximally they are situated, with the exception of claw no. 3 , which is considerably shorter and weaker than one woukd expect from its position. - This type is found in the females of ('. (C.) serrata (G. IV. Mi'ller) $[=$ ('. (C.) lepidophora (G. W. Milusk), ef. below, note on ('. (('.) serrata. var. affirmans]. (f. (i. W. Milleer, 1906 b), pl. HII., fig. 19.

These trpes are found in the sub-genera Varguld and Siphonostra as follows:
Type I: Appears to occur in most of the species of the sub-genus Vargula, as for instance in ('. (V.) megalops: see the fig. 16 of this organ of this species in this work.

Type 11: Found in C'ypridina Hilgendor/i G. IV. MÜlber, a species that is certainly to be referted to the sub-gemus Vargula. Sce (\%. IV. MÜlubr, 1890, pl, XXVT., fig. 1.

Type III: Found in Cypridina Vemhöffeni G. W. MÜller, a species that certainty belongs to the sub-genus Vargula. Cf. G. IV. Mither, 1908, pl. V., fig. 4.

Type IV: Found in the female of Cypridina (Vargula) norvegica (W. Band); the third furcal claw is, however, only rather slightly weakened; cf. the description of this species given below. In addition we find this furcal type in the only representative of the sub-genus Siphomostra. The resemblance between (G. IV. MULLER's drawing of the furca for Cypridina ((!)) servata. f and the figure given below in this work of the furca in Cypridinu (Siphonostra) spinifera is really almost perfect.

The occurrence of the second, third and fourth furcal types in these three subgenera can certainly not be explained otherwise than by convergence. One can as a matter of fact scarcely avoid the idea that in these groups there is to be found a ,tendency" in the second and fourth furcal claws to unite with the lamella and in the third furcal claw to be reduced in length and strength!

Other examples of convergence within this sub-family could be given. but the one given above, which is the most striking, should, at least in this connection, be sufficient.

Among all the characters I have had occasion to observe those which seemed to me the most noteworthy for the solution of this problem were the equipment on the b-
and c-bristles of the male first antema and the development of the endopodite of the second antema in the male.

With regard to the b- and c-bristles on the first antemat of the male one might say with fairly great certainty that originally in the sub-ordo Cypridiniformes they were not provided with suctorial organs for seizing the female. For in this group an equipment of this kind has so far been observed only in the sub-family Cypridininae; in all the representatives known so far of the sub-family Philomedinae and of the families Rutidermatidae, Sarsiellidae and Asteropidae such organs are, on the contrary, entirely lacking.

With regard to the other of the two characters mentioned one might say with equally great certainty that the endopodite of the male second antenna in the Cypridiniformes was originally developed as a more or less powerful, three-jointed clasping arm used for seizing the female. As early as 1890 (p. 218) (r. WV. MULLLER expressed this view. This assumption is supported by the occurence of an endopodite modified in this way both in the sub-families Cypridininue and Philomedinae and in the family Asteropidue. In the family Sarsielludue trates of such a development can still be verified. In the family Rutidermatidae males are unknown.

A classification of the genera belonging to the sub-family discussed here according to these two characters shows the frollowing result:
ding to these charncters.

The b- and c-bristles with suckers.

The b- and c-bristles have proximally a rather short and powerful branch, furnished at about the middle with a rather large and powerful sucker; distally of this one or two rather long and powerful branches are found, which have distally one or usually a row of very small suckers all of about the same size.
The b- and c-bristles with a powerful rather long branch, furnished distally with a number of sucker's of moderate size, all arranged in an umbel.
The b - and c-bristles with one or more rather short branches all with a rather powerful sucker in the middle.

The entlopodite of the male second antema is not developed as a clasping organ.

The endopodite of the male second antenna developed as a powerful clasping organ.

The b- and (c-bristles without any suckers.

Cypridinodes
Cypritina (sensu str. et meo) Macrocypridina Macrocypratina
Vargula

Doloriat

Codonocera

Crigantocypris.
('rossophorus
(
\rightarrow
rosopror

No make of the sub-genera Monopie and Siphonostra are known so lins: on account of this these two units cenld not be included in the above table.

As is seen from this table the genus Crossophoras is decidedly opposed to all the other mits ineluded in the table, as its male first antenma is quite without suetorial organs on the 1. and e-bristles. Whether this absence of suckers is primary or not is, of course, a question impossible to decide with certainty at present; it seems, however, fairly probable to me that it is primary. With regard to the endopodite of the male second antema this genus is primitive. In a number of other characters as well Crossophoras seems to have retained a certain primitiveness, for instance with regard to the endites of the mandible (cf. p. 171 above). It seems to me rather probable that this genus is to be considered as being in several respects the most primitive one in this sub-family.

A close comparison fully confirms the fact that there is a contrast between ('rossophorus and the other genera belonging to this sub-family, almost all the organs in the former genus showing a more or less divergent type, for instance first and second antennae, the mandible, the seventl limb, and the furca. As a matter of fact there can be no doubt that this genus occupies a rather isolated position in this sub-family. It might be most convenient to set this genus up as a representative of a special group within this sub-family, in contrast systematically with all the other genera, or perhaps even to distinguish it as a sub-family, Crossophorinue, i. e. as a group equivalent systematically to Cypridininae and Philomedinae.

For the relation of the genus Crossophorus to the last-mentioned sub-family see above, p. 178.
All the other units of the sub-family Cypridininae mentioned above seem to me to be the result of a not very extensive variation in different directions of one and the same fundamental type.

According to the table given above these mits may be divided into three gromp as follows:

1. Gigantocypr is
2. Codonocera
III. Doloria. I'argula, Macrocypridina, Cypridina (s. str. et meo) and Cypridinodes.

This classification, although based exclusively on the equipment of the b - and c-bristles on the male first antenna, seems also to represent the mutual phyletic position of these units. For a close investigation of the general organization of these forms seems to give the result, partly that Gigantocypris and Codonocera are mutually rather different, partly that each of these two genera presents a certain contrast to the five sulbgenera included in the third group. Whether Gigantocypris or Codonocera is to be considered as more closely related to the five sub-genera in question seems to be difficult to decide at present. Probably, however, Gigantocypris represents the type that differs most from these.

The sub-genera Doloria, Vargula, Macrocypridina, Cypridina and Cypridinodes are certainly closely related to one another. They are also closely related to Monopia and Siphonostra, the two sub-genera that are not included in the table given above. To show conclusively their natual mutual relations is an exceedingly difficult -- if not quite impossible - task. I only wish to make the following statements:

As has been pointed out above, Monopia secms in a way to ocenpy a classificatory position intermediate between Vargula and Cypridinodes, the last-mentioned of which is the most aberrant type of these units. In spite of this, as is seen above, l have considered it most convenient to distinguish the first-mentioned and the last-mentioned of these three units from all the others as two sub-genera of a specific genus Monopiu. - It may be mentioned in passing that C. Clals. 1873. p. 223 put forward the assmmption that Monopia flaveola might be rather closely related to J. D. DANA's species Cypridina punctate (.). 1). DANA, 1852, pl. 91, fig. '2).

The sub-genus Doloria, on account of the primitive type of the endopodite of its male secoud antenna, seems to occupy a certain exceptional position not only to Vargula, Macrocypridinu, Cypridina (s. str., s. meo) and Siphonostra, but also to Monopia and Cypridinodes. It seems to me rather probable that it separated from the others before the differentiation of Monopia-Cypridinodes. In spite of this I have deemed it proper to join it to the four first-mentioned of these units on account of the great agreement that it shows with these in all the other characters; as is pointed ont above, they are all in this treatise classified as sub-genera of one and the same genus Cypridina.

The result of this investigation, which - as has been pointed out above - merely on account of the uncertainty and incompleteness of the material can by no means be considered as certain, may be shown graphically in some-

 fimily reypridininae. thing like the following manner, fig. XXV.

With regard to the mutual relations of the different species within the genera it is, of course, even more difficult to make any statement. - Even in those genera in which the majority of the species have been described by G. W. Muller, undoubtedly our foremost Ustracod investigator, our knowledge of the species is rather limited on account of the defieicncies of the diagnoses. In the present work I have accordingly almost entirely refrained from drawing conclusions on this point.

Decology of reproduction: - With regard to the phenomena of the oecology of reproduction in this sub-family nothing or practically nothing certain is known, nor can I contribute much towards the solution of this probtem.

Ouly in the case of two species belonging to this sub-fanily, Cypridimet (Doloria) pectunta and C'ypridinu (l'argula) norvegica have I had an opportunity of investigating specimens raptured at different periods of the year. I found that sexually matmre females with embryos in the brood chamber and adso havac in different stages of these two genera appeared at all the periods at which specimens were captured. It seems accordingly probable that these two spectes do not have any definite more or less shost pairing period but that propagation in their cases takes place during the whole year. The same thing seems to apply to the other spectes belonging to this sub-family (as in all other Cypridiniforms?)

It is uncertain whether the fertilization takes place during a pairing flight similar to that, ubserved in the case of Phidomedes (Ph.) ylobosa. All we know for certainty is that benthoie species of this sub-family have also sometimes been observed in plankton; we find information - though it is seantr - about this in the literature.

The males seem, at least in some species, to survive for rather a long time after attaining sexual maturity. There is, as we know, no reduction of the fmasticatory limbs as in Phitomedes and sarsiella. A species of this kind is Cypritina (Vargula) norvegica; the males aind females of this species were found equally numerous during all times of the year. - On the other hand, in the samples of Cypridina (Doloriu) pectinata investigated by me sexually mature males were very rare. During the last larval stage this sex was, however, found to be somewhat more numerons than the female sex (proportion $=$ about $5: 4$). Do the males die comparatively soon after the fertilization of the females in this species?

Genus Gigantocypris G. W. MüLler.

Gigantocypris, a utorum.
Description: - Cf. G. IV. MƯLler, 1895, p. 164.
Shell: - More or less globular. With small but proportionately rather deep and narrow rostral incisur; the bristles within the incisur variable. Posteriorly close to the hinge the edges of the valves are separated, by means of which a small, somewhat rounded opening is formed. The valves united along about $2 / 3$ of the periphery. The adductor weakly developed. Balloon-shaped; walls very thin, presumably without lime incrustation. Very large forms.

First antenna: - Long, slender, with 7-8 joints; for the proportion between the joints see the species description below. The third joint relatively long. The sensory bristle of the fifth joint has a moderate, somewhat varying, number of filaments, rather more numerous in the males than in the females. On the bristles b and e one or more of the proximal rami in the male are modified for seizing the female. These rami, all of which are placed medially, are all of about the same type, rather short and powerful, somewhat swollen proximally, moderately chitinized distally, most often ending with a short hair; a little proximally to half
their length they have a single, large, powerful suctorial disc. The $\mathrm{c}-\mathrm{f}$ - and g -bristles are considerably longer in the male than in the female; the b-bristle but slightly lengthened in the fomer.

Second antenna: - The protopodite has a medial-distal bristle. Exopodite: The bristle of the second joint rather powerfully developed, unarmed. The natatory bristles on the third to ninth joints entirely withont spines. The last-mentioned joints with or without basal spines. The endopodite developed in the males into a powerful clasping organ with three joints. Besides the proximal-ventral bristle its end-joint has two short distal bristles placed close together. In the females the endopodite is also comparatively well developed, extended, with three joints; the bristle of its end joint very long.

Mandible: - Protopodite: The endite of the coxale is weakly bifurcated distally: some of its spines are rather powerful. those on the medial and also some of those on the lateral side arranged in very distinct groups. Apart from the bristle of the endite there are no bristles on the coxale joint. Basale: Of the ventral bristles one d-bristle is very long. furnished with mumerous long secondary bristles and short-haired distally; the rest of these bristles are of moderate length or short, most of them furnished only with short hairs. On the dorsal side this joint has three bristles. Endopodite: The first joint has four bristles ventrally. The anteriot side of the second joint is very richly furnished with bristles. The end joint armed with seven bristles, of which the medial of the two middle ones is longer than the others and claw-shaped.

Maxilla: - Protopodite: The coxale has dorso-distally a single long-finehaired bristle. Proximally on the outside of the third masticatory process there is a single bristle. At the boundary between the basale and the first endopodite joint there are in most eases three bristles, one close to the exopodite, one at about the middle of the inside of the endopodite and one at the anterior margin of the latter. The coxale has dorso-distally a rather large, leaf-shaped epipodial appendage. The exopodite is comparatively well developed, with thick, long fine hairs: not displaced distally. The endopodite is broad and moderately long.

Sixth limb: - The seeond exopodite joint rather short; somewhat rounded. and furnished with numerous bristles; the posterior-distal ones of the latter do not dommate the others at all strikingly.

Seventh limb: - Fitted with very numerous cleaning bristles; a large number of these are placed close together near the point of the limb, the rest spread irregularly along the distal part of the limb; as to the position of the last-mentioned bristles it is to be noticed that most often there is only one bristle on the same side of one and the same joint, two bristles are, however, not infrequently found close to each other on the same joint. The end comb consists of a very large number of teeth of moderate strength, all of about the same trpe and size. Dorsally elose to the end comb the wall of this limb is not at all or only slightly thickened, forming merely a slight depression. There is no special musele for eompressing the latter.

Eurea: - The lamellae are short. The number of claws is ahout 10 - 15 , without any clear division into main and secondary claws.

The ${ }^{11} \mathrm{pper}$ lip has no larese processes. Nost of the glands open ont on a median radge, rmang dorso-ventrally on the anterion side; the glandular field is thas quite without the distinet triple division that is eharacteristice of most genera of this sub-family. There is a tow protuberance on the front between the upper lip and the frontal organ.

The modian eye is exceedingly large and strikingly metamorphosed.
The rod-shaped organ is almost or quite rudimentary.
The lateral ayos are very much reduced.
Remarks: - So far only two speeies of this gemus, which is so peeuliar in its habitus, have been dealt with in the literature, viz. (i. Agassizi and G. pellucida. Both these forms were callght at the same time during the ernise of S. S. ,Albatross" along the west coast of Central Amerieat in 1891 and were deseribed by G. II. MULLER, 1895. Five specimens of the first-named species were found by this expedition, of which four were females and one mate; of the other species only one specimen was captured, a male not mature sexually, which, ateording to G. II. M'ibler's supposition, was ,wor der zur Gesehlechtsreife fiihrenden Hiatung" (p. 16а).

With regard to G. pellucita this anthor writes on Pp. 16.4 and 165 of the recently guoted work: ..Schake, (Eliedmaßen und sonstiger Körperban wie bei Agassiziz: am Putafulb war die Zahl der Zähne in der Reihe an der Spitze viel klemer (7 anstatt etwa 60 ; Tafel 1 , Fig. 16. 15). Neben den typischen Borsten (Tafel 1, Fig. 23), existiren solche mit einfachem pinselartigem Ende (Fig. 22), letztere sind viel seltner als die erstgenannten. In der MagenWand fehten die Muskelfasern, an ihrer Stelle finden sich nur dïmne, anseheinend nieht contractile Fiasem, entsprechend ist der Darm an conservirtem Material nicht contrahirt; ferner fehlen die zur leibeswand vertaufenden Bindegewebsfasern. Das untersuchte Thier maß 16 mm ."
(i. H. Fowlek writes in 1909, p. 257 , concerning the relationship of these two species (1) ameh other: ..I regard it, however, as possible that pellucida is the penultimate stage of "graseizia". So reason at all for this assumption is produced, however, by this writer.

About at the same time this assumption was also put forward by L. LÜDERS in his essay .(iigantocypris Agassizii (MCLLLER)", p. 144. This author pointed out that the eleaning limb in young animals of this genus is only weakly developed. He then added: „Dies durfte auf die - lusbildung seiner Zähnchen und Borsten nieht ohne Einfluß gewesen sein." With regard to the histologieal differences between the two forms put forward by G. W. Muller L. Luders wrote (loc. cit.): ,Ferner sollen in der Magenwand die Muskelfasern fehlen und sich nur dünne, nicht contractile Fasern befinden. Dieser Nachweis ist aber bekanntlich sehr sehwierig. Wir können uns hier auf mehrere Autoren berufen . . . MLLLER dürfte seinen Schluß auch mehr ans dem Umstande gefolgert haben, daß der Darm zufällig nicht kontrahiert war. Jedenfalls können wir diese Fasern als ..scharf unterscheidendes Merkmal" nicht gelten lassen. Endlich sollen noch die zur Leibeswand verlaufenden Bindegewebsfasern fehlen. Diés wäre allerdings ein sehr ins Gewicht fallendes Merkmal und verdiente wohl in erster Linie genamt zu werden. Dadnrch würde sich die G. pellucida aber von sämtlichen Cypridiniden unterscheiden, won denen, soweit bekannt, auch nicht einer einzigen diese Bindegewebsfasern fehlen. Nachdem wir ferner die große Bedeutung dieses Bindegewehes fiur den Bhatkreislanf der G. Agassizü
kemen gelernt haben，und es endlich unerklärbar beibe，wie der Mitteldarm in der Leibeshöhke suspendiert ist，fällt es schwer，diesen Dangel des Bindegewobers als tatstichlich bestehond anzunehmen．Kelı mörhte deshatb auch hime emen lretum nicht für ausgeschlossen halten．＂

The eorrectness of the assumption that（ ．pellucitle is a larra of（i．Agassizi maty be considered as pretty certain．Besides the reasoms ymoted above from L．Leweth the following evidence in farour of this assmoption may be advaneed here：

Except G．Agussizi no form is yet known which can possibly be considered ats the sexually mature stage of 6 ．pellucidu．

The two forms were captured at the same time and at the same lucatity．
In examining $11-12 \mathrm{~mm}$ ．long larvae of my Atlantic species of this genus described below I have stated that their seventh limb was characterized by the same small number －about $15-20$, i．e．about $7-10$ on each side－of teeth of the end comb as this appendage of（i．pellucida．The number of the befls on the cleaning bristles of this limb was less than in the sexnally mature stage，nome of these bristles was however．quite without bells．It is， howerer，noteworthy that cleaning bristles quite of the type that d ．Wr．MCbLER found in a very small number on this limb of G ．pellucide，in other words bristles ．mit einfachem
 very seldom．both on sexably mature specimens and on larvae．This type had，however， obviously arisen by the distal part of the bristle having been broken off．the simple epinsel＂－ shaped point represented simply the proximal bell of the intact bristle．

Whether G ．pellucidel corresponds to the first or second larval stage of $(i$ ．Ayessizi seems． （on the other hand．very difficult to decide．Its small length， 16 mm ．compared with the $21-23 \mathrm{nmm}$ ．of the sexually mature specimens，certainly spems to support the itlea that it represents the second larval stage，contrary to（i．II．Foli lak＇s assmoption．

G．W．Willefe in his above－mentioned work（p．165）put forward the assmmetion that a representative of the genus Ciugntocypris had abrady before been mentioned in literature．

Lenger＂Expedition had eanght an Ostracod with a shefl of 2π mm．Longth between
 ＂xpedition．＂Zs．wiss．Zool．Bd．XXIV，p．XIIJ，Leipzig，1874）．（i．IV．MCthbialso made the same assumption in one of his later works， $19016 \mathrm{a}, \mathrm{p} .136$ ．I later author，l．JflいERA， 1909, p． 103 ，repeats this assumption．
decording to a statement of II．T．CalaiNi in a notion in Nature，rol．LANX．19月日， p． 248 the speemen to which Whamoris－suhal refered is still presered in the British Wusemm．
 described by（t．O．Silus．

Gigantocypris Mülleri n．sp．

Mestription：Fがmalい：－

 ．．Antarctic゙． $16,0-17 \mathrm{~mm}$ ．It is ahmest ghbular，with about the following proportions： －hength ：height：breadth $16.5: 15: 14$ ．Áeen from the side（fig．1）it is ahost perfectly circular，with the posterior part somewhat larger than the anterior；the ventral side is smmewhat flattened．The rostrum small，somewhat convex anteriorly，sometimes a little mote than is shown in the adjeining figure，peinted ventrally．The posterior opening of the Whell．seen from the side is sometimes not marked，sometimes more marked than in the adjoining tigure．Seen from ben ath（fig．ar）it is also almost circular，with the posterion part dominating somewhat over the anterior；sometimes a little more rounded at the back than is shown in the adjoining figure．Seen from the front it is almost circular．The sur－ fitce of the shell is smooth，withont any sculpture or hair．The pores of the surface are bery small and difficult to verify with certanty．Scen from within（fig．19）： Dedial bristhes：On the rostrum there are very mumerous，moderately long，simphe，smooth， rather powerlul bristles；on the specimens froms，，I ichael S ars＂and M／S Armaner If a nse $n 1^{\circ}$ about $75-125$ were observed，on the specimens from $S / S, A_{n t a r c t i c}{ }^{\prime \prime}$ about $105-175$（on the adjoining figure，drawn from an＂Antarctic ${ }^{6}$ specimen，all the bristles are．for practical reasons，not shown）．Near the point of the rostrum these bristles are arranged in irregular rows running within one another，sometimes they are，however，almost entirely without any arrangement；dorsally these bristles continue in a single row running near the border of the shell almost to the junction between the two valves．Near the inner edge of the incisur there is only one or a few short simple bristles，which vary in their position．Along the ventral edge of the incisur there are only a few bristles or no bristles at all．Along the anterior half of the ventral border of the shell on or near the list there is a somewhat varying number of bristles，most of them of the same type as the rostral bristles，a few short and weak；posteriorly these bristles become more and more sparse and at the same time slorter and weaker，but medial bristles may be observed along the whole ventral edge of the shell；the number of these bristles is．as already stated，somewhat varying；on the average，however，there is the same number along the whole rentral edge of the shell as on the rostrum．The joined part of the lamellae along the edge of the shell is very narrow，which is probably connected with the balloon－like swelling of the shell．The selvage is moderately broad，about the same width along the whole edge of the shell．with fine cross－striation，and finely serrated at the edge（fig．5）．

First antenna：－This is rather elongated；the anterior side of the second to the eighth joint measured，for instance， 4 nmm ．on a specimen with a length of shell of $\mathbf{1 4 , 5 \mathrm { mm } . \text { ；}}$

 amewhat withdraw into the serenth joint and rather diffonlt to verify with eertainty it is hest semp from the lateral side: it is mesed bey sperial methes. The anterior bristle of the third joint is sitmated somewhat proximally of the middle of the joint. This bristle, the pesterior bristle of this joint. the two bristles of the lourth joint. the bristle of the sixth joint, and the a-hmistle of the seventh joint are most frequently subequal or mather slightly different from each wher in length. about as lome as the thied joint: the lengtl varies, howewer. to some extont: all these bristles are bare or have short hais. The somsory bristle of the fifth joint is rather longe attaining to about the length of the posterior side of the second to the eighth or the third to the eighth joint. The b-bristle about as long as the anterior side of the third and fourth joints. The e-bristle attains about the same length as the whole antenna. The d- and e-bristles are in most cases somewhat different in length from each other and somewhat shorter or longer than the b-bristle The gebristle attains about hatf the length of the shell, the f-bristle is somewhat shorter. The number of filaments on the sensory bristle of the fifth joint and on the distal bristles varies somewhat, as is shown in the table below. The lenges in this table we the arerages of the right and left first antema: in most cases. however, the right and left loristles whe quite the same length; the difference was never great.

The filaments on the sensorial bristle of the fifth joint are rather long, their length varying to some extent. the longest being about a quarter of the whole length of the bristle; the distal one is rather short: they are all narrow, cylindrical, naked, between the short distal filament and the next distal one there is a decided gap, which does not exist between the others. The
filaments on the distal bristhes are bither bare or furnished with some ferw short, wak seromdary spines. Pilosity: The whale antenma is hatess or at any rate has only extmmely parse and very short hairs.
serond antenna: - Protopodito: The medial-distal bristle is relativoly long, attaining to about the same length as that of the longest bristhe in the proximal group of bristles on the first joint of the endopodite (fig. 7). Exopodite: This is rathom lomg: yet it is comparatively somewhat shorter than the exopodite of other species of this sub-family that arr dealt with in this treatise; by way of eomparison the following figures may be given: the lengtly of the shell: the length of the exopodite is about $4: 1$ in this species, $3.5: 1$ in ('ypritlim
 The proportion between the length of its first joint and the mited length of all the following joints is about $3: 2$: the second joint is about as long as the total length of the third and fourth joints. 'The bristle of the second joint is about as long as the total length of the thirel th the ninth joints (1r somewhat longer: distally it is bifnreated, ef. the adjoining figure 20). The longth of the longest natatory bristles: the length of the whole exopodite is about in: 3. The end joint has four natatory bristles; the dorsal one. which is the shorest. is about the same length as the whole of the exopodite. All the natatory bristles are fitted with well-developed and rather brod natatory hairs along almost their whole length. The third to the ninth joints have rather weak basal spines (these are, however, stronger than those reproduced for Cypritime (Macrocypridina) castanen. fig. 11 of this species). The third to the aighth joints are in most eases furnished laterally-distally with sparsely placed weak spines: medially-distally. on the other hand, they have nome of these. Endopodito (fig. T): This is very long and narrow: the second joint is about twier as long as the first and third joints. The first joint hats a group of four bristles proximally, one of which is rather long, about as long as the seemet joint or somewhat shorter: the other three are suberfual. not fuite attaining to half the length of the former: in addition on this joint, somewhat distally of this gromp of bristles. there is a single bristle, about as long as or somewhat longer than the longest proximal one; all these bristles are bare of have extremely fine short hairs. The second joint has a short bristle distally. $1 / 2$ to $1 / 5$ the length of the end joint. The bristle of the end joint in monsiderably lomer than the endoporlite, in some specimens even extending somewhat behind the posterion bomadary of the protopodite.

11 andible: - The type is about the same as that slown in pl. Il. hig. T. Tir. Nowt 1912 b. - Protopoditr: The endite of the coxale is of abont the same type that
 distally, the two distal points are somewhat more powerful than the spines and, unlike tho latter. armed with rather powerfal secondary spons: botween the two distal points there is a low process ((ff. p. 182 above). The basale has ventrally thee short a-bristles, somewhat different in length, furnished with short hairs or spines; in front of the most anterion of these bristles there is an extremely short almost peeg-like bristle; in front of this. with almost the same sithation and proportions as in 'Th. Scotr's figure mentioned abrove, there are ond b-bristle. two e- and two d-bristles; the b-bristle was missing on one mandible in the specimen from ll N ... Irma a ar

Digitized by Microsoft ${ }^{(B)}$

Hathser". The relation lemgth of these bristles varies somewhat. hewerer. The b-bristle in shom-haterel: buth the e-bristles usuatly haterenthais, on the right mandible of the specimen
 andmedry bristles in the midelte; the shorter d-bristle ako manally has long secondary hristhes in the middle. often. howerer rather few in momber, in the second specimen froms/s , A 1 t are i (". it was ewen short-hared. The three dorsal bristles are subegual, about as long as or somewhat shorer than the dorsal side of this joint; they have short hatrs are almost bare the proximal one is fised somewhat distally of half the length of the joint. - The exopodita is somewhat longer than the dorsal side of the first endopodite joint. Of its two bristles the proximal one is about as long as the dorsal bristles of the second protopodite joint, the distal one attains to omly about half the length of the exopodite; both have short hats or are almost naked. -E ndopodite: The four ventral bristles of the first joint have a comparative longth that is trpical for this sub-family; the longest one does not quite attain to the length of the posterior side of the second endopodite joint, lumished with irregular wreathe of long secondary bristles, with short hairs distally, the other three are short-haired. The second joint: This has a thick mass of bristles of various kinds along almost the whole anterior side. The number and situation of the bristles seem to vary rather considerably; firstly there are $20-30$ more or less long bristles with sparse short hairs, about the same as in 'Tu. Scotr's figure mentioned above, secondly a very large number of cleaning bristles, either arranged in more or less distinet rows ruming slantingly upwards and forwards, or at least partly almost quite without regular arrangement; the mumber of these rows of bristles is difficult to decide with certainty, as they are situated very close together, yet it seems to vary between fifteen and a little over twenty. The posterior bristles in these rows are rather short, the distal two thirds of them are finely pectinated, abont the same type as shown in fig. 21 adjoining; the pectination on these bristles is so fine that it can only be observed with difficulty with Reccomer's ok. 4 , Lent:' immers. $\frac{1}{12}$. In front of these bristles, thus nearer the anterior edge of the joint, the eleaning bristles are somewhat longer and of somewhat different types: a number of them have extremely fine pectination on their distal half or third; a number are very powerfully peetinated on their distal third or quarter; the stalk of these bristles is often furnished with a more or less large number of rather powerful spines proximally of the pectinated part (the types shown in figs. 22 and 23); spines may also occur on the stalk of the short cleaning bristles. Transitional forms between these different eleaning bristles are, however, to be observed. On the distal half of the posterior side of this joint there are three to five rather short, almost subequal, moderately strong, naked bristles (fig. 9), situated at about an equal distance from each other. Distally of these there are two spine-shaped bristles, situated next to each other, most frequently somewhat shorter than the former but very much stronger, in most cases about as long and as strong as each other; sometimes the medial one is shorter, though rather slightly so. Of the seven bristles of the little end joint (fig. 9) the medial of the two middle ones is comparatively long and powerful, varying somewhat in its comparative length, most frequently about as long as half the posterior side of the second endopodite joint or somewhat shorter; the other of the two middle bristles is somewhat weaker and only about half the length of the former
one or somewhat shorter. Of the two anterior ones, both rather weak, the lateral one is about half, the medial one about a quarter of the length of the main claw. Of the three posterior ones, all rather weak, one is somewhat shorter than the main claw, one about half the length of the former, and the third, as usual in this sub-family, almost completely reduced. All the bristles of the end joint are quite smooth. Pilosity: The second protopodite joint has numerous groups of short, stiff, fine hairs; the other joints have only sparse hairs or are quite smooth.

Maxilla: - Protopodite: The first endite has twelve powerfil, subequal bristles of moderate length, all furnished with a number of wreaths of long, stiff secondary bristles. About half these bristles have distally a moderate number of secondary teeth, usually rather coarse, and a simple and powerful point; the remainder, in most eases somewhat weaker than the former ones, are strongly pectinated distally right out to the points, so that they appear more or less strikingly three-pointed distally. In a few eases thirteen bristles were observed on this process. The second endite (fig. 11) has seven distal bristles, all rather powerful, of moderate length, subequal except for the fifth and sixth, reckoning from outside, which are most frequently somewhat shorter than the rest. They all lave a somewhat varying number of wreaths of long, stiff secondary bristles; distally of these secondary bristles bristle no. 5 has only a few secondary teeth, no. 6 is rather finely peetinated distally and the rest are more or less coarsely peetinated distally. The third endite (fig. 12) has nine or ten distal bristles, all furnished with a more or less large number of irregular wreaths of long, stiff secondary bristles. Three to four of the most distally situated of these bristles are considerably shorter than the rest and are usually furnished distally with only a few secondary teeth; the others are of moderate length, subequal - the outer one being, however, somewhat longer than the rest - and distally they are either rather finely pectimated like the two outer ones and the innermost one or else coarsely pectinated. The proximal bristle on this endite is sparsely furnished with short hairs and is about as long as the outside of this process. The bristle situated distally of the epipodial appendage is about as long as the first endopodite joint. Of the three bristles on the boundary between the basale and the first endopodite joint the one situated near the exopodite is of about the same length and type as the two distal bristles on the exopodite. the two others are short. about half as long as the first endopodite joint or somewhat shorter, and have short hairs or are quite naked. In one ease two bristles were observed instead of one on the anterior edge of the endopodite. Exopodite: The two distal bristles are usnally subequal and somewhat longer than the exoporlite: the remaining bristle is about half the length of the former ones; they all have long, stiff secondary bristles and distally they have short hairs. On one of the ., in taretie. specimens (the other specimen brought home by this expedition was defective with regard to this eharacter) one of the two distal bristles had short hairs. En dopodit e: First joint: Distally (fig. 10) this has four (in one ease on one maxilla there were only three, in another case five) anterior and four posterior bristles. The former are moderately long and strong, in most cases diminishing somewhat in length aceording as they are situated more posterionly; all are sparsely lumished with short hairs. The four posterior ones decrease rather rapidly in lempth and strength according as they are situated more anterionly; they are all sparsely but coarsely
pertinated, the two anterior ones have only a few secondary teeth. The posterior edge of this joint is irregulatly undulated distally, forming a how (anting proeess. The end joint (fig. 10): This is moderately chatimized. C'sually it has six (in a single sase seren) a-bristles of moderate stongh and length, naked or with sparse, weak seomelary terth; this joint has, in addition, fome b-bristles. form or live in most cases live, e-bristhes and thee (t-bristles. The b-bristles are most frepuently subeyual, of modemate length and strength. the anterion one of them - parsely hut stroug? pectinated, the rest usually onty with a few secondary teeth in the midede.
 b-bristles, tho athers mather short and weak: the longer ones among them have rather powerful but sparse secondary teeth, on the shorter ones the secondary tecth are fewer and weaker and may even be quite absent. The d-bristles are somewhat longer than the b-bristles and very puwerful. enpecially the two anterior ones; they are armed with sparse. coarse secondary teeth, the anterior ones most frequently with only a few of these. Pilosity: The epipodial plate of the protupedite is parthe furnished with fine hairs. 'The first endopodite joint hats anteriorlydistally grempes of fine short hairs.

Fifth limb: - Protopodite: The first endite (fig. 15) has in most cases fonrteen bristles: in one case among the specimens fromsis, , Michael sars" only thirteen were ubserved. White the specimens from $\boldsymbol{B} / \mathrm{S}, \mathrm{Antaretic}$ had fourteen or fifteen bristles on this process. (1f these bristles the imner-anterior one is rather short, ahost bare or furnished with one wreath or a few wreaths of long secondary bristles. The rest are moderately or rather long, their relative length somewhat varying, in most cases being about what is shown in the adjoining figure; they are all rather powerful and have a varying. in most cases rather large number of wreaths of long. stiff secondary bristles; most of them are fitted distally with a varying number of rather powerful secondary tecth, some are bare distally. The five inner bristles of the second endite (fig. 16) are rather powerful, suberual, of moderate length, all with a number of wreaths of long. stiff secondary bristles, the middle one of them fincly serrated, the rest with rather coarse secondary teeth distally, generally somewhat fewer and coarser on the two posterior bristles than on the two anterior ones. The bristle a little farther out on the anterior side of this process is short, bare or almost bare. Third endite: (fig. 17) All seven bristles are of moderate length, subequal except nos. 5 and 6 , reckoning from the front, which are somewhat shorter than the rest; the five anterior ones are rather powerful, the two posterior, cspecially the most posterior, very powerful. The two anterior ones are of the same type as each other, fitted with several wreaths of long, stiff secondary bristles in the middle and rather coarsely pectinated distally: the threc middle ones are generally without long sccondary bristles. two of them are finely serrated. the third coarsely pectinated distally; the two posterior ones have several wraths or cross-rows of long. stiff secondary bristles in the middle, distatly they are somewhat bent and armed with a somewhat varying number of secondary teeth, of which the proximal omes are very powertul. The apipodial plate has about seventy to pighty marginal bristles; on the wentral ones of these the distal thind or quarter is naked or has short hairs. on those situated more dorsally the long hains extend still farther out towards the point of the bristles: on all of them, however, the point itself is quite naked. The structure

Fig. XXVIt. - Gigantocypris Mullerı n. sp. - 10. Distal part of the endopodite of the dight maxilla, seren from
 exopodite joint of the fifth limb with the main troth, $+: 86 \times$. 1 . Distal part of the seventh limb; the proximat tecth of the end comb are not drawn, 9 ; $480 \times$. (From a specimen from station 82 of $\mathrm{S} / \mathrm{S}, \mathrm{Michacl}$ ぶars". Zoolog. bidrag, Uppsala. Suppl.-Bd. I

Digitized by Microsoft © ${ }^{(8)}$
of the distal part of these hristles dones not, howerer. justify the assumption of an ataptation for somsing function. The distal dhitmons proeses of the protopodite is mather powerful, bent
 main twoth has soren monstituent teoth all wedl defined proximally: the seomdary teeth on the latter apprat abom as in the atjoining figure, alternately powerlul and bery weak, sometimes, howerer, semeral wak unes hetwern fwo strong ones. The bristle clase to the main tooth, on the posterion side of the joint, is about as long as the longest constituont towth of the former, monderately stong and with lenge, stifi secondary bristles in the middle, ahmost bare distally. Un the antertor side of this joint elose the the man tooth there is a series of six bristles; the two stuated chosest to the main toonh are subequal, rather long and streng, the rest decrease fairly miformly amd rapidly in longth and strength the farther they are situated from the main tooth; the shortest one is only about a guarter of the length of the two longest. They all have long, stiff secondar bristles in the midde; these secondary bristles become, however, fewer as the bristles become shorter. 'The bristle situated nearest to the main tooth is rather strongly pectinated distally: the distal equipment decreases on the others as the length oll the bristles deereases, the shomest ones being almost bare distally. A litile way in front of these bristles on the anterior side of this joint there is a single bristle of about the same type and length as bristle no. 3 among the last-mentioned six bristles, comnting from the main tooth; in one case among the specimens from S / S,, Mieharlsars" two such bristles were observed at this place. The second joint (fig. 18): This has five, in exceptional eases six, a-bristles, nine b-bristles, one e-and one d-bristle. The a- and b-bristles are rather powerful, with numerons rather strong secondary teeth. The c-and d-bristles are of moderate length, with long, stiff secondary bristles in the middle, distally almost bare or with short hairs. Third joint: The inner process is small and has three bristles, two moderately long and subequal distal ones, with short hairs or almost bare, and a proxinal-posterior one which is short and has most frequently long secondary bristles in the middle and short hairs or else is quite bare distally. The outer process of this joint is somewhat greater than the inner one and has two moderately long, subequal, rather powerful distal bristles, both of them with long secondary bristles in the middle and with short hairs or almost bare distally. The fourth exopodite joint is rather large. Distally it has ten to thirteen moderately long and powerfuł bristles somewhat different in length from each other, arranged in two parallel rows; in the posterior row there are four or five bristles somewhat shorter, on the average, than those in the antcrior one, with short and rather powerful secondary bristles; in the anterior row there are five to eight bristles; most frequently all of them are almost bare, except the outer one, which in most cases las long, stiff secondary bristles in the middle. The end joint is small but well defined, and is moved by a special musele. It has two subequal bristles, whose type and length is about the same as the two bristles on the outer process of the third exopodite joint. Pilosity: The outer process of the third joint of the exopodite and the fourth and fifth joint of this branch are partly furnished with fine hairs.

Fig. XXIIII. - Gigantocypres Müleri n. sje. \&. - Fifh limb: 15. First endite of He protopodite: 10: 16. Second endite of the protopodite; 105×17. Third andite of the protopodite; 105×18. The fon distal joints

Sixth limh：－As will be seem from the following table the number of the hristles of this limb varied a little：$(\mathrm{d}=$ distal bristle， $\mathrm{m}=$ medial bristle $)$ ．

		Ist indita of the profopertite．	grel．rultice of the protapudits．	3ra．whlite af the protoperitie．	Ep！poctial l：atulua．	Findit．of the Int．Joint of the exopodite．	Zowl．joint of the exoporllte．	
．Vich．ul ミıs＂	Riaht．	$\because \\|$－		$1 i d+1 \mathrm{~m}$	10	11 d	$2!1$	
TYpr－aper imm	1．0．11．	$\because 1+: 3$	菂十 3 m	$7 \mathrm{~d}+2 \mathrm{~m}$	6	$11 \mathrm{~d}+2 \mathrm{~m}$	28	
－Mi，howel S．rs．＊	Rishl．	$\because d+2 \cdots$	5） $1+: 1 \mathrm{~m}$	$81+2 m$	6	12 d ＋	31	
1－1．sper imerl	1．1］．	$\because d+\because!$	$5 \mathrm{~d}+: 3 \mathrm{~m}$	8 d	6	$121+2 m$	36	
．Wiahbel Strs＊	Right．	$\because 1+2 \mathrm{~m}$	$5 \mathrm{~d}+3 \mathrm{~m}$	8 （1＋ $\mathrm{In}^{\text {d }}$	7	$111+2 \mathrm{~m}$	12	
2nd．sjocimun	1．011．	$\because d+: m$	$6 \mathrm{~d}+3 \mathrm{~m}$	$8 \mathrm{~d}+2 \mathrm{~m}$	7	$12 \mathrm{~d}+3 \mathrm{~m}$	10）	
	lighl．	$2 \mathrm{~d}+2 \mathrm{~m}$	$511+8 \mathrm{~m}$	$8 d+2 \mathrm{~m}$	－	$13 \mathrm{l}+2 \mathrm{~m}$	39	
3rat．sere imonn	1， 5 do．	$21+2 m$	5ı十 3 m	$s \mathrm{~d}+3 \mathrm{~m}$	＇	13， $1+2 \mathrm{~m}$	37	
．．．｜rmatherlhallsal｜	Rishl．	$21+2 m$	5ut 2m	7 d＋：m	5	$1111+\because m$	3：	
101．sperimum	1．efl．	$\because 1+!m$	$\therefore \mathrm{l}+2 \mathrm{~m}$	$7 \mathrm{~d}+1 \mathrm{~m}$	：	$10 \mathrm{~d}+3 \mathrm{~m}$	31	
．．．dilarelic ${ }^{\text {a }}$	Righl．	$\because d+: m$	5 1－ 3 m	$8 \mathrm{~s}+1 \mathrm{~m}$	＇	$13 \mathrm{~d}+2 \mathrm{~m}$	57	
181．specimen	larfo．	2 1＋－m	$5 \mathrm{~d}+\mathrm{O}$ m	$8 \mathrm{dt}+2 \mathrm{~m}$	5	$14 \mathrm{~d}+3 \mathrm{~m}$	5.5	
．．．Anlarclir＂	light．	$\because d+2 m$	$5 \mathrm{l}+3 \mathrm{~m}$	$8 \mathrm{~d}+2 \mathrm{~m}$	fi	$12 \mathrm{~d}+3 \mathrm{~m}$	： 5	
Oml．speriment	1． 5 fl．	$\because d+: m$	5 mf 3 m	S $1+2 \mathrm{~m}$	8	$11 \mathrm{~d}+2 \mathrm{~m}$	12	

Protopoditc：First endite：The distal bristles are of moderate length and strength， subequal．furnished with a number of wreaths of long，stiff seeondary bristles extending right to the points of the bristles；the medial bristles are short and have long hairs．Second endite： This has one distal bristle rather considerably shorter than others，but rather strong，with long secondary bristles in the middle，and with short hairs or almost bare distally；the other distal bristles are of moderate length and strength and subequal；they all have several wreaths of long， stiff scondary bristles and are pectinated or ahmost smooth distally．The medial bristles are short and have long hairs．Third endite：One of the distal bristles is somewhat shorter than the others，very powerful，and has a few wreaths of long，stiff secondary bristles in the middle and a few very powerful secondary teeth distally．The other distal bristles are of moderate length and strength and subequal：one of the dorsal ones is，however，in most cases somewhat shorter and weaker than the others；cither all of them have long，stiff scoondary bristles in the middle or one or more may be without them；they are pectinated or bare distally．The medial bristles are of about the same length as the distal ones or somewhat shorter；they have a few wreaths of long，stiff secondary bristles and are pectinated or bare distally．The bristles of the epi－ podial a ppendage are short，with short hairs or bare；in only one case was one of these bristles found to have long and soft hairs．Exopodite：Endite of the first joint：The distal and medial bristles are of about the same length and type as the bristles on the third endite of the protopodite；onc（in one case two were observed）is somewhat shorter than most of the others，but it is very powerful，it has some wreaths of long，stiff secondary bristles in the middle and is furnished distally with a few powerful secondary teeth；two，situated laterally， one ventrally，the other at about half the height of the endite，were considerably shorter and weaker than the rest and had short hairs；in one casc only one of them，the ventral one，was found on the limb of the one side，the other was missing．The bristles of the second exopodite joint are all situated near the ventral edge and there is no pronounced gap between the posterior
ones and the rest. They are somewhat different from each other in length and strength, most of them being moderately long and strong, some of those situated more anteriorly rather short and weak. Some of these bristles, especially the short ones, are furnished only with short, stiff secondary bristles, the others have wreaths of long, stiff secondary bristles in the middle and short ones distally; the wreaths of secondary bristles are rather few on the anterior bristles, more numerous on the posterior ones. The two or three posterior bristles whose long secondary bristles are of the same type as on the other bristles, stiff and arranged in wreaths - are bare or have rather fine short hairs distally. Pilosity: The inner side and the ventral part of the outer side of the second exopodite joint have numerous groups of short, stiff, fine hairs.

Seventhlimb: - This is unusually long; we may mention that on two specimens, one with a shell 15 mm . long, the other 14 mm . this appendage attained a length of 22 mm . and 20 mm . respectively. The distal $1 / \%$ of the limb is armed with bristles. The position and relative length of the bristles is about as is shown in pl. II, fig. 11, Th. Scott, 1912 b, but we have, however, to notice that whereas in this figure - presumably owing to a mistake - of the proximal scattered cleaning bristles two are never fixed on the same side of one and the same joint, in my specimens such a duplication is by no means uncommon. The number of the cleaning bristles varies from about 90 to about 130 - 140 on each side, the numbers being, however, very difficult to determine with certainty on account of the closeness of the bristles to each other distally on the limb. The bristles (fig. 24) are armed distally with $1-10$ bells which are most frequently distally cut obliquely; the tongue of the distal bell is also cut somewhat obliquely; the presence of so few bells as one or two is, however, very rare. Proximally of the bells the eleaning bristles are smooth. The end-comb (fig. 14) has about $90-150$ teeth, all of about the same type, i. e. fairly square distally and with a series of bristle-like seeondary teeth running aeross the middle. Dorsally between the end comb and the cleaning bristles there is an unpaired and rather small and smooth chitinous peg (fig. 14).

Furea: - This is of the same type as that shown in pl. II, fig. l2, Th. Scott, 1912b. The number of claws varies somewhat; the specimens from S/s ,, hiehael Sars^{*} had eleven to thirteen (the type specimen eleven); the specimen from M/S ,Armauer Hansen* had ten; of the specimens from S/S ,Antaretic" one had eleven + twelve, the other not less than fourteen + fifteen elaws. Behind the claws the furea is bare.

Upperlip and median eye: - These scem to correspond exactly to these organs in (6 . Agassizi. The lateral eyes are very greatly reduced, and certainly do not function as organs of sight.

The number of embryos in the specimens from S / S, Miehael Sars" and M/S ,,Armauer Hansen" was about thirty to fifty; in the specimens from $\mathrm{S}, \mathrm{S}, \mathrm{Antareti} \mathrm{e}^{*}$ there were 57-85. Several of the females with their embryos far developed hat rather large eggs in the ovaries, about twenty to twenty-five in each ovary.

Male: -
Shell: - Length $12-13 \mathrm{~mm}$. ; length : height : breadth about $12,5: 10: 9$, i. e. the height is comparatively a little less than in the females. The posterior aperture of the shell

Fig. XXIX. - Gigantocypris Hülerı n. sp. - 19. Anterior part of the right vatve seen from within; all the medial bristles of the rostrum are not drawn, $f: 33 \times$. 20 . Wistat part of the bistle on the second exopodite joint of the spcond antema. $\circ: 500 \times$. 21. $2=$ and 23 . Wifferent types of rbeaning bistles un the second endopodite joint of the mamble, $₹ ; 233 \times$. 24. Jistal part of a cleaning bristle of the serenth limb, $9 ; 325 \times$. 25. Penis, drawn as if it were semi-transparent: all the bristhes are nol drawn: $9: 3 \times$. - The lemale sperimen from station 20 , b of the ...tnlarctic", the maln from the station 88 of the ... Mif hael sars".
is more strongly marked than in the case of the female, but not always so strongly as shown in the adjoining figure 3. Otherwise it agrees pretty well with that of the female.

First antenna: - This is somewhat more elongated than in the female; thus, for instance, the anterior side of the second to eighth joint attained a length of 4.4 mm . on a specimen with a shell 12 mm . long; the second joint seems to be somewhat shorter, comparatively,
than in the female. The number of filaments on the sensory bristle of the fifth joint and on the distal bristles seems to vary somewhat, as appears from the following table: (The lengths are the averages of right and left first antennae; in most cases, however, the right and left bristles were almost exactly of the same length; the difference was never great.)

On a defective specimen from $S / S_{\text {, , Michael }} \mathrm{Sars}^{\text {s }}$ the sensory bristle of the fifth joint had twenty filaments on both antennac, one f-bristle had 46 and one g-bristle 47 filaments. The filaments on the sensory bristle of the fittl joint are comparatively longer than those of the female, most of them are somewhat spool-shaped, though only slightly so. B-bristle (fig. 6): The three proximal filaments are metamorphosed for seizing the female; distally of the sucker these three filaments have one or a few chitinous verruciform swellings; the two distal filaments are of the same type as in the female. Cbristle: The proximal filament is metamorphosed for seizing the female, it is of the same type as the three proximal filaments on the b-bristle; on the right antenna of the specimen from M/S, Armauer Hansen" the second filament, counting from the base, also had a suctorial organ; this suctorial organ, fixed to the base of the filament, was of a somewhat pathologieal type; as in other respects the filament was of about the same type as the more distally situated filaments, this case is probably to be considered an abnormality. The e-, f - and g-bristles are, as shown in the above table, subequal and of abuut the same length as the shell. In other respect this limb agrees with that of the female.

Second antenna: - The protopodite is slightly more powerful than in the female; in one specimen with a shell $12,5 \mathrm{~mm}$. long it attained a length of $4,0 \mathrm{~mm}$.; while in a female with a shell $14,5 \mathrm{~mm}$. long it only measured $3,5 \mathrm{~mm}$. The endopedite is almost exactly of the same type as in G. Agassizi, as this is shown in pl. I, fig. 19, (r. W. Mullef; 1895. The bristles of the first joint, all situated proximally on the joint, are quite like the female's. The second joint bas four short, subequal, bare bristles (ct. the accompanying figure 8); no less than two of the four males investigated were obvionsly pathological in this charaeter. The ventral bristle of the end joint is fixed about half-way along the joint and attains about the same length as the second joint or is sometimes even somewhat longer.

Penis: - This has the fundamental type usual for this sub-family. For details the reader is referred to the accompanying drawing no, 25 ; not quite all the bristles are shown in this.

The other organs agree very well with those of the frmale; in one case I fom on the first exoporite joint of the fifth limb only five, not six, bristles in the row next to the main tooth.

Varabhilu!.
lirlatonshifr.

Remarks: - Is is soen from the description given above this species is distinguished, conerary to most other forms of this suth-family that are dealt with in this treatise, by the fact that several organs, expecially the first antemand the sixth and seventh limbs, are subjeet (10) a not inconsiderable variation. In spite of this it seems to be very probable that we are dealing with a single clasificatory mit. In any ease the striking continnty shown by the variation, in spite of the limited material, supports this view.

How is this form related to (i. W. MUther's previonsly described Pacific speeies of this menus?
(i. IV. Mithas:s deseription of (i. Agassizi (189a) is rather incomptete. In spite of that I believe that one may say with pretty great certainty that the Atlantic form described above by me is a new species, well differentiated from (3 . Agassizi, which was in reality already to be assumed a priori on account of the fact that the two forms were eatught in two districts fairly well separated from a zoologieal point of view.

The characters in which G. Agassizi is differentiated from the Atlantie species are as follows:

The length of the shell is greater (G. W. Mother, [1895] gives 23 mm ., 1912 only 21 mm .).
First antema: This has only seven joints. „Das letzte Clied, an dem sich Reste ciner Verschmelzung ans 7 und 8 nicht nachweisen lassen" In the male the five proximal filaments on the b-bristle and the two proximal filaments on the e-bristle are modified for seizing the female.

Second antenna: The exopodite has no basal spines on the third to the ninth joints: the second joint on the female endopodite has no bristles; the bristle of the end joint of the last-mentioned branch does not attain the length of the endopodite.

The seventh limb has more than 200 eleaning bristles on each side.
In all these characters the Atlantic form seems to be more primitive than the Pacifie form. - To judge from G. W. Mt'Llee's drawings the two forms seem to be differentiated in still more characters. The superficiality of the drawings makes it rather probable, however, that these differences are due, at least in part, to lack of exactitude on the part of the anthor; on account of this I have thought it best not to discuss these characters at any length here.

In a later work (1906 b) G. W. Muller mentions (p. 135) that about ten, mostly young. specimens of this genus - ,Alle gehören, soweit ich das feststellen konnte, zu Gigantocypris Agassizit* - were caught by S/S ,V'Vldivia"* between lat. 14^{0} N. and lat. $42^{0} \mathrm{~S}$. in the Atlantic and Indian Oceans. Only two pictures of habitus were given. Whether any of these finds are to be referred to my above deseribed species it is impossible to decide. It may, however, be pointed out that fig. 5, pl. V shows a type of shell so different from the one that is characteristic of my species that an assumption of this sort seems anything but probable. - It may be stated in passing that this figure also suggests most decidedly that G. W. MILller's identification with G. Agassizi is ineorrect.

It is true that the material of the "Valdivia" expedition was subjected later on to a renewed investigation by J. LéDERS (1909), but this author's drawings of the limbs, ete.

[^35]are so extremely bad, so incomplete and incorrect that, unfortunately, the classificatory position of these specimens cannot be decided from this work either. It is, however, to be noted that the drawing of the shell given by this author shows a type that approaches considerably more the one which is characteristic of my above described species. The exopodite of the second antenna appears to be without basal spines; p. 108.

Withont giving any detailed information about the type or the species, J. RICHARD mentions (1900, p. 83) that a Gigantocypris 1 cm . long was caught at a depth of 1732 metres off the Azores, thus in the neighbourhood of stations 51,53 and 62 of S / S, Miehael sir s". - In this anthor's work of 1904 a specimen of this gemus is also mentioned from Itlantic (p. 15).
(. H. Fowler mentions that two specimens of this gentis were canght by S / S,,Researeh" in 1900 in the Bay of Biseay (1909, p. 257). There are no detailed descriptions. ,,By size they belonged to Müller's species pellucida: the perfect specimen measured abont 13 mm ."

Similarly G. Agassizi is mentioned in G. IV. Míluer's work of 1908, p. 87; no figures or descriptions are given.

Whether these finds are to be referred to (i. Müller it is impossible at present to decide with absolute certainty. As is seen above I have written Fowler's form as synonymous to this species, although it seemed to me best to add a query.

There can of course searcely be any doubt that the species Gicyantocypris pellucida described by Th. Scott, 1912 b , p. 5 from lat. $58^{\prime \prime} 43^{\prime} \mathrm{N}$., long. $9^{\circ} 6^{\prime} \mathrm{W}$. - thus in the neighbourhood of S / S, Miehael Sars's" stations nos. 98 and 101 - is identical with G. Mïlleri. Small differences are to be noted in some characters; for these I need only refer to Tir. Scott's and my figures. The explanation of these differences lies probably, however, chiefly in lack of acenracy on the part of TH. Scott.

All the larvae investigated by me were females, in either the last or the penultimate larval stage; the number of furcal claws was nine or ten.

This form is named after G. W. MÚLLER, who is incomparably our greatest expert on the Ostracod group and the investigator through whom the first representative of this genus, so peculiar in its habitus, was made known to science.

Hubitat: - This species was captured at the following localities in the Atlantic and the Antarctic Occeans:

By S/ , ,Michael Sars" during the ,North Atlantic Deep sea Expedition". 1910 at the following stations: (All catches made with open nets).
Stat. 23. Lat. $35^{0} 32^{\prime}$ N.. long. $7^{0} 7^{\prime} \mathrm{W} . \quad 5-6 / \mathrm{V} .1$ juv.
, 29. .. $35^{0} 10^{\prime}$.. , $\quad 7^{0} 55^{\prime}$,. $9 — 10 \mathrm{~V} .2000 \mathrm{~m}$. of wireort. : 1 juv.
.. 49 B. ., $29^{\circ} 8^{\prime}$.. .. $25^{0} 16^{\prime}$.. 1/V1. 3000, 1 mature
.. 51. ., $31^{0} 20^{\prime}$,. ,. $35^{0} 7^{\prime}$.. 5—6/VI. 300 1 juv.
.. $53 ., 34^{0} 59^{\prime}$.. ., $33^{0} 1^{\prime}$.. s-9/VI. 1600, 4 ,"
53. ., $34^{0} 59^{\prime}$.. .. $33^{n} 1^{\prime}$.. $8-9 /$ VI. 2100 .. ,. 1 mature

(type lorality)

13/\II. 20(10) I mature j

15/11. 2500 I
$20^{\circ} 40^{\prime}$.. $17, V 11.15001 \quad . . \quad 1 \quad . . \quad$.. 1 juv.

is VII. 2000, 1 mature or
1 .. ; 1 juv.

.. !14. .. 51" 13^{\prime}.. .. $11^{0} 23^{\prime}$.. $26 / 11.2000$.. 1 mature +2 juv.
.. !心. .. $5 \mathrm{fin}^{\prime \prime} 33^{\prime}$.. .. $1^{0} 30^{\prime}$.. \quad VIII. 1500 1

It is to be pointed out that most of these stations are within the region of the Gulf Stream. By 3s .Armaner Hansen" during the summer eruise of 1910:
 14. .. $59^{\circ} 30^{\prime}$.. .. $20^{\prime \prime} 40^{\prime}$, $25 /$ VII., 1300 ,. . , ., $1 \quad, \quad$ \&.

The catches were made with open nets.
By As , Antarctic ${ }^{6}$ during the South Polar Expedition, 1901—1903:
 and $+3,36^{\circ}$ C resp.: 1 mature of.

This species thus appears to be found in the Atlantic and the Antaretic Oceans in a region extending from about $60^{\circ} \mathrm{N}$. lat. to $60^{\circ} \mathrm{S}$. lat.

With regard to the depth at which it is found it is to be noted that the specimens caught by ($:$. H. Fowler with a closing net were at a depth of between 1350 and 1800 metres and between 2700 and 3600 metres. - . The two captures of this speeies give the first definitive eridence that it is a deep-water form*' p. 296 - and that the one captured by S/S , Michael si ars" was found at so slight a depth as 150 metres(Station no. 51 ; ,,300 metres of wire out" is probably to be reduced to the above number).

With regard to the specimens brought home by the "Valdivia" Expedition (i. W. MÖ孔der, writes in 1906 a (p. 136): ,,Die Färbung* (vergl. Taf. V. Fig. 4. 5) ${ }^{*}$ - red -

[^36],,spricht für cine Tiefseeform; leider gestatten die Fänge keinen sicheren Schluß auf die Tiefe dex Vorkommens, da es sich durchweg um Vertikalfänge des offenen Netzes handelt. Am wemigsten tief reicht von den "Valdivia"-Fängen 55 V b (1200 m .), der ,, Albatross" erbentete Tertreter sogar aus nur 100 Faden (185 m. .), so daß die Form, wem sie, wie ich vermute, ein Bewohner großer Tiefen ist, sicher gelegentlich zu geringeren Tiefen aufsteigt."

This assumption seems also to apply to G. Mïlleri. This species too is probably to be considered as being a form that lives mainly in deep water and that, like many other pelagian forms, undertakes migrations up to lesser depths.

The specimens of S/S, Michacl Sars"and M/S ...trmaner Hansen" are stored in B. \%. M., those of the . Antaretic" (on slides) in R. M. S.

Gigantocypris Mülleri n. sp. var. minor n. var.

In one of the samples of plankton from S / S, , Michael Sars " were found two sexually mature females of this genus, which, although they bore a rather great resemblance to the species described above, differed from it so essentially in so many respects that it seemed to me best, as a preliminary, to distinguish them as a special form. This form has been arranged as a variety under the above-mentioned species and has not been set up as a new species especially for two reasons, partly because the preceding species appeared to be not ineonsiderably variable and partly because one of the two specimens in question resembled this species considcrably more than the other in several respects. It is not impossible that we are dealing with specimens of the above-mentioned species whose development has been eheeked by mavourable conditions. The answer to this question can only, however, be obtained after renewed investigations, carried out with more abundant material.

To enable the reader to decide how far the two specimens resembled or were different from the type species it seemed most convenient in the description to call one specimen (the most divergent) the a-specimen and the other the b-specimen.

Description: - Female: -
Shell: - Length: Specimen a attained a length of 9 mu., specimen b 10 mm . The shape was about the same as that of the type species, but somewhat less globular. however: proportion of length : height : width about $10: 8: 7$. thus somewhat lower than the type species. The medial bristles were considerably fewer than in the type species, but varied rery much in number; on the rostrum of specimen a about 45 bristles were found (cf. fig. XXX , on which all the bristles are drawn), on the rostrum of specimen b about 60 ; on the hist behint the incisur about $40-60$ bristles were found on the former specimen, about $40-50$ on the lattor. Otherwise there was agreement with the type species.

First antenna: - The proportion between the joints is about the same as in the type species; the second joint is, however, somewhat longer comparatively; the third joint, on the other hand, is somewhat shorter comparatively. The anterior bristle of the third joint is fixed at about the middle of the joint (in specimen a) or just proximatly of this. Alt the

Digitized by Microsoft © ${ }^{\text {B }}$
bristles have about the same length in relation to the antenna as in the type species. Ther distal e-, f. and g-bristles have considerably fewer filaments and the sensory bristle of the filth joint has also somewhat fewer filaments, as is shown in the following table. (The lengths given are the arerages of right and left first antennate; often, however, the right and left bristles were quite equal in length; the difference was never great.)

In other respeets this limb is like that of the type species.
Sceond antenna: - This is very like that of the type species. In specimen a the end bristle on the endopodite was about the same length as the endopodite, in the other specimen it was relatively somewhat longer (endopodite : end bristle $=$ about $25: 30$).

Mandible: - Protopodite: Basale: In specimen a the longest e-bristle lad a few long secondary bristles in the middle, in the other specimen this bristle had only short hairs, as in the type species. Exopodite: The distal bristle is of abont the same length as the exopodite or slightly shorter. Endopodite: The first joint: In specimen b there were on the right mandible - contrary to all the other forms of this family investigated by me five ventral bristles, the shortest one of the four that appear normally was duplicated (presumably an abnormality). Second joint: The bristles on the anterior side are subject to rather great variation; on specimen a there are about ten to fourteen more or less long bristles of varying length with sparse, short hairs and a relatively rather small number of cleaning bristles either not arranged at all or arranged only in indistinet rows (about ten to twelve): the eleaning bristles. as in the type species, vary somewhat in length; they are all bare or have exceedingly fine pectination; the other specimen was, with regard to these bristles, considerably more like the type species, their number being only slightly fewer than in the latter, and among the cleaning bristles the same types could be distinguished. On the posterior side of this joint the former specimen had, in addition to the two distal bristles situated near each other, two to four more bristles, the latter specimen three more. In other respects they were like the type species.

Maxilla: - Protopodite: The first endite has twelve bristles, the right maxilla of specimen a thirteen. The third endite has eight distal bristles, the right maxilla of specimen b only seven; the equipment of these bristles is - as is the case with the rest of the endite bristles of this limb - somewhat weaker than on the type species; bristles nos. 4-7 (4-6 when there are only seven bristles), counting from outside, are quite smooth distally. Exopodite: One of the two long distal bristles has only short hairs. Endopodite: First joint: In specimen a this has three anterior and three posterior distal bristles, in specimen b the right maxilla on this joint has four anterior and four posterior ones distally (as in the type
speeies），the left maxilla three anterior and four pusterior．In specimen a the end joint has three b－bristles and three or four c－bristles，in specimen b four b－bristles and five or six e－bristles．In other respects the maxilla is the same as in the type species．

Fifth limb：－Protopodite：The first endite of specimen a has nime bristles，of specimen b has（on the fifth limb of one side，the other side is defective in this character）twelve bristles，of abont the same type as in the type species，but rather more weakty armed．Third endite：The third to the sixth bristles（on the left fifth limb of specimen b even the third to the seventh），counting from the front，have no long secondary bristles at the middle．Exopodite： First joint：On the anterior side of the joint close to the main tooth there is a row of three（on the right fitth limb of specimen b four） bristles，of a type about the same as that of bristles nos．1，2 and 5 ， counting from the main tooth，in the type species．Second joint： On specimen a this has only four a－bristles and eight b－bristles， on specimen b，as on the type species，five a－bristles and nine b－bristles． The fourth exopodite joint has seven bristles in specimen a，eight in specimen b ，arranged in two rows in varying ways，all with short hairs． In other respects this limb agrees with the type species．

Sixth limb：－Specimen a：Protopodite：The first endite has two distal and two medial bristles．The second endite has three distal bristles and three medial bristles．The third endite has four or five distal and one or no medial bristle．The epipodial appen－ dage is represented by four short，bare bristles．Exopodite： The endite of the first joint has nine distal bristles and one medial bristle；the second exopodite joint has 24 bristles．Specimen b： Protopodite：The first endite has two distal and two medial bristles；the second endite has four or five distal bristles and two or three medial bristles；the third endite has six distal bristles and one medial bristle．The epipodial appendage is represented by four short，bare bristles．Exopodite：The endite of the first joint has eleven distal and two medial bristles．The second exopodite joint has from 33 to 35 bristles．In both specimens the types of the bristles are the same as in the type species．

Seventh limb：－Specimen a：（leaning bristles：Distally 30 dorsal and 30 or 31 ventral bristles were situated close together；

Fig．XX．Ciganto－ r！gpris．Müllert 11．sp．val＇． minor n．var．－－Interier fate of the right valve． Stedl from within；all the． bristles of the rostrum ：me dにロルハ：5：万0 proximally of these were scattered from 25 to 27 dorsal and from 21 to 23 ventral bristles．Specimen b：Cleaning bristles：Distally on the one limb about 45 bristles were situated close together dorsally as well as ventrally．on the other limb， 38 dorsal and 32 ventral bristles；proximally of these on the former limb were spread 34 dorsal and 33 ventral bristles，the other limb was fefective with regard wothese bristles．In both
specimens these hristes were fmonshed with three to nine bells of abont the same type as in the type species. The end comb had about 40 teeth in specimen a, about $45-50$ in speemen b. their type was about the same as in the type species.

Firca: - This had 11 or la chaws on specimen a, 11 on specimen b. Their type was the same as in the type spectes.

Number uf embryos: Specimen a had 27 , specimen b 34 .
Male: - Unknown.

Habitat: - Atlantic Ocean:
Lat. $29^{\circ} 8^{\prime}$ N.. long. $25^{\circ} 16^{\prime} \mathrm{IV}^{\circ}$. Depth 1500 metres (eaught in an open net); 1. VI. 1910 (\& , , llichael Sars", station 49 B); type locality: two sexually mature femates with fairly far developed embryos.

Genus Cypridina H. Milne Edwards.

Cypridina, a utorum; e.g., H. Milne Edwards, 1840 ; W. Balrd, 1850 a; ('. Claids, 1873; G. O. Sars, 1887 and G. S. Brady and A. M. Norman, 1896. Cypridime (1 a r t.): G. W. MƯLler, 1906 b and 1912.

Number of sub-genera

Remarks: - As it is to be seen from above p. 193 this genus in the present work has been divided into five sub-genera:

> Doloria n. Vargula n.
> Macrocypridina n. Cypridina H. Milne EDwarbs. Siphonostra n.

On account of the great uncertainty about most of the species belonging to this genus I have considered it convenient not to work out yet a diagnosis of this group. I have confined myself to the elaboration of detailed deseriptions of the sulb-genera, chiefly based on the species that I have had the opportunity to examine. A consequence of this is, of course, that many of the characters included in these descriptions are of generic value.

Sub-Genus Doloria n. sub-gen.

Desciption: - Shell:-Its form is somewhat different in male and femate, though this difference is rather slight. - It is oval without or with only a weakly developed posterior corner. The rostral incisur is narrow and comparatively deep; near the inner edge of the incisur there are two medial bristles situated close to each other. With rather strong calcification. The species of this sub-genus hitherto known are moderately large.

First antenna: - This is long, slender and has eight joints; for the proportion between the joints see the diagnosis of the sub-family. The sensory bristle of the fifth joint has thirteen sensory filaments. Three of the filaments on bristles b and e are modified in the male for seizing the female. Of these three filaments, all proceeding from the medial side of the bristles, the proximal one issues just at the hase of the bristles; this is short and powerful, swollen at the base and strongly chitinized distally, almost spine-like; medially at about half its length it has a single suctorial organ. The two other filaments are relatively long and have distally-medially on one side a series of small suctorial organs all of about the same type and size. The end bristles are not much longer in the males than in the females.

Second antenna: - The protopodite has one medial-distal bristle. Exopodite: The bristle of the second joint is rather powerfully developed. The natatory bristles on the third to the ninth joints are quite without spines. The third to the ninth joints have basal spines. Endopodite: In the male this branch is developed into a powerful triple-jointed clasping organ, the end joint of which has, besides the proximo-ventral bristle, two very short distal ones as well. In the female it is comparatively rather well developed, elongated, and triple-jointed; its end joint is, however, sometimes rather weakly marked. The bristle of the end joint is long.

Mandible: - Protopodite: The endite on the coxale is simple distally or has only indications of bifurcation; its spines are partly rather powerful, especially those situated distally-medially and have only rather a slight tendency towards arrangement in groups. Apart from the bristle of the endite there are no bristles on the coxale. Basale: Of the ventral bristles one d-bristle is very long, has numerous long secondary bristles and is furnished with short hairs distally, the rest vary from being moderately long to very short and have generally short. fine hairs or are quite bare. This joint has three or four bristles dorsally. Endopodite: The first joint has four bristles ventrally. The end joint has six or seven bristles, one of the posterior ones may be missing; - this is noteworthy, as in all the other forms of this'sub-family dealt with in this work, as well as in the species of the sub-family Phitomedinae, seven bristles: are always developed on this joint - : the two middle of these bristhes am rather powerful. claw-shaped, and about as long and as strong as each other.

Maxilla: - Protopodite: The coxale has dorso-distally a single bristle with long and fine hairs. Proximally on the outside of the third endite there is a single bristle. On the boundary between the basale and the first endopodite joint there are three bristles, one chase to the exoporlite, one at about the middle of the inside of the endopodite and one on its anterior
mge. Dersondistathe on the coxate them is a mather large lamelliferm opipodial appendage The exopudite is comparatively well developed, with close, fine, long hairs: it is no displaced distally. The andopodite is broad and moterately long.

Sixth limb: The second exopodite joint is rather short and somewhat romeded with numeroms hristles: its postarior-distal hristles are not strikingly large in comparison whth the other bristles.

Seventh 1 imb : - This has rather mmerons cleming bristles, of which a rather later number are situted bery close to cach other distally, the rest seattered irregularly along the distal part of the limb. With regard to the position of these latter bristles it is to be noted that on the same side of the same joint there is only extremely seldom more than one bristle. The end comb consists of a moderate number of rather powerful teeth, some rather long, distally: rounded distal teeth. smooth except that at the middle they have a smath secondary spine on cach side, and decreasing somewhat in length the more proximally they are sitnated, some rather shorter and broader, quite bare proximal teeth rather sharply cut off distally: Dorsally close to the end comb the wall of the limb is rather strongly thickened and also rather deeply concave. The ventral part of the wall in this noteh is continued proximally as a peg of chitin with which the chitinous part that forms the dorsal wall of the notel is moveably joined: this latter chitinous part ends dorsally in a freely projecting, rather powerful little verruca. The ventral and the dorsal walls of this notch may be pressed together somewhat like a jaw, when the distal teeth of the end comb are also pressed in towards the dorsal edge of the notch; this compression is carried out by a short, powerful, paired muscle, issuing somewhat proximodorsally of the point of the limb and fixed to the bottom of the notch, both to the ventral and the dorsal chitinous hinge. This muscle seems to be a specialized part of the anterior longitudinal muscle of the limb.

Furca: - The lamellae are morlerately elongated; the mumber of claws is about deven: there is no clear division into main claws and secondary claws.

Upper lip: - This has no large processes and is only slightly divided into fields; ome cam distinguish one anterior upper unpaired field of glands, the openings of which are directed anteriorly-ventrally and two posterior-ventral fields with the openings of the glands directed ventrally; these glandular fields are divided from each other only by shallow grooves. There is an unpaired protuberance on the front between the upper lip and the rod-shaped organ.

The median eye is well developed and is of ordinary size and type. The rodshaped organ is fairly well developed and rather short and thick.

The lateral eyes are well developed.

Remarks: - As far as I know this sub-genus comprises only the two species described below. Possibly one or more additional representatives of it may be found among the rather numerous species of this sub-family that have been dealt with in the literature: on account of the incompleteness of the descriptions nothing can. however, be stated with certainty about this.

With regard to the relation between the two species I will only point out here that the form C.(D.) leris found at $\mathcal{S o u t h}$ Georgia is certainly to be regarded as more divergent,
from the common original type than C. (D.) pectinata. The great agreement with regard, for instance, to the distal part of the endopodite of the maxilla that the last-mentioned species shows with closely-related forms of other groups, for instance of the sub-genus Vargula, decidedly supports this assumption.

On the other hand it is to be stated that they are very like each other; they are certainly very elosely related to each other; they may be regarded as representative forms, the one living at South Georgia the other at the Falkland Istands and Tierra del Fuego.

As the type-species of this sub-genus I regard O. (D.) levis.

C. (Doloria) levis n. p.

Descriphion: - Female:
She 1h: - Length 2,4-2,7 mm.: length : height, about 1,38-1,45: 1; length : breadth, about 1,9: S Seen from the side (fig. 1) it varies, though rather slightly, in form; it is irregularly oval with its greatest height at or somewhat behind the middle and the posterior part of the shell somewhat larger than the anterior part, sometimes rather more than in the adjoining figure. The dorsal margin is rather boldly arehed, flattened anteriorly, sometimes even rather more than in the adjoining figure, sometimes rather flattened posteriorly as well, as in the specimen reproduced, sometimes evenly arched; the ventral margin is much more slightly arehed than the dorsal one, its arcuation is even and uniform. The posterior part of the shell is broadly rounded, somewhat flattened with a slight indication of a posterior corner somewhat below half the height of the shell. The anterior margin of the rostrum is well rounded with only a weak indication of a comer, its ventral corner is rather pointed. Seen from below it is egg-shaped with its greatest breadth at or somewhat behind the middle and with gently and uniformly rounded sides; its anterior and posterior ends are rather broadly rounded, the former rather narrower than the latter. The surface of the shell is even ant shiny, with rather numerous but exceedingly short and fine hairs. The pores of the surface are small. Seen from inside (cf. fig. 1 of C. (D.) pectinata): On the rostrum there is a rather sparse but distinet row of rather long, simple or bifureate bristles, going slantingly upwards. Some of these bristles, those that are situated most ventrally, are somewhat longer than the others and situated rather closely together; the place on which they are fixed is not developed into a verruciform protuberance. Most of the bristles of this row seem to be quite bare, like the other medial bristles in this speeies; often, hoverer, some of them at least seem to have along a part of their length short, close and very fine secoudary hairs (very difficult to get sight of even with REICHERT's ocular 4 , LeITZ' immers. $1 / 12$). Apart from this row of bristles there are only a few single scattered bristles on the rostrum. Withim the imer edge of the rostral incisur there secms to be, hesides the two bristles placed eluse to each other near the edge, as a rule only a single rather short bristle, placed near the joining line. On the list behind the
rustral incisur there is a matherame row of monderaly long bifurated bristles (fig. 2) this row beeomes more and more sparse postorionty, and at the same time the bistles become shonter and simple, and abrealy at half the hengh of the shell it pradically ceases altonether: single slont simple bristes may, howerer. be wherved on the list along the posterion part of the vent ral edge of the shell. Within the pesterion margin of the shell the list is rather broad and has from about 20 to 2.5 shert bristes and ontside these a varying number of pecular fomations, the nature of which 1 hate not suceeded in establishing with full certainty; probably they are a sort of pores, at any rate they somewhat resemble these formations: seen from the side, they have about the type reproducel in the acompanying figure 3 . some of them at least seem to have, if 1 am not mistaken, an extremely short and fune hair (the verification of this is meertain even with a magnifying power as large as REICHER's ocular 4, latr\% immers. $1 / 12$). On the part between the list and the edge of the shell, both along the rentral edge and posteriorly, ther are practically no medial bristles at all. The selvage is rather broad along both the anterior and posterion edges of the rostral incisur; on the other hand it is rather narrow along the anterior edge of the rostmm and along the ventral margin of the shell; it extends, however, rather considerably outside the dede of the shell even in these parts. It has close, even and fine, in most cases almost imvisible cross-striation. and is exceedingly finely serrated at the edge, almost quite even.

First antema: - The posterior distal bristle of the third joint is generally somewhat longer than the bristle of the anterior side of this joint and also somewhat longer than half the length of the fourth joint: the anterior of these two bristles is fixed at about a third of the length of the joint. The two bristles of the fourth joint are generally subequal, not quite as long as the fifth joint. All the bristles mentioned seem, however, to show a not ineonsiderable variation with regard to their length. The sensory bristle of the fifth joint is about as long as the anterior sides of the second to the fourth joints taken together; of its thirteen sensory filaments the ten proximal ones are about a third of the length of the whole bristle and are rather considerably thieker than the distal ones, from which they are, in addition, separated by a distinet gap; the two following ones are only a quarter to a fifth of the whole length of the bristle; the remaining, distal one is situated near the point of the bristle and is very short and narrow; they are all of about the same thickness throughout whole their length and quite naked. The a-bristle of the seventh joint is about as long as the fifth joint, the bristle of the sixth joint is somewhat shorter. The bristles of the third, fourth and sixth joints and the a-bristle of the seventh joint are all furnished with short, fine hairs. Of the bristles of the seventh and eighth joints the b-bristle is about the same length as the five distal joints and has five sensory filaments. The c - and i-bristles are subequal and about double the length of the six distal joints; each of these two bristles has ten sensory filaments. The g-bristle is somewhat longer and is characterized by eleven sensory filaments. The proximal filaments on these bristles have from one to six rather short and weak secondary spines, the distal ones are smooth. The sensory tube-like bristles d and e are subequal, about the same length as the six distal joints taken together. Pilosity: The second joint is very sparsely fumished with hairs.

Secondantenna: - Protopodite: Length about $0,7-0,8$ mm. in specimens about $2,5 \mathrm{~mm}$. long. The medial-distal bristle (fig. 7) is short, about as long as or even somewhat

Digitized by Microsoft ${ }^{\circledR}$

shorter than the three short bristles on the first endopodite joint (cf. below) and ahmost bare. Exopodite: This has about the following proportions between the joints:
I : II : III: NV:V:V1: VII: VIII:IX = 38:13:5:4:4:4:3:3:3.

In other words the first joint is about as long as the total length of all the following joints and the length of the second joint is about as great as that of the three following ones together: the lengths vary somewhat, however, though rather slightly. The bristle of the second joint is about as long as the total length of the six or seven distal joints and has ventrally some rather weak spines, which vary rather considerably in muber (from about fifteen to twenty-five) and dorsally, on the average, a rather smaller number of short, still weaker ones. The longest natatory bristles are almost double the length of the whole exopodite and have rather broad natatory hairs. The end joint has four bristles; of these the dorsal one is about as long as the three or four distal joints, its hairs are long but comparatively few in number. The third to the minth joints have basal spines of the same type as those found in C. (Vargula) norregica, but they are, however, somewhat weaker. Endopodite (fig. 7): The end joint is sometimes not very well defined. The first joint has proximally a group of four bristles, three of which are comparatively short; in addition this joint has at about the middle a single bristle, somewhat longer than the longest proximal one and about as long as or somewhat longer than the two distal joints of the endopodite; all the bristles of the first joint are sparsely furmished with short and fine hairs. The second endopodite joint is quite without bristles. The bristle of the end joint is about donble the length of the endopodite and amost reaches the posterine limit of the protopudite.

Mandible (fig. 4): - Protopodite: The endite of the coxale has very numerons spines; its two distal points are generally somewhat stronger and thicker than the other spines. thougl only slightly so, and, contrary to the latter, are furnished with a few weak secondary spines; between the two distal points a low point can sometimes be observed; ef. above p. 182. Basale: The ventral side has seven bristles; two of them, the a-bristles, are situated at the proximo-ventral corner; one of these is quite short, the other relatively long, attaining about half the length of the ventral side of this joint; the b-bristle is very small; somewhat proximally of the middle of the joint there are two c-bristles, one of which is not quite as long as the longer of the two a-bristles, the other is exceedingly small, even very difficult to distinguish; in addition there are two d-bristles, one of which is quite short, the other long, of about the same length as the second endopodite joint; the last-mentioned bristle has along a great part of its length very numerous rather long secomlary bristles, only slightly arranged in groups; the other bristles of the ventral side of this joint are furnished with short hairs or naked. The proximal one of the three bristles of the dorsal side of this joint is situaterl somewhat in front of the middle oll the joint and is about half the length of the latter; the two distal bristles are subequal and rather slighty longer than the proximal one ; all three of them have short fine hairs. The exopodite is rather considerably longer than the dorsal side of the first endopodite joint. Of its two bristles, both furnished with shont, time hairs, the one situated most distally is somewhat longer than this loranch, the other is abont twice as long as the first. Endopodite: Of the four rentral bristles on the first joint the two longest are somewhat

Digitized by Microsoft ${ }^{\circledR}$

Fig. XXXI. - C. (Doloria) levis n. sp.. ㅇ. - 1. Shell. seen from the side; $35 \times$. 2. One of the medial bristles of the shell just buthe the rostral incisur; $680 \times$. 3. A part of the list inside the postrrior edge of the shell; $680 \times$. 4. Vandible. spen from within; 224 \times. 5. listal part of the mandible, seen from within; $480 \times$. 6. Cleaning bristle, abnormal type. of the second endopodite joint of the mandible; $1000 \times$.
different in length; the shorter of these two bristles has rather many fairly long secondary bristles, arranged to some extent in groups, and has short, fine hairs distally; the longer one, like the two short bristles, has short, fine hairs. Second joint: On the proximal half of the anterior side there are fairly nmmerous bristles: Six or seven more or less long bristles with short, fine hairs, the longest with its point extending somewhat beyond the end joint; the relative lengths of these bristles vary somewhat. Ten or eleven are rather short with fine double peetination (of the type shown in fig. 8 of M. (Cypridinodes) acuminata in this treatise; all these bristles are drawn smooth in the adjoining figure). About five or six bristles, also short but armed with coarse double pectination (of the type shown in fig. 9 of M. (Cypridinodes) acuminata in this treatise; these bristles are furnished with secondary spines in the adjoining figure). All the bristles of the two last categories, the cleaning bristles, are either clearly arranged in two or three rows rumning steeply and slantingly forwards and upwards or else situated quite irregularly. There is, however, a transition from one type of eleaning bristles to the other. The variability of these bristles was, on the whole, rather striking, one specimen had a cleaning bristle of the type shown in fig. 6. On the posterior edge this joint has, at about $3 / 4$ of the way along it, a single rather short bristle with short and exceedingly fine hairs or bare and a short distance distally of this bristle two more bare bristles situated close to each other, of the same length and strength as each other, somewhat shorter than the former bristle. All the six bristles of the end joint (fig. 5) are smooth. The two middle ones, which are the most powerful, are about a third of the length of the second endopodite joint. Of the two anterior ones the medial one is claw-shaped and somewhat more than half the length of the two middle ones, the lateral one is considerably weaker and also somewhat shorter than the medial one. Both the two posterior bristles are rather weak and different in length from each other, the longest lateral one is slightly shorter than the two middle main claws. Pilosity: The first endopodite joint has dorso-distally a series of short, stiff hairs; on the second endopodite joint there are proximo-anteriorly and along the posterior edge rather sparse transversal rows of exceedingly short, fine hairs; this limb is otherwise bare.

Maxilla: - Protopodite (fig. 9): The equipment of the three endites seems to be fairly constant, though slight variations from the type deseribed and reproduced below may be observed, especially in the relative lengths of the bristles. The first endite has nine or ten bristles of moderate length (on all the speeimens investigated except one the first number was found). They are several different types: one, situated at about the middle, is powerful but quite short and has only a few distal and rather powerful secondary teeth; one, situater somewhat outside the former, is of the same type as this but rather considerably larger; one. placed somewhat inside these two, differs from the latter bristle only by its haring also some long, stiff secondary bristles at the middle; all the other bristles are subequal and somewhat longer than the former ones; the outer one (or if there are ten bristles the two outer ones) have only rather weak distal secondary teeth; the three imer ones have numerous long, stiff secondary bristles, placed extremely close together; of the two remaining bristles, both with a moderato number of long, stiff secondary bristles, one has very powerful, the other rather weak secondary teeth distally. The second endite las six bristles: the two imner ones of these are rather short
with rathere powerfal seorombery teoth distally, ome is of about the same type, bat larger amb mone powerful, the there remaning ones, all somewhat longer than the the others, are rather wakly pertmath distall! : the two weter of these usmally have on the midhlde mather sparse and mathe long. exemdingly the hats. The third endite has alsu six bristes: the theer outhe of these are of about the same trpe as the outer ones on the secomed endite; of the three remaining onns one is of about the same length ats the thre former ones, with short, fine hairs or ahmst bare, one somewhat shorter, mather strong and with mather powerful distal secondary beth, the remaining one, the inner one, is of abont the same lenghtas the last-mentioned one, but weaker and apparently in most cases bare (sometimes missing?). The proximal bristle on the ontside of the third endite is nearly as long as the outer edge of this process and has short, fine hatirs or is almost bare. The dorso-listal bristle of the eoxale is about as long as the outer ones of the distal bristles of the thirl endite. Of the three bristles on the boundary between the basale and the first endopoolite joint the one that is situated close to the exopodite is about as lomg as the bristles of the last-mentioned branch and is plumose: the two others are ahmost bare, the whe on the anterior edge of the palp is somewhat shorter than the dorso-distal bristle of the coxale, the other still somewhat shorter. Exopodite: Of the three bristles the proximal one is about as lomg as this branch and has short, fine hairs or is almost bare; the two others are somewhat longer and densely plomose. Endopodite (fig. 10): First joint: 'This has distally on the anterior edge two rather long bristles, of which the proximal one is somewhat longer than the clistal one: both are bare, or alse the proximal one is sparsely phumose. On the posterior edge of this joint there are similarly two distal bristles, the posterior one rather long, the anterior one half the length of the posterior one, both with moderately strong pectination distally. The chitinized posterior, verruciformly projecting distal edge of this joint is comparatively weakly developed and varics somewhat in form. The end joint is very strongly chitinized, especially on the inside, which forms a broad, blunt and strong tooth. It has thirteen bristles: four moderately long, rather strongly pectinated a-bristles; three b-Jristles, the anterior one of which is moderately long, rather powerful and rather strongly pectinated, the two others are subequal. alsu rather powerful, straight, spine-like and bare or almost bare, only about half the length of the former one: three e-bristles, of about the same type and size as the anterior whe of the b-bristles; three (l-bristles, very powerful, very much bent in the middle and quite smooth (from which quality the name of this species is derived), only in exceptional eases can one or more weak secondary teeth be observed on these bristles, the posterior of them is largest and most powerful. the anterior shortest and weakest. Pilosity: On the first endopodite joint there are some transverse rows of fine, rather long hairs.

Fifth limb: - Protupodite: The first endite (fig. 12) has seven bristles. ()f these nos. 2,4 and 5 , counting from the anterior side of the limb, are subequal and comparatively long and powerful, equipped distally with mumerous rather long and stiff secondary bristles. placed close together in more or less well-defined oblique wreaths. Bristle no. 1 is of about the same type as those already mentioned, but is only about half their length. The three others are still shorter: no. 3 has in the middle a wreath of rather long, stiff hairs and is pectinated distally; no. 6 is rather weak, with thin walls and furnished with a rather small

 of the claws are not drawn: ? $1: 38 ;$

Digitized by Microsoft ${ }^{(®)}$
number of fine, rather Ilexible, long, sparse hairs; no. 7 is of about the same type as no. 1 , but somewhat stronger. Of the liwe inner bristles of the seond endite (fige 13) the two anterior ones are rather strong subequal, moderately long and both of the same type; they are rather strongly pectinated distally and may or may not have a wreath of rather long, stiff secondary bristles proximally of the middle. The posterior bristle is of the same type as the former ones but is considerably more powerful. Of the two middle bristles, both somewhat shorter than the former ones, the anterior is fincly serrate distally and has no long secondary bristles; the posterior che, which is the shortest, has in the middle a wreath of long secondary bristles, distally it is smooth or perhaps with a few excecdingly weak secondary teeth. The remaining bristle on this endite, situated on the anterior side of the process, a short distance from the five former cones is very short and bare. Of the seven bristles of the third endite (fig. 14) the two anterior ones and the posterior one have the same type and about the same size as the corresponding bristles on the second endite, nos. 3 and 4 , counting from the anterior side of the limb, agree with no. :3 on the process mentioned. no. 5 is quite short and bare or has a few long and rather suft hairs, no. 6 is moderately long and strong and has short, fine hairs. The distal spine of the protopodite is musually long and powerful. The epipodite has from 55 to 60 bristles, all furnished with long hairs right to the point. The exopodite has four joints: First joint: The main tooth (fig. 15) has seven constituent teeth all well defined proximally; the secondary tecth on the latter of about the same type as is shown in the adjoining figure, but vary, howeser, to some extent. The bristle close to the main tooth on the posterior side of the joint resembles in type and size the posterior bristle on the third endite. On the anterior side of this joint there are four bristles, three of which are situated close together in a row near the main tooth, the other one a short distance from these, farther out on the joint; two of the three former ones are subequal and rather long and strong (about the same as is shown in the figure 2.2 of C. (Vargula) norvegica), the third is somewhat shorter; one of the two long ones is rather strongly pectinated distally, the other has exceedingly fine, short hairs distally, both have stiff, long hairs in the middle; the short one has long, stiff hairs in the middle, short hairs distally, almost bare. The outer one of this joint's bristles is somewhat shorter than the two longer of the former bristles and has long, soft hairs along the greater part of its length, short, fine ones distally: Sceond exopodite joint: This has four powerful a-bristles with numerous moderately powerful secondary teeth continuing almost to the points of the bristles; in addition this joint has eight b-bristles, one c-and one d-bristle; the two latter are somewhat shorter than the longest b-bristles and have rather close, long, soft hairs at the middleand short hairs distally. The outer and inner lobes of the third exopodite joint are well developed (fig. 16); the outcr one somewhat larger than the inner one. Each of these lobes has two subequal bristles of moderate length, with long, fine hairs at the middle and short, fine hairs distally. The end joint (fig. 16) is about the same size as the outer lobe of the preceding joint and is furnished with two bristles of the same type and size as the bristles on this joint. Pilosity: The outer lobe of the third exopodite joint and the end joint are partly provided with close, soft, fine, long hairs.

Sixth limb (fig. 17): - Protopodite: The first endite has two or three rather long and strong distal bristles, two of which usually have a few oblique wreaths of long,

atiff socondary bristles, the thime, in most eases, with short hairs distally and two short, phmons medial bristles. Second endite: This has two rather long and powerful subegual distal bristess and two or three short. plumons medial bristles. Third endite: This has three rather long and powerful distal bristles of which the midde one is somewhat shorter than the two others, and one medial hristhe, of about the same length and type as the long distal bristles. The distal bristles on the second and third endites are of the same type. with a wreath of long and rather stiff secondary bristles at the middle and short hairs distally. The epipodial append a ger of the protopoedite is represented by fonr rather short bristles, either with short hairs w bate, issuing from a small, lobe-like process. Exopodite: The endite of the first jome has three or four. usually three, rather long and powerful distal bristles; of these the middle whe is somewhat longer than the others and of the same type as the distal bristles on the preceding endite; the ventral one has short hairs, the dorsal one (or the two dorsal ones) usually also with short hairs, sometimes, however with long hairs in the midfle. In addition this endite has one medial bristle of the same type and length as that on the preceding endite. Second joint: This has a rather large mmber of bristle. Eleven or thirteen of these bristles are of moderate length or rather long, all situated very near to the ventral edge; the two posterior ones of them with dense long, soft hairs right to the point, the others with long hairs at the middle and short hairs distally; the long hairs of the last-mentioned bristles are soft on the posterior ones, on the anterior ones they are somewhat more stiff, though only slightly so, and they are not arranged in distinct wreaths. Four or five bristles have short lairs and are generally considerably shorter than the former: some of these are somewhat, though only slightly, displaced from the ventral edge of the joint up the lateral side. There is no pronounced gap between the posterior ones of the bristles of this joint and the others. Pilosity: On the inside this limb has rather close, short, stiff hairs; laterally along the ventral edge of the second exopodite joint there is also a series of short, stiff hairs.

Seventh limb (fig. 18): - This is comparatively short, attaining only half the length of the shell. Distally there are ten or eleven (usually ten) ventral and seven or eight (usually seven) dorsal cleaning bristles, placed very close together. Of these bristles, both in the case of the dorsal and ventral ones, the most distal one is rather short or of moderate length; the next distal one, on the other hand, is comparatively long; starting from this latter bristle these bristles decrease fairly uniformly in length the more proximally they are fixed, though one or two may not follow this rule; the proximal ones are rather short. Proximally of these bristles there are eleven or twelve (usually eleven) ventral bristles and from nine to thirteen dorsal ones seattered irregularly along the distal half of the limb; these bristles are generally subequal and moderately long; their length is, however, somewhat variable. The cleaning bristles are furnished with from three to six bells, transversely cut off distally; (the very short, ventero-proximal cleaning bristle on this limb of the type-specimen, see fig. 18, which was furnished with only a single bell, was apparently pathological); the tongue of the distal bell is cut off very obliquely [type about the same as is shown in fig. 28 of C . (Macrocypridina) castanea]; proximally of the bells the cleaning bristles are perfectly smooth. The end comb (fig. 19) consists of from seven to ten distal teeth and of three or four proximal teeth on both sides of these. The distal

Digitized by Microsoft ${ }^{\circledR}$

wart on the dorsal chitinous plate of the distal cavity has one short, powerful central tooth with several distal points and from two to five short, powerful, conical, bave teeth on cach sidm of this.

Furea (fig. 11): - This has eleven claws, all well defined from the lamella and decreasing uniformly in length the more proximally they are fixed; no. 4 is, however, rather often somewhat short and weak comparatively; proximally of the claws the furea is smooth.

 $1001 \times$. 20. Juft prnis, sem from inside. (drawn as if il were stmi-transparent): $312 \times$.

Upper lip: - The unpaired dorsal glandular fiek, like the paired ventral one, is of moderate size. The mpaired protuberance dorsally of the upper hip is of moderate size, somewhat conical, distally rounded.

The rod-shaped organ: - This is somewhat pointed distally (the upper lip and the rod-shaped organ present a picture that reminds one very much of G. IV. Mitblew's pieture of these organs in Cypritima dersoserata, 1908 , pl! IV, fig, 3, but the dorsal glandular
tied on the upper lip is situated more in one phane: besides, as has bern pointed out above, the dersal protuberaner between the upper lip and the rod-shaped organ has amly a single print).

The lat eral eyes are large.
Male: -
Shell: - Length: 2, 1-2.2mm; length: height, abont $1,4: 1$. Seen from the side: The greatest height is situated about at the middle; the posterior part of the shell is mot peremphby larger than the anterior part. The dorsal border is somewhat less fattened anterienty than in the female. With a rather well-developet, broadly romded posterion comer somewhat ventrally of half the height. In other respeets the male shell is like that of the female.

First antenna: - The bristles of the third and fourth joints seem to be somewhat. though rather slightly, shorter than these bristles in the female. Bristles of the seventh joint: The b-bristle is about as long as the anterior side of the second to the fourth joints; it has fomr filaments, of which the three proximal ones have suctorial orgins and the distal one, which jssues cluse to the distal of the three former ones, is short and bare; the proximal filament has . 1 powerful, rounded, verruciform process distally of the suctorial organ [about the same as in figure 15 of C. ('argula) norvegiea]; the two uther filaments with suctorial organs are rather long and powerful, the distal one extending somewhat beyond the point of the principal bristle, and having four suctorial organs distally, proximally of which a small wart, like a shaft of still another suctorial organ, is to be found. The e-bristle is somewhat longer than the preceding bristle: it has nine filaments; of these the three proximal ones have suctorial organs and are of exactly the same types as the filaments with suetorial organs on the b-bristle. Bristles of the end joint: The f - and g-bristles are about as long as the whole antenna, the latter only slightly longer than the former; the f-bristle has ten, the g-bristle eleven filaments. In other respeets this antema agrees with that of the female.
seennd antenna: - The protopodite and the exopodite are similar to those of the female. The endopodite (fig. 8): The first and the seond joints are rather long and powerful, the latter not quite twice as long as the former, both almost uniformly thick; the end joint is about a third of the length of the second joint, narrow, of about the same thickness throughout its whole length, curved ventrally and distally furnished with a few irregular teeth. The bristles of the first joint completely agree with those on this joint in the female. The second joint has, at about two-thirds of the way along it, two subequal rather short rentral bristles. The proximo-dorsal bristle of the end joint is somewhat shorter than the tutal length of the two proximal joints; close to the point of the end joint there are two exceedingly short bristles placed close together.

The mandible, maxilla, fifth and sixth limbs are similar to those of the female.

Seventh limb: - This also shows a great agreement with that of the female, but the end comb seems, however, to be somewhat weaker; it has from nine to eleven distal teeth and on each side of these from two to four proximal teeth.

Digitized by Microsoft ${ }^{\circledR}$

Penis: - This is of the fundamental type for this sub-family. For details see the aecompanying figure 20. There seem to be no glands on the ventral lobe.

Furca: - Very like that of the female; the two or thee distal claws are, however, somewlat more curved.

The rod-shaped organ and the upper lip agree with these organs in the females.

The lateral oyes are slightly larger than those of the females.
The dorsal side of the back of the body has rather strong transverse folds or ridges.

Habitat: - South Georgia:
S. A. E., Station 18, mouth of West Fjord, Cumberland Bay, lat. $54^{0} 155^{\prime} \mathrm{S}$, long. $36^{\circ} 25^{\prime} \mathrm{W} . ; 22$. IV. 1902 ; depth, $250 \mathrm{m2}$; loose clay; temperature at the bottom. $+1,2^{\circ} \mathrm{C}$. : 1 mature female; R. M. S. 1.5. S. A. E., Station 25, off Grytviken, lat. $54^{0} 22^{\prime}$ 心., long. 36° 27^{\prime} II.; 21. Y. 1902; depth. $24-52 \mathrm{~m} . ;$ greyish clay with scattered algae: 2 juvenes: R. II. S. 152 . S. A. E., Station 26 , off Grytviken, lat. $54^{0} 22^{\prime}$ S., long. $36^{\circ} 27^{\prime} \mathrm{W}$.: 24. T^{T}. 1902 ; stony bottom with algae just outside the Hacrocystis-region: 1 mature female, 1 mature male and 16 larvae of different stages; R. M. S. 153. S. A. R., Nation 34 (type-locality), off the mouth of Cumberland Bay, lat. $54^{\circ} 11^{\prime} \mathrm{S}$., long. $36^{\circ} 18^{\prime} \mathrm{W}$. . 5. VI. 1902; depth. 252- 310 m . : greyish clay with seattered stones; temperature at the bottom. $+1,45^{\prime} \mathrm{C} .: 1$ mature male, 17 mature females and 7 larvae of the first stage: R. M. S. 154.

Type specimen, on slicles, R. M. S.

C. (Doloria) pectinata n. sp.

Description: - Female: -
Shell: - Length, $2,45-2.8$ mm. It agrees completely with the shell of C. (D.) levis. The peculiar formations (pores:) of the list inside the posterior border of the shell are, on the average, somewhat more numerons?

First antenna: - This agrees very closely with that of the preceding species; a slight, but apparently constant, difference is, however. to be noted with regard to the sensory: bristle of the fifth joint. Of the ten long proximal sensory filaments that distinguish this bristle of the preceding species, the distal one is in this species displaced rather much distally and is, in addition, somewhat shortened and narrowed; it thus constitutes a sort of transitional form to the more distally situated filaments, the sharp division into long, some what thicker proximal sensory filaments and slort, narrow, distal ones being thus less marked in this species. On one specimen two (nomally only one) subequal anterior distal bristles were observed on the fourth juint on the antenmat of one side.

Second antenna: - Protopodite: The medial-distal bristle is rather long, about twice as long as the three shorter of the four proximal bristles of the first endopodite

Digitized by Microsoft ${ }^{\circledR}$

joint. yet not yuite so long as the longest of these four bristles. The exopodite agrees very marly with that of the preceding species. It differs from this principally in the following respects: The hristle of the second joint is fumished with rather strong ventral secondary spines, somewhat fewer in mumber than in the preceding species (from about ten to fifteen). The basal spimes on the thired th the ninth joints are comparavely rather stronger, they atain about the same elewelepment as in ('. (largula) norregica. The short, clursal one of the four bristles on the end joint has rather mumerons long natatory hairs. The endopodite has quite the same type as in the preseding species. On one specimen I found the aboumal type that is reproduced in the adjoining tigure 2 developed on the antema of one side; that of the other side was perfectly nomal.

IIandible: - Protopodite: The endite of the coxale is furnished with a moderate or sometimes rather large number of spines; its two distal points are rather eonsiderahly stronger than the other spines, and are, unlike the latter, furnished with a few secondary spines; between these two points there is a low verrueiform process (cf. above p). 182). Basale: This joint has cight bristles ventrally: three a-bristles, one b-bristle, two e-hristles and two d-bristles. The a-bristles are all relatively short, somewhat different in length from each other, the longest one about in quarter to a third of the length of the longest a-bristle in the preceding species. The longest e-bristle is slightly shorter than the corresponding bristle in the preceding species. The shortest of the d-bristles is in most eases somewhat displaced proximally; otherwise these bristles show agreement in length, equipment and sitnation with the corresponding bristles in C. (I).) lecris. 'The dorsal side of this joint has four bristles: Three of these have about the same trpe, length and position as the three dorsal bristles on this joint of C. (D.) leris, except perhaps that the bristle just in front of the middle of the joint in the latter species is comparatively somewhat shorter. The fourth of these bristles - which is noteworthy because no bristle of this kind occurs in any of the other species belonging to this sub-family that have been deseribed in this work - has short, fine hairs, almost bare, is rather short, only about a third of the length of the bristle situated just in front of the middle of the joint, and is placed rather near the proximal limit of this joint. The exopodite has about the same size and type as in the preceding species; its end bristles are perhaps comparatively slightly shorter. Endopodite: Of the four rentral bristles on the first joint the two longest ones are somewhat different in length from each other; the longest, which is somewhat longer than the posterior side of the second endopodite joint, has rather numerous long secondary bristles, only indistinctly arranged in groups, the other three have short hairs. The second joint, as in the ease of the preceding species has on the proximal half of the anterior side a moderate number of bristles: from nine to twelve more or less long bristles with short, fine hairs, of about the same proportions as the corresponding bristles in the precerling species and, as in this species, of somewhat varying lengths, and. in addition, about sixteen to twenty cleaning bristles (their number and development difficult to ascertain with certainty because of their very dirty condition), more or less distinctly arranged in from two to four steep rows directed obliquely upwards and forwards; the cleaning bristles are of two types as in the preceding species, some with exccedingly fine double pectination, some with coarser pectination; the difference in pectination is, however, not so striking, the transition

 pelite of the secoal antema, abormal type; the proximal bristles of the first jomb. like the long briathe of the emb
 of the fifth limb; $480 \times$. 5 . Third endite of the prolopodite of the lifth limb: iso \because. h. The two distal exopodit. joints of the left lifth limb. seen from befare

is almust continums. The two postero-distal bristhes on this joint, which are sithated close to each other, ate similar to those of the preceding speceies. Proximally of these there are gencrally - as in the majority of speries belonging to this sub-lamily that are dealt, with in this werk a two bristles. generally of expal length and of about the same type and lemgth as the two former ones, one sithated somewhat proximally of the other; in a few eases, however, thee smeh bristhes were observed, of which the two proximal ones were situated close to each other, and sometim's only one such bristle was devehoped. End joint: This has, in addition to the six bristes chserved on the preceding species. a were short bristle, situated posteriorly: (of the same type as, for instance, in C. (l'argula) norregica; (f. fig. 12 of this species). The six bristles have about the same development as these bristles in the preceding species, apart from the fact that the two anterior ones and the two posterior ones are relatively somewhat, though rather slightly, longer. The three elaws have a few weak posterion secondary teeth proximally of the middle, the longest anterion and posterior bristles have short, weak posterior hairs or are almost bare. The pilosity of this limb is similar to that of the preceding species.

II axilla: - Protopodite: The first enctite (fig. 8) has twelve rather powerful subequal, moderately long bristles, furnished with abundant stiff, long secondary bristles placed close together; only the outer bristle has comparatively ferw of these: on the three inner bristles these secondary bistles contimue right to the point of the bristle, on the other's they stop a short distance from the point: of the latter bristles four are trifurcated distally, five have a strong, simple point and are with or without powerful distal secondary teeth. The second andite (fig. 9) has seven moderately long bristles, which decrease somewhat in length the farther inward they are placed; they all have at the middle a moderate number of long, stiff secondary bristles, and five of them have, in addition, more or less strong distal secondary teeth. The third endite (fig. l11) is similarly furnished distally with seven bristles of moderate length, the exterior ones somewhat longer than the interior ones; all except the imermost, which has short and exceedingly fine hairs, have a morlerate number of long, stiff secondary bristles at the middle; the two outer ones are finely pectinated distally, the third outer one is somewhat more strongly pectinated distally, the rest, as far as I could see, smooth distally. The bristle situated proximally on the outside of the third endite has short and fine hairs and is not quite as long as the outside of this process. The dorso-distal bristle on the coxale is about as long as the outer bristle on the third endite. Of the three bristles that are situated on the boundary between the basale and the first endopodite joint the one situated close to the exopodite is about as long as the distal bristles of the exopodite and is plnmose in the middle, the one on the anterior edge of the palp is somewhat shorter than the dorso-distal bristle on the coxale, the one on the inside of the palp is somewhat shorter still; the two last-mentioned bristles have short, fine hairs or are almost naked. Exopodite: Of its three bristles the distal one has short, fine hairs, the two others are densely plumons; one speeimen had all three densely plumose. The two distal ones are somewhat longer, the proximal one somewhat shorter, than the cxopodite. Endopodite (fig. 11): First joint: This has two rather long bristles distally on the anterior edge, the anterior one somewhat longer than the posterior one, both with shont, fine hairs or almost bare. Distally on the posterior edge there are three bristles, one rather long, the two others

Digitized by Microsoft ${ }^{\circledR}$

about half the length of this one or somewhat shorter; all are pectimated distally, the two shorter ones rather weakly, however. The cutting part of the posterior distal edge of this joint is of about the same type as in the previous species. The end joint is rather strongly chitinized, but not so strongly as in the preceding species, nor does it form an inner tooth-like, powerfully chitinized process as in the case of the species mentioned. It is furnished with exactly the same bristles as in the preceding species; most of these bristles are, however, developed quite differently from those of the latter: Four a-bristles of the same size and strength as these bristles in C. (D.) levis; the posterior ones of these are weakly and sparsely pectinated in the middle, the anterior ones are bare or have a few fine, short secondary spines. Three b-bristles, of which the anterior one is moderately long, the two others about half the length of this one, all strongly pectinated, the two short ones, however, having rather few secondary spines. Three e-bristles, of which the posterior one has about the same type and size as the anterior b-bristle or else is somewhat shorter, the middle one agrees fairly well with the two short b-bristles and the anterior one is very short, bare or only having sparse, short, fine secondary spines. Three d-bristles, rather long, subequal, powerful like these bristles in C. (D.) levis. but only weakly and uniformly curved and very strongly pectinated (from which character the species (lerives its name); on the posterior one of these bristles the secondary spines are more numerous than on the anterior ones. Pilosity: The first endopodite joint has transverse rows of fine and rather short hairs.

Fifthlimb: - Protopodite: The first endite (fig. 3) is furnished with eight bristles, of about the same type, powerful masticatory bristles armed with long, stiff secondary bristles situated close together and more or less clearly arranged in obliquely placed wreaths. On all the specimens investigated, five in number, from Falkland Islands and Tierra del Fuego, the proportion between these bristles was about the same: Bristles nos. 3, 5, 7 and 8 , counting from the anterior side of the limb, were rather long, decreasing somewhat in length the more posteriorly they were placed; nos. 2, 4 and 6 form a similar series, but are considerably shorter; no. 1 is yery small. The five imner bristles of the second endite (fig. 4) are powerful, subequal, and of moderate length. The two anterior ones and the two posterior ones are of about the same type, the latter being, however, somewhat more powerful; distally they are furnished with powerful secondary teeth and in the middle with some obliquely situated wreaths of long, stiff secondary bristles. The middle bristle is finely serrated distally and has one or a few wreaths of long, stiff secondary bristles at the middle. The remaining bristle of this process, situated on the anterior side at some distance from the five former ones, is short and almost bare, with only a few long, stiff secondary bristles. The seven bristles of the third endite are moderately long (fig. 5), subequal except for bristles nos. 5 and 6 , counting from the anterior side of the limb, which are somewhat shorter. no. 6 being rather shorter than no. 5 . They are all powerful, especially no. 7; bristles nos. 1, 2, 4 and 7 have at the middle long, stiff secondary bristles arranged in a wreath, the others are, in most cases, without such armament. Bristle no. 1 has short hairs, nos. 2 and 4 have rather powerful secondary teeth, nos. 3 and 5 are finely and sharply scrrated distally, nos. 6 and 7 have very powerful secondary teeth distally. The distal chitinous spine of the protopodite is relatively somewhat shorter than in the precerling species. The epipodial plate has the same number and type of bristles as in the

 s.an from inciale: 'ation.
preceding species. The exopodite is four-jointed. First joint: The main tooth has seven constituent teeth, all well defined proximally; the secomdary teeth of the latter vary to some extent, approaching the type reproduced for C. (Vargula) noreegica. The bristle elose to the main tooth on the posterior side of the joint is of about the same size as in (. (I.) levis and. as in this species, has long, stiff secondary bristles proxinally of the mitdle; at the middle it has a few powerful secondary teeth, distally it is smooth. On the anterior side of the joint there are four bristles of the same type and position as in the preceding species. The second exopodite joint has exactly the same number and position of its bristles as in the preceding species: four a-bristles, eight b-bristles, one c- and one d-bristle; these bristles also show a farreaching agreement with this species in type and size, but the equipment of the a- and b-bristles is obviously more powerful in the form dealt with herr. The outer and inner lobes of the third joint (fig. 6) are comparatively small, considerably smather than the end joint. The inner lobe has three bristles, two rather long and powerfal distal bristles, sonewhat different from each other in length, and a very short one, situated proximally on the posterior side; all three of them have long secondary bristles at the middle and short, fine hairs distally. The outer lobe has two bristles, situated distally, whose type and size are about the same as those of the distal bristles on the inner lobe of this joint; they are sometimes subequal, sometimes the onter one is somewhat shorter than the inner one. The end joint (fig. 6) is rather large, almost spuare in shape and shows traces distally and outwards of a little verruciform fifth joint. On the latter process there are two bristles, of about the same length and type as the two bristles on the outer lobe of the preceding joint. Besides these bristles the end joint has distally near the medial edge three or four, ustally four, bristles of which the inner ones are somewhat shorter than the outer ones, all somewhat shorter than the two outer bristles of this joint; the outer ones of these four are usually of the same type as the two last-mentioned bristles, the inner ones often have short hairs. Pilosity: The onter lobe of the third exopodite joint and the end joint have close, fine hairs.

Sixth limb (fig. 7): - Protopodite: The first endite has two rather long and powerful distal bristles, furnished with a few oblique wreaths of long, stiff secontlary bristles, and two to three short, plumous medial bristles. The second endite has two rather long and powerful, subequal distal bristles, with a wreath of long, stiff secondary bristles at the middle and short hairs distally: in addition it has three rather short, plumous medial bristles. The third endit" has four distal bristles, of which one of the dorsal ones is rather short and powerful, with a wreath of long, stiff secondary bristles at the middle, and bare distally; the other three are rather long and powerful, subequal, all of them sometimes of the sime type as the distal bristles of the second endite, sometimes two of them have short hairs; this joint has, in addition, me medial bristle of about the same type and length as the distal bristles on the preceding andite. The epipodial appendage of the protopodite is represented by 5 rather shor bristles. either with short hairs or bare, fixpl on a small, lobe-like process. Ex x "poditr: The cuditu of the first joint has from six to cight distal bristles, one of which is of about the same type and size as the short distal bristle on the previons emtite. a couple of ventral ones atso rather short, but weak with short hairs, the rest subequal, rathor hong and powertul, most of them
with longe stifl secondary bristles at the middle, distally they have short hairs ar are bare this endite has one medial bristle of abomt the same type and size as that of the preceding endite. The secont exopodito joint is slightly shorter than that of the preceding species. It has a rather large number of bristles, all situated very near the ventral edge of the joint. The two (sometimes the three) gosterior of these brist les are rather long, with long, soft hairs right to the point. There is no pronemmed gap between these bristles and the others. Ten to seventeen of the remaining bristhes are of moderate and somewhat varying lengths, with long hairs at the middle and short hairs distally": their long hairs are not arranged in distinct wreaths, thoss on the posterior of these bristles are rather soft, those on the anterior ones are more stiff, even somewhat stiffer than in the preceding species. From six to twelve bristles have short hairs, are, as a rule, not inconsiderably shorter than the other bristles on this joint and are somewhat, though only slightly, displaced from the ventral edge of the joint up the lateral side. The pilosity is similar to that of the preceding species.

Seventh limb: - This is very similar to that of the preceding species. The following differences are to be noted: Distally there are from eleven to thirteen ventral cleaning bristles and nine or ten (usually nine) dorsal ones placed very close together. Scattered irregularly proximally of these there are eleven or twelve ventral and from ten to fourteen dorsal claning bristles. The claning bristles are equipped with from three to seven bells. The end comb consists of from ten to thirteen distal teeth and five or six proximal teeth on both sides of these. The distal wart on the dorsal chitinous plate of the distal cavity is of about the same type as in the preceding species, its central tooth, however, seems always to have a single point. In other respects this limb is similar to that of the preceding species.

Firrca: - This is very like that of the preceding species, with the same number of claws, all well defined from the lamellae. The fourth claw is usually somewhat short and weak comparatively, sometimes its weakness is even rather striking. The curvature of the

Fig. XXXV1r. - (\because (Doloria) pectenata n. sp. - 12. Endopodite of the second antenna of a male larva in Stage 1: $22^{2} \times$ 13. Fura of a larva in Stage 11; the teeth of the claws are not drawn; 29' \times. Furca of a larva in Stage I: the teedh of the claws are not drawn: 22' X.
claws is perhaps, on the average, somewhat weaker, though only slightly so, than in the species mentioned.

The frontal organ, upper lip and lateral eyes are similar to those of the preceding species.

Male: -
Shell: - This agrees both in shape and length with the male shell of the preceding species.
With regard to the other organs but little information can be given, as they were in so damaged and dirty a condition in the only specimen accessible that it was impossible to carry out a detailed investigation with any eertainty. As far as could be seen, the exopodite of the second antenna, the mandible, maxilla and fifth, sixth and seventh limbs seemed to agree closely with these organs in the female. The endopodite of the second antenna was very like this organ in the male of the preceding species.

Habitat: -
Falkland Istands:
S. A. E. Station 58, lat. $52^{\circ} 29^{\prime}$ S., long. $60^{\circ} 36^{\prime} W^{\circ}$. (t y pe loe ality); 11. IX. 1902; depth, 197 m .; sand and gravel; temperature at the bottom, $+4,1^{n} \mathrm{C}$. : several mature females and larvae of different stages; R. M. S. 147. S. A. E. Station 59, on the Burdwood Bank, lat. $53^{\circ} 45^{\prime}$ S., long. $61^{0} 10^{\prime} \mathrm{W} . ; 12.1 \mathrm{X} .1902$; depth, $137-150 \mathrm{~m}$. ; mussel sand with scattered stones: 3 juvenes; R. M. S. 149.

Tierra del Fuego:
S. A. E. Station 60 ; east mouth of the Beagle Chamel, lat. $55^{\circ} 10^{\prime} \mathrm{S} .$, long. $66^{0} 15^{\prime} \mathrm{W}$.: 15. IX. 1902; depth, 100 m. ; bottom of broken shells; temperature at the bottom $+5,0^{\circ} \mathrm{C}$. : 12 mature females, 1 mature male and about 50 larvac of different stages; R. M. S. 148. S. 1. E. Station 62, Beagle Channel, lat. $54^{0} 53^{\prime}$ S., long. $67^{\circ} 56^{\prime} W^{\top}$; 16. IX. 1902; depth, 140 m .: clay mixed with sand: 1 mature female; R. M. S. 150. S. M. E., Puerto Condor; 26. II. 1896; depth, 72 m.: 2 mature females; R. M. S. 146. S. M. E., Puerto Harris; 11. III. 1896; depth 27 m. ; bottom of dead shells: 1 mature female and 3 larvae; R. M. S. 145. S. M. E., Cap Valentyn; 12. III. 1896; depth 270 m .; buttom of dead shells: 5 mature females; R. MI. S. 14.4. Type-speeimen, on slides, R. M.S.

Sub-Genus Vargula n. sub-gen.

Cypridina (part.), autorum.
Description: - Shell: - The shape is somewhat, though rather slightly, different in males and females. - It is oval, with or without a weakly developed posterior comer. The rostral ineisur is most frequently narrow and comparatively drep, only in exceptional eases quite shallow. Near the immer edge of the incisur there are two medial bristles situated close to each other. With rather strong caleification. All the spereies hitherto known are rather large.
 of the liffh joint has thimen semsery filaments. The be and e-bristles of the males ane senerally eharacterized by quite the same modification as deseribed above, p. sezs, for the sub-gems Doloria: in exeeptional cases the former of these two bristles hats only ond filament
 lig. :0). The end hristles are sometimes rather slightly longer in the males than in the females, abmetmes in the former sex bristles f and og are eomsiderably longer than in the latter
second antennat - The protiopodite has a medial-distal bristle. The hristle on the second joint of the exopodite is rather penverfully developed. The natatory bristles on the third to the ninth joints have no trace of spines. The third to the ninth joints hatre basal spines. The endopodite is similarly developed in males and females, being wither comparatively well developed. rather elongated and three-jointed or more or less reduced. with a reduction in the number of joints. The bristle of the end joint is eomparatively long.

Mandible: - Protopodite: The endite on the coxale is weakly bifureated distally; some of its spines are rather strong, especially those situated medially-distally; at least some are armaned in rather distinct groups. Apart from the little bristle situated dorsally wn this process this joint has no bristles. Basale: Of the ventral bristles one d-bristle is very long, has numerous long secondary bristles and is furnished with short hairs distally; the others are of moderate leugth or short and have short, fine hairs or are naked. Dorsally this joint has three bristles. Endopodite: The first joint has four bristles ventrally. The end joint has seven bristles, of which the two middhe ones are the most powerful, elaw-like, and of about the same length and strength as each other.

Maxilla: - Protopodite: The coxale has a single bristle dorso-distally with long, fine hairs. There is a single bristle proximally on the outside of the thind endite. The bristles on the boundary between the basale and the first endopodite joint vary somewhat; sometimes three are developed, one close to the exopodite, one medially at about the middle of the palp and one on the anterior edge of the palp; this last bristle is, however, sometimes missing. There is a rather large lamelliform epipodial appendage dorso-distally on the coxale. The exopodite is comparatively well developed, with close, fine, long hairs and not displaced distally. The endopodite is broad and of moderate length.

Sixth limb: - The second exopodite joint is rather short, somewhat rounded and has numerous bristles. Its posterior bristles do not dominate strikingly over the other bristles. (G. W. Muller states, 1894, p. 68, that the epipodial appendage of the protopodite in the genus Cypridina, sensu G. W. Múlleri, is always characterized by four bristles; that this is not the ease is shown by the descriptions of the species given below.)

Seventh limb: - This is furnished with rather numerous eleaning bristles, a large number of which are placed close together distally, the rest scattered irregularly along the distal part of the limb. With regard to the position of these latter bristles it is to be noted that only exceedingly seldum or perhaps never is there more than one bristle on the same side of the same joint. The end comb consists of a moderate number of rather strong tecth, some rather long, distally rounded or more or less pointed distal teeth, smooth except for a little

Digitized by Microsoft ${ }^{(B)}$

secondary spine at the middle of each side, some somewhat shorter and hroader proximal treth, cut off rather transversally distally. Dorsally, close to the end comb, the wall of the limb is somewhat thickened and has a more or less weak chitinoms wart. It is also somewhat coneare at this point, the depth of the coneavity varying. The dorsal and ventral walls of the eavity are not moveably joined to each other, but at least in some forms they may, however, be pressed somewhat towards each other like a jaw, when the distal teeth of the end comb are pressed in towards the dorsal wall of the eavity (see fig. 14 of C. (V.) megalops). This compression is effected by a paired short, powerful masele, which issues proximally somewhat proximo-dorsally of the point of the limb and is fixed distally to the bottom of the eavity. This musele is sometimes absent; whether in this ease the distal teeth ean be pressed in or not I am not able to deeide, :as I lave had only preserved material of these forms at my disposal; I merely point out here that these teeth were not pressed in on any of the numerons specimens of species without this muscle that I investigated, while they were pressed in very often on specimens of species with it.

Furca: - The lamellae are moderately elongated. The mumber of claws from about nine to eleven, without, or in some eases with, division into main claws and secondary claws.

Upperlip: - This has three glandular fields: an anterior one, unpaired, moderately large, in which the exits of the glands are directed obliquely forwards and downwards, and two paired ones, situated somewhat ventrally of the former, the exits of which are directed somewhat more rentrally. The two latter are sometimes comparatively small and situated distally on a couple of large tusk-like processes, sometimes they are of moderate size and not raised; even in the last-mentiomed case however, the three fields of glands are separated from each other by rather deep grouves. There is an umpaired protuberance on the front between the upper lip and the frontal organ.

The rud-shaped organ is well developed and rather short and thick.
The lateral eyes vary in their development; sometimes they are almost ampletely reduced.

Remarks: - Besides the threa species deseribed below we have probably to inelude in Sumbre of perus. this sub-genus a rather large number of the species grouped together by C. Wr. Mülear in his work of 1912 moder the generic name Cypridina. Of these species I merely mention here:

Cypridina mediterranea. (). COSTA. 1845, ((1. W. Mít.ter, 1894, p. 206, pl. 2. fige 1. थ. $4,5,8-20,22-27,33)$.
.. dorseserrata, (\%. IV. Mtelleer, 1908, p. 83, pl. IV, figs. 1-3, 5-10. .. Sarsi G. W. Míller; G. U. Sars, p. 43 (215), pl. III, figs. 1. 2. pl. VIII. figs. 6. 7. .. J'anlöffeni, G. II. Mëluter, 1908, 1. 82. pl. V, figs. 1-8, 13. .. squamosu, G. W. MƯLler, 18:4. p. 207. pl. 2, figs. 3, 6, 7, 21, 2s - 32, 34-36. . Milgendort, G. W. MÚlder, 1890. p. 228. pl. NXV. fig. 9. pl. NXVI. figs. 1-3. pl. NXVII, fig. 30.
A closer examination of these species will probably make it necessary to widen somewhat the above diagnosis of the sub-genns.

As the type of this sub-genus I consider the form deseribed below unt wer the name
('. (J') moragica.
Digitized by Microsoft ${ }^{\circledR}$

```
C. (Vargula) norvegica W. Bard.
```



```
(i,1).N|RS. 1865, p. 114.
.. .. .. 1872. pp. 278.286.
.. .. .. 1886. p. i.4.
(i.s. Brady imd A. Ml. Norman, 1896, p. (647: fl. LIN. figs. 7. 8;
                                    pl. IN. figs. 1!9-2l.
(i. 1).N゙1RS, 1899, p.234.
(). Nombgamki)* 1905. p. 182.
G. II. \I'LLER, 1912. P. 15.
```

Dessription: - Female: -
She11: - Length, 3.3-3.65 mm. II. B.ank specifies al length of $3,81 \mathrm{~mm}$. ($-1,5$ line); (i.s. Bramy and A. M. Norman give a length of 4 mm . for this species. These authors do not give any information about the range of variation of the length. Length: height, about $1,4: 1$: length: breadth, about 1.75: 1. Seen from the side the form varies somewhat, thonght only slightly (figs. 1 and 2). It is oval with the greatest height at about or just behind the middle and the posterior part only very slightly larger than the anterior one. The dorsal and ventral margins are uniformly and rather boldly arched, the arcuation of the former somewhat stronger than that of the latter: both without corners joining the anterior and posterior margins. The rostrum is well and uniformly arehed anteriorly, without any anterior corner; its ventral corner rather pointed. The rostral incisur is deep and narrow. The posterior part of the shell is broadly ronnded with only a faint indication of a broadly rounded posterior corner somewhat bedow half the height of the shell or else it is rather strongly truncated (fig. 2). Seenfrom below (fig. 3) it is nviform with its greatest breadth somewhat behind the middle; the anterior and posterior ends are well rounded, the postcrior somewhat broader than the anterior one. The surface of the shell is almost quite smooth with only an exceedingly faint indication of small cavities just within the anterior margin of the shell; in most cases this sculpture is scarcely distinguishable. There are no bristles on the surface. The pores of the surface are very difficult to distinguish. Seen from within (fig. 4): Medial bristles: On the rostrum there is an irregular row of rather short and most frequently bifurcated bristles directed slantingly forwards and upwards [about the same type as is reproduced for C. (Doloria) levis, fig. 2]; the place on which the ventral bristles of this row are fixed is not developed into a verruciform protuberance. In front of and behind this row there are a few scattered bristles. Along the ventral edge of the rostrum there is a great number of scattered bristles; most of these latter are of about the same type as the bristles in the row. Sometimes all the bristles on the rostrum are scattered without any arrangement in a distinct row; they also vary considerably in number. The two bristles near the inner edge of the rostral incisur are of about the same size as the bristles on the rostrum; they are bare or furnished with short, fine hairs

[^37]Digitized by Microsoft ${ }^{\circledR}$

and simple．Thowe these two bristles near the joining line there is a single short，simple bristle Besides the er thee there are in some cases eme or a few bristhes inside the incisur．The list behind the incisur is narmw，weakly undulating and has bifureated bristles，sitnated very close together，of about the same type as those on the rostrum．Parther back the list has fewer and fewer hristes．halfeway ahog the shell they are already vere sparse and a litte bohind this point they stop almost entitely，though one on a few may lo fomed．Within the posterior margin of the shell－wher the list is somewhat hoader than it is anteriorly－it has，however， rather numeroms small，simphe bristles，very diffent to werify，and it is also characterized here hy pore－like fomations similar to those reproduced for C．（Doloria）leris（see p．228，fig．3）． On the part between the list and the margin of the shell－atong both the posterior and ventral margins－bristlesgenerally seem to be quite absent；sometimes，however a few may be observed． The selvage is only broad along the posterion edge of the rostral incisur－the latter is quite filled by it－the rest of it is narrow and does not extend outside the margin of the shell．It has close uniform and fine cross－striation，often rather diffienlt to distinguish，and is exceedingly finely senated at the edge．almost smooth－edged．It is strongly calciferons，but thin and fragile．

First antenna：－The two bristles of the thirel joint are rather long，of about the same length as the following joint，the anterior one is fixed just proximally of the middle of the joint．The anterior bristle of the fourth joint is，as a rule，somewhat shorter，the posterior one somewhat longer than the fifth joint．The bristle of the sixth joint and the a－bristle of the seventh joint are of about the same length as the fifth joint，the latter bristle being generally somewhat longer than the former．The length of all these bristles varies somewhat，however． They all have short hairs．The sensory bristle of the fifth joint is generally not quite as long as the anterior side of the second to the fourth joints：sometimes it is only the same length as the sccond and third joints．Of its thirteen sensory filaments the proximal ones are rather long，attaining about a third to a half of the whole length of the bristle，and somewhat，though only slightly，thicker than the distal ones；the latter are rather short，the transition in length and thickness is，however，fairly gradual；all the sensory filaments are equally thick throughout the whole length；the proximal ones are furnished proximally with up to four exceedingly small，fine secondary spines，the distal ones are bare．Of the bristles on the seventh and eighth joints（fig．16）the b－bristle is quite short，rather slightly longer than the a－bristle（and rather considerably shorter than the d－and e－bristles）；along its proximal half it has four or five rather short sensory filaments．The c－．f－and g－bristles are rather long；the last－mentioned one，which is the longest，is about as long as the anterior side of the seven distal joints；of the two others the f－bristle is the shorter．The c－bristle has ten or cleven sensory filaments，the f－bristle has ten and the g－bristle has cleven．The sensory filaments on the b－，e－，f－and g－bristles are furnished anteriorly with some（from zero to six）short and rather strong spines．The simple sensory bristles d and e are about a third of the length of the c － f －and g －bristles．Pilosity： The second joint is only sparsely furnished with short hairs，arranged in a few transverse rows on the anterior and posterior margins．

Second antenna：－Protopodite：Abont 1 mm ．in specimens about $3,5 \mathrm{~mm}$ ． long．The medial－distal bristle is about as long as the second joint of the endopodite，
and has short hairs. The exopodite (fig. 9) has about the following proportions between its joints:
I: II : III: IV: V: V1:VII: VIHI: IX=55:11:6:5:5:5:5:5:3.

In other words the first joint is somewhat longer than all the other joints together, the second joint has about the total length of the third and fourth joints. The bristle of the seemed joint is about as long as the five to seven following joints and is furnished with from about nine to thirteen powerful ventral secondary teeth. The proportion between the longest natatory bristles and the total length of the exopodite is about 13:10. These bristles have broad natatory hairs (about the same as in C. (Macrocypridina) castanea; see fig. 12 of this species). The end joint has four bristles, of which the dorsal one is quite short, attaining about the total length of the three or four distal joints, with short, fine hairs or almost naked. The third to the ninth joints have strong and rather long conical basal spines, the proximal ones somewhat shorter than the distal ones, the one on the third joint being specially short in comparison with the others. At the base of the bristle of the second joint there is a series of short and moderately strong spines. Endopodite (fig. $10, \delta^{*}=9$): This is comparatively well developed, elongated and triple-jointed. Its first joint has proximally a group of four bare or almost bare bristles, three of which are subequal, rather short, scarcely attaining half the length of the fourth; the latter is about the same length as the second or the second and third joints. Somewhat distally of this group there is a single bristle with short hairs, which is generally somewhat longer than the longest of the four bristles mentioned. The second joint has distally a single bristle, with short hairs or almost naked, which is somewhat longer than the end joint. The bristle of the end joint is about twice as long as the endopodite.

Mandible (fig. 11): - Protopodite: The endite on the coxale has very numerous spines; it is weakly bifurcated, the two distal points are considerably stronger than the other spines of the process; between the two distal points, which, unlike the other spines. are furnished with a few weak secondary teeth, there is a low, powerful wart. Basale: This has seven bristles ventrally: two a-bristles, one b-bristle, two e-bristles and two d-bristles. The a-bristles are somewhat different in length from each other, the longest one being about as long as half the height of the joint; the b-bristle is short; one e-bristle varies somewhat in length and is about as long as the height of the joint, the other is short; the shortest d-hristle is somewhat shorter than the longest c-bristle, the longest d-bristle is about as long as the endopodite. Uf the three dorsal bristles on this joint the proximal one is fixed somewhat in front of the middle of the joint and is about half its length; of the two distal bristles one is about as long as the proximal dorsal bristle, the other about double its length; all three have short lairs. Exopodite: This is about as long as the dorsal side of the first endopodite joint or somewhat longer. Of its two bristles, both furnished with short hairs, one is about as long as the exopodite, the other is somewhat longer. Endopodite: The longest of the four ventral bristles on the first joint has some irregular wreaths of long, stiff secondary bristles and has short hairs distally, the others have short hairs. Second joint: (On the anterior side there are from eleven to fourteen more or less long bristles with short, fine haiss; the longest of those that are fixed distally reach the end joint with their points. There are, in addition, from
 distally: On the posterior side of this joint. distally of the middle, there are two rather short. smonth hristles of about the same hongth as abeln other, one situated somewhat distatly of the othere and moir the phesterior distal limit of the joint two other bristles of the same type as the former, sitmated chese to cach other, are fob bemal: of these the medial one is somewhat, thongh conly rather slighty, more pewerful than the laterat one. Of the seven bristles of the small end joint (tige le) the two middle chan-like ones are only about a fuarter of the length of the second moderetito joint. Of the two anterior ones, both of which are somewhat shorter than the two former onss, the medial one, which is the longer one is somewhat daw-like, the lateral one is rather weak. (Of the three posterion bristles the one situated most posteriorly is very short and woak, the two others are subequal, somewhat longer than the two anterior ones and about as strong as the weaker of these. The two main claws have a few weak secondary teeth posteriorly, proximally of the middle, the other bristles of the end joint are smooth. Pilosity: There are short, stiff hairs dorso-distally on the first endopodite joint and transverse groups of short hairs posteriorly on the second endopodite joint.

Il axilla: - Protopodite (fig. 17, of $=$) : The first endite has ten or eleven (usually eleven) powerful, subequal, moderately long bristles, furnished with an abundance of long. stiff secondary bristles placed elose together: there are somewhat fewer of these secondary bristles on the outer bristles than on the inner ones. On the three imner ones the secondary bristles continue as far as the points of the bristles, on the others they stop a short distance from the points. Three of the latter bristles are trifureated distally; four or five have a single powerful point, the latter being generally without distal secondary teeth. The second endite has five bristles (only on one specimen were there found six bristles on the maxilla of one side). They are all rather strong, of moderate lengths, subequal, the inner one being, however, a little shorter than the others, and all of about the same type, with a moderate number of long, stiff secondary bristles at the middle and rather thinly pectinated distally; there is often, however, no pectination on the inner bristle. The third endite has also five distal bristles, rather powerful and of moderate lengths, the onter one being slightly longer than the inner ones. The four outer ones are furnished at the middle with a moderate number of long, stiff bristles and are finely peetinated distally; the imner one has short, fine hairs or is ahnost naked. The bristle situated proximally on the outside of the last-mentioned process has short and exceedingly fine hairs or is bare and is not quite as long as the outside of this process. The dorso-distal bristle on the coxale is about as long as the outer of the distal bristles on the third endite. On the boundary between the basale and the first endopodite joint there are only two bristles, the bristle that is found in most of the other species of this sub-family on the anterior side of the palp is quite absent in this form. Of these two the one that is fixed close to the exopodite is somewhat longer than the bristles of the exopodite and has sparse long secondary bristles at the middle, distally it is almost bare. The one that is fixed on the inside of the palp is almost bare and quite short, only about a third of the length of the former (the last-mentioned bristle seems sometimes to be absent). Exopodite: Its three bristles are subequal, somewhat longer than this branch. The distal one of them has short hairs, the two others are plumous.

 $392 \times$. Sperimens from lafolen.
 slightly and is moly rather weakly lobed: it varies in form. Distally-anteriorly on this joint the er ate (wo bather long bristles, the antwion one of wheh is somewhat longer than the other: both, esperially the lomger ane fumished with elose, lomg, fine hairs. Distally-posteriony this joint has the or fome bristles. one rather long and powerfal and very strongly pectinated, the others somewhat different from wach other in length and about half as long as the former bristle (1) somewhat shorter, rather wealk, hate or with short, weak seomblary teeth. The end joint is rather strongly chitinized and is msually furnished with thirteen bristles, in exceptional cases a somewhat larger momber beine fomed: Four a-bristles (exceptionally five were found) of moderate lengths and strength, bare or fumished sparsely with short, fine secondary loristles. Three b-bristles, the anterior one of which is rather powerful, of moderate length and very strongly pertinated: the two others are subequal and somewhat shorter and weaker, the anterior of them mather strongly pectinated distally, the other furnished distally with rather few, hut very powerful seomdary treth. Three c-bristles (four e-bristles were found on the maxilla of one side in only one specimen). the two posterior of which have about the same type and size as the anterior b-bristle, the anterior one being quite short and weak, in most cases armed with a few secondary teeth. Three d-bristles, somewhat more powerful than the other bristles of this joint. of moderate lengths, the posterior one somewhat longer than the others. The posterior d-bristle is of about the same type as the interior b-bristle, the two others are armed at the middle with a moderate number of very powerful secondary terth. The bristles of this joint all varied somewhat with regard to the shape and number of the secondary teeth. Pilosity: On the first endopodite joint there are transverse rows of short, fine hairs.

Fifth limb: - Protopodite: The first endite (fig. 19) has eight bristles, all of the same type, powerful masticatory bristles, furnished with exceedingly numerous long, powerful secondary bristles, arranged in more or less distinct wreaths. Of these bristles mos. ․, 4, 6, 7 and 8 , counting from the anterior side of the limb, are of morlerate lengths; the two first-mentioned ones are subequal and somewhat longer than the three others, which are also subequal. Bristles nos. 1, 3 and 5 are rather considerably shorter than the five mentioned above. In one specimen nine bristles were observed on this endite on the fifth limb of both sides. the extra bristle being situated close to bristle no. 5 and being somewhat shorter than this bristle. The five imer bristles of the second endite (fig. 20) are powerful and of moderate length. the anterior and the posterior ones being somewhat longer and more powerful than the others; they are all furnished with one or a few wreaths of long, powerful secondary bristles. Nos. 1 and 2 , counting from the anterior side of the limb, are furnished distally with a few rather powerful secondary teeth, no. ?3 is finely serrated distally, nos. 4 and 5 , especially the latter, are strongly pectinated distally. The single bristle on the anterior side of this process is short, somewhat rarying in length, often furnished with short hairs, sometimes with a few long secondary bristles. The seven bristles of the third endite (fig. 21) are all powerful, especially the posterior one, and of moderate lengths, nos. $4, \overline{5}$ and 6 , counting from the anterior side of the limb. being somewhat shorter than the others. All except the three last-mentioned ones are furnished at the middle with one or a few irregular wreaths of long, powerful secondary bristles.

 specimens from Lufotell.
Digitized by Microsoft ${ }^{(B)}$

Brintles nos. 1.2 and 4 are rather strongly pectinated distally: on the two later ones the points seme. henwere to be always smoth. Bristles nes. 3 and 5 are finely serrated distatly. Bristles
 distally. especially the later ome. The distal chitimos tooth of the protopodite is of moderate length, and irregular in ferm, barying to some extent. Epipodial plate: This has from about tifty-fixe to sixty bristles. all with long hairs ahmost right out to the points. The
 all well defined proximatly: the secondary teeth on the latter are of about the same type as is reproblued in the adjoining figure, but there is, however, some variation. The bristle near the main tooth on the posterior side of the joint is about as long as the anterior constituent tooth of the main twoth and is flumished at the middle with a wreath of long, stiff secondary bristles and a few secondary spines: distally it is bare. On the anterior side of this joint there are usinally four bristles; sometimes, however, five or six were found. Of these four bristles three are situnted in a close row near the main tooth, the fourth at a short distance from these three, farther out on the joint. The two nearest the main tooth are of about the same type as each other, subequal, rather long and powerful, strongly peetinated distally and furnished at the middle with a number of long, stiff secondary bristles. The two others, of the same type as each other, are subequal, somewhat shorter than the two former ones, and have at the middle long and rather soft secondary bristles, and short, fine hairs distally. In those cases where a greater number of bristles were found on this joint, the extra bristles were of the same type as the two last-mentioned bristles and were situated between these. Second exoporlite joint: This has four or five, ustally four, rather powerful a-bristles, equipped rather strongly, eight b-bristles and one c-and one d-bristle. The c-bristle is of moderate length, either with short hairs or with short hairs distally and furnished at the middle with some long hairs. The d-bristle is of about the same type and length as the outer anterior bristle on the first exopodite joint. The inner and outer lobes of the third joint are rather small. The inner lobe is furnished distally with two or three rather strong and moderately long bristles, with short hairs and somewhat different in length from each other. Posteriorly-proximally there is on this lobe a moderately long bristle, with long, soft hairs at the middle and short ones distally. The outer lobe of this joint has two moderately long bristles distally; these are either both of the same type, with long hairs at the middle and short ones distally or else one of them is of this type and the other has only short hairs. On one specimen three distal bristles were found on this lobe on the limb of one sile. The fourth exopodite joint, which is rather large and square, has distally and inwards four or five rather short and weak bristles of somewhat different lengths and with short. fine hairs, and somewhat proximally of these there is a group of two or three similar bristles; the hairs on the latter bristles are, however, somewhat stronger than those of the former. The end joint is quite small, fixed distally and outwards on the preceding joint. and is mored by special museles. It has two or three, usially two, distal bristles of moderate lengths with short hairs. Pilosity: The outer lobe of the third exopodite joint and the two distal (xopodite joints are partly furnished with fine hairs, placed close together. The end joint las short, stiff hairs distally:

 20. Second endite of the protopodite of the fifth limn; 'ito \times. 21. Thind emdite of the protoprodite of the fifth limb: दin \times. 22. Fxopodite of the right fifth limb. seen from the anterion side; 22i $\% 23$. light sixth limb, seen frem ontside; $120 \times$. Neximens from Lofnten.

Aixth limb (fige シ3): - Protupodite: The first emdite has one or two rather long and powerful distal bristles, fumished with a few weaths of long, stiff secondary bristles, and, in addition, two short, phmons medial hristles. Seoond andite: This has two or three rather long and peowerful, subequal distal bristles, with long. stiff secomedry hristles at the middle and shom hairs or else bare distally, and, in addition, usually four rather short, phomons medial bristles: in one specimen five medial bristles were observed on one limb on this endite. Third adte: This has three rather long and powerfut distal bristles, the middle one of which is somewhat shorer that the two others: all of them aro of about the same type as the distal bristles of the second endite; this joint has, in addition, one medial bristle of about the same the and length as the midde distat bristle of this process. The epipodial appendage of the protopolite is represented by five short, bare or atmost bare bristles. Exopodite: First joint: The endite has two distal bristles and one medial bristle; these are of about the same type as the bristles on the preeding endite. Second joint: This has rather numerons bristles, all situated very near the ventral margin; with a pronounced gap between the posterior beistles and the others. The three posterior bristles - on one specimen they were four on the limb of one side - are rather long and have long and soft hairs right to or almost right to the point. The rest, from eight to twelve, the number varying from specimen to speemen and also on the right and left limb of the same anmal, are of moderate and somewhat different lengths, most frequently all of the same type, furnished at the middle with long, stiff secondary bristles, arranged to some extent in the form of wreaths. and with short hairs distally. Pilosity: The inside of this limb has rather close, short, fine hairs; along the ventral margin of the seeond exopodite joint there is a series of short, stiff hairs laterally.
seventh limb (figs. 24-26): - This is comparatively short, not quite half the length of the shell. (On several specimens whose shells were from 3,3 to $3,4 \mathrm{~mm}$. long this limb had a length of from 1,3 to $1,4 \mathrm{~mm}$.) Cleaning bristles: From nine to eleven ventral bristles and from eight to eleven dorsal ones are situated very close together distally. The relative lengths of these bristles vary to some extent; in most cases, however, the most distally situated of the ventral ones is of moderate length, the next distal one is relatively long, the rest diminish somewhat in length, though rather irregulary, the more proximally they are situated, the proximal ones being rather short; among the dorsal ones the distal ones generally are relatively long, the proximal more or less short. Proximally of these bristles, seattered irregularly, there are from mine to thirteen ventral bristles and from ten to fourteen dorsal ones; the lengths of these also vary somewhat, but in most eases, however, they are subequal and of moderate length. The eleaning bristles are furnished with from one to six bells eut off transversally distally; the tongue of the distal bell is also cut off rather transversally distally (ef. fig. 25); proximally of the bells the cleaning bristles are smooth. The end comb consists of from seven to eleven rather long distal teeth, rather pointed distally, deereasing somewhat in length the more proximally they are situated, and, in addition, of from three to six considerably shorter proximal teeth on both sides. The cavity dorsally of the end comb is rather deep; its dorsal wall is furnished with an unpaired, rather high and narrow, distally rounded, chitinous peg,
almost or quite bare, but apart from this it has no appendages at all. There is no special muscle for closing this cavity.

Furea: - This has nine claws, somewhat more powerful than those shown in the accompanying figure 8 of the male furca, all decreasing rather uniformly in length the more proximally they are sitnated, with the exception of claw no. 3, which is somewhat, though

Fig. XIIH. - C. (Iargula) norvegica W. Bamn, f. - 24. Seventh limb; $192 \times$. 25. Some uf the distal balls of a

slightly, shortened and weakened; it is about as long as or slightly shorter than claw no. 4. All the claws are well defined from the lamella except claws nos. 2 and 4 . which are quite joined to it. Proximally of the claws the furca is smooth.

Upper 1 ip (fig. 6, j - f): - The upper glandular field is of moderate size: the two lower paired ones are small and situated distally on two long tusk-like processes. The protuberance dorsally of the upper lip is rather low and broad.

Therod-shapod oresan is hant distally:
The lateral epes are small, with about nime or ten ommatielia.
Malr: -
Shell: Length, $3,1-3,3 \mathrm{~mm}$. Length: laight, about $1,4: 1$. Seen from the side (tige. i) it is of about the same trpe as that of the fomale, differing especially by the posterior part of the shell being somewhat lower - in some eases rather considerably lower than is shown in the arempanying ligure - the anterios part of the shell is even somewht, though only lighty, larger that the posterion one. The domsal margin is well arehed anteriorly, in some specimens somewhat more than is shown in the accompanying figure; sometimes it has an indication of a low lmmp in the mitatle as in the adjoining figure, in most cases, however, it is arenly arehed. The posterior-wentral comer is rather better developed than in the female. In other respects it agrees with the female shell.

First antenna (fig. 14): - This is somewhat longer than in the female; the proportion between the length of the anterior side of the seven distal joints in the male and in the female is about 35 to 30 . The end joint seems to be somewhat less well defined than in the female. Bristles of the serenth joint: The b-bristle is about as long as the anterior sides of the second to the fourth joints; in most cases with only three filaments, all with suctorial organs. The proximal one of these has distally of the suctorial organ a powerful, rounded verruca (cf. fig. 15). The two others are long and powerful, the distal one extending considerably beFond the point of the bristle and having five (in one case there were six on the distal one) suctorial organs, proximally of which a small verruciform process is found. In one case an additional extremely short and bare filament was observed just distally of the distal one of these filaments. The e-bristle is about as long as the anterior side of the seven distal joints of the antenna; it has ten filaments, of which the two proximal ones and the sixth one (counting from the base) are furnished with suctorial organs; the position of the distal filament that has suctorial organs mar, however, vary; the three filaments with suctorial organs are of the same type as the corresponding filaments on the preceding hristle. Of the bristles of the end joint bristles f and g are only very slightly longer relatively than these bristles in the female; they have the same number of filaments, ten and cleven respectively, as these bristles in the female. In other respects this antenna shows great agreement with tlat of the female.
second antenna: - This agrees very closely with that of the female, with the sole exception that it is somewhat more powerfully developed; the exopodite was, for instance, equally long in a malc with a shell $3,2 \mathrm{~mm}$. long as in a female with a shell $3,5 \mathrm{~mm}$. long. The proportion between the length of the natatory bristles in the male and female is about three to two.

II andible: - This is very smilar to that of the female. The medial of the two posterior-distal bristles on the second endopodite joint is, however, much more powerful than the lateral one (fig. 13), attaining almost to the strength of the two middle main claws on the end joint; the lateral one of these two bristles is about the same as in the female. There is also some difference to be observed between the two sexes with regard to the shape of the claws on the end joint (cf. figs. 12 and 13); all the bristles of the end joint are quite bare.

Themaxilla and the fifthandsixthlimbsare very like those of the female.
Scventh limb: - This is very like that of the female. The following numbers of cleaning bristles were observed: from nine to thirteen ventral ones and from eight to eleven dorsal ones situated close together distally; proximally of these from five to seven ventral ones and from eight to ten dorsal ones scattered about. The equipment of these bristles was similar to that of the female. The end eomb sometimes seemed to be slightly weaker than in the female.

Penis (fig. 7): - This is of the fundamental type for this sub-family; for details see the accompanying figure; the number of bristles varies to some extent.

Fir rea (fig. 8): - Is in the case of the female, it has nine chaws; in the male, however. these are somewhat mores lender; the second, third and fourth claws are joined to the lamella; no. 3 is somewhat weakened. The equipment of the claws is perhaps a little weaker than in the female.

The upper lip and rod-shaped organ are about the same as in the female.
The lateral eyes have from fourteen to sixteen ommatidia and are thus somerwat larger than in the femate.

The back of the body is somewhat folded transversally.

Remarks: - The original deseription of Cypridinu norvegica W^{\top}. Bumb is, as is seen from the above list of synonyms, to be found in the Proceedings of the Zoological Society of London, 1860, p. 200. G. S. Brady and A. 11. Norman, 1896, and (\%. IV. Mülleti, 1912, give it as being from the Annals and Magazine of Natural History, 1860, p. 139. This is, however, incorrect, inasmuch as the treatise entitled :On some new species of Cypridina", to which these authors obviously refer, is only a reproduction of the original treatise. It is printer under the heading , Proceedings of Learned Societies, Zoologieal Society". Unlike the original treatise, however, it is not accompanied by any illustrations.

The deseription in question is very short and is given in very general terms, withont any characteristic details being produced. Only the shell is dealt with. The accompanying figures are also of such a nature that certainty of identification is impossible. Thus in 1912
 by adding a query.

The species in question was described from a specimen eaught on , the coast of Norway". Only one other species of this sub-genus is deseribed from this region, namely (. (V.) megalops (i. O. Sans. As this region may be said to be rather well investigated - at least as far as forms as relatively large as the two mentioned ones are concerned - and as (1. (I.) norreyicu and C. (V.) megalops are so essentially different from eacle other with regard to the form of their shells that there may be no risk of confusing them, I have decided, in spite of the incompleteness of W. Bunb's originaldeseription, to identify my form deseribed above with this species of B.and :

According to the statement of \mathbb{I}. Bank himself the type-specimen of this species is preserved in the British Museum. If, however, this speeimen is no konger to be found and if new species with a habitus agreeing with that of $(t$. (V.) noremich are disenvered on the const of Norway, then, of course, this species of B.anm's will have to bo deleted from the list of the identifiable species and a new name given to the form described by me above.

Digitized by Microsoft (B)

Remarks aboul the original description.

Identification.

The form that is dealt with be (i. U. Stas, 186.5. p. 10.t, is ako rather ineomphotely describmed. As, in addition. the deseriphion is mot acempanied by illnstrations, this form shmbleally he demoted as midmbitiable. The description given by me above is, however, from specimens - fomm at lafotem - that this insestigator had detemined to be Cymbitima nomegieg. Fon this reasun I hater considered it best to look mon all the information given by this writer ahout ('. nomergice as really weming to the species dealt with here, although all the separate statements hate mot been tested by me.
 the name of Cypritime nomergee is to be emsidered as identieal with the speeies dealt with abose is not quite certain, at least if attention is only paid to the description and figures. bifternces are fomed loth in regard to the shell and the lurea and limbs, as is soon shown by eren a superficial comparison between the two descriptions. In spite of this I have inchaded this form ats a smonym of the speeies deate with abowe becamse (i.s. Brams and A. M. Noman have, if we judge from the text. based their description on specimens from the coast of Norway and becanse I knew that these writers often take very little care abont the correctness of theirdetails.

On the other hand it did not seen proper to me to include as syonyms Cypridina norvegica A. M. NormiN. 1868, p. 439, 1869. pp. 256, 257, 260, 295, 1891, pp. 119, 121: G. S. Bramy and
 these statements were not acompanied by any figures or information at all to verify them.

The reduction of the third furcal claw, thongh only slight, ought perhaps to be specially mentioned; it has a certain interest because it is just this daw that is exceedingly reduced in another species of this suh-genus, V. Vanhoffeni (C. IV. MÜlueri).

Sexmatly mature males and fenales with embryos were found both on the 18th of May and the $\overline{5}$ th of Jugust on the West ('oast of Sweden and between the 3 rd and 11 th of September in Trondhjem Fjord.

There was no difference in size between the specimens from northem regions, the Lofoten Ishands: and those from more sonthern places, Koster Fjord. From both localities comparatively large as well as comparatively small specimens were recorded.

Especially conspicuous was a parasitic l so pod, Cyproniscus cypridinae (G. O. Sirs), concerning which J will only quote C.O.SAss's statement, 1899, p. 235: ,I have not infrepuently found this interesting form of the Lofoten Islands and at Bodö and Selsövig, infesting Cypridina noreegica Bump. The parasite, when fully developed, is easily observable through the semipellucid valves of the Cypridina, always occupying the place where otherwise the ova and embryus of the latter are carried during their development. Occasionally the parasite also occurs on male Cypridinae; but in no instance have I found it in this case fully developed, and it is very probable that under such circumstances it does not ever reach maturity." This parasite occurred on about 30 per cent. of the specimens of the above species recorded from the Trondhjem Fjord and the Koster Fjord, but curionsly enough no specimen of it was found on the specimens of Cypridina from the Lofoten Islands that I have examined.

The specimens of this species that are mentioned below as having been caught in Trondhjem Fjord were all found in the cloaca and uterus of Etmopterus spinax (LINNE). According
to information received by me from the collector, Fil. lic. HJ. Österaren, all the specimens were quite active and emitted an intensely phosphorescent light. This fact, like the eircumstance that a mumber of specimens were found in the uterns, decidedly indicates that they had not been swallowed by the fish as food, i. e. that they had not passed throngh the alimentary canal, but it must be assumed that they penetrated actively into the fish, where they lived on waste products and, at least in the uterus, as parasites.

Curiously enough all the twenty-five speeimens were found in a single specimen of the above-mentioned fish, although no less than about a hundred specimens of the latter were inrestigated (according to information received from Fil. lic. Osterarbi). As 1 have earefully investigated myself about sixty specimens of this Etmopterus species caught in Trondhjem Fjord without finding a single specimen of (ypridina and Fil. lic. O. Nrbelin has investigated about 150 from the same fjord with a similar negative result, this habitat must perhaps be regarded as a rare one, in spite of the curionsly large number of specimens found in one fish. - It ought perhaps to be pointed out that C. (5 .) norvegica seems to be very rare in Trondhjem Fjord: ,Sparsim in sim Nidarosiensi" (G. O. Strs. 1865). (Is it possible that all these 25 specimens are the offspring of one and the same fertilized female which have left the mother after the latter had penetrated into the fish?)

I was unable to diseover any morphological differences between free-living specimens and the parasitic specimens, althongh they were subjected to a very minute examination.

There may be an increased interest attached to this find because this is not the first nor the only time that a C'ypridinid has been found under conditions that seem to indicate a certain tendency to parasitism.

The first mention of a case of this sort in the literature is to be found in O. G. Costa's work in 1847, p. 6. Here we find the following statement: „Dopo la pubblicazione della Memoria.. dissecando una Scorpaena scrofa, trovammo tutta la cavità addominale, o meglio, il peritonen in ogni punto attaccato da questo ostracode parassitu, che a primo sguardo presentavasi come di glandolette bianche di cui pareva disseminato il cavo addominale. Noi potemmo trarve 120 di tutte le grandezze, niuno uguaghando però i precedenti ospitanti nell' Ofisuro. La qual causa rafferma essere propria una tale specie del Mediterraneo, e vivere abitualmente parassita su i pesci."

The latter find is mentioned in the same treatise, p. 1. Here we find that a Cypridinid, presumably the same species as in Scorpacna scrofo, i. e. Cypridina mediterranea, was found on the body of a 'phisurus , Noi trovammo nel corpo di un Ofisnro".

The next find is mentioned by A. BriAl in a short essay on parasitic Crustacen (1909). In this we find that a number of specimens of Cypridina mediteranea (?) were fonnd in, seni e canali frontale" of a fish Coryphaena hippurus. The length of these specimens was only $2,5 \mathrm{~mm}$. which suggests that they were not sexnally mature. With regarl to this case the author writes as follows: ,Questa specie d'ostracode non è da ritenersi parassita per quanto trovata su di un pesce. Risse vive liberamente e non si tratta qui che di un semplice caso di commensalismo." In other words this anthor considers this habitat 'fuite an accidental one, as I did above.

Still mome interesting is the statement about the parasitic wecmrence of speries of this

 (:ases: ..Fine lots of this ustracod were whaned in all; two of these were taken from the sill- of two hammer-head sharks. S'phyrna zygueme. on duly : and include about so specimens cache.. Tho third lot contains a single specimen fomb on the gills of Epinephelus adseensionis, . Uugus $1!$. . . The fourth lot eontains thee specimens taken lrom the gills of a jack, Carana crysor, Angust 1. The fifth lot contains les specimens and was obtained from the hasal tubes of the hammer-hoad shatk on Jume 17 ."

Whether all these finds given by Whaso really refer to a single species is anything but certan, at least if we are to judge from the superficial way in whieh the species in question is deacribed and reproduced. A comparison between the two reproductions of the furca given in pl. 53 , figs. 303 and 311 is even decidedly against such an assumption.

On the same page on which this information is found WILsoN gives the following details about these finds. "That the presence of these ostracods on the fishes' gills was not accidental is abundantly proven by the following considerations: First there were too many of them: one or two or half a dozen might be washed on to the gills of a fish accidentally, hut not 40 or 50 . Again they were arranged altogether too regularly; in the space between the bases of two adjacent filaments and in contact with the gill arch, there was always a single ostracod, its long diameter at right angles to the gill arch, so that its anterior end projected slightly on one side between the filaments, and its posterior end on the other side. Furthermore the tissues of each filament where they came in contact with the shell of the ostracod. were hollowed out in the eenter and slightly raised around the edges, thus forming a sort of pocket, which held the ostracod securely in place so that it could be removed only with a pair of foreeps. This of course is absolute proof that the ostracod was not washed in temporarily, but that it lad remained in position long enough to produce this effect on the tissues. In view of such conditions these ostracods may fairly be catled parasitic. While it is impossible to see how they can draw any blood from the fish's gills, yet they certainly share the oxygenated water with which the fish keeps its gills supplied, and they get their food in some way while there. For food they may devour anything that the water contains and brings to them, they may eat scraps of the fish's food that come their way, or they may feed on the slime with which the fish's gills are covered. It is impossible to determine at present just what does constitute their diet."

No adaptation for parasitism of one kind or the other can be discovered in the form in question - at least if we are to judge from W'ilson's description and figures; on the contrary this species nust be said to have the structure that is typical for free-living forms of this genus. Accordingly it seems to me doubtful whether we are concerned in this case, contrary to the two preceding ones. with a (or several) exclusively parasitic form or forme.

Alfred RAMSCH, in his work of $1906, p .384$, rejects O. G. Costa's assumption that we have to deal with parasitism in the case quoted above, put forward by O. G. Costa*. He points out that he had himself often come across different forms of large Ostracods in Pagellus both beneath the gill-cover and in the stomach; all the specimens so found were, however, dead. He writes 1. c.: „Sie dienen den Fischen zur Nahrung und gelangen mit dem Atemwasser an die Kiemen oder finden sich gelegentlich im Darmtraktus. Thr angebliches Vorkommen in der Abdominalhöhle möchte ich wohl als eine zufällige Erscheinung auffassen."

This idea of A. Ramsch's seems to be incorrect. It is true that O. G. Costa does not give any information as to whether the specimens found by him were alive or not at the time they were caught, but all the evidence is in favour of their being parasitic specimens. Of course this does not prevent O. G. Costa's theory that we are concerned with an exelusively parasitic species from being incorrect.

From the cases put forward above one may perhaps draw the conclusion that within the sub-genus Vargula there exists a certain ,tendency" towards a parasitic life. One may perhaps say that it is the first groping attempts towards the carrying out of this tendency that have been just brought to our notice.

It may be objected here that the word ,.parasitism" ought not to be used for these cases. This form of life ought rather perhaps to be called ,,commensalism", as has already been done by A. BRIAN. A's a matter of fact we are probably dealing with a case which is on the boundary between these two phenomena; both commensalism and real parasitism certainly exist; the question as to which term is to be used before the problem has been investigated more closely is of minor importance.

If we try to determine this species according to the scheme of the genus Cypridina given by G. W. MLller, 1912, p. 10, we find as follows: The furea has nine claws, the third of which is more than half the length of the second; the rostral incisur of the shell is well developed; the length of the shell is less than 4 mm ; the upper lip has two large tusk-like processes - , Mit 2 hauerartigen Fortsätzen hinter den anderen Driisemmïndungen"; the second and fourth furcal claws are joined to the lamina. - It is, however, not Cypridina norvegica we arrive at as, on account of the incomplete deseription of this species, it could not be ineluded in this examination scheme - but an antarctic species, Cypridina antarctica G. W. MÜlleer.

A close investigation of the description of the last-mentioned species - (t . IV. Müller, 1908, p. 84 - shows that we are dealing with a form closely allied to C. (Vargula) norregica. In order to be able to undertake a more detailed comparison between these two forms I wrote to Professor G. W. MÜller, who was kind enough to send me a sexually mature female of the antaretic form and it is on this material that the supplementary description given below is based.

Habitat: - C'oast of Norway:
Lofoten Islands: 1 mature male, 2 mature females and 3 juvenes; coll. unknown; R. M. S. 155. Skarnsund, Trondhjem Fjord; in a specimen of Etmopterus spinax (LINNÉ): 5 mature mates, 12 mature females and 8 juvenes; coll. HJ. Österchen; R. M. S. 156 and 157.

[^38]
 I. \% M.

sif. snehohmen. Koster: at a depth of about $150-200 \mathrm{~m}$. on a muddy botom; on seroral oceasions: 4 mature males, 20 mature females and a fow larvae of different stages; coll.

Typespecimen of the new description, on slides, R. II. S.

Distribution: - West coast of Norway.
Gut of Norway it has onl! been recorded onee: lat. $71^{\circ} \mathrm{N}$., long. $18^{\circ} \mathrm{W}$. (C. O. Sars, 1886). - With regard to A. Il. Nomma゙s statement (1869) that it was eaptured at the Shetland Islands ote ser above p. 262.

C. (Vargula) antarctica G. W. Müller.

 1912. p. 12.

Description: - See (t. WV. MC̈llar. Ioce eit.
supplementary description: - Female: -
心hell: - Seen from inside (see fig. XLIH1): Medial bristles: The rostrum has rather sparse, in most cases bifureated, bristles (of about the same type as is reproduced for U. (Dolorit) levis, p. 2e8, fig. 2). Some of these bristles are arranged in a sparse row runuing obliquely upwards and forwards: sometimes this row is not distinct, in some cases, according to G. W. MuLleEl's statement. all these bristles are seattered. The arrangement and number of these bristles not only vary from one speeimen to another but are also different on the two valves. Along the posterior edge of the rostrm there are also rather sparse bristles; at least some of them are bifurcated. The two bristles near the inner edge of the rostral incisur are about as large as the rostral bristles and seem to be furnished with fine, short hairs situated close together. Apart from these bristles there is often only a single short bristle inside the incisur near the joining line. Along the anterior part of the list behind the incisur to about a fourth or a third of the length of the shell there is a moderate number of bristles, mostly bifurcated; farther back ther are practically entirely absent, though a few may sometimes be found. Inside the posterior margin of the shell the list is of the type described for C. (V.) norvegien (contrary to (r. W. MellLER's statement). Between the list and the margin of the shell there are in most eases no bristles. The selvage is very wide along the posterior margin of the incisur, quite filling the latter (contrary to G. IV. Mellek's drawing), contimes along the whole of the ventral margin of the shell. extending here a little outside of it. On the anterior side of the rostrum it alsn extends beyond the edge of the shell, but, on the other hand, it is very narrow

Digitized by Microsoft ${ }^{\circledR}$

along the posterior edge of the rostrum. It has umiform, close and fine cross-striation and is exceedingly finely serrated at the edge, almost smooth-edged.

First antenna: - The situation and the relative lengths of all the bristles seem to agree rather closely with (\% (V.) norvegica, the posterior bristle of the fourth joint is, however, shorter relatively and the e-bristle of the seventh joint is somewhat, though rather slightly, longer than the g-bristle of the eighth joint. Presumably, however, the relative lengths of the bristles vary somewhat in this species as well. These two species also show very elose agreement with regard to the number and type of the filaments of the bristles. On the proximal filaments of the sensory bristle of the fifth joint we find proximally from none to seven small seeondary spines, some of them almost invisible. Of the bristles on the seventh and eighth joints the bbristle has four filaments, the e-bristle ten, the f-bristle also ten and the g-bristle eleven filaments: these filaments are furnished with from none to five secondary spines. The simple sensory bristles d and e are about a third of the length of the c-bristle. Pilosity: The second joint has a more abundant pilosity than in C. (V.) norvegica.

Second antpnna: - This agrees in most respects with that of $\left(\begin{array}{c}\text {. (} \\ \text { '. .) norvegica. It is to be noted. }\end{array}\right.$ however, that the spines at the base of the bristle on the seeond exopodite joint seem to be almost or entirely lacking, and that the bristle on the seeond condopodite joint attains about the same length as or is somewhat shorter than the end joint of the endopodite. - Aceording to G. II. MÜller's statement (190s, p. 85) ,das basale Glied" (of the endopodite) is ,kurz, mit einer Borstengruppe am Vorderrand nahe der Basis, zu der noch eine weiter distal stehende kommen kann". Whether or not a variation

 xan from inside: is \times 。 is present in the last-mentioned bristle 1 have, of course, been unable to decide; it seems to me probable, however, that there is no variation, but that the statement is based on some specimens that were defective in this character. This assumption is supported by the state of affairs in (.. (V.) norcegich, in which species this bristle is always found; el. also several other species, for instance those of Cigantocypris and Doloria. The specimen investigated by me had this bristle developed as in U. (V.) norvegicu.

Mandible: - This is extremely similar to that of C. (V.) norcegica. The anterior side of the second endopodite joint has comparatively few (eight were observed) more or less long bristles with short, fine hairs and has from seventeen to ninetere cheaning bristles.

Digitized by Microsoft ${ }^{\circledR}$

Of the bristles on the end joint the two middle ones, which are developed like daws, seem to be somewhat more powerfully armed than those of the species in guestion.

It axilla: - This shows close agreement with the maxilla in C. (V.) moreegica. The first endite of the protopodit, has eleven, the seeond five and the third five masticatory bristles. Distally-posteriorly the first endopodite joint has three bristles; the end joint has thirteen bristles; a few of the a-bristles have, however, some few rather strong secondary teetl at the middle.

Fifth 1 imb : - Only the left limb of one sexnally mature female was investigated - This slowed arery close agreement with the corresponding appendage in C. (V.) norvegica, the only differences that were observed being that the main tooth of the first exopodite joint was composed of eight, and not seven. constituent teeth, that the fourth exopodite joint had only three bristles distally close to the inner edge and that the group of bristles situated proximally of these bristles was represented by a single bristle. - It is to be noted that the first endite of the protopodite was defective, so that I camot give any information about its structure in this species.

Sixth limb: - This is very similar to the corresponding appendage in C. (V.) norvegica, but the specimen investigated had, however, only seven to ten bristles on the end joint.

Seventh limb: - This is very similar to that of the preceding species. Cleaning bristles: There were seven ventral and five or six dorsal bristles situated very elose together distally: proximally of these there were six or seven ventral and from six to nine dorsal bristles seattered irregularly. The single chitinous peg on the dorsal wall of the cavity dorsally of the end comb was finely serrated distally.

Furca: - This is also very like that of the preceding species. It is to be noted that in this species too, contrary to G. W. Múller's statement, the third claw is somewhat, though only slightly, shortened and weakened.

Upper lip, rod-shaped organ, lateral eyes: see G. W. Müller's description.

Material of investigation.

Kelation to (I.) norvegica.

Parasites.

Remarks: - As appears from the remarks on C. (V.) norvegica, p. 265, the above supplementary description is based on a sexually mature female, which was kindly sent to me by Prof. G. IV. MÚller.

A comparison between the descriptions given above of this species and $C .(V$.) norvegica will show that we are dealing with two rather closely related species. Possibly they onght to be denoted as representative forms in the Arctic and the Antarctic.

- may be pointed out in passing that, although both forms possess a parasite of the gemus Cyproniscus, we are coneerned, all the same, with two well-defined species of this genus, one infecting the arctic, the other the antarctic, species.

Distribution: - Antaretis: , Gausstation" of the German South Polar Expedition, 1901-1903. Common, about 200 specimens were captured on several occasions. (G. W. MULLER, 1908.)

Digitized by Microsoft ${ }^{\circledR}$

C. (Vargula) megalops G. 0. Sars.

Cypridina megalops, (i. O. SARS, 1872, p. 27 s.

$$
\begin{array}{ll}
. . & \text { (. S. Brady and A. Il. Nohmis, } 1896 \text {, p. } 649 \text {; pl. LIV, figs. } 5,6 . \\
. . & \text { G. W. MULLER, } 1912 \text {, p. } 15 .
\end{array}
$$

Description: - Female: -
Length, 3 mm . Length : height, about 1,43 : 1 ; length: breadth, about $1,85: 1$. Seen from the side (fig. l) it is broadly egg-shaped with the greatest height situated rather considerably behind the middle and the posterior part rather strikingly larger than the anterior one. The dorsal margin is rather boklly arched, its arcuation being somewhat more pronounced posteriorly than it is anteriorly, and, like the ventral margin, which is uniformly and somewhat more slightly arched, joining the anterior and posterior margins without decided corners. The rostrum is well rounded anteriorly or has a broadly rounded and rather weakly developed anterior corner; its ventral corner is rather well pointed. The rostral incisur is deep and narrow. The posterior part of the shell is broadly rounded and has a weakly developed and broadly rounded posterior corner at about half the height of the shell. Seen irombelow (fig. 2) the shell is oviform with its sides evenly arched and its greatest breadth situated somewhat behind the middle; the anterior end is somewhat more narrowly rounded than the posterior one. The surface of tha shell is quite smooth except in the neighbourhood of the anterior margin of the shell, where it appears to have small, rounded cavities. The bristles of the surface seem practically to be entirely lacking. The pores of the surface are, on the contrary, very mumerous and rather large and striking. seen from inside (fig. 3): Medial bristles: On the rostrum there is a fairly close row of rather short and in most cases bifurcated bristles rumning obliquely upwards and forwards. The place on which the ventral ones of these bristles are fixed does not form a verruciform swelling. Apart from these bristles there are only a few found on the rostrum. Apart from the two bristles situated close to each other near the inner margin of the incisur there is generally only a single bristle inside the incisur; this bristle is short and is situated somewhat dorsally of the two just mentioned. Along thr anterior part of the list there is a moderate number of bristles. mostly bifurcated, situated most closely just behind the rostral incisur and becoming more and more sparse posteriorly, but observable. however, along the whole ventral side of the shell. All the medial bristles are bare or almost bare. The list within the posterior margin of the shell is somewhat wider than it is anteriorly and has no other appendages except a comparatively few short, simple bristles. which are difficult to distinguish. On the part of the shell between the list and the margin there seems as a rule to bee practically no bristles. The selvage is wide, extending rather considerably beyond the edge of the shell both along the anterior and posterior margins of the rostral incisur - the incisur is quite filled with it - as well as along the anterior edge of the rostrum. Hong the whole ventral side of the shell the selvage also is comparatively wide - although considerably narrower than it is anteriorty - extending somewhat beyond the edge of the shell. It is finely and fairly uniformly cross-striated. The shell is rather strongls cateforous, but thin and fragild.

Digitized by Microsoft ${ }^{\circledR}$

 a-bristle of the seventh joint have about the same pesition and the same relative lengths as in ('. (1.) norvegica. The posterior bristle of the fourth joint is sumewhat shorter relatively. All these bristles hare short hairs or are ahmost maked. The semsory hristle of the fifth joint is of about the same length as the second to the fourth joints (eounting on the posterion side) or somewhat longer. Of its thirten sensory filaments -- all entiely without secondary spines the mine proximal ones are separated from the distal ones by a rather wide gap and, compared to the later, they are relatively the and long (attaining about a third to a half of the whole lengith of the bristle): the three following ones are only about a fifth of the length of the bristle. the distal one is still shorter. Of the bristles on the seventh and eighth joints the er- f- and ar-bristles are rather long, the e-bristle attaining about the same length as the seven distal joints, the f-bristle is somewhat longer, the g-bristle is about as long as the whole antema. Thee b-bristle is about as long as the total length of the fourth and fifth joints and has five sensory filaments. each with one or two secondary spines. The c-bristle has ten sensory filaments cach furmished with from none to two (most of the distal ones with none) secondary spines. The f-bristle similarly has ten sensory filaments, each with from none to five secondary spines. The g-bristle has eleven sensory filaments, each having similarly from none to five secondary spines. The secondary spines on all the distal bristles are rather strong. The simple sensory bristles d and e are about as long as the four distal joints. Pilosity: The second joint has anteriorly and posteriorly a few almost invisible transerse rows of short, fine hairs; apart from these this antenna is smooth.

Second antenna: - Protopodite: Length about $0,9 \mathrm{~mm}$. The merlialdistal bristle is of moderate length, not quite so long as the longest of the for proximal bristles of the first endopodite joint, bare or ahmost so (fig. 12). NXopodite: The first joint is about as long as the total length of all the following joints, the second joint about as long as the total length of the two following ones, the remaining ones are subequal. The bristle of the second joint is about as long as the total length of the six following joints, and is furnished ventrally with numerous moderately strong spines, arranged in two rows. The proportion between the length of the long natatory bristles and the total length of the exopodite is about three to two. These bristles are equipped with broad natatory hairs. The end joint has four bristles, of which the dorsal one is about as long as the total length of the five distal joints; like the others, it is furnished with long natatory hairs situated rather close together. The third to the ninth joints have powerful, rather long and conical basal spines, perhaps even a little longer relatively than those in (.. (V.) norvegica; they decrease in strength and length the more proximally they are situated, the one on the third joint being of rather moderate proportions. At the base of the bristle on the second joint there are no spines at all. Endopodite: This is very short, twojointed or with a very faint indication of being three-jointed. The first joint has a group of four bristles proximally, one of which is rather long, considerably longer than the whole endopodite, the three other's not half as long as this bristle; they are bare or almost so. In addition there is presumably to be found a single bristle situated more distally on this joint, attaining

Digitized by Microsoft ${ }^{\circledR}$
ahout the same length as the longest proximal one: this bristle was. howerer, guite lacking in the specimen investigated: its probable existeme is indicated partly the presence of a similar bristle in the male of this species as well as in closely retated forms, and also by the faet that (In the moloputite on hoth sides of the female investigated there was, at the place where this bristh shomat have hern situated, a circular opening in the chitin. such as arises when a bristle hats hees torn off.

Handible: - l'rotorodite: The emelite on the coxale is of about the same type as that of C°. (K°) moregica. Basale: 'This has nime bristles ventrally: three a-bristles, one b-bristles, two e-hristles and two d-bristles; between the two latter groups there is an additional bristle. Of these the a-bristles. the b-bristle. the shorter of the e-and d-bristles and the bristle between the last two groups aro very short, the longer e-bristle is about as long as the height of the joint. the longest d-bristlo is about as long as the second endopodite joint. Of the three dorsal bristles on this joint the proximal one is fixed at about the middle of the joint and is lalf as long as the joint. the two distal bristles, which are somewhat different from each other in length, are a little longer: all these three bristles have short, fine hairs. Exopodite: This is abont as long as the dorsal side of the first endopodite joint or a little longer. Of its two bristles, both of which have short hairs, the distal one is about as long as the exopodite, the other one being about wiee this length. Endopodite: Of the four ventral bristles on the first joint the longest one has a rather large number of long secondary bristles and has short hairs distally, the other three bristhes have short hairs. Seeond joint: On the anterior side this has eight or nine more or less long bristles. with short hairs. the longest of these extending with their points a little berond the end joint. and ten or cleven cleaning bristles, all with rather fine double pectination. The arrangement of the latter bristles varies: sometimes they are clearly arranged in two rows ruming obliquely upwards and forwards, sometimes they are sitnated ahmost quite irregularly. On the posterior side this joint has four bristles, bare or almost so, situated in the same way as in the preceding species of this sub-genus. The two distal ones, which are situated close to each other, are somewhat shorter and weaker than the two others and of about equal strength; the medial one of them is only slightly longer than the lateral one. The bristles of the end joint are practically of quite the same type as that described and reproduced for C. (V.) norvegica except that the anterior and the posterior bristles are relatively somewhat, though only slightly, lnuger: all the bristles of this joint are smooth. Pilosity: The first endopodite joint has short hairs dorso-distally, the second endopodite joint has groups of short hairs situated transversely proximally on the anterior side and on the posterior side.

If axilla: - Protopodite: The first endite has twelve powerful bristles, subequal and of moderate length, of the same types as the corresponding bristles in C. (V.) norvegica. Un the three inner ones the secondary bristles continue right to the point of the bristle, on the others ther stop a short distance from it: of the latter bristles five have a simple coarse point and four are tri-fureated distally. The second endite (fig. 6) has seven rather strong and moderately long bristles, all almost subequal except the inner one. which is only half the length of the others. Sometimes they are all furnished with a moderate number of long, stiff secondary bristles at the middle, sometimes there are no signs of any such secondary bristles on the third
bristle, counting from inside. which in that case is quite bare. The three onter ones are pectinated distally, the one situated nearest to them, which in most eases is somewhat more powerful than the rest, is either bare distally or has a few secondary teeth; the long one of the two inner bristles is tri-fureated distally, the small one has short hairs or is bare distally. The third endite has also seven distal bristles, rather strong and of morlerate lengths, those situated distally (in the middle) being somewhat shorter than the others. Of these the imer one has short, fine hairs, all the rest are furnished at the middle with rather sparse, long, stiff secondary bristles; the two outer ones are pectinated distally, the rest seem to be smooth distally. The proximal bristle on the outside of the third endite has short, fine hairs and is not quite as long as the outside of this process. The dorso-distal bristle on the coxale is not quite as long as the outerdistal bristle on the third endite. On the boundary between the basale and the first endopodite joint there are three bristles. Of these the one that is fixed close to the exopodite is somewhat longer than the last-mentioned branch and is furnished at the middle with a few long secondary hristles, distally it is bare or has short fine hairs. The one at about the middle of the inside of the palp is about a third of the length of the former, the one on the anterior edge of the palp is slightly longer than the last-mentioned one; the two latter bristles are bare or almost so. Exopodite: Of the three bristles of this branch the distal one has short hairs, the two others are plumons. The two distal ones are subequal and of about the same length as this branch, the proximal one being somewhat shorter. Endopodite (fig. 7, of $=$) : The posterior-distal, chitinized, cutting edge of the first joint is rather strongly lobed, the lobes of varying types. Distally this joint has two hristles on its anterior edge and three on the posterior one of about the same proportions as the corresponding bristles in C. (V.) norcegica. The two anterior ones are practically quite bare; of the three posterior ones the long one is powerfully pectinated, the two others are bare or almost bare. The end joint has the same number of bristles as in (${ }^{\prime}$. (V.) norregica: four a-bristles, three b-bristles, three c-bristles and three d-bristles: they are of about the same relative lengths as in the species mentioned, but somewhat weaker; their equipment. especially, is very weak; the a-bristles are bare, the two posterior b-bristles have only a few secondary teeth, the c-bristles similarty have only a few rather weak secondary teeth or are almost bare, and the same is true of the anterior d-bristle. The pilosity is similar to that of (C . (V.) norvegica.

Fifth limb: - Protopodite: The first cndite (fig. 8 , $\hat{o}=$ of) shows a rather great resemblance to this process in C. (Doloria) pectinata. It is furnished with eight powerful masticatory bristles all of about the same type furnished with copions long, powerful secondary bristles, arranged more or less clearly in oblique wreaths. Of these bristles nos. 3, 5, 7 and 8 , counting from the anterior side of the limb, are moderately long, decreasing somewhat in length the more posteriorly they are situated; bristles nos. 2,4 and 6 form a similar series, but are considerably shorter than the former ones; no. 1 is very small. Second endite (fig. $9,0{ }_{0}^{=}$f): The five inner bristles are powerful masticatory bristles of moderate lengths, the three middle ones being somewhat shorter than the two outer ones. They are all, except the middle one, furnished with some wreaths of long, stiff secondary bristles at the middle. The middle one is sharply serrated distally, the rest are pectinated a short distance distally of the distal wreath
of secombar bristles. the pertimation being rather weak on hristle mo. 2 , combing from the anterion side of the limb, most powerful on mo. E. The single bristle on the anterion side of this process is shom and has short hairs. The seven bristles of the thind endite (fige $10, j=$ of) are powerful, especially the posterior one, and of moderate lengthe; bristles nos. 4 , 5 and 6 , counting from the front, are somewhat shorter than the rest. Of these seven bristles either only the two anterior ones and the posterior one have at the middle wreaths of long, powerfint secondary bristles while the others ham no sueh bristles or else one may also find such wreaths on hristles mos. 4 and 6. counting from the anterior side of the limb. Bristles nos. 1, 2 and 4 with a moderately strong pectination distally: their points are, however, smooth; bristles nos. 3 and 5 are sharply sorated distally: 10 es. 6 and 7 . especially the latter. are very strongly pectinated distully: on the former one the point is, however, smooth. The ventral chitinous spine of the protopodite is of moderate size and irregular. Lpipodial appendage: This has from about 50 to 5.5 histles. all with long hairs, but with smooth points. The exopodite is five-jointed. First joint: The main tooth consists of seven constituent teeth, all well defined proximally: the secondary teeth of the latter vary to some extent, from a type about the same as in C. (Doloria) lecis to that of C. (V.) nomegica. On the posterior side of this joint, close to the main tooth, there is one bristle, on the anterior side of the joint there are four, which show a close agrement with those of C. (V.) norregica, but of these four the next innermost one is somewhat shorter and weaker than the one nearest to the main tooth and only weakly peetinated distally. The second exopodite joint has four a-bristles, seven or eight b-bristles, one c-bristle and one d-bristle. The equipment of the a- and h-bristles is possibly somewhat stronger than in C. (V.) noriegica; the c-and d-bristles are moderately long and have long, fine hairs at the middle, short, fine hairs distally. The following exopodite joints are quite of the same type as in the last-mentioned species, with about a similar equipment of bristles. The inner lobe of the third exopodite joint has two distal bristles and one proximo-posterior bristle, the outer lobe has two distal ones. The fourth joint has distally on the imner edge three or four bristles, proximally of which one or two bristles are to be found. The end joint has two distal bristles. The equipment of the bristles is also abont the same as in the species mentioned. The pilosity is also similar in the two species.

Sixth limb: - Protopodite: The first endite has two rather long and powerful distal bristles, furnished with some wreaths of long, stiff secondary bristles and two or three rather short, phumous medial bristles (on the right side of the only specimen that was investigated the medial bristles [two] were almost completely reduced [pathological?]; they were well developed on both limbs in the male). Second endite: This has two rather long and powerful distal bristles, furnished at the middle with long, stiff secondary bristles. distally pectinated, and, in addition, with three rather short, plumous, medial bristles. The third endite has four or five distal bristles, one of which is rather short, the rest rather long and powerful, subequal; they either all have long, stiff secondary bristles at the middle and short hairs distally or else one or two of them mar have only short hairs. In addition there is on this endite a rather long medial bristle, plumous in the middle. The epipodial appendage of the protopodite is represented by four short bristles, bare or almost so; sometimes the distal one of

Fig. XLV. - (. (targula) megatops (. O. Sars. - ©. Second endite of the protupodite of the maxilla, F : $312 \times$ 7. Distal part of the endeperdite of the right maxilla, seen from inside, $3: 220 \times$. 8. First endite of the protopodite

Digitized by Microsoft ©

these bristles is plumous. Exopodite: First joint: 'The endite has six or seven distal bristles and a rather long medial bristle, of the same types as the corresponding bristles of the preceding condite. socond joint: This has a rather large number ($20-21$) of rather long bristles of somewhat different lengths, all situated near the ventral edge. There is no pronounced gap between the pesterior and the other bristles. Of these bristles the two or three posterior ones have long, soft hairs right to the point. A number of the rest have long haits at the middle and short ones distally: the long hairs are soft on the posterior ones of these bristles and somewhat stifler on the anterior ones and not clearly arranged in wreaths. Some bristles have only quite short hairs. Pilosity: On the inside of this limb there are short, fine hairs situated rather close together; along the ventral margin of the second exopodite joint there is laterally a series of short and rather stiff hairs.

Seventh limb (fig. 13): - This is relatively short, not attaining hall the length of the shell (in the two specimens that were investigated, a male and a female, this limb was abont 1,2 mm. long). Cleaning bristles: Distally, situated very close together, there are six or seven ventral and six dorsal bristles; of these - both in the ease of the ventral as well as the dorsal ones - the one sitnated most distally is rather short, the next distal one is, on the other hand, relatively long; beginning from the latter these bristles decrease fairly uniformly in length the more proximally they are situated; one or two may, however, be exceptions to this rule: the proximal ones are rather short. Proximally of these bristles there are seven on eight ventral bristles and ten or eleven dorsal ones seattered irregularly, subequal, of moderate length, their lengths varying somewhat, however. The eleaning bristles are furnished with from one to seven bells cut off transversally distally; the tongue of the distal bell is eut off obliquely. (of about the same type as in figs. 27 and 28 of C. (Macrocypridina) castanea); proximally of the bells the cleaning bristles are smooth. The end comb consists of from seven to nine long, distally rounded, distal teeth, subequal or decreasing somewhat in length the more proximally they are situated, and on each side of these there are four or five somewhat shorter proximal teeth. The cavity dorsally of the end comb is comparatively shallow; its dorsal wall has a low verruciform process; apart from this it is bare. This eavity has a special adductor (ef. the diagnosis of the sub-genus).

Furea (fig. 16): - This has eleven claws, all well defined from the lamella; begimning from claw no. - , which is somewhat longer than elaw no. 1 , they decrease fairly uniformly in length the more proximally they are situated. Proximally of the claws the furea is smooth.

Upper lip: - All three glandular fields are moderately large; the unpaired dorsal one is somewhat larger than the two paired ventral ones. Some of the mouths of the glands in the former are directed obliquely forward, the others downward; the latter are situated in about the same plane as the mouths of the glands on the two paired. ventral glandular fields. (The upper lip shows a very great resemblance to that of Cypritina dorsoserrata, as this is illustrated in pl. IV: fig. 3, G. IV. Mutleer, 1908; it differs from this especially in having the three glandular fields separated from each other by deep grooves, as is shown in the diagnosis of the sub-genus.) The protuberance dorsally of the upper lip is rather high, with a simple point and somewhat rounded.

The rod-shaped organ is moderately large and rather blunt distally. The lateral eyes are moderately large, with about 25 ommatids.
Male: -
Shell (fig. 4): - Length, $3,35 \mathrm{~mm}$.; length : height, about $1,45: 1$; length : breadth. about 1.9 : 1 . Seen from the side it differs from the female shell in having the posterior

12.

Aust del
 antenna, of: 18 'i \times. 13. Distad purt of the seventh limb (bristles broken), with the end comb open, of: 52f \times. I't. Distal

part relatively lower, and the posterior-ventral comer considerably better developed. In addition the anterior side of the rostrum, especially on the right ralve, seems to form a somewhat more prominent - broad and well rounded - corner. The lines close to the rostral
ineisur are somewhen different from those of the femate (see the figures). No surface pores are visible. In other respects like that of the female.

First antenna: - This is slighty longer relatively than that of the female. Bristles of the seventh joint: The b-bristle is about as long as the anterior side of the second and the third joints: it has five filaments. of which the three proximal ones have suctorial organs. The proximal one of the three later have distally of the sucker only andication of a verruciform swelling. The two others, which are long and powerful, the distal one of them extending some distance beyond the point of the bristle, are furnished with from ten to thirteen small suctorial organs distally, proximally of which there is a small verruca. Distally of the three filaments just mentioned there are on this bristle two short, hare filaments. The e-bristle is somewhat longer than the preceding one, attaining about the same length as the anterior sides of the second to the fourth joints. It has ten filaments, of which the three proximal ones have suctorial organs: these three filaments are of quite the same types as the corresponding filaments on the b-bristle; on the two distal ones of them ten or eleven suctorial organs were observed. The seven distal filaments of this bristle are bare or almost so. Bristles of the end joint: The f-and g-bristles are subequal, not quite as long as the shell (length of the shell : length of these bristles = about $11: 9$): the former has eleven, the latter twelve, filaments, each furnished with from none to four weak secondary spines. In other respects this limb agrees entirely with that of the female.

Second antenna: - This is slightly stronger than that of the female. Endopodite (fig. 12): On the first joint this has, besides the group of four proximal bristles, a single distal bristle as well, of about the same length as the longest bristle in the proximal group. With regard to this character compare the deseription of the female given above. In other respects this antenna is quite like that of the female.

Mandible: - This is very like that of the female. The second endopodite joint has on the anterior side nine or ten more or less long bristles with short hairs and thirteen or fourteen eleaning bristles with varying arrangement. The two postero-distal bristles on this joint are almost equally strong, agreeing completely with those of the female; fig. 5 .

The maxilla and the fifth limb are like those of the female.
Sixthlimb: - This is very like that of the female, but the bristles are, however, furnished with softer hairs almost throughout. The numbers of bristles observed were as follows: Protopodite: First endite: two or three distal bristles and two medial bristles. The second endite: two distal bristles and three medial ones. The third endite: four distal bristles and one medial bristle. The epipodial appendage is represented by three or four short bristles. Exopodite: The endite on the first joint has six distal bristles and one medial bristle; the second joint has 17 or 18 bristles; fig. 11.

Seventh limb: - This is very like that of the female. The number of bristles observed was as follows: seven ventral and from five to seven dorsal ones concentrated distally; eight or nine ventral and nine or ten dorsal ones scattered proximally of these.

Penis (fig. 15): - Of the type characteristic for this sub-family; for details the reader is referred to the accompanying figure.

Thefurca, "pper lip, rod-shapedorgan and lateral eyes are like those of the female.

Remarks: - The above deseription is based on two specimens, a mature fernale and a mature male, which were kindly sent to me by Professor G. O. SARS for a supplementary investigation. To judge from a statement by (x. O. SARS in his note under the original description, p. 279: ,en fuldvoxen Hummed store gnhøde Aeg indenfor Skallen"*, the female specimen investigated by me does not seem to be the same one as that on which G. O. SARS's original description was based, as the female I investigated had no eggs in the brood-chamber (the eggs in the ovaries were, however, rather large); moreover it was not dissected but quite intact.

There can scarcely be any doubt, however, that the female investigated by me really belongs to G. O. SARS's Cypridina megalops. - G. O. SARS's original description of this form is very ineomplete; G. W. Muller (1912) indicates this species as unidentifiable. All the eharacters given by G. O. SARS agree, however, with only one slight exception. The second exopodite joint on the sixth limb should have only fourteen bristles, the five posterior ones of which should, in addition, be separated from the anterior ones by a gap. „Lamina terminalis, subovata setis ciliatis circiter 14 posterioribus 5 ceteris intervallo brevi sejunetis marginata."

The male of this species was previously entirely unknown. On aecount of the great resemblance it shows to the female, there can be little or no doubt that the male described above really belongs to this species. The only thing that might be said not to be in favour of this assumption is the fact that it is larger than the female. For if we are to judge from the literature the males of forms belonging to this sub-genus are always somewhat smaller than the females.

This species oceupies a somewhat isolated position from the two forms of this sub-genus that have been previously described on account of the following characters:
the considerable lengthening of the f - and g -bristles of the first antenna in the male,
the reduction of the endopodite of the second antenna,
the development of special museles for closing the end comb of the seventh limb and
the strong development of the lateral eyes.
It did not seem proper to me to include as synonyms Cypridina megalops of A. M. Nomann,

Material of investigation.

Identefication. The fernale.

The male.

Positum within the sub-genus.

Symonymy. 1891, p. 121 (,,doubtful origin") and of C. H. Ostenfeld and C. Wesenberg-Lund, 1909, p. 113. The information about these is not accompanied by any deseriptions or drawings to verify it.

Habitat: - The exact locale of the specimens of (i. O. SARs investigated by me is unknown; it is presumably on the west coast of Norway.

Kristiansund, Norw a y: l mature female; IV. Lilldebong coll. The specimen was in a very bad condition, but good enough for certainty of identification.

Distribution: - Norw ay: Hardanger Fjord.

* Translation: ,it full-grown frmate with large yellowish-red eggs inside the shell..

Digitized by Microsoft ${ }^{\circledR}$

Sub-genus Macrocypridina* n. sub-gell.

('ypridima (palt.), all 1 rrim.
Descrimum: - Shall: - The form is somewhat thomg only rather slightly, different in the males and the females. - it is owal with a well deweloped posterior comer. The rostral incisur is comparatively small, moderately deep and rather marow. Near the inner edge of the incisur there are two medial bristles situated elose to each other. Presmably with comparatively weak calcifieation. The species belonging to this sub-genns are comparatively large.

First int mana: - This is long, sleuder and eight-jointed. The sensory bristle of the fifth juint has thirteen sensory filaments. The b- and e-bristles of the seventh joint have a similar molifieation in the males as that deseribed abore p. 223 for the sub-gemis Doloria. The proximal filament of these two bristles, which is situated a short distance from the base of the bristles. is. however. comparatively rather slighty metamorphosed; it is of moderate strength, is only slightly swelled proximally and is not strongly ehitinized and spine-shapeed distally: but more hyaline and ending in a short and very fine (sensory?) hair like most of the filaments on the bristles of the two distat joints of this antenna. The f-and g-bristles of the end joint are very much lengthened, being considerably longer than those of the females.
seeond antenna: - The protopodite has a medial-distal bristle. Exopodite: The bristle of the second joint is reduced. The natatory bristles of the third to the minth joints have no trace of spines. The third to the ninth joints have basal spines. The padopodite is similar in the males and females more or less strongly reduced often with al redneed number of joints. The distal (sensory?) bristle of the end joint is very long.

II andible: - Protopodite: The endite on the coxale is weakly bifurcated distally: its spines are arranged in distinct groups. those situated medially and distally being rather powerful. This joint has no bristles except for the small one on the endite. Basale: Of the ventral bristles one d-bristle is very long and has numerous long seeondary bristles and short hairs distally, the rest are of moderate length or short and have short, fine hairs or are bare. This joint has thee dorsal bristles. Endopodite: The first joint has four bristles ventrally. The end joint has sevm bristles, of which one of the anterior ones is long and powerfnl, claw-shaped, the rest being relatively short.

Maxilla: - Protopodite: Dorso-distally the eoxale has a single bristle with long, fine hairs. Proximally on the outside of the third endite there is a single bristle. On the boundary between the basale and the first endopodite joint there are three bristles, one close to the exopodite, one at about the middle of the inside of the endopodite and one on the anterior edge of the endopodite. Dorso-distally on the coxale there is a rather large lamelliform epipodial apperdage. The exopodite is relatively well developed, has long, fine hairs, situated close together, and is not displaced distally. The endopodite is relatively short and very broad.

[^39]Sixth limb:- The second exopodite joint is rather short, somewhat rounded and furnished with rather numerons bristles. Its posterior distal bristles are not strikingly larger than the others.

Seventh limb: - This is furnished with rather numerous cleaning bristles, a large number of which are placed very close together distally, the rest being scattered irregularly along the distal part of the limb. With regard to the situation of these latter bristles it is to be noted that more than one bristle is exceedingly seldom or perhaps never found on the same side of the same joint. The end comb consists of a moderate number of moderately strong teeth, firstly some rather long distal teeth more or less pointed distally, smooth except that they are furnished at the middle on both sides with a small secondary spine, and decreasing somewhat in length the more proximally they are situated, secondly somewhat shorter and broader proximal teeth, transversally cut off distally. Dorsally close to the end comb the wall of the limb is somewhat thickened and is furnished with a few wart-like chitinous processes. In addition it is slightly concave here; the dorsal and ventral walls of the cavity are not moveably joined to each other, but can, all the same, be pressed against each other like a jaw to some extent; when this happens, the distal teeth of the end comb are pressed in towards the dorsal wall of the carity. The compression is carried out by a short, powerful, paired muscle, issuing proximally somewhat proximo-dorsally of the point of the limb and fixed distally to the bottom of the carity.

Furca: - The lamellae are rather short. The number of claws is about nine, without any clear division into main claws and secondary claws.

Upper lip: - This has only one large, rounded and quite modivided glandular field, directed forwards (corresponding to the unpaired dorsal glandular field in closely-related forms?). Ventrally of this there are on both sides some low pegs with glandular openings (corresponding to the two paired lower-posterior glandular fields in closely-related forms?). The ventral side is quite withont glandular openings.

The rod-shaped organ is comparatively small.
The lateral eyes are well developed.

Remark: - It is certain that not more than one species of this sub-genus has been described in the literature, namely the one dealt with below, which is thus to be characterized as the type-species.

C. (Macrocypridina) castanea G. S. Brady.

Cypridina casteneu, G. S. Brady, 1897, p. 88; pl. NVI, figs. 1-4.

$$
\begin{aligned}
& \text {,. } \quad \text { (} . \text { W. Méller, 1906a, 1. 130; ph. V. fige. 1. 2; pl. XXXII. } \\
& \text { figs. 11-16; pl. XXXIJ. fig. 10-13. } \\
& \text { 19061), p. } 13 . \\
& \because \text { obesa, V. VAITA, 1906, p. 67; pl. V11, figs. 132h-142. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (i. II. MÜLLER, 1912. 1. 14. }
\end{aligned}
$$

Deseriplom：－Femalo：
※hell：－hemgth． 6,3 － $6,8 \mathrm{~mm}$ ．Length ：height，about $1,55: 1$ ：length ：breath，
 height somewhat in fromt of the midde and the anterior part somewhat larger than the posterior
 at the middle，joming the anterior and the pesterior margims without any indication of corners． The ventral margin is miformly arehed with a rather decided bugge anterionly，somewhat mere semely arehed at this part than the dorsal margin：joining without any sign of a corner the posterins margin，turether with which it forms a slightly convex，straight，or sometimes even a very slighty eoncave line．The posterior part of the shell is drawn out into a sharply projecting， acote angled．hat well rounded comer at or a little below half the height of the shell．The restrmm has a rather strongly projecting but broadly rounded anterior corner；its ventral comer is rather pointed．sem from the side the rostral incisur is often of rather a varying type，the variations being obvionsly cansed by the flexibility of the shell；yet it was not found to be so deep as it is shown in pl．V．fig．1，（．W．MCluEl， 1906 a．Seen from above（fig．2）， the shell is hroadly lentiform with its greatest width a little in front of the middle and with uniformly emred side contours，which are，however．somewhat concave in front of the lateral eyes．The front and back ends are mather well pointed．The surface of the shell is quite smooth without any sculpture and quite without bristles．The pores of the surface are difficult to observe with certainty．Seen from within（fig．3）：Medial bristles： Near the ventral point of the rostrum there is a verruciform swelling，projecting rather strongly and directed inwards and downwards；it is furnished along the anterior side with a dense row of about 15 to 20 rather long and powerful and smooth bristles．Basally on this swelling there is a single tube－like bristle．thick but evidently very flexible；in some rare cases two of these were present．Dorsally of this swelling there is a row of bristles running upwards，of the same type as the first－mentioned bristles：the number of bristles in this row varies，from six to as many as sixteen have been observed．Apart from these just mentioned the rostrum is usually quite without medial bristles，but sometimes，however，one or a few short，seattered bristles may be found．The two bristles close to the inner margin of the incisur are of about the same type and size as the bristles in the row mentioned above．Above them，about half－way between the joining line and the margin of the shell or somewhat nearer the latter，there is a single bristle， quite short and rather weak．Besides these three bristles a few other short bristles are sometimes found inside the incisur．The list is usually quite without bristles along the whole ventral side of the shell even just behind the rostral ineisur，where，in most forms of this family－in all that are described in this work－bristles are to be found．Posteriorly it has，however，a few bristles． The posterior part of the list，which is somewhat broader than the anterior one，is also characterized by pore－like formations，such as are reproduced on p． 228 of this work for C．（Doloria）leris，but I believe I have ascertained with certainty，with Reichert＇s oeular 4， LeitZ＇immers．${ }^{1} / 12$ ，othat these do not end in a short bristle．（The list appears on the whole to be very like the one described for the species just mentioned，but has，however，still fewer bristles than this．）On the part between the list and the ventral and posterior margins of the

 indicated; $82 \times$. i. Part of the selvage along the dorsal margin of the postal incisure and the two medial bristles hem the inner edge of the incisur; $348 \times$. 5 . Part of the selvage just behind the rosita incisor; 3 is $\%$. Vent rat margin of the shell: somewhat behind the middle of the shell: sere from inside: 50:

Digitized by Microsoft © ${ }^{(8)}$
shell there are a few sher hristles to he ohserved especially posteriorly near the margin of the shell: similar bristes mat atso sommemes be fomed inside the list. The selvage (figs $4,5,6$) is rather wide on the rostrum and has excentingly fine and dose cross-striation at this part this striation comblembe be indicated quite roughly in the acompanying figure. This part of the selvige is sometimes divided into rectangular divisions varying in width; its edge is exceedmgly fincly serrated an this part. Nong the anterion wede of the incisur the selvage has a stometure like that shown in fig. I, in other words it is divided into rather wide, conical parts, which ate rathere strongly dhitinized: these eones at the edge produce an evident undalation; in addition an exceedingly fine striation can be traced here. Close to the two medial bristles at the inner margin of the incisur the selvage suddenly comes to an end. It is widest along the posterior edge of the incisur, and becomes narower and narrower posteriorly, suddenty stopping wn the bentral site of the shell about five sixthe of the way along the shell. Along the posterior edge of the incisur the selvage is divided similarly into conical parts, rather strongly chitinized, but these cones are howerer, considerably narrover than those which characterize the selvage on the anterior edge of the ineisur; at the free edge of the selvage these conical parts continue as powerful. free points. Besides the cones the selvage is also characterized here by a close and exceedingly fine cross-striation; posteriorly the conical structures gradually disappear altogether and only the fine eross-striation is to be found, even the latter often only with difficulty; (this fine striation is only partly and very roughly indicated in the accompanying figure). Along the ventral side of the shell the edge of the selvage is closely and fairly finely serrated (sce fig. 6). Just behind a point half-way along the shell a rather wide secondary selvage with very coarsely serrated edge (cf. fig. 6) issues basally on the inside of the selvage; it stops at a point somewhat in front of the posterior boundary of the selvage. The specimens examined by me (preserved in 8.5 spirit) had leather-like shells, apparently quite without any caleiferons incrustation. They are of a dark-brown colour and semi-transparent; outside the lateral eyes, howerer, the colour is alnost completely absent on an ahmost circular part with a diameter of about it third of the length of the shell. (The boundary of this eircle is indicated diagrammatically on the figure by means of a line; the transition from the pigmented to the unpigmented part is, however, gradual.)

First antenua (fig. 7): - The anterior bristle of the third joint, fixed somewhat proximally of the middle of the joint, the postero-distal bristle of this joint, the two bristles of the fourth joint, the bristle of the sixth joint and the a-bristle of the seventh joint are all comparatively weak, subequal, short, of about the length shown in the figure mentioned; their length raries, howerer, to some extent, though only very slightly; they all hare short, fine hairs. The sensory bristle of the fifth joint is somewhat longer than the anterior side of the second and third joints. Of its thirteen sensory filaments the nine proximal ones are rather thick - of about the sime thickness throughout - and long, being about a third of the whole length of the bristle. The three following filaments, situated at a considerable distance from the former ones, are much shorter and finer; their position relative to each other varies to some extent; sometimes they are seattered and sometimes situated very close together. The remaining one. situated at rather a long distance from the point, is exceedingly short. Of the bristles on the

 12. Part of a natatory bristle of the exopotite of the second antema with three matatny haiss, $;: 312$. 13. Endopolite and the distal part of the protopotite of the serond antema, f: 156

Digitized by Microsoft © ${ }^{\text {B }}$
wenth jomt the h-hristhe is moderately longo abont equal to the hength of the antorion sides of the second to the fourth joints (athout $1: 1-20 \mathrm{~mm}$. in specimens with a length of shell of about

 antema: it has fen sensory filanemts. nime rather long ones and a very shot distal one. The f. and erbristles of the end joint are subequal, very greatly longthened, being about as long as the whold shell or wen somewhat lomger (om sperimens with a shell about 6.7 mm . long these hriathes had : length of from 6.s to 7.1 mm .) ; with seattered and moderately long filaments sarving somewhat in number, sometimes similar on both sides, sometimes different, different both on the right and the left antenna and from one specimen to another; the number obsirved was $18-21$, the distal one of which was exeeedingly short. The sensory filaments on all the hristles of the serenth and eighth joints are bare. The simple sensory bristhes dand e are suberpal and almost as long as the third to the eighth joints. Pilosity: The second and third joints are only weakly furnished with hairs, the rest of the joints seem to be quite smooth.
-racond antenna: - Protopodite: Length about 2 mm. in specimens ahout 6, in mm . long. The medial-distal bristle is almost completely reduced and is considerably shorter than the proximal bristles on the first joint of the endopodite. Exopodite (fig. 11): The first joint is somewhat longer than the total length of all the following joints; the second joint is about as fong as the total length of the third and fourth joints, the third is about equal to the total length of the fourth and fifth or a little shorter, the remaining joints are subequal. Tho bristh of the second joint is very weak, quite bare and only about half the length of the third jeint. The proportion between the length of the long natatory bristles and the total length of the exopodite is about three to two. The former have very wide natatory hairs (cf. fig. 12). Which jssue along the whole length of the bristle and even near the point where the bristle is attached. The end joint has four bristles, of which even the two dorsal ones are well developed: the shortest dorsal one. which, like the three others, has wide natatory hairs situated close together along its whole length, is about as long as the total length of the eight distal exopodite joints. The third to the ninth joints lave short, conical and almost reduced basal spines; that of the end joint especially is extremely weak, sometimes even difficult to berify with certainty; the basal spines are sometimes provided with fine secondary teeth. The - ndopodite (fig. 13) is small, verruciform and more or less distinctly two-jointed. Proximally on the first joint there are four subequal, moderately long, bare or almost bare bristles. Distally on this joint there is a single bristle, in most cases somewhat shorter than the four proximal ones and of the same type as these. The bristle of the end joint is rather long, about a quarter of the length of the protopodite of this limb.

II andible: - Protopodite: The endite on the coxale has over the greater part of the dorsal-lateral and dorsal-medial sides only a few short and rather weak spines; ventrally and distally. on the other hand. the spines are numerous and rather long and powerful. Distally it is weakly bifurcated; the two points are a good deal more powerful than the other spines and are furnished with a few secondary spines; between these two points there is a low

Digitized by Microsoft ${ }^{\circledR}$

peg. Basale: This has seven ventral bristles, viz: two a-bristles, one b-bristle, two c-bristles and two d-bristles. Of these the a-bristles, the longer of the c-bristles and the d-bristles are of about the same proportions as are shown in pl. XVI, fig. 2, (i. S. Brawr, 1897. The h-bristle and the shorter of the two c-bristles. which are not drawn in this figure of Brador's. are short, the former being about the same length as the a-bristles and distinguished by loeing displaced to rather a great extent dorsally; the short c-bristle is almost entirely reduced. The three bristles on the dorsal side of this joint are about as long as these bristles on the above-mentioned figure of G. S. Brabr's, i. e. the proximal one, situated somewhat in front of the middle of the joint, generally does not reach with its point the distal boundary of the joint, the two distal hristles are subequal and slightly longer than the proximal one; all three have short hairs or are almost bare. Exupodite: This is somewhat longer than the dorsal side of the first endopodite joint. Its two bristles are relatively short, the proximal one of about the length of this branch, the distal one about half this length; both have short hairs. Endopodite (fig. 14): All the four bristles of the first joint have short hairs. The second joint has on its anterior side a sparse series of five moderately long bristles with short and sparse hairs; these bristles differ somewhat in length. In addition this joint has here a rather large number (about 28-35) of rather short cleaning bristles, arranged in several more or less irregular rows running obliquely upwards and forwards or else almost entircly without any regular arrangement. Nost of the cleaning bristles have extremely fine and double pectination (of the type shown in fig. 8 of M. (Cypridinodes) acreminata in this treatise: drawn smooth in the adjoining figure); the rest are coarsely pectinated. Posteriorly this joint has four subequal bristles with short. coarse lairs. two next to cach other distally, and two, one of them a little proximally of the other, a short distance proximally of the two former ones: the two distal ones are equal in strength. The end joint has seven bristles. Of these the medial-anterior one is rather powerful, claw-shaped, and rather long, generally about half the length of the second endopodite joint. The one situated most posteriorly is very weak and short, as is usually the case in this group of forms; the five remaining ones are subequal, rather weak and short; in most cases thout half as long as the main claw. The main claw is bare, the remaining six bristles are more or less pectinated. Pilosity: The first endopodite joint has short hairs dorso-distally, the second endopodite joint has transverse rows of short, stiff hairs along the posterior side.

Maxilla: - Protopodite: The first endite (fig. 15) has in most cases twelve powerful bristles of moderate length. Of these the two imer ones are subequal, rather considerably longer than the others and furnished with two or three wreaths of rather short, stiff secondary bristles; distally of these they are rather strongly pectinated. The tom outer ones are often subequal; their lengths vary, however. to some extent: most of them lave at tho middle wreaths of long, stiff secondary bristles. more cophous on the immer ones than on the outer, and distally of these more or less powerful secondary teeth. In a rather large number of specimens there was a slight variation from the type shown in the figure to be observed. Ontside the outer bristle of those drawn in the figure an additional bristle may often be found: this thirteenth one is quitw short and weakly pectinated. The seconel endite (fige 16) hats five mather powerful bristles of moderate length, the thren outer ones usually somewhat longer than
the twommeromes, all peetinated distally: on the middle bristle, whith is somewhat more poterful than the others, the peretimation is rather coarse. In addition these bristles have at the middle whe or wou wraths of hong, stiff seomdary bristles: the latter vary somewhat, sometmes necorring on all the five heristes sometimes mby on the two imer ones. The third endite (tig. 17) has seven distal histhes. similarly rather pewerful and of moderate bength; the ones sitnated most distatly are somewhat shorter than the others. They are all weakly or moderately strengly peectinated, and the there distal ones are usually furnisherl at the middle with one or two wreaths of hong stiff seomdary bristes. Which do not oerme on the others. The proximal hriate on the omside of this proeess is bare ame about as long as the outside of the process. The hristle doreo-distally of the coxale is relatively long, rather considerably longer than the outer distal bristle of the third endite, being about half the length of the palp. Of the three bristles on the bomndary between the basale and the first endopodite joint the one that is situated near the exopodite is rather long, being almost as long as the first endopodite joint, the one on the anterior edge of the palp is about as long as the outer-distal bristles on the third endite, the one at the middle of the inside of the palp, being somewhat shorter; all three have short, fine hairs or are almost bare. Exopodite: The three bristles of the exopodite have fine, long hairs at the middle and short hairs distally; the two distal of these bristles are subequal, somewhat shorter than this branch, the proximal one is about half the length of these two. Enclopodite: (fig. 18) The chitinized postero-distal edge of the first joint projects slightly and is only weakly lobed. Somewhat dorsally of this edge we find on the outside of this joint two or three short, smooth bristles or processes of somewhat different lengths, of a strange lyyaline structure and directed upwards (shown in the figure by dotted lines). Distally on the anterior edge of this joint there are two moderately long, subequal and rather weak bristles with short hairs. Distally on the posterior edge there are three bristles, the posterior one of these being moderately long but rather powerful, the anterior one, the shortest and weakest, only about half the length of the former, all of them rather strongly pectinated distally. The end joint is rather strongly chitinized and has thirteen bristles: Four a-bristles of moderate length, rather strongly pectinated; three b-bristles of moderate length, of which the anterior one is of about the same type as the a-bristles, the two posterior ones, on the other hand, being extremely powerful and almost conical, with or without a few very powerful secondary teeth; three c-bristles of moderate length, the posterior one being the longest and the anterior one shortest; these too are of about the same trpe as the a-bristles; three d-bristles somewhat longer than the b-bristles but in other respects of the same types as these bristles; the posterior d-bristle is like the anterior b-bristle, the two anterior d-bristles are like the two posterior b-bristles. Pilosity: The first endopodite joint has transrerse rows of short, fine hairs.

Fifth limb: - This is unusually elongated, the endites are comparatively widely separated from each other in about the same way as is shown in (. Clats's reproduction of Cypridina messinensis, 1865. pl. X. fig. 4. Protopodite: The first endite (fig. 19) has six bristles, arranged in two groups separated by a rather large space, an anterior group of four bristles and a posterior group of two. Of the former group one bristle is quite short and rather weak, with short hairs, and is sitnated sumewhat inside the others. The three others are rather

Digitized by Microsoft ${ }^{\circledR}$

 maxilla; $160 \times$. 18. Endopodite and exopotite of the left maxitla. seen from inside; 10 ' \times.
long and powerful, the mithle one being somewhat honger than the wo others; they are furnished at the middle with from two to five wreathsof long, stiff secondary brist les and are rather strongly peetinated distally: Of the two bristles in the posterior gronp the anterior one is generatly somewhat shorter than the posterior one in the anterior group, powerful, furnished at the middle with a few wreaths of long, stift seoondary bristles, and very strongly pectinated distally. The pesterior hristhe is eomsiderably shorter, msmally rather weakly pectinated distally and fumished at the middle with a wrath of longe, stiff secombary bristles. Of the five imer bristles on the seend endite (fig. D(1), all mather powerful and moderately long, all execpt the middle one have one or more wreaths of long, stift secondary bristles at the middle. Bristles nos. 1, 2 and 3 , counting from the anterior side of the limb, are rather strongly pectimated distally, nos. 4 and 5 ate somewhat angular and very powerfully pectinated distally. The single bristle on the anterior side of this endite is rery short and weak and has short, fine hairs or is almost bare. Third endite (fig. 21): All the seven bristles of this process are rather long, except no. 6, counting from the anterior side of the limb, which is relatively short; no. 5 is also a good deal shorter than the others, but not so short. however, as no. 6. Of these bristles no. 1 is furnished proximally of the middle with one or a few wreaths of rather long, stiff secondary bristles and bristle no. 7 also has a few such secondary bristles at the middle (sometimes they are absent in the latter bristle: perhaps broken off?); the other bristles, on the other hand, lave no such secondary bristles. Bristle no. 1 is rather weakly pectinated, bristles nos. 2, 3, 4 and 5 have rather strong pectination distally; bristles nos. 6 and 7 are somewhat angular distally and very strongly pectinated. The distal chitinous spine of the protopodite is rather long, narrow and bent. Epipodial plate: This has about 55 bristles, all with long hairs, their points being, however, hare. K x opodite: First joint: The main tooth (fig. 22) has seven constitnent teeth all well defined proximally, whose secondary teeth are usually of the type reproduced in the adjoining figure. The bristle close to the main tooth on the posterior side of this joint is rather short, with sparse, short hairs. On the anterior side of the joint, near the main tooth, there are four rather powerful bristles, arranged in a close row, the one nearest to the main tooth being rather long, the rest decreasing rather rapidly in length the farther towards the outside of the joint they are situated. The two longer ones of them are rather strongly pectinated distally, but usually have no long, stiff secondary bristles, the two shorter ones are weakly pectinated distally and usually have a wreath of long, stiff secondary bristles at the middle. The second joint has four a-bristles. Of these the three larger ones are of about the type that has been reproduced in fig. 23 of C. (Siphonostra) spinifera, very powerful and furnished with very strong but rather few secondary teeth; the number and strength of the secondary teetli of these hristles seem, however, to be subject to rather great variation. The smallest a-bristle, the posterior one, is quite short and rather weak, usually bare but sometimes, however, furnished with some relatively coarse secondary teeth. There are also seven or eight b-bristles; only in one specimen was the latter number observed on the limb of one side; these bristles are moderately strong and of about the type reproduced in fig. 22 of C. (Vargula) norvegica. This joint has, in addition, one c-and one d-bristle: subequal and somewhat shorter than the longest b-bristles; the c-bristle has short hairs, the d-bristle has long, fine hairs at the middle and short hairs distally or is almost

Fir. L. - C. (Macrocypridina) castanca G. S. Bands. ©. - 19. First endite of the grotomodite of the fifth limblt, seen lrom inside: 192 \times 。20. Serond endite of the protopodite of He fifth limb: 192 \times. 21. Third endite of the prot 1 odite of the fifth limb: $192 \times$. 22. Wain toolh of the first exopodite joint of the fith limb with the adjacent bristles: $192 \times$ 。23. Disial part of the right fifth limb, seen from in front: $192 \times$. 2i. Distal part of the first fureal law, sem from inside; $316 \times$.
hare at the latere part. The immer lohe of the third joint is rather small (fig. 23) and has two or then rather powerful distal bristhes of moderate and somewhat different lengthe, the lengths rarying 10 some extent: these bristes have either short hairs or else rather coarse secondary spines. In atdition this lobe has proximally on the posterior side a farly long bristle, with shom hairs distally and mesully with long hairs at the midedle. The outer bobe of this joint has two moderately long distal bristles. nsually subequal, with long hairs at the midde and short haits distally, hut sometimes, however, the imer one sometimes the outer one has only short hairs. The end joint. Which is farly large and withont any signs of any further division into joints, has five or six, usually six, moderately long and rather powerful distal bristles; their relative lengths vary to some extent. Pilosity: The two last-mentioned joints are rather sparsely furnished with soft hairs.

Sixthlimb (fig. 25): - This is rather elongated and has a rather varying mumber of bristles: the trpes and relative lengths of the bristles also vary both from one specimen to another and on the right and the left side of the same specimen. Protopodite: The first endite has only one rather long and powerful distal bristle, furnished with about three oblique wreaths of sccondary bristles and pectinated distally; this endite always seems to be without any medial bristles. The second endite usually has three distal bristles, of whiel the two dorsal ones are subequal, rather long and powerful and have at the middle a few wreaths of long, stiff secondary bristles and are pectinated distally; the ventral bristle is somewhat shorter, but powerful, at the middle it has a wreath of long, stiff sceondary bristles, distally of which there are a few powerful secondary teeth. This process usually has, in addition, two short, plumous medial bristles. Variations in the number of the bristles were observed, the following numbers were found: three distal bristles + one medial bristle; three $d .+$ three m ., four d . + two m ., four d . + three m . and even four $\mathrm{d} .+$ four m . The third endite usually has three distal bristles and one medial bristle. Of the former the middle one is of the same type as the ventral one on the preceding endite, the dorsal and the ventral ones vary in type, sometimes having short hairs, sometimes having one or a few wreaths of long, stiff secondary bristles at the middle and short hairs distally. The medial bristle is of about the same length as the distal bristles and has a wreath of long secondary bristles at the middle and short hairs distally. Variations were observed with regard to the number of bristles, the following numbers were found: three distal bristles + no medial bristle, three d. + two m. and four d. + one m. The epipodial a ppendage of the protopodite is represented by from two to four short, bare or almost bare bristles. Exopodite: First joint: The endite usually has six distal bristles and one medial bristle. Of the former one of the middle ones is about the same as the ventral distal bristle on the second endite of the protopodite, the others are rather long and powerful, varying in type, sometimes having short hairs and sometimes with one or a few wreaths of long, stiff secondary bristles at the middle and short hairs distally. The medial bristle is similar to the corresponding bristle on the preceding endite, sometimes, however, having only short hairs. Other numbers of bristles that were observed were as follows: six distal + two medial bristles, five d . + one m . and three d . + one m. Second joint: This has from 25 to 32 bristles, some rather long and others rather short, all situated near the ventral edge; there is no pronounced gap
between the posterior and the other bristles. The two or three posterior ones either have long, soft hairs extending right to the point or else they have short hairs distally, the other bristles are all usually furnished with short, coarse secondary bristles, but sometimes, however, a few of them may be observed with a wreath of long, stiff secondary bristles at the middle. Pilosity: The inside of the limb is sparsely furnished with short. fine hairs; along the ventral margin of the second exopodite joint there is laterally a series of short, but rather stiff, hairs.

Seventhlimb: - This is rather long, but not, however, quite so long as the shell (on specimens with shells $6,6-6,7 \mathrm{~mm}$. long this appendage was about 5 mm .). Cleaning bristles: These are arranged in about the same way as in (i. W. Mu'luer's fig. 13, pl. XXXIII, 1906 a. There are from 14 to 16 ventral bristles and from 12 to 16 dorsal bristles situated very close together distally; proximally of these there are from four to seven ventral bristles and from five to seven dorsal bristles seattered irregularly. The distal one of the ventero-distal bristles is in most cases moderately long; the next distal one is very long (the proportion between these two is about the same as is shown in ($1 . W^{W}$. MtLLer's figure referred to above) and considerably coarser than the others, most frequently the rest decrease fairly regularly in length the more proximally they are situated, the proximal ones being rather short; a few bristles may, however, form exceptions to this rule. The dorso-distal bristles also show a certain tendency to these proportions, the longest one being, however, rather considerably shorter than the longest ventral one. The scattered bristles are most frequently subequal and of moderate length. The longest ventero-distal bristle is usually quite without bells distally - only on one ont of several speeimens investigated was one bell observed on this bristle on the limb of one side - but is only furnished distally with a moderately strong double pectination. The other cleaning bristles are usually furnished with one or two - exceptionally three or four - bells cut off transversally or else more or less obliquely distally (figs. 27 and 28). The tongue of the distal bell is cut off very obliquely and is furnished with a moderately strong double pectination such as is described for the longest ventero-distal bristle; the teeth of the combs seem, however, in most eases to be somewhat more numerous and finer than on the last-mentioned bristle. Proximally of the bell most of the bristles are furnished with a dense covering of short fine hairs; the hairs, as far as I have been able to verify, are not arranged in wreaths. The end comb (fig. 26, $\hat{0}-$ 个) consists of from four to six subequal distal teeth, rather pointed distally and, in addition, of from three to seven proximal teeth on each side of the former. Between the end comb and the dorso-distal deaning bristle this limb is furnished with an unpaired and moderately strong chitinous process; this is funished distally with a conical and rather powerful central tooth, bare or almost bare, and on each side of this a somewhat lamelliform process, armed distally with from about four to six serrate teeth. Between this chitinous process and the end comb there is, in addition, a chitinons process whieh is distally rounded, peg-shaped and bare. Both these processes vary somewhat in size and also in shape.

Furca (fig. -4): - This agrees very well with the description given by (r. IV. Metlerr. The number of claws is in most cases nine; sometimes, hovever, there are only eight. With regard to their shape it is to be noted that they are often more regularly eurved than in
 than in this figure.

The lat rial cyos therod-shaped organ and the upper lip agree bery well with (i. II. M"baters deseription, the rod-shaped organ being. however. directed somewhat more upwards than in this author's figure.

Wach femate has from sol to 75 eggs or cmbryos in the hrood chamber.

 part of the seventh limb: all the bristles broken. $0 ; 680 \times$. 27. Distal part of a cleaning bristle of the seventh limb, ㅇ: $1000 \times$. 2s. The same in another prition: $1000 \times$.
Male: -
Shell: - Length, 6.4-6.6 mm. Seenfrom the side, it has almost entirely the same shape as that of the female, but the greatest bulge of the ventral margin is situated somewhat further back, so that the greatest height of the shell is about haff-wity along the shell; consequently it agrees fairly well with (r. W. Mi̛uler's figure 1, pl. V, 1906 a; sometimes. however, the difference from the shape of the female shell is almost imperceptible even in this point. Seen from above it agrees well with the description and figure of the female shell given above and therefore not with that of (i. IV. Mimeli.

First antenna: - The sensory bristle of the fifth joint (fig. S) is somewhat thicker proximally and grows narrow somewhat more abruptly distally than in the female; its nine proximal sensory filaments are longer relatively and are thicker at the midde, rather spoolshaped. Bristles of the seventh joint (figs. 9, 10): The b- and c-bristles are of about the same relative lengths and have the same number of filaments, five and ten respectively, as in the female. It is the three proximal filaments on these bristles that have suctorial organs. The proximal one of these three filaments has no verruciform process distally of the sucker. The two others are ratleer slightly stronger than the distal filaments and rather short relatively, of about the same length as most of the latter ones; they have from five to seven small suctorial organs distally, sometimes arranged rather irregularly; sometimes there is a small verruciform process distally or proximally of these. The other filaments on these two bristles are on the average somewhat longer than those of the female; the distal one on the e-bristle is exceedingly short. Bristles of the end joint: The f - and g-bristles are subequal and about twice as long as the shell (on one specimen, for instance, with a shell $6,5 \mathrm{~mm}$. long these bristles were 13 mm . long, thus exactly donble; in some cases they were somewhat shorter, in others even somewlat longer relatively). In spite of this great length they have about the same number of filaments (from 19 to 22 were observed) as in the female; these filaments are also on the average somewhat longer than in the female; the distal one is not short as is the case in the last-mentioned sex. In other respects this antenna agrees with that of the female.

Second antenna: - This is considerably stronger than that of the female. Protopodite: On some males with shells $6,5-6,6 \mathrm{~mm}$. long this was $2,5-2,6 \mathrm{~mm}$. in length. Exopodite: In the males mentioned above this was $2,2-2,4 \mathrm{~mm}$. long (in some females with shells $6,6-6.7 \mathrm{~mm}$. long this branch measured only $1,9-2,0 \mathrm{~mm}$.); the natatory bristles somewhat, though only slightly, longer relatively than in the female. In other respects this limb agrees very dosely in both sexes.

The mandible, maxilla and fifthlimb are very like those of the female.
Sixth limb: - This too shows very close agreement with that of the female, but the bristles seem, however, to be on the average somewhat fewer, especially on the second exopodite joint, on which only $20-25$ ventral bristles were observed. This divergency seems, however, to be of less importance when one takes into consideration the comparatively great variability shown by this limb with regard to the number of its bristles.

The seventh limb is like that of the female; the end comb sometimes scems. however, to be somewhat weaker than in this sex.

The furca, upper lip, rod-shaped organ and lateral eyes are similar to those of the female.

The penis agrees with 4 . W. Mllen's description.
Remarks: - In spite of the incompleteness and uncertainty of G. S. Bramu's original description of Cypridina castanea there can scarcely be any doubt that the form described by me above is to be referred to this speeies. - Althongh the original description is so deficient there are, however, not a few differences that may be observed, but these are certainly to be

Differences from the original description.
explained as benge due partly to whembe inaceuracies on the part of (. S. Brabs and partly to the superfeciality of the deseription. With regad to the shell this anthor writes as follows: .the combexity of the sub-rostral cheft has a frimge of momerons slemder spines, which are long in the middle of the series and gratually smaller towards the ends." This series of spines correspomels the selvage. Fiurther, if we are to julge from fig. 1, pl. XVI, the shell is characterized hy a long row of short medial bristles along the anterior side of the rostrum in front of the row of bristles that is mentioned in the description I have given above and a shorter row of similar bristles within the two bristles close to the inner edge of the incisur. In both these calses it is clear that there has been confusion between bristles and pores on the margin of the shell. According to BraDr's figures there appear to be other divergencies in the proportion between the bristles on the end joint of the mandible and in the fact that the end joint of the maxilla has only two c- and two d-bristles.

Periodicity of reproduction.

Colour of the larsae.
rell of the laraae.

It may be pointed out as a curions fact that G. S. BRaDy thought that he could observe a certain agreement with regard to certain characters between this species and - the genus Philomedes. ., Provisionally, however, it may be referred to the genus Cypridina, though some of the characters show an approach to Philomedes." Such a statement cannot of course be explained unless we assume that this anthor did not have any detailed knowledge of the genus Philomedes.

There are many reasons in favour of G. W. Méller's assumption that Cypridina obesa litra is a larra of the species dealt with above. In investigating a larva of the latter species with a shell of about the same length as that given for C. obesa, I found, however, that if this identification is correct, VIURA nust have committed not insignificant mistakes with regard to almost all the organs in his description and reproductions. When, however, one takes into consideration the superficial method that evidently has been employed by this author in working out the rest of the Ostracod material brought home by the ,Plankton-Expedition", such mistakes do not seem at all unlikely to have occurred.

The majority of the specimens of this species investigated by me, both males and females, had the long end-bristles of the first antenna stuck in the pharynx. When some of these specimens were dissected, it was observed that the ends of these bristles were rolled up in the stomach. This observation strongly supports the idea that these limbs are used to help in taking up food, a fact that has not been previously known. It is to be noted, however, that among all the very numerous specimens of other species belonging to this family I have never observed this phenomenon. Does this support the idea that it is only in the species treated above that this method of taking in food occurs?

In the material of this species investigated by me the males were somewhat fewer than the females but only very slightly so.

Among the mature females there were some with and some without eggs or embryos in the brood chamber in the samples from May as well as in those from July.

All the larvae, even those in the last larval stage, had no pigment, except on the stomach (ef. G. II. Mictler, 1906a, p. 130). Some mature females were considerably lighter in colour than the others; these had probably just undergone the last larval moult.

The larvae in the last larval stages have a shell of about the same shape as the mature males.

Habitat: - This species was captured by S/S ,Michael Sars"during the ,..North Atlantic Jeep Sea Expedition" 1910 at the following stations: (all the hauls were made with open net).

Atlantic Ocean:
Stat. 23. Lat. $35^{0} 32^{\prime} \mathrm{N}$., long. $7^{0} 7^{\prime} \mathrm{II}$.:

Distribution: - This species has been observed by previous expeditions at a number of stations in the A tlantic and Indian Oreans from lat. $43^{\circ} \mathrm{N}$, to lat. $833^{\circ} \mathrm{s}$, By means of the finds mentioned above it has been proved that the species is found in the Itlantic rather considerably more north - up tolat. $56^{\prime \prime} 33^{\prime} \mathrm{N}$. (Atation 9s). In the latter ease it is probably a specimen carried north by the fulf stream.

With regard to its distribution vertically we may state with a certain amount of pronbability that its natural habitat is in moderate depths. from which it makes excursions into lesser depths.

Sub-Genus Siphonostra n. sub-gen.

Dharophom: Sholl: - This is elomgathed and has a wodl-developed, beak-staped

 the shell. the list is not dewedond. Soen from inside the posterior beak-like process appears To have thin wall and to he comstructed in such a way that when the two valves are elose to
 name. With rathere strong calcitication. The ferms are of moderate size.
fiefst antenna: - This is comparatively short and moderately shender, with eight joint-: the propertions hetwern the juints differ mather slightly from those given in the diagnosis of the -uth-family: of. the description of the speceres. The sensery loristle of the fifth joint has a comparatioly small momber of semser filaments (always fewer than thitenen?).
 pod it e: The hristle of the second joint is rather strongly developect. Some of the natatory bristles of the following joints have, in addition to natatory haits, powerful spines as well. The thind to the minth joints have hasal spines. The endopodite is reduced. (Similar
 lowne w this sublempes.) The bristle of the ent joint is long.

II a 1 dible:- Protopodite: The endite on the coxale is rather weakly bifur(atml distally, fumisherl with a rather powerful erpuipment of spmes expecially medially-distally: the spines only with rather a slight tendency towards arrangement in gromps. This joint has no bristle except the small one on the endite. Basale: Of the rentral bristles one d-hristle is very long. with mumerome long secondary bristles at the middle arranged in irregular groups and with short hatrs distatly the other ventral bristles on this joint are more or less short and have short hairs or are bare. This joint has three bristles dorsally. E.ndopodite: The first joint has fom bristles ventrally. The arrl joint has seven hristles. of which the two middle ones are powerful and claw-shaped and of about the same fongth and strength.

Il axilla: - Protopodite: The roxale has distally a single bristle with short, fine hairs or almost bare. Proximally on the ontside of the third ondite there is a single bristle. (In the boundary between tho basale and the first endopoolite joint there are three bristles, whe close to the expodite, one at ahout the middle of the inside of the palp and one on the anterion edge of the latter. Dorso-distally on the coxale there is a rather large and somewhat lamelliform epipodial appendage. The axopodite is eomparatively well developed and has close, fine. long hairs: it is not displaeed distally. The endopodite is very wide and of moderate length.

Sixth limb: - The second exopotite joint is very short, broader than it is long, furmished with rather few bristles: the posterior wes of these bristles are not strikingly larger than the athers.

Seventh limb: - This is fumished with a moterate number of ceaning bristles a large part of which are situated close together distally. the rest being seattered on the dorsal and ventral edges somewhat proximally of these; with regard to the situation of the scatered proximal bristles it is to be noted that we never find more than one bristle on the same side of the same joint. The end comb consists of a moderate number of rather powerful treth, anmer which can be distinguished distally rounded or more or less pointed distal teeth, bare or with only a weak spine on each side at the middle and also bare proximal teeth cut off transversally distally. Dorsally, dose to the end comb, the wall of the linb is very much thickened. strongly chitinized and also deeply concave. The ventral portion of the wall in this concavity: the part that is enchosed by the end comb, is continued proximally as a powerful chitinous process, to which the chitinous part that forms the dorsal wall of the concavity is moveably joined. The dorsal and ventral walls of this concavity can be pressed together like a jaw: whons this occurs the distal tooth of the end comb is also brought against the dorsal wall of the concavity: This compression takes place by means of a short, powerful, paired musele, issuing proximatly. somewhat proximo-dorsally of the point of the limb and fixed distally to the proximal proeess of the chitinous plate that forms the ventral wall of the concavity.

Furea: - The lamellate are moderately elongated. The number of chaws is about eight; the division into main and secondary claws is rather faint.

The upper lip has three glandular fiekls. one dorsal, unpaired, directed forwards and downwards and two ventral ones, paired: they are all separated from each other by deep furrows. There is no large and conspicuous process. Dorsally of the lip there is an umpared protulnemore.

The lateral eyes are well developed.

Remerks: -- Of this sulb-genus only the species dealt with below - the type species is known with any certainty. It seems, however, not impossible that at least one species that has been previonsly described is also to be inchuded in this sub-genus, namely ('ypmidime nubitis
 for this species, as far as one can judge, has pesterionly on the shell a sphon similar th that which is eharacteristic for the form dealt with here. The incomplete deseription dens mat. however, permit of any definite decision in this guestion.
 belomme th this sub-genus is a still more dilficult question fo elecede: it is, however, not imprasible that this is the ease.
ha my onion the most interesting point about the speres deseribe abore is that, if I am not mistaken. it may perhaps make it possible for us to moderstand the systematio pesitiom of the genus Heterodesmes.

This genus was establisheet by (i. H. Bhans, 1865, pr. 387 , and was based om atingle species. II. Ademsi. The destription of this species is exceretingly incomplete and also presmably partly meorrect; only some characters of the shell are mentioned, , animal unknown". In the abose-mentioned work the genus Heterodesmus was placed in the lamily Cigmidenidue. In a later work. 1868 b , p. 3 as the same athor makes this genus, together with the ereme

Digitized by Microsoft © ${ }^{\circledR}$

 then - if we are to judge from the literature - this form has never been found again, not have omy mew speedes been deseribed that can be refered with certainty to this gems.
(1) acount of the incompleteness of the description (6. W. Nidderf, when revising the lamacend eroup. did mot think it possible to place this gemus sostematically. In his synoptice

 which main group, within the Ostracode this genus belongs to. Other anthors who deal with this greup do not touch upon this gemus.

Even from the shape of the shell - the strongly rentricose ventral margin and the presence of a rostral incisur (the later is, however. only very indistinctly indicated in the figure and is not mentioned in the text) - it seems very probable that the gems Heterodesmus is to be placed within the group Myodocopu, as (i.s. Brame has aheady done. The fact that the species in question was caught swimming freely in the sea, ,taken in the towing-net", also supports thin -upposition. It also seems to me very probable that this genus is closely connected with the sub-genus Siphonostm established by me above. This is supported, above all, by the fact that. tu judge from fig. $6 \mathrm{a}, \mathrm{g}$ and $\mathrm{h}_{1}, I I$. Adamsi has a shell that is developed posterothersally into a sijhon (prestumably) of quite the same type as that of the last-mentioned -uh-genus. Tho hinge of the sholl points to the same conchusion. The yuestion as to whether the two forms are distinguished from each other generically or not can, of course, not yet be a lecided. though it does not seem impossible that at some future time it will appear that they cught to be included in the same sub-genus.

With regard to (i.S. Bfisur's assumption that Heterodesmes is a synonym of the genus ('ndonocera 1 may merely point out here that - to judge from the literature - the shell of the latter genun is not developed as a siphon posterionly.

Siphonostra spinifera n. sp.

Description: - Female: -
Shell: - Length, 2,32 mm. Length: height, about $1,8: 1$; length: breadth, about 1.io: l. Seen from the side (fig. 3) it is very elongated with the greatest height at about a third of the distance along the shell; the anterior part is slightly larger than the posterior one. The dorsal and ventral margins are of about the same shape, miformly arched. the arcuation is moderately strong; they join the anterior and posterior margins without corners. The posterior part of the shell is, at about half the height of the shell, drawn out into a rather wide process cut abruptly off distally and directed obliquely upwards; the ventral margin of
this process is miformly and weaky comvex. forming a milome continnation of the ventral margin of the shell; its flomsal margin is, on the other hand, rather strongly concave. The rostrum has a rather prominent, bradly rounded comer anterion? dhis comer is, howerer, less striking becanse the ventral portion of the antrime margin of the rostrum, seen from the side, is covered by a low brodly rounded veruciform proeess, issuing ventrally on the rostra of both valves and directed forwards and downards; the rentral comer of the rostrm is ahmost rectanglatr. searform below (fige f) the shell has its greatest breath at about the midelle; the posterior siphon-shaped process is well detined. Seenfrom thaffont the shell appears almost circular. The surface of thr shell is without ridges and other scuptural devations except for the above-mentioned low, brodly rounded, verruciform prowess situated ventrally on the rostrum and a low rounded elevation situated just ventradly of the rostral incisur, a short distance inside the margin of the shell. (On the trpe specimen this last-mentioned process was somewhat larger on the right valye than on the deft one and covered the margin of the shell to sume extent when the slefl was sem from the side; to juige from the larva (male) that was also investigated. this eharacter sems. however, to vary somewhat. The whole surface of the shell is covered by mumerous rounded eavities, whieh are situated rather close together. are moderately deep and vary to some extent in size. those situated near the margin of the sholl being rather small and most of those situated farther in somewhat larger. In addition it is to be noted that on the rostrum, on the part just bohine the mostral incisur and on the siphon the surface of the shell. near the margin. has diminutive warts. The pores of the surface are small and moderate in momber, either with or without a short, fine bristle. Seen from inside (fige of): Medial bristles: (On the rostrum there is a sparse row of mother long bristhes which runs obliguely forwads and upwards: most of these bristles an bilureated and are lumished with long. fine hairs arranged dose together in the shape of a feather; the others are generally simple and smooth. In addition on the rostrum behind and abowe this row there is a molerate number of scattered, smooth. short, simple bristles. Wh the anterion side of the incisur there are a lew rather long or mather short bistos, most of thmo aparently simple and smooth. The two bristles situated close to each other near the mues calge of the incisur are bifureated, smooth or ahmost smooths, the anterion one being rather kong: above these there is a single. bifurcated. rather short, bare tristle. (1) the list behind the restral incisur there is a rather dense row of bristles, all rather long. bifureated and furmishol with longr hairs situated close togother and arranged in the shage of feathms (onae of the anterion of these bristles is reproduced in fig. (6). This row of bristlesstops suddenly at about a third of the
 on the list along the posterior part of the vantral side of the shedl. I few, simple, short, smonth, scattered bristles are to be found between the list and the immer line just behind the rostral incisur; on the part between the list and the mentral margin of the shed no bristles serm to wecur. The imer walls of the posterior purems of the shell, the siphom (tig. I I I) are almost profectly smooth, with only weakly developeal. reticulate sculpture (giving an apparent effeet of sealinesis) and have a few seatered shont simple bristles. Nono alon in fiy. I the eomplicated simeture wit the joining linn and the maremal pmes. The wit outwats of the siphon is a rather wede:

Ahmos comentar opernerg 'The siphon is ent off anteriorly by a narrow, high, irregular wall. differing somewhat on the right and the left value, commenication between the siphen and the larger anterior cavity of the shell takes place principally through a mother marow, irregular "pening stmated at abome the centre of this sepatating wall (this opening marked by* in the aldoining figure) and on the left value be means of a smather opening situated dorsally (shown b,** in the figure mentioned). For farther detals abont the structure of this separating wall it seems to me mest combenient merely to refer to the acempanying fig. Lhi. Dorsally a short. distance in front of this wall, there is on both the right and on the keft valse a rather long and somewhat irreghar peg. directed downwards aml somewhat backwards. On the right valve the hinge is furnished with a long, wing-shaped and rather strongly projeeting leoth; this fouth

suldenly ceases anteriorly, a striking, almost rectangular, comer is fomed, and deereases gently and unformly in leeight posteriorly. On the left valve there is a cavity corresponding to this tooth. (In the accompanying figure is this tooth is only indicated schematically by a curved line.) I did not succeed in finding any hinge tooth posteriorly either on the right or the left valve. The selvage is very wide along the anterior and posterior margins of the rostrum and along the posterior margin of the rostral incisur the incisur is quite filled by it - and along the anterior part of the ventral margin of the shell; it continmes along the whole ventral margin of the shell, extending somewhat outside the edge. It is uniformly and finely cross-striated and is extremely finely, ahmost invisibly; serrated at the edge or else smooth-edged. The shell is presumably rather strongly ealciferous - although the trpe specimen had a soft shell, not calciferous; a larva, preserved in the same liquid as the type specimen, had in its shell mmerous rounded raleareous concretions.

 tho joint- are : Iollow-:

$$
1 \therefore 11, \therefore 111: 11:: 1_{i}^{\prime}: 11:: 111: 11111,3 .
$$

 nu marked comdene to become joimen to the mightumbing joints. The posterior bristle of the

 the fith joint proximally. The anterion briste oi the thire joint the antere-distal bristle of the fourth juint. the mediat-distal bristle of the sixth joint and the a-bristle of the sevemth joint we all subegual. of athem the tomal hongth of the filth and sixth joints and hare short, fine hairs. The semsery bristhe of the fith joint is somewhat longer than the anterior side of the seven dinal joints (the propertion is about 57 : an and has elowen sensory filaments. The seven proximal ones of these are fixed between about a third and a guarter of the distance along the brithe are rather thiek amd long, being about a thite of the whele length of the bristle, and are batre 'The thee following ones are comsiderably shorter. about a fifth to a sixth of the total
 ary ybines and are separated from the others by a deeded gelp. The mest distal of these tilaments is quite short and lare, and is fixel moar the point whe the bristle. Of the bristles on the two distal jointe the h-bristle is not ghite as longe the five distal joints, and has four short tilaments whids ate atmest gute bare: the P-bristle is about as long as the anterior side of the seven distal joint and is characterized be eight or nine filaments the e- and g-hristles are subegual and abome a third longer than the bast-mentioned we and have ten filaments. Some of the proximal filaments on the thee last-mentioned bristles, the e- f- and g-bristles. have a few (about one to lome short. Weak secomdary spines. The two simple semsory bristles d and o are subergalatal ahmost as lomg as the anterior side of the sefond joint. Pilosity: The second joint is rather well furnisheel with hairs especially postere-distally: otherwise this limb is smooth.

Spernd antenna: - Protopodita: length. about $0,6 \mathrm{~mm}$. The medialdistal hristle is matisely fong. of about the same length as the longest of the bristles of the firat entoporlite joint: it has short. fine hairs (fig. 10). The rxopodite (fig. 9) has about the following proportions between the joints:

$$
1: 11: 111: 11: 10: 11: 111: 1111: 1 \mathrm{~A} \quad 311: 6: 3: 3: 3: 3: 3: 2: 0 .
$$

In other words the first juint is somewhat longor than the total bength of all the following joints. the secomb joint is about as bong as the total length of the two following joints the other joints are subequal. The bristle of the second joint is about as long as or somewhat longer than the bat length of the cight distal joints: it is furnished ventrally with a few - in the two cases investigated there were eight-amonth. powerful secondary spines, sparsely placed, and dorsally it has a corresponding number of short. rather fine bristles. situated opposite the ventral spines. The preportion between the length of the longest natatory bristles and the whole exopodite is about five to thees. The natatury bristles have brod natatory hairs placed elose together,

The bristles of the third and fourth joints and the middle one of the three bristles on the end joint are, in addition, fumished, the two former ventrally, the latter dorsally, with a series of very coarse, strong, smooth spines, somewhat blunted and rounded distally (the species has obtained its name from this character); the number of spines on each bristle seems to vary, from twelve to eighteen have been observel; they are so placed that when the natatory bristles are situated elosely along each other a single row of spines is formed, in other words, the spines on the bristle of the fourth joint are situated so as to form a direct continuation of those of the preceding bristle and the spines on the bristle of the end joint are a continuation of those of the bristle on the fourth joint; the row of spines on the bristle of the third joint begins a rather long distance from the base of the bristle, the unarmed proximal part of this bristle corresponding in length to about the total length of the five or six distal joints. (This unarmed part is protected by the strong bristle of the second joint). The end joint has only three bristles, of which the two ventral ones are developed in the same proportions as the natatory bristles of the preceding joints; the dorsal one, which also has long, well-developed natatory hairs, situated close together, is about as long as the total length of the eight distal joints. The four distal joints have powerful basal spines; the basal spines on the third to the fifth joints are. on the other hand, very small, especially those on the third and fourth joints, which can only be observed with difficulty. Endopodite (fig. 10): This is short and verruciform, with only an indication of having two joints. Proximally it has three bristles of somewhat different lengths, the longest being comparatively long, more than double the length of the shortest and about as long as the total length of the four distal exopodite joints; they all have short hairs or are almost naked.

Mandible (fig. 11): - Protopodite: The endite on the eowale has a rather moderate number of spines. It is - as has been pointed out above - weakly bifureated distally, the two distal points are considerably stronger than the spines and are almost quite bare; between these two points there is a verrueiform process. The basale has seven bristles ventrally: three a-bristles, one b-bristle, two e-bristles and one d-bristle. Of these the a-, band c-bristles are short, the b-bristle being even rather diffieult to distinguish, the d-bristle is about as long as the second endopodite joint. At the base of this last bristle there is no short bristle, contrary to what is the case in all the other species of this sub-family that are dealt with in this work. Of the three bristles on the dorsal side the proximal one is fixed at or just behind the middle of the joint and is quite short, being only about a fifth to a quarter of the length of the dorsal side of this joint; the two distal bristles are similarly rather short, one being about as long as the dorsal side of the first endopodite joint, the other twice as long; all these three bristles have short hairs. The exopodite is a good deal shorter than the dorsal side of the first endopodite joint; both its two bristles have short hairs or are almost bare; the longest. the proximal one, is about as long as the longest distal bristle situated dorsally on the secont protopodite joint, the distal one is short, about as long as the exopodite. Endopodite: Of the four ventral bristles on the first joint the longest one, which is not quite as long as the posterior side of the second endopodite joint, has mumerous long secondary bristles arranged in irregular wreaths, and has short hairs distally; the other three have short hairs. Second joint: This has rather few bristles on the anterior side: these dre concentrated on the proximal
third of the jemt: seven long bistles with shont fine hairs, their relative lengthe varying and sumewhat diferem lom eathother, the longest being almost as long as to the end joint; in addition (1) these seven bristles there are only wo more shot chenning bristles, of which the proximal one is almost hate. the distal onn with a strong double pectination. On the posterior edge, distally of the midelle of the joint. this joint has, as is usual in forms belonging to this sub-family, wo rather short, hare, spine-tike hristles of about the same lengh, one situated somewhat distably of the other, and near the postero-distal corner there are two additional bristles of the same kind, situated by the side of each other; the medial one uf these two bristles is not pereeptibly longer and mone powerful than the lateral one. The bristes of the cod joint (fig. 12) are rather short. The two middle clans are about a quarter of the length of the second endopodite joint, are very powerful and miformly but rather weakly curved, and have rather few but eomparatively powerful secondary teeth posteriorly on the proximal haff. The two anterior bristles, which are of about the same length as each other, are somewhat shorter than the middle elaws; the medial che of them is developed into a powerful claw of the same type as the later, the other is rather weak and bare. Of the three posterior bristles, all bare, two are rather weak and abont as long as the middle claws or somewhat longer, the other, which is situated most posteriorly, is, as usual, very short. Pilosity: The second endopodite joint has short hairs along the distal part of the posterior side.

Ilaxilla: - Protopodite: The first endite (fig. 13) is furnished with nine powerful bristles of moderate length, eight of which are subequal and one, one of the outer ones, is somewhat shorter. The three imermost of these bristles have simple points and are furnished with a few oblique wreaths of long, stiff secondary bristles; the distal one of these wreaths continues right to the point of the bristles. Of the rest three, including the short one, are trifureated distally and three have a powerful simple point; all of them are furnished at the middle with rather few long, stiff secondary bristles and distally with fairly powerful secondary teetli; the secondary tecth are most powerful on the bristles with simple points. The seeond endite (fig. 14) has seven bristles of moderate length. Of these the imner one is rather powerful. trifureated distally and is furnished at the middle with a moderate number of long, stiff secondary bristles, distally of which there are a few rather strong spines. The three bristles fixed elose to this bristle are subequal and somewhat shorter and considerably weaker than it; they are weakly peetinated distally and one of them has a few long secondary bristles at the middle. The three outer bristles are rather powerful, especially the innermost one of them, subequal and somewhat longer than the other bristles on this process; the imnermost one has a few long, stiff secondary bristles at the middle, the rest have no such bristles; all of them are rather strongly peetinated distally. The third endite (fig. 15) has five rather powerful distal bristles, of which the outer one is rather long, the four others being subequal and of moderate length. The uuter one has a large number of long, stiff secondary bristles situated elose together and is fincly peetinated distally. Of the rest the next to the outer one and the inner one have short, fine hairs, almost bare, and the two remaining ones, which are somewhat more powerful than the two former, are rather strongly pectinated distally. The proximal bristle on the outside of this process has short, fine hairs, almost bare, and is about half the length of the outside of this process. The dorso-distal bristle on the coxale is not quite as long as the outer distal bristle

Fig. LIV. - C. (siphonostra) spiniferan. sp.. of. - ?. The cisht distal joints of the exopodito of the right second antenua. seen from oatside: the bristles on the seven distal joints are broken, their matatory hairs are not drawn $31: X$. 10. Endopodite and distal part of the protopodite of the secomd antenna: $312 \times$. 11. Left mamdithe spen from indide: $192 \times$. 12. Distal part o! the right mandibhe. seen from inside: $592 \times$.
on the third cadite. Of the three bristles on the boundary between the basale and the first endopodite joint the one near the expodite is abont as long as the distal bristles on the exopodite and has short tine hairs: the one on the anterior edge of the palp is somewhat longer than the donsu-distal bristles on the coxale, the one at about the middle of the inside of the palp is somewhat shorter: these two bristles have short, fine hairs or are almost naked. Of the three bristles on the exopodite the two distal ones are subequal, somewhat longer than this branch and about twice as long as the proximal one; the distal one has short, fine hars, the other two we phamons. Endopodite (fig. 16): First joint: Distally on the anterior edge there are two rather long bristles with short, fine hairs, the anterior of which is a good deal longer than the posterior one. Distally on the posterior edge there are also two bristles, the posterior one rather long and rather strongly pectinated, the anterior one considerably shorter and weaker and with short. fine hairs distally, almost bare. Close to the two latter bristles the joint has a somewhat pointed triangular process, which projects strongly and is rather strongly ehitinized. The end joint is rather strongly chitinized and is furnished with a rather small number of bristles, only ten: three a-bristles of moderate strength and length, bare or almost bare; one b-bristle of moderate length, rather powerful, and rather strongly pectinated; three e-bristles, subequal, rather powerful, of which the two posterior ones are of the same type as the b-bristle, while the anterior one is furnished at the middle with a few powerful secondary teeth; three d-bristles, very powerful and somewhat longer than the former ones, subequal, the posterior one very strongly pectinated distally, the two others with a rather small number of very powerful secondary tecth at the middle. Pilosity: The first endopodite joint has transverse series of short, fine hairs.

Fifth limb: - Protopodite: The first endite (fig. 19) is furnished with six bristles, of which nos. 2 and 4 , counting from the anterior side of the limb, are of moderate length and somewhat longer than the other four; no. 1 is short but, judging from the larval speeimen investigated, not always as short as shown in the adjoining figure. All these bristles are rather powerful and are furnished with one or a few wreaths of long, stiff secondary bristles. Second endite (fig. 20): The five inner bristles are of moderate lengths; nos. 3 and 4, counting from the anterior side of the limb, are somewhat shorter than the rest. All except no. 3 are furnished at the middle with a wreath of long, stiff secondary bristles. Bristles nos. 1 and 2 are rather powerful and rather weakly peetinated distally, no. 3 is also rather powerful and is sharply serrated distally, nos. 4 and 5 are very powerful and have a few strong secondary teeth distally. The single bristle on the anterior side of this process is short, rather weak and bare. Third endite (fig. 21): Most of its seven bristles are moderately long, the middle ones being somewhat shorter than the outer ones; no. 6, counting from the anterior side, is very short. The six anterior ones are rather powerful, the posterior one is very powerful. Bristles nos. 1 and 7 are furnished with a wreath of more or less long, stiff secondary bristles proximally of the middle; on no. 1 these are, however, rather few in number and weak; all the other bristles are without any such secondary bristles. Bristles nos. 1 and 2 are finely pectinated distally, nos. 3 and 5 are sharply serrated distally, no. 4 is rather strongly peetinated distally, no. 6 has a few powerful secondary teeth distally, no. 7 is very powerfully pectinated distally. The distal chitinous spine of the protopodite is long, narrow and eurved. The epipodial appendage has

Fig. LV. - C. (Siphonostra) spinifera n. s1. - 13. First endite of the maxilla, \% ; 312 Y. I't. Serond pudite of the maxilla; in a position opposite to that of the first and thime enditos; f $312 \times$. 15 . Third endite of the maxilla. :

18. Distal part of the seventh limb, all the draning bistles lroken; from a larva in the last stage; ; ist y

Digitized by Microsoft ${ }^{(B)}$
abour fifte to sixty bristles, all with long hairs right out to their points. Exopodite: This has four joints. First joint: The main tooth (fig. Di_{2}) consists of six constituent teeth, all well defined proximally. Whose socomdary teoth are of about the same tye as that shown in the arempanying tigure. The bristle on the posterior side of this joint, close to the main tooth, is about as long as the anterior constituent tooth of the main tooth, is furnished at the middle with a wreath of long, stiff secombary bristles and is rather strongly peetinated distally or else almost bare. On the anterior side of this joint there are four bristles, three in a row near the main tooth and one farther out. Of these bristles the two sitnated nearest to the main tooth are rather long and subequal. the one next to the main tooth is powerful and is strongly pectinated distally but has no long secondary bristles, the other one is somewhat weaker and has long hairs at the middle and short ones distally. The two remaining of these bristles are somewhat shorter than the former ones, the imner one being the shortest, and are of aboat the same type, having long hairs at the middle and short ones distally. The second joint (fig. 23) is furnished with three a-bristles, five b-bristles, one c-bristle and one d-bristle. Of these the a-bristles are very powerful and have very strong secondary teeth, the b-bristles are rather powerful; the e-and d-bristles are of moderate length and of the same type, having long, soft hairs at the middle and short hairs distally. The outer and inner lobes of the third joint, like the end joint, are of moderate size. The inner lobe of the third joint has two distal bristles of moderate length, the outer one has long hairs at the middle and short ones distally, the inner one is bare and somewhat shorter than the outer one; in addition this lobe has a single bristle posteriorly, somewhat more proximally, which is a little shorter than the distal ones and has long hairs at the middle and short ones distally. The outer lobe has two distal bristles of moderate length, the outer one being somewhat shorter than the inner one; both have long hairs at the middle and short ones distally. The fourth joint has three distal bristles of moderate length, one with long hairs at the middle and short ones distally, the two others with short hairs. Pilosity: The outer lobe of the third exopodite joint is partly furnished with fine hairs.

Sixth limb (fig. 24): - Protopodite: The first endite has one rather long and powerful distal bristle, furnished with a few wreaths of long, stiff secondary bristles, and two short, phmous medial bristles. Second endite: This has three distal bristles, two of which are rather long and powerful, furnished at the middle with long, stiff secondary bristles and with short hairs distally, the third, the middle one, is rather short and has long hairs at the middle. This endite has, in addition, two medial bristles, one of which is short and phomous, while the other, which is about as long as the long distal bristles, has long hairs at the middle and short ones distally. Third endite: This has three distal bristles corresponding approximately to those on the former endite, the dorsal one being, however, furnished only with short hairs; in addition there is one medial bristle, of the same type and length as the long medial bristle on the second endite. The epipodial appendage of the protopodite is represented by five unusually long, bare bristles, the distal ones of which are considerably longer than the proximal ones, Exopodite: First joint: The endite has six distal bristles and one medial bristle, of the same types as the bristles on the preceding endite. The second joint is about twice as broad as it is long, and has nine or ten bristles, all situated near the ventral edge; there is no pronounced

Fig. LVI. - C. (Siphonastra) spinifera n. sp.. 7. - 19. First endite of the protopodila of the fifth himb; ist) x. 20 . Second endite of the protopotito of the fifth limb: : $80 \times$. 21. "Whird endite of the protopodite of the fifth limb, $480 \times$. 22. The main tooth of the first expodite joint of the fifth tims and the adjacont hristles; $880 \times$. 23 . Th distal exopodite joints of the right fifth limb, smen from in front; the pectimation is not drawn on one of the posterime b. bristles: is 80

Digitized by Microsoft ©
gap betwern the posterior bristles and the others. The two posterior ones are rather long, with long, soft hairs right cut to their points. Of the others some are rather long, others are of moderate length or more or less short. Some of them have long hairs at the middle and shon hairs distally: tho long hairs are not or are only slightly arranged in wreaths; on the posterion ones of these leristles they are solt, on the anterior ones somewhat stiffer. The wher bristles, in most cases the shorter ones, have only quite short hairs. Pilosity: This limb is smonth both on the cutsith ant the inside, but has a series of musually long and powerful hairs along the posterior part of the ventral margin of the second exopodite joint.
 half the length of the shell. Cleaning bristles: Distally, situated very close together, there are ten bristles. five domal and five rentral ones; of these - both among the dorsal and the ventral ones - the most distal one is rather short, the next distal one relatively long and the rest dectease somewhat in length the more proximally they are situated, the proximal one being rather short. It some distance proximally of these there are four more bristles, two on each side: these are rather long or of moderate length. The cleaning bristles are furnished with from three to eight bells, cut off transversally distally; the tongue of the distal bell is also cut uff transversally distally. (Of about the same type as is shown in fig. 25 of C. (Vargula) norregica.) Proximally of the bells the bristles are bare. The end comb consists of a long, very strong, hare central distal tooth, somewhat bent inwards and distally pointed, and three considerably shorter distal teeth and three proximal teeth on each side of the former. The distal one of the three last-mentioned distal teeth is somewhat longer than the two others and is distally pointed. the two others are rounded distally. The dorsal wall of the eavity, dorsally close to the end comb, consists of two somewhat S-shaped chitinous plates, situated by the side of each other, cut abruptly off dorsally and furnished there with a number (about ten) of fine, short teeth.

Furea (fig. 8): - This has eight comparatively powerful and straight claws, all well defined from the lamella, except nos. 2 and 4 , which are completely joined to it. The claws decrease fairly uniformly in length the more proximally they are situated, except no. 3, which is only about as long as and considerably weaker than no. 4. Proximally of the claws the furea has short hairs.

Upperlip (fig. 7): - The upper glandular field is narrow, almost crest-shaped and has about nine or ten moderately large pegs (the mouths of the glands), of which only a few of the ventral ones are paired. The paired ventral glandular fields are also almost crest-shaped and about as large as the unpaired dorsal one; they have a rather small number of moderately large pegs, a couple of the most posterior of which being somewhat higher than the others. The protuberance situated dorsally of the upper lip is rather large, and has a single point, somewhat rounded.

The medianeye is rather well developed. The rod-shaped organ is missing? (broken oft?).

The male is unknown.

Remarks: - The type specimen of this species is a female with large eggs in its ovaries. Apart from this specimen I have only investigated a larva, presumably in the last larval stage. This larva agreed in practically every detail with the type specimen.

The situation of the spines on the bristles of the exopodite of the second antema seems to afford a good support for G. W. MULLER's assumption that they are to be regarded as an adaptation for digging.

Habitat: - Australia:
Cape Jaubert (typelocality), 42 miles W. S. W.; at a depth of about 25 metres; 26. V. 1911 (coll. E. MJöberg): one mature , one larva; R. M. S., on slides.

Sub-Genus Cypridina H. Milne Edwards.

Cypridina, H. Mllae Edwards, 1840; Cypridina (part.), J. D. DANA, 1852; Philomedes (part.), G.S. Brab)y, 1880; Pyrocypris, G. IV. Ml'LiER, 1890, 1912 etc.; Eupathistoma, G. S. Brady, 1898. (Non Cypridina J. Bosquet, Schrenis and other authors on fussil Ostracods.)

Description: - Sh e ll: - The shape is similar or somewhat, in most cases, however, rather slightly, different in the male and the female. It is rather elongated. The rostrum has always a distinct ventral corner; the rostral incisur is comparatively narrow and moderately deep, sometimes even rather shallow. The posterior part of the shell has a well-developed beakshaped process. Near the inner edge of the incisur there are two medial bristles situated close to each other, at least in most of the species. Calcification? The forms are moderately large, all of them being about 2 mm . in length.

First antenna: - This is long and slender and has seven or eight joints; the fifth and sixth joints seem in most cases to be more or less joined together; the joining is sometimes even complete; the small end joint also seems sometimes to be not quite distinctly defined. The sensory bristle of the fifth joint has comparatively few (always less than thirteen?) filaments. The b-bristle has precisely the same modification in the males as in the sub-genus Doloria. Note that in the female of the only species of this sub-genus that I have had an opportunity of investigating this bristle had no filaments at all. The e-bristle is characterized by having, apart from the proximal filament with only one sucker, only one, not two, filaments with suctorial organs; in other respects this bristle is also tike that of the sub-genus Doloria. The small suckers on bristles b and c are very weakly developed. In the males the c- and f-bristles are very much longer than in the females.

Second antenna: - Protopodite: This has amedial-distal bristle. Exopodite: The bristle of the second joint is rather weakly developed. The natatory bristles on the third to the ninth joints are quite without spines. The third to the ninth joints have basal spines. Endopodite: This is similar in the male and the female and is very much reduced; it is verruciform; the distal (sensory?) bristle is comparatively short.

Mandible: - Protopodite: The endite on the coxale is rather weakly bifurcated distally; its spines are moderately strong or else weak and have no distinct arrangement
in groups. Apart from the bristle of the endite this joint is quite without bristles. Basale: Of the rentral bristles one d-bristle is rery long; it hats a moderate number of long secondary bristles arranged in irregular weaths and has short, fine hairs distally: the rest, most of which are short, have short hairs or are bare, Dorsally this joint has three bristles. Endopodite: The first joint has four bristles ventrally. The end joint has sewen bristles, the two middle ones of which are rather powertul, claw-shaped, of about equal length and strength.

It a illa: - Protopodite: Dorso-distally the coxale has a single bristle with long, fine hairs. The proximal bristle on the outside of the thind endite, which is always developed in other elosely-related sub-genera and genera, does not seem to be developed. On the boundary between the basale and the first endopodite joint there are two bristles, one situated close to the exopodite and the other at about the middle of the inside of the palp. Dorso-distally on the coxale there is a rather large, somewhat lamelliform epipodial appendage. The exopodite is comparatively well developed and has fine, long hairs situated close together; it is not displaced distally. The endopodite is broad and moderately long.

Sixth limb: - The second exopodite joint is rather short and somewhat roundect, with comparatively few bistles. Its posterior bristles are not strikingly larger than the others.

Seventh limb: - This is furnished with very few, ten at most, eleaning bristles, some of which are concentrated distally, the others situated irregularly more proximally; with regard to the latter it may be mentioned that there is never more than one bristle on the same side of the same joint. The end comb consists of a comparatively small number of teeth, all of one kind, the distal ones often bemg exceedingly long, the proximal ones short. Dorsally close to the end comb the wall of this limb is only weakly or not at all thickened and only quite weakly concare. Although there is no special adductor, it seems as if this concavity can be compressed somewhat (like a jaw), as I have sometimes seen in preserved material the teeth of the end comb pressed inwards.

Furca: - The lamellac are moderately clongated. There are nine claws, which show no or rather slight signs of division into main claws and secondary claws.

The upper lip is very characteristic for the gemus. It is rather large and has six processes, of which the two anterior ones are unpaired and the other four paired. The posterior two are shaped like fingers, the others are verruciform, but are, however, at least as long as they are broad proximally. These processes include the openings of the very strong glands of the upper lip, which secrete a luminous matter. (The two unpaired dorsal ones correspond to the dorsal field of glands in closely-related forms, just as the ventral ones do to the two paired ones?)

The rod-shaped organ is rather short and thick.
The lateral eyes are well developed.
All the species are distinguished by their strong phosphorescence. They rise to the surface of the sea at nights.

Tropical seas: Indian and Pacific Oceans.

The name of the sub-genus.

Remarks: - The name Cypridina has formerly been used for many heterogencous clements belonging to the sub-order Cypridiniformes.

In the present work, on the other hand, this mame is used for a smaller gromp which is well defined systematieally, a group that in recent works has appeared under quite dif'erent names. The following facts may probably show that this change of name is well grounded.

The first author to denominate and describe scientifically a species belonging to the subfamily Cypridiminae - thus at the same time the first species belonging to Cypridiniformes. of. p. 165 above - was II. Mhene Emwirns. In a work that this author wrote in collaboration with G. P. Desmayse, published in 1838, there is mentioned cursorily on p. 178 an Ostracod which differed so greatly from all the other forms of this group that were known at this time - the genera Cypris and Cythere - that it seemed necessary to the former author to present it as a representative of a new genus, ,sous le nom de Cypridines". The ,description détaillée" of this form that is promised in this work is to be found in MLLAE Euwhass's work „Histoire naturelle des Crustacés", vol. III, 1840, p. 410. Unfortmately this description is anything but., détaillée"; on the contrary it is very incomplete: at any rate it does not permit of a certain identification of the species.

Is it possible to identify this species of Mhlne Ebwards' - Cypridina Reynaudi generically, or, to express it perhaps in a better way, to which species or group of species now known is this species most closely related?

In other words which forms ought now to have the name Cypridina?
G. W. Mitler, 1912, p. 52, includes this species under the heading: „C y pridinidarum genera dubia et species dubiae", thus indicating that it is unidentifiable both as a species and as a genus. - This may perhaps, however, be a rather premature step.
II. Lllldeborg writes, 1876, p. 4: ,Genom Professur S. Lovéns godhet har jag blifvit i tillfälle att taga kännedom om en i Indiska ()ceanen tagen och för sin förmåga att lysa i mörkret särskildt ammärkt Cypridinid - utan tvifvel lefvande i ytan af hafvet - som sannolikt är af samma art som Mine EnNARDs' Cypridina Reynaudi, weh som således torde kunna betraktals som typ för det af samme författare uppställda shäktet C'ypridina."* This statement of Lillabrorg's has up to now been neglected by writers on this subject presumally on account of its being written in swedish.**

Lilldebonc: does nut give any figure or detaited description of the specimens of this form investigated by him. Merely from a number of statements in the text there can, however, be very little doubt that they belonged to the group of species that later on, in 1890, was distinguished by (i. II. Mother as a new genus moder the name Pyroeypris. I have abso been able to verify this assumption by an examination of Lilldebora's original preparations.

Whether IV°. LifLamande's identification of the species is correct is a question whith may be quite impossible to deeide. On the other hand it is very likely that Cigpridina Reynaudi

[^40]helongs to the above-mentioned genns Pypocypris, ahthongh even on this point it may be impossible to get full evidence.

This assumption is supported by the following reasons:
First there is the fact that Cypretime Reymoudi has the same characteristically slongated type of shell as distinguishes I'yrocypris.

Sceondly there is nothing in MhNe EmW:Dbs's description against this identification, apart, of course. from statements that are obviously due to mistakes in observation on the part of this anthor, such as, for instance, the absence of the rostral incisur.

In addition, a reason that is - in my opinion - rather strong is to be found in the statement as to the loeality of the find: The species in question was eaptured in the Indian Ocean. - Several species of Pyrocypris oceur in this ocean, some of them even in enormous numbers. As an example of this it may be mentioned that no less than 20000 specimens of P. Chierchiae were caught in these regions in a single haul ($\mathrm{G} . \mathrm{IV}^{*}$. MULLER, 1890, p. 232). To this it may be added that species of this group attract attention by their intense phosphorescence. and, on account of their pelagian life, are very easy to catch, reasons that musi of comse be taken into account when we are dealing with a form that was apparently captured quite accidentally.

On the other hand, of all the specimens to which G. W. MULLER, 1912 ete. and other anthors applied - apparently arbitrarily - the name Cypridina, it may be said with very great probability that they are not closely related to Cypridina Reynaudi.

As no other forms either - except those belonging to Pyrocypris - are known so far, which can with any great probability be considered as closely related to the species described by Mhle Edtwards, it seems to me justifiable and convenient to use the name Cypridina for the last-mentioned group of forms.

As the type species of this sub-genus it may be convenient - in accordance with the above-quoted statement - to take the species investigated by W. Lillieborg. Identifiable material of this form (fonr specimens) is still preserved in the collections of the Zoological Muscum of the University, Uppsala.

It may, on the other hand, not be appropriate to give this species the name Reynaudi Milne Elimrds; Lilljebora's identification is evidently too uncertain. - Do the specimens investigated by Lillueborg belong to a species that has been mentioned and described later? As far as I can decide, they seem to belong to Pyrocypris inermis G. W. MÜller. I cannot, however, be quite certain on this point on account of the incompleteness of this species of MúLler's.

If my identification is correct, P. inermis would thus be coveniently taken as the type species of the sub-genus Cypridina.

In (1. W. Me'Ller's diagnosis of the genus Pyrocypris it is stated (both in $1906 \mathrm{~b}, \mathrm{p} .16$ and 1912, p. 16) that the equipment of the distal bristles of the male first antemna in this group agrees with that in the genus Cypridina (sensu MCLLERI), and also that the endopodite of the second antenna is furnished with four or five bristles. - With regard to the former character it is to be noted that in the sub-genera Vargula, Macrocypridina and Cypridinodes, in other
words in the groups identical with Cypridine (sensu Mílleri) the c-bristle of the male first. antema has two filaments with small suctorial organs distally, while in the sub-genus Cypridina (sensu meo), i. e. Pyrocypris, this bristle has only one such filament. With regard to the latter character I only wish to point ont that, at least in some species, six bristles are to be found on the endopodite of the second antema in this sub-genus.

Fifteen species of this sub-genus are known so far.
In passing I may make a contribution to the synonymy of a species belonging to this sub-genus.

In G. S. Brady's work of 1902 a we find on p. 186 that C. (Cypridina) Chierchicue (G. W. Muller) was caught in the "Bay of Bengal" by the "C a a athea" expedition. The specimens on which this statement is based are preserved in the Zoological Museum of the University of Copenhagen and have been re-examined by me. The following facts are the results of this investigation:

Firstly the locale stated by G. S. Brady is a little incorrect. The correct labitat is lat. $6^{0} 22^{\prime}$ N., long. $75^{0} 54^{\prime}$ E., i. e. somewhat S. IV. of Cape Comorin in India.

Secondly I discovered that Brady's identification is incorrect. The characters in the "Galathea" specimens that do not agree with the information given by G. W. MULLER for C. (C.) Chierchiae are as follows:

Shell: The anterior part of the ventral margin, behind the rostral incisur, has from ten to twelve bristles.

Second antenna: The endopodite has six bristles.
I andible: The longest of the (four) ventral bristles of the first endopodite joint is rather considerably longer than the others (it is about the same length as in C. (C.) serrata affirmans, of. below).

The seventh limb has six distal bristles, three on each side.
All the limbs are without pigmentation except the left first antemma.
(It is, however, not impossible that a number of these differences are only apparent, as G. W. Mutller's description of C. (C.) Chierchiae is very deficient.)

To which species do these specimens belong? - I do not consider it convenient to express an opinion on this question. In any case the answer would be very uncertain, partly on account of the very damaged condition of the specimens in question, partly and not least on account of the deficiencies in most of the lescriptions of species belonging to this sub-genns.

Cypridina serrata (G. W. Müller) var. affirmans n. var.

Description: - Male:-
Shell: - Length, 1,7-1,75 mm. Length : height, about 1.9 to I . S een from the side (fig. 1) it is of about the same shape as that of the type species, but the ventral margin seems to be somewhat more boldly arched. (The shells investigated by me were all soft and consequently their shape was somewhat uncertain.) The surfilee of the shell
is smoth. practically emtirly without bristles. Seen from inside: The medial bristles are about the same as in the tepe speces. On the matrom there are from seren to eleven bristles, simple or weakly hifurated; the remtral omes of the series are not fixed on a veruciform swelling. Inside the incisur there is, apart from the two bristles that are situated elose together near its immer whe gemerally only a short, simple bristle near the joining line. The bristles on the list ate most frepuently simple; ther decerease in mumber towated the back and seem to disappear entirely along the posterior part of the rentral margin. All the medial bristles are quite or almost quite bare. The spines along the list inside the posterior margin of the shell are almost the same as those of the type species. On the right value they are large, decreasing rather slightly in size rentrally and varying somewhat in number, from fifteen to eighteen; of these the two rentral ones were rery small in one case, in two cases only the most ventral one was very small. On the left ralve the spines are very small and difficult to verily, some of them even seem to be missing. That part of the list which has spines has, in addition, a few - in most cases about one or two for each spine - short and exceedingly fine bristles. The part between the list and the margin of the shell is of about the same type as in the type species. The selpage is rather wide along the anterior margin of the rostrum, but is narrow along the posterior rostral margin: along the posterior margin of the rostral incisur it is very wide, filling the whole incisur; it continues along the whole ventral margin of the shell, extending rather considerably beyond the latter except at one part just in from of the middle, where it is rather narrow.* At the lastmentioned part it is characterized by the fact that its edge is closely and finely serrated, the edge of the remaming part is almost even. In the incisur the solvage is rather strongly crossstriated, at the remaining part the cross-striation is exceedingly fine.

First antenna (fig. 4): - This has seven joints; the fifth and sixth joints are practically entirely joined (the original boundary, shown in the accompanying figure, can only be verified with difficulty). The approximate proportions between the joints are:

$$
\text { I } \frac{21}{17}: I I_{25}^{32} ; \text { III }_{\frac{13}{5}}^{13} ; \mathrm{I}_{\frac{13}{13}}^{9} ;\left(\mathrm{V}_{18}^{8} ; \mathrm{VI}^{\frac{9}{1}}\right) ; \operatorname{V} \frac{3}{2} ; \operatorname{VIII} 0,5 .
$$

Third joint: The bristle on the anteriors side is fixed at about the middle of the joint and is about half as long as the anterior side of this joint. The posterior distal bristle is nearly as long as the total length of the posterior sides of the two following joints or else a little shorter. The anterior bristle of the fourth joint is quite short, scarcely half the length of the anterior side of this joint, the posterior one is somewhat longer, about as long as the posterior side of this joint. The sensory bristle of the fifth joint is somewhat longer than the anterior side of the second joint. It has eleven bare sensory filaments, situated in about the positions indicated in the accompanying figure; the eight proximal ones are somewhat thick in proportion to the distal ones, and are relatively long, being about a third to a half of the whole length of the bristle; the two following filaments are narrow and only about a fifth of the length of the bristle; the distal one is very short, almost verruciform. The bristle of the original sixth joint and the a-bristle of the original seventh joint are subequal, rather short, being only about as long as the original sixth joint. These bristles, like those of the third and fourth joints, have short: fine

[^41]

 Mran, ; : 275
hairs. Of the distal bristles the b-bristle is ahout as lome as the anterior side of the semod joint or somewhat shorer: its proximal tiament is furnished with a chitinized verucifom swolling distally of the sucker (like ('. (Fargula) norregica: see lige thof this species). Apart from this filament there are on this hriste only two others, each furnished distally with five smatl, weak suctorial orgams and proximally of these a small bermeiform process; the distal one of these filments does nent reach the point of the bristle. Tha e-bristle has ten filaments; the proximal one of these is ahom the same as the proximal one on the b-bristle, no. 3 , comnting from the base, is ahout as lony as or only slighty lomer and mone powerful than the following ones and has distally three very small and weak suctorial organs, proximally of wheh there is, as in the b-bristle, a small wart; the other filaments on this bristle are furnished proximally with from no to three very fine secondary spines; the distal filament is very short and verruciform. The f-bristle also has ten filaments, furnished with up to three short, fine secondary spines proximally: the distal one of these filaments is verruciform. The e- and f-bristles are subequal and rather considerably longer than the whole length of the shell (measuring from 2 to $2,1 \mathrm{~mm}$. in speeimens with a length of shell of $1,72 \mathrm{~mm}$.).* The g-bristle, which has eleven filaments, whose proportions and equipment are about the same as the filaments on the f-bristle, is not quite so long as the whole antenna. The simple sensory bristles d and e are somewhat different in length, the longer one, the d-bristle, being about as long as the total length of the four distal joints (the original filth and sixth joints being reckoned as one joint). Pilosity: On the posterior side of the sceond joint there are numerous transwerse rows of short, stiff hairs (only faintly indieated in the accompanying figure); this character seems, however, to vary to some extent; in one of the specimens investigated these hairs were practieally completely reduced. The other joints are smooth.

Second antenna: - Protopodite: Length, about $0,65 \mathrm{~mm}$. The medial distal bristle (fig. 6) has short hairs; it is moderately long, being about as long as the distal sensory bristle of the endopodite. Exopodite (fig. 7): This has about the following proportions between its joints:

$$
1: 11: \text { III }: \text { IV : V: VI : VII : VIII }: \mathrm{IX}=28: 10: 6: 4: 4: 3: 3: 3: 2 .
$$

In other words the first joint is about as long as the total length of the five following joints, the second is about that of the two following ones. The bristle of the second joint is only as long as the total length of the three following joints or somewhat shorter; it is furnished ventrally with a few, about seven to ten, rather strong spines. The longest natatory bristles are somewhat longer than the exopodite; the proportion between these two lengths is about $85: 70$. The natatory bristles have broad natatory hairs. The end joint has only three bristles, of which the two ventral ones are long, powerful natatory bristles, developed to the same extent as those on the preceding joints, the dorsal one is only about as long as the total length of the four distal joints and has short, fine hairs. The third to the ninth joints have narrow and relatively short basal spines, which decrease in strength the more proximally they are situated, the one on the third joint being almost completely reduced. The endopodite (fig. 6) is unjointed and

[^42]
Digitized by Microsoft ${ }^{\circledR}$

Fig. LVIII. - C. (Cypridina) serratu (6. W. HLleER) var. affermans n. var.. j. - 6. Emlopmlite and the distal part of the
 $292 \times$. 8. Risht manlible, seen from incide: $250 \times$. 9 . Endite on the coxale wf the rifht mamdible semp from intide

hats six bristhes: of these the one situated farthest baek, which is very like and obvionsly corresponds to the leng distal (semsory?) bristle on the end joint of the endopedite in other forms, is menderately long, being about as long as the total length of the three distal joints of the exopodite: it is somewhat shorter than the nearest of the remaining bristles, whieh, like the others, is of the ordinary trpe with short, tine hairs. These remaning five bristles deerase almost maformly in length the mote anteriorly (and proximally) they are situated and correspond presumably to the tive bristles on the fust endopodite joint in closely related genera and sub-genera.

Mandible (fig. s): - Protopodite: The endite on the coxale (fig. !) las comparatively few spmes, mostly relatively short; its two distal points are rather considerably more powerfully developed than the spines, and, unlike the latter, they are furnished with weak secondary spines; between these two points there is a rather low point; cf. remark on p. 182 above. Basale: This has seven bristles ventrally: two a-bristles, one b-lristle, two e-bristles and two d-bristles. Of these the two a-bristles, the b-bristle and one of the e-bristles are very short, and also one of the d-bristles is rather short; the other c-bristle, on the other hand, is relatively long, longer than the height of this joint; the longest d-bristle is not as long as the posterior side of the second endopodite joint. Of the three dorsal bristles of this joint the proximal one is fixed at rather a long distance in front of the middle of the joint and is about half the length of the joint; of the two distal bristles one is about as long as the former bristle, the other is somewhat longer: all three have short hairs. The exopodite is about as long as or slightly longer than the dorsal side of the first endopodite joint. Of its two bristles, both of which have short hairs, one is somewhat shorter and the other somewhat longer than this branch. Endopodite: The four ventral bristles of the first joint all have short hairs; the two longest of them, which are somewhat different in length, are relatively short, considerably shorter than the posterior side of the second endopodite joint. The second joint has comparatively few bristles along the proximal half of the anterior side: seven more or less long bristles with short hairs, - their relative lengths vary to some extent, - and four or five short eleaning bristles with rather strong double pectination distally. On the posterior side, distally of the middle, this joint has two short, bare or almost bare bristles, one situated somewhat distally of the other; one specimen, ef. fig. 8 , had only one of these bristles developed on the right mandible. Distally of these bristles there are two more bristles, situated at the side of each other, generally rather considerably shorter and weaker than the former ones; the medial one of these is somewhat, though only slightly, longer and more powerful than the lateral one. Of the seven bristles on the end joint (fig. 10) the two middle ones, the main claws, are about a third of the length of the second endopodite joint. Of the two anterior ones the medial one is powerful, claw-shaped and rather slightly shorter than the main claws; it is also distinguished by the fact that its anterior edge has a sort of hyaline border or easing; the other of the anterior ones is weak and is only a little more than half the length of the former one. Of the three posterior bristles one is about as long as the main claws, but somewhat weaker, me is weak and about as long and as strong as the shorter of the two anterior ones, the third is exceedingly short. All the bristles of the end joint, except the anterior claw, have weak posterior secondary teeth. Pilosity: On the inside of the

 $571 \times$. 1 i. Riwht penis, sern from outside; $2 y^{\circ} 2 ;$
seond protepodite jeint and the serond emelopedite joint thew are groups of short, fine hairs,

Ilaxilla: - Protopodito (fiy. 11): The lirst condere is furnished with seven powerful bristles of moderate lengelt. Of these the two imer omes are subegual and fumished with a few obligue weaths of honge stifl secondarybistles: the distal one of these wraths contimes right to the point of the bristles. The other five are subequal and somewhat shorter than the two imere ones: of these five the two outcre ones are furnished with rather momeroms long, stiff secomdary loristles and are trifureated distally; the other three, one of which is very powerfal, are furnished with rather few hong, stiff secondary bristles, distally of which there are some short seondary teeth, and have a simple point. The second endite has five rather strong subequal bristles. Of these the inner one has short and execedingly fine hairs or is bare, one is only rather weakly pectinated distally and the thre others have at the middle a few long stiff, secondary bristles and are peetinated distally; on the one next to the outer one the pectination is rather strong, on the two others it is rather weak. The third endite has also five rather powerful distal bristles, all of about the same length exeept the inner one, which is rather short and weak. The last-mentioned bristle has short and exceedingly fine hairs or is bare; of the other four, all of which have a few stiff, secondary bristles at the middle, the inner one is bare distally, the others are rather weakly or very weakly peetinated distally. The dorso-distal bristle on the coxale is about as long as the outer bristle on the third endite. Of the two bristles on the boundary between the basale and the first endopodite joint the one that is situated near the exopodite is about a third of the length of the bristles of the exopodite, the other is still shorter; both are bare. Of the three bristles of the exopodite the distal one is bare, the two others are plomous; all of them are of about the same length as this branch. Endopodite: First joint (fig. 12): Distally on the anterior edge there is a single rather long, phmous bristle. Distally on the posterior edge there are two bristles, one of which is long and powerful, furnished at the middle with rather weak secondary teeth and characterized especially by being bent at almost a right angle somewhat distally of lalf its length, the other is considerably shorter and weaker and has short, fine hairs. Proximally of these two bristles the edge of the joint is characterized by a strongly projecting, distally bifureated verruca. The end joint is rather strongly chitinized and has only eleven bristles: three bare a-bristles of morlerate length and strength; three b-bristles, of which the anterior one is moderately long, rather strong, furnished at the middle with a few weak secondary teeth and phmous distally, the two others are naked, weak and short, their lengths being somewhat unlike, the shorter one not quite half as long as the anterior one; two c-bristles of the same type and sizes as the short b-bristles, the anterior one being the shorter, and three d-bristles, subequal, very powerful, especially the two anterior ones, the posterior one rather strongly pectinated, the two anterior ones furmished at the middle with rather few fairly strong secondary teeth. Pilnsity: The first endopodite joint has transverse series of short, fine hairs.

Fifth limb: - Protopodite: The first endite (fig. $15.0=$ ¢ $)$ is furnished with only five bristles. Of these bristles no. 1, counting from the anterior side of the limb, is very small. furnished in most cases with long, stiff secondary bristles. The others are of mode-
rate length, mostly decerasing somewhat in length the more posteriorly they are situated. Bristles nos. 2 and 3 are of the same type, rather powerful and furnished with two or three oblique wreathis of long. stiff secondary bristles; the distal one of these wreaths continues right to the point of the bristles. Bristles nos. 4 and 5 are very powerful and are furnished at the middle with one or a few wreaths of long, stiff secondary bristles, distally with a few powerful secondary teeth: these are most powerful on the first-mentioned bristle, on no. 5 they may even be entirely absent. Second endite (fig. $16, \delta=q$): (If the five inner bristles nos. 1 and 5 , counting from the anterior side of the limb, are furnished at the middle with a wreath of long, stiff secondary bristles, the other three have no such bristles. The three anterior ones are rather powerful and of moderate length, nos. 2 and 3 somewhat shorter than no. 1: the latter bristle is rather weally pectinated distally, no. 2 seems to be quite bare (even with as strong magnification as Reichert's ocul. 4, Lemz' immers. ${ }^{1 / 12}$), no. 3 is sharply serrated distally. No. 4 is only represented by a small, powerful, conical, bare chitinons spine; no. 5 is moderately long. very powerful and has, distally of the wreath of secondary bristles, a few powerful spines. The bristle on the anterior side of this process is short and has short hairs. The seven bristles of the third endite (fig. $17, \hat{o}=q$) are of the same types as the five imner bristles on the second endite. Bristles nus. 1,2 and 6 on the third endite, counting from the anterior side of the limb, are very like bristles nos. 1, 2 and 4 on the second endite; bristles nos. 3 and 5 on the former endite are like bristle no. 3 on the latter; the posterior bristle on the third process differs from the same bristle on the second only by having more secondary teeth distally; bristle no. 4 on the third endite is rather strongly pectinated distally, it is usually quite without long secondary bristles. The epipodial plate has from about thirty to forty bristles, all furmished with long, soft hairs almost to their points. The protopodite lias no distal chitinous spine at all, which is specially notewortly because a spine of this sort is developed on all the other species of this sub-family that are dealt with in this work, as has been pointed out above. p. 185 in the description of this sub-family. The exopodit e has four joints. First joint: The main tooth (fig. 18, $\hat{\delta}=9$) consists of seven constitnent teeth, the anterior one of which is relatively somewhat stronger than in the other forms of this sub-family that I have investigated. and, contrary to these, is completely united to the joint: the secondary teetlo of the constituent tecth are comparatively weak. The bristle on the posterior side of the joint near the main tooth is about as long as that of the anterior constituent tooth from the point where the second constituent tooth is situated and may or may not have long hairs at the middle, distally it has short hairs. On the anterior side of the joint there are three bristles. two situated near the main tooth, one somewhat farther out on the joint. Of the two former ones one is rather long and powerful, its point reaches about as far as the point of the anterior constituent tooth; it is strongly pectinated distally and has at the middle a wreath of long, stiff secondary bristles. The other is only a little more than half the length of this one, rather weak, furnished with a wreath of long stiff secondary bristles at the middle and short hairs distally. The outer bristle on this joint is somewhat longer than the last-mentioned bristle and has long, woft lairs at the middle and short hairs distally. The second joint has three a-bristles, three b-bristles, one e-bristle and one d-bristle. The a- and b-bristles are moderately long and strong, the onter lo-bristle is often
distinguished be tering furmished at the middle with a wreath of long, stiff seeondary bristles, contrate to what is mat in bristes of this group). The e- and d-bristles are of about the same type as each other, with close long, soft hairs at the middle and short hairs distally; both are menderately long, the former somewhat shorter than the later (about the same as figure $2 \boldsymbol{e}$ of ('. (l'argulet) nomagica). The two lobes of the third joint (fig. 19, $\sigma=\frac{q}{}$) are of moderate size. like the end joint. The imner lobe of the third joint has distally two moderately long bristles with short hairs or bare; proximally-posteriorly it has a single bristle, which is somewhat shorter than the distal ones and which has long hairs at the middle and short ones distally. The outer lohe of this joint has two moderately long distal bristles with short hairs or ahost naked. The end joint is furnished distally with four moderately long bristles somewhat different in length and with short hairs. The proportion between all the bristles of the two distal exopodite joints soms to be fairly constant and is shown in the accompanying figure. Pilosity: The outer lobe of the third exopodite joint and the end joint are partly furnished with soft hairs placed close together.

Sixth limb (fig. 20): - Protopodite: The first endite has one rather long and powerful distal bristle, furnished with a few oblique wreaths of long, stiff secondary bristles and two short, plumous medial bristles. The second endite has two rather long and powerful distal bristles, of which the dorsal one is somewhat shorter than the other; both are furnished at the middle with long, stiff secondary bristles and with short hairs distally; this endite has, in addition. two short, plumons medial bristles. The third endite has two rather long and powerful distal bristles, furnished at the middle with one or a few wreaths of long, stiff secondary bristles and with short hairs distally; between these two bristles there is a short and somewhat plumous bristle. The epipodial appendage of the protopodite is represented by two rather short bristles with short hairs. Exopodite: The endite of the first joint has two bristles, one rather long and powerful, of the same type as the long distal bristles on the preceding endite, the other rather short, with long hairs at the middle and short ones distally. The second joint has from six to eight moderately long bristles, all of which are situated very near the rentral edge; there is a rather pronomeed gap between the posterior and the other bristles. The two posterior bristles have long, soft hairs right out to their points; the bristle that is situated nearest to them has soft, long hairs at the middle and short hairs distally; the other three or five bristles are furnished at the middle with long, stiff secondary bristles, arranged in most cases in two very distinet wreaths; distally they have short hairs. Pilosity: On the inside this limb is furnished with fine, short hairs, placed close together; the second exopodite joint has laterally a series of short stiff hairs along the ventral margin.

Seventh limb (fig. 13): - This is weak, almost of a larval structure and very short comparatively, being only about a third of the length of the shell. It is furnished with eight cleaning bristles; six of these, three dorsal and three ventral ones, are situated very close together distally, the two remaining ones are situated somewhat more proximally, one on the dorsal and one on the ventral edge. The bristle situated most distally, both among the dorsal as well as among the ventral ones, is comparatively long, the others are moderately long or rather short. The cleaning bristles are furnished with three or four bells cut off transversally

 808 K. 20. Right sixth limh, seen from wutside, $;$; 350

Digitized by Microsoft $($ ®

 phaced symmetrically on cachs side of this. The contral tooth is kong, mot puite so long as the height of the limb, and is rather pointed distally. The two proximal teoth are considerably shorter: the one situated most proximally is the shortost. being omly about a quarter or a fifth of the lengeth of the central tooth: distally they are somewhat romeded. The concavity dersally mar the cod comb hate on its dorsal edge a moduced bermeiform process.

1'rnis (fig. 14): - This is of the trpe that is characteristic of the sub-family. See the ateompanying figure for detals. A rery large gland situated rentrally in the penis has its exit on the ventral process of the pincers.

Fure at - This is of the stme trpe as in the trpe species. It differs in the two following (haracters from this as it is represented lyy (i. W. Mthlek, 1906 b . pl. III, fig. 5: all the claws are fumished with teeth; the second to the fifth teeth on claws nos. 4 to 8 are considerably coarser than the distal ones.

The upper lip agrees with that of the type species.
The rod-shapod organ (fig. 5) of moderate length, rather thick, slighty pointed distally.

The lateral eycs are, as in the case of the type species, situated somewhat above the middlle of the shell.

Female: -
Shell: - Length: $1,6-1,7 \mathrm{~mm}$. Lenght : height, about $1,75: 1$. Seen from the side (fig. -2) it show: fairly close agreement with the shape of the shell in the type species; the prineipal differences being that the eentral corner of the rostrum is somewhat more pointed and that the posteriur beak-shaped process is developed rather more powerfully; this process is only slightly smaller than that of the male and has abont the same shape. The surface of the shell is similar to that of the male. Seen frominside (fig. 3): Medial bristles: These seem to be somewhat fower than in the type species; their number seems, however, to vary rather considerably: From 14 to 26 were observed on the rostrum (the maximum number is shown in the accompanying figure); these were arranged in two ahmost parallel rows, the posterior of which, situated along the posterior edge of the rostrum, is very sparse dorsally, sometimes represented at this part by only a few solitary bristles. The bristles on the list behind the rostral incisur are considerably more sparse than is shown in the figure of the type species. On the right ralve from 12 to 14 spines of the same type as in the male were observed posteriorly on the list; of these from none to three of the rentral ones were very small. On the left valve the spines may apparently be quite absent. The bristles on the part of the list that has spines seem to be somewhat fewer than in the male.

First antenna: - This, like that of the male, has seven joints; at least in some cases, however, the fifth and sixth joints seem to be less closely united than in the other sex. The joints have about the same relative proportions as in the male and the bristles on the third, fourth and sixth joints and the a-bristle on the seventh joint also show a rather close agreement

Digitized by Microsoft ${ }^{\circledR}$

with these bristles in the mate. The sensory bristle of the fifth joint is of about the same length and type as in the male, but has fewer (six or seven) long, proximal sensury filaments. of the distal bristles the b-bristle, eontrary to what is the case in all other forms ol this sub-lamily that are described in this work, is simple, withont sensory filaments, of about the same type ats the d-and e-bristles; it is about as long as the anterior side of the fourth to the sixth joints. The c- and f-bristles are subequal and about as long as the whole antenna (about $1,1-1,2 \mathrm{~mm}$., thus somewhat more than half the length of the shell; the former has eight the latter nine or ten filaments. The g-bristle is somewhat lomger than the r - and f-bristles and has ten filaments. The distal filament on the three last-mentioned bristles is very short. the others are all of the same type: most of them rather long, fumished with up to three weak spines. The two simple sensory bristles of and "are somewhat longer than in the male. The pilusity is similat to that of the male.

Second antenna: - The protopodite, like the "x"podite, is somewhat more weakly developed than in the male; apart from this the two sexes show a very close resemblance with regard to this limb. The proportion between the joints of the exopodite, measured on the same scale as in the male, (ef. above) was as follows (the length of the specimen measured was $1,65 \mathrm{~mm}$.):

$$
\text { I : } 11: 1 H: I V: V: V 1: V 11: V 1 I 1: I X-21: 7: 4: 3: 3: 3: 2: 2: 1 .
$$

From these figures it will be seen that the proportion between the joints is about the same in both sexes, but that, as has been mentioned above, thee exopodite is, wn the whole, somewhat weaker in the female.

Mandible: - This shows an agreement in details with that of the male. All the speeimens investigated had on the posterior side of the second end opodite joint, distally of the middle, two short bristles, one situated somewhat distatly of the uther, thus agreeing with what we must regard as nommal in the males. It may be specially mentioned that the posterio-distal bristles of the joint in question are quite similar in both sexes.

Ilaxilla: - This agrees with that of the male. It may, however, be motion that the powerful posterior bristle on the first endopodite juint, which is specially characterizet in the male by being bent almost at a right angle somewhat distatly of the middle, is only weakly bent in the female; it is also relatively somewhat shorter and has moderately strong pectination distally.

Eifth limb: - Quite like that of the male.
sixtly limb: - Very like that of the male. It differs by the epipodial appendage of the protopodite being represented by four short bristles. The second axo. podite joint has seven or eight bristles ventrally, of which the four or five anterim ones are furnished with long, stiff secondary hristles, in most eases arranged in two very distinct wreaths.
seventh limb: - This is quite smilar to that of the make.
Furea: - This is of the same shape as in the trpe specien. All the elaws have semondary terth: the proximal teeth on daws nos. t to 8 , unlike these in the matre, do mot differ strikingly from the distal teeth by their size and strength.
((1.) 1ppel pl ra 1.11.) serrats.
'The ${ }^{1}$ pper lip and tha red-shaped organ are similar to these of the mate. The lat 1 eral eyes are, like thase of the type sperees, situated somewhat in front of the midhe of the shell and somewhat above half the lieght of the latter. 'Ihey are rather smather than those of the mate.

 wrhären. Immerhin unterseheiden sich beide Formen in so zahlreichen Nerknaten, auf welehe sich sunst die secundiaren Goschlechtsmerkmale nicht zu erstrecken pllegen, dal. ich mich nicht hathe entschließen können. beide in einer Art zu vereinigen, doch wird man bei weiteren Fängen die Frage der \%usimmengehörigkeit im Auge behalten miissen."

The fact that in an additional case these two forms - or rather a variety of these two forms - were calught together - there were no other species at all of this sub-gemus in this sample - as well as the rather great morphological resemblanee las convinced me that it is monst in aceordance with the facts of the case to comect the two forms in question as males and females of the same species.

Is in (: VI. Mëllele's work mentioned above C. (C.) serrata is placed before C. (C.) lepidophora, the former name must obvionsly be retained according to the rules of nomenclature.

In describing the posterior part of the shell, as seen from inside, in C. (C.) serrata (i. II. MC'LLER has obvionsly confused the right and the left valve owing to a mistake, a fact that has apparently increased the amont of difference between this form and C. lepidophora; the same mistake is repeated in his work of 1912. That there is a mistake is shown by the acoompanying figures in (5 . 11 . MéLlere's work, which show that C. (C.) serrata and C. (C.) lepridophora: like the males and females of the form described by me above, agree in this character. impossible to me that in the future we may find that it must be united with this. As a preliminary, however, it has seemed to me necessary to distinguish it as a separate form. With regard to the differences that exist I need only refer to the description and figures. A number of the differences may possibly be explained as the results of lack of accuracy and care on the part of G. II. Méluel?

Habitat: - Australia:
Cape Jaubert, N. II. Australia (type locality); at the surface of the sea; ․ VI. 1911 (coll. E. Nhöbelig): four mature males and five mature females; R. M. S.

Genus Monopia C. Claus.

Monopia, C. (Lades, 1873. Eumonopia, C. (1has, 1891 b. Cypridinu (part.), G. S. Brabs. 1865, 1897 and 1902 a; (i. IV. MÖlder, 1906b and 19I2. Cypridinodes (part.), (i. S. Braby 1902 a .

Remorks: - This genns comprises acoording to my opinion (of. above pp. 193) two sub-genera:

> Monopia ('. ('Latint

Gypritinodes (i. A. Brads.
It may probably not be convenient to work wat a diagnosis of this gemus before a dotailed re-examination of ('. (Laus' Monopia flaceole - the only representative hitherto known of one of the two sub-genera mentioned - has been carried out. I have, eonsequently, confined myself in this treatise to an elaboration of a description of Cypridinodes, the only one of these two sub-genera of which I have had material myself. A conserquence of this is that several of the characters in this description are of generie and not of sub-generic value.

Sub-genus Cypridinodes G. S. Brady.

 Cypridinodes, (r. S. Branuy, 1902 a.

Description: - Shell: - The shape is somewhat oval with a wolldeveloped posterior corner. The rostral ineisur is rather deep and narrow (G. A. Brabs's figure of ('. forus, 1902 a, pl. XXII, fig. 20, is in this respect, as in several others, quite ineorrect, a fact that I verified when re-examining the type specimen). Near the inner margin of the incisur there are two medial bristles situated close to each other. P'osterionly the list rum in an unbroken line straight across the posterior part of the shell (l have not sueceeded in finding the place where it passes into the list along the ventral margin of the shell). With very strong calcification. The forms hitherto known are comparatively large.

First antenna: - This is long, slender ant has eight joints. The sensery bristle of the fifth joint has thirteen sensory filaments. Bristle b and e in the mates are modified in the way deseribed for the sub-genus Dolorin. The distal bristles are not much longer in the males than in the fenales.

Second antenna: - The protopodite has a medial-distal bristle. Exupodite: The bristle of the second joint is powerfully developed. The matatory loristles om the third to the minth joints are quite without spines. The second to the ninth joints have basab spines. Endopodite: This is similar in males and females and is comparatively well developed, elongated; the bristle of the end joint is relatively long.

Mandible: - Protopodite: The endite on the coxale is either simplo distally. or has only a faint indication of bifureation; its spines are rather powerful, mpectably thase

 or when and they all have shom hats or are ahost bare. This joint has the bristles dorsally.
 of whith the 1 wo middte une are pewerlint. elaw-shaped and of somowhat different lengths. II axilla: Protupodite: The part ol the procosate and the coxale from wheh the three andites issue is developed as a somewhat heart-shaped appendege with an indepemdent powe of memement. The coate has dorsally a single bristle. Proximatly on the motside of the thited emdite there is a single bristle. On the boundary between the hasate and
 opeot. The reopodite is very small compantively and is displacel distally. The "ndopodito is long and marow, the first joint is very much lengthened. (The proportion hetween the length of this joint and that of the second endopodite joint of the mandible is alout 1:1. Whereas in wther species of this sub-family the proportion between the lengthe of these (wo joints is ahout :2: 3 .
sixth limb: - The second "xopodita joint is rery much elongated, becomes gradually narrower distally and has mumerous bristles: its two posterior bristles form a sort of direct contimation of the joint and are strikingly larger than the other bristles on this joint.
sceventh limh: - This is sometimes furnished with rather mumerous, sometimes with quite a few, cleaning bristles. In the former case a large mumber of bristles and in the latter case a few bristles are comeentrated ventero-distally but there is mo such concentration dorsodistally. The other bristles are seatered irregularly along the distal part of the limb: with regard to the position of these hristles it is to be noted that in only a rather few cases more than ame bristle is to be found on the same side of the same joint: sometimes (twiee in the areompanting figure) two bristles are found (hose to each other on the same joint. The end comb comsists of a moderate or a mather large number of rather strong teeth, some fairly long distal teeth. finely serrated on either side and rounded distally and some shorter and hare proximal tenth. cut off rather sharply distally. Thw part of the wall of the limb that is enclosed by the end comb is wery much thickened and powerful; the part dorsally of the end comb is developed as a large and powerful chitinized jaw-like process, which moves freely and is furnished distalty, on the side that is turned in the direction of the end comb, with a series of powerful teeth. On account of this the distal part of this limb gets an appearance very like the head of a fish. The :upper jaw", the part of this limb on which the end comb is fixed like a sot of teetl, can avidently be pressed a little downwards by the posterior longitudinal museles of the limb: a fohl of chitin. Which goes from the ,enmer of the mouth" ventero-proximally to an articulation knob sitnated somewhat below half the height of the .,head", shows the place where the bend takes place (ef. fis. 2e of M. ((.) acuminata). The compression of the .,jaws" takes place by means of an exceedingly powerful paired nusele, which rises up proximally somewhat proximally of the .llowe jaw" and is fixed distally to the wall of the limb, ventrally of the proximal teeth
in the end comb. (It seems eertain, howeyer, that the meehamism of the jaws is more complieated than is deseribed here. but cartain results with regard to this question serm impossible fo attain with preserved material; the ..lower jaw" can as has been stated above, certainly move quito freely, and, in spite of this. it is not moved by sperial museles fixed directly on it.)

Furea: - The lamellar are elongated. The mumber of claws is about fire or six. There is mo distinct division into main and secondary claws.

The "ppor lip has thee fietds of glands, ome umaired, direceted lomwavd and downward, forming a rather high process, cut off somewhat obliquety distally, and two pairol fields, directed somewhat more ventrally and situated distally on two fang-likn processes. Botworn the upper lip and the frontal organ theme is an umpared proeesis.

Therod-shaped organ is rather well developent but short.
The paired eyos are well developed.
Remarks: - The description given above is based chiefly on the form described below and M. (C.) asymmetricu (G . W. Milluer), the only species of this sub-genns which are deseriberl in detail.
 The following diagnosis is given, loe cit. p. 187: , Like (yprittine, exerpt as to the theer paits of maxillar. The first pair form a simple, clongated, triarticulate limb, which bears at its distal extremity several strongly pectinated claws and setac; to the hasal joint in attardmed a small single-jointed trisctose papp. The second maxilla is in general built like that of Philnmedex or Cypridina, but the principal masticating processes are armed with blunt nodular marginal teeth; third maxilla without the hatchet-shaped lobe of C'ypritima, which is replaceed by a digitiorm prolongation, retaining, however, something of the hatehet-shape."

A comparison will show that there is no great agreement between this (tor say the loast of it) strange description and the new description I have given above of the same unit. This lack of agreement seems, however, at least to some extent, to be due to mistakes on the part of C. S. Brabl. Thus, for instane e this anthor has overlooked the peenliar freety moneabk appendage of the maxilla from which the three endites issue. In the description of the seeond endopodite joint of the sixth limb there are akso certainly some mistakes; the two pery large posterior bristles, which are directed backwards and are closely covered with hairs, were presmmably situated so very close to each other (possibly they were also broken off distally) in Brans's preparation that they have produced an appearance something like what this author has described and reproduced (loce cit. pl. NXII, fig. 28). Whether the main toroth of the first expoodite joint of the fifth timb has the equipment described by Bras I must keave mudecided: it does not seem impossible to me, however, that there is also a mistake with regard to this.
 1906 b, p. 13.

There scarcely seems to be any reason for seriously loubting that the species desseriboct betow by me really belongs to this sulb-gemus. In spitenfmany mistakes in the deseriptiemand reproduction

bitsis of the diagnowis.
6. S. Prodlys dugunsis.

Differemmes mathe wor descriptonns.
riertachey of

 I＇nfortumate maly the shell is heft of this impertant sperimen；all the other organs are missing． I－is shan by the deariphion of the sub－gems given by me above seremal mistakes were found

 be me below．

 110 these two speries，which ate certamly very chasely related to cach other，the former is very linte known：the latter．on the other hamd，is one of the better known representations of this －ub－family：Buth of them confirm the correctness of the new description of the sub－gems I have given above．

On account of the incompleteness uf the descriptions it is impossible to decide whether athe more of the species hitherto deseribed are to be included in this gronp．

With regard to the fonction of the maxilla in this sub－gemus it may be pointed out here that the palp of this limb is cortainly to be comsidered as an important organ of locomotion，white tho modites－as is usual in this sub－family－are masticatory organs．This double function is rendered possible by the fact that the palp and the part from which the endites issue are capable of free motion independently of each other．

All the foms of this sub－gems so far known eome from the westem part of the l＇a e if ic． （The heality of the type specimen is，however，monown．）

M．（Cypridinodes）acuminata n．sp．

Description：－Il ale：－
Shell：－Length， $5,5 \mathrm{~mm}$ ．Length：height，about $1,5: 1$ ；this applies to the left walve the right one is somewhat lower．Length：breadth，about $2: 1$ ．Seen from the sidn（fig．1），it has its greatest hoight at about the middle and the posterior part of the shell is not．at least not pereeptibly，larger than the anterior part．The dorsal and the ventral margins are arched rather boldy and almost miformly and avenly，the ventral margin is，however， somewhat irregular，as it is somewhat pouting anterionly；both join the anterior and the posterior margins withont comers．The posterior part of the shell forms，at about half the height of the －holl．a rectangular，pointed comer．The rostrum has anteriorly a strongly projecting but broadly rounded comer；its rentral corner is narrowly rounded and strongly marked because the sentral part of the anterior margin of the rostrum curves inwards rather decidedly．The narrow and rather deep rostral incisur is characterized by having its posterior margin defined from the wentral margin of the shell by a rather strongly marked eomer．Seen fromabove
the shell has its greatest breadth at abont the middle; its sides are evenly and unifomly curved; the anterior and the posterior ends are of abont the same type, rather narrowly rounded. The surface of the shell has mmerons very striking and rather large pores, but has practically no hairs at all. It is almost fuite smooth, having small cavities only partly, at last anteriorly, and with fincly reticulate sculpture, especially on the rostrmo. Seen ir om inside (figs. 2 and 5): Medial bristles: On the rostrum there is a rather distinct mow formy long bristles ruming obliquely mpwards and forwads. Nost of these bristles are of about the same type as is shown in fig. 4 , in other words they are weakly bifurcated, the proximal patt on one side is lumished with rather powerfal seondary spines, the distal part having short, fine hairs. Some of these bristles are, however, more decidedly bifureated, others are puito simple; some are equipped with more powerful spines, other's are almost smooth. The ventral ones are mot attached to a verruciform swelling. This row continues into a very dense row of bristles ruming a short distance along the dorsal edge of the rostral incismr, the bristles of which become more and more short and more and more powerfully equipped the more pusteriorly they are fixed (cf. fig. 3 for the three posterior bristles in this row). Apart from this row of bristles there are on the rostrum a moderate number of what seem to be for the greater part simple and bare, short or rather long bristles, scattered both in front of and behind the row. The two bristles near the inner margin of the rostral incisur are rather short and puwerful, and, like the posterior bristles in the row on the rostrum, furnished with strong spines, fig. 3. Above these, near the joining line, there is a single very small bristle; apart from these three there are no bristles inside the incisur. On the list behind the incisur there is at dense row of long bristles, of about the same type as is shown in fig. 4 , and between these there are short, simple bristles; this row of bristles becomes more and more sparse posterionly, the bristles becoming at the same time shorter and weaker, and even at a quarter of the way along the shell it practically ceases, although a few short, simple bristles may be observed on the list along the whole posterion part of the ventral margin of the shell. The posterior part of the list, inside of the pusterior margin of the shell (perhaps it does not constitute an mbroken continnation of the list along the ventral margin of the shell; at any rate I did not succeed in observing any connection, w. the diagnosis of the sub-genus) is broad and has a dense row of abont 30 - 40 rather long spine-like formations, the exact shape and nature of which I have been umable to decide with certainty on account of the lack of material. On the part between the list and the margin of the shell there seem to be no bristles at all. On the rostrum the selvage is very narrow, extending only very slightly beyond the margin of the shell; along the ventral side of the shell, on the other hand, the selvage is very broad, and extends rather considerably beyond the margin of the shell, especially along the posterior margin of the rostral incisur - the incisur is yuite filted by it - and along the anterior part of the ventral margin of the shell; it ends posteriorly at the posterior corner of the shell. It has close, fine and unitorm cross-striation and is exen or practically even at the edge, with only a faint indication of an oxtremely fine semation.

First antenna: - Thime joint: The bristle on the anterior side is attached near the proximal boundary of the joint and is mot quite as lonse as the anterior side wf this joint; the postero-distal bristle is somewhat shorter. The anterior bristhe of the fourth joint is not

 restral incisur; 325%. 5. Posterior part of the right value, seen from inside; 10 of X.
quite half the length of the following joint, the posterior bristle of this joint is still shorter. The bristle of the sixth joint is about as long as the anterior bristle of the fourth joint, the a-bristle of the seventh joint is about twiee as long as this. All these bristles have short hairs or are almost bare; the hairs on the a-bristle of the seventh joint are very coarse, almost spine-like. The sensory bristle of the fiftl joint is about as long as the anterior side of the six distal joints. Of its thirteen sensory filaments - all of them withont secondary spines - the nine proximal ones are relatively long - about a third of the length of the bristle - and thick in comparison with the distal ones; the three following ones are considerably shorter - about a fifth of the length of the bristle - and narrower, and are attached considerably distally of the former ones; the remaining filament is very short and narrow and is attached near the point of the bristle. Of the distal bristles the e-, f-and g-bristles are subequal and slightly shorter than the anterior side of the seven distal joints, the b-bristle (measured to the point of its longest distal filament) is about a third shorter than these three. The b-bristle (see fig. 13) has five filaments. The proximal one of these (fig. 14) has no trace of any verruciform swelling distally of the sucker (such as is found in, for instance. ('. (Vargula) norcegica, see above, fig. 1.5 of this species). Of the four other filaments on this bristle the three distal ones issue almost at the same point, rather elose to the point of the bristle, the fourth is fixed somewhat proximally of the middle of the bristle. Two of the three distal filaments are bare and comparatively short and narrow, the third is long and rather powerful - extending far beyond the point of the bristle -- like the one fixed somewhat proximally of the middle of the bristle. Of these long filaments the proximal one is furnished distally with from nime to eleven, the distal one with eight or nine, small suctorial organs, proximally of which one or two verruciform spines may be found. The c-bristles has ten filaments altogether. The proximal one of these is of the same trpe and strength as the corresponding one on the b-bristle. Seven filaments are of the same type as those of the f - and g-bristles (see below) but are bare or with only a few vary short, fine secondary spines. Proximally of these seven filaments and between nos. 2 and $; 3$ of them we find two long and rather powerful filaments (of the same type as the two last-mentionel filaments ou the b-bristle), the proximal one having distally nine or ten, the distal one eight or nine small suctorial organs. proximally of which one or two short spines are found. The f-bristle has ten and the g-bristle eleven filaments of moderate length; most of these filaments (fig. 12) have two kints of secondary spines, some about two or three, strong and seale-shaped. the others short and fine; the distal filaments are either furnished only with secondary spines of the latter kind or clse they are quite bare. The simple sensory bristles d and e are subequal and somewhat less than a third of the length of the last-mentioned bristles. Pilosity: The seconel joint has numerous transverse rows of short. fine hairs on both the anterior and the posterior sides. Apart from these this antenna is bare.

Second antenna: - Protopodite: Length, about 1,6-1,7 mom. The medial-distal bristle is short, being about as long as the shorter of the proximal bristles of the first endoporlite joint; it is bare or almost so. The exopodite has about the following proportion between the joints:

```
1:11:IH:N`: \: \1: \11: YIII:N-31:6:3:3:2:2:2:2:1.
```

In enther words the first joint is mather emsiterah? henger than the total length of all the following joints, the seroud joint is about as long as the next two joints put together. The bristle of the second joint is smmewhat lenger than the eight distal joints and is furmished ventrally with about seromben or cightem strong secondary teoth, dorsally with at somewhat smaller mumber of weak and shont ones. The propurtion betwen the lemgth of the lomest matatory bristles and that of the whele exporlite is about the to two. The natatery bristles are furnished with bread. well developeed matatery hairs. The and joint has four bristles of which the dowsal ome is about as home as the total hegth of the six or seven distal joints and is lumishem with wedl deworped leng natatury hatrs. The secomd to the ninth joints have powerfal and rather lemer conical hasal spines, which derease somewhat in length the more proximatly they are situated, the ome on the second joint heing rather small, those on the lourth to the eighth joints are equal to or even exaed the length of the following joint. The endupodite is well developed and is of exactly the typermpotuced for C. (l'argula) noreegica. The first joint has ${ }^{\text {a }}$ group of four bristles proximally one of which is somewhat more than twice the length of the theer others and is somewhat shorter than the second joint; this joint has, in addition, rentrally at the middle a single bristle, which is somewhat longer than the longest proximal one. The serond joint has ventero-distally a single bristle, which is not quite as long as the end joint. This bristle, like the two long ones on the first joint, has short lairs; the three short proximal ones are lare. The distal bristle of the end joint is not quite twice as long as the endopodite. If andible (fig. 6): - Protopodite: The endite on the coxale has very mumerons spines: it is weakly bifurated distally; the two distal points are somewhat, though only rather slightly, "oarses than the other spines and like these they are smooth. Basale: This has seven bristles centrally: two a-bristles, one b-bristle, two e-bristles and two d-bristles. Of these the $a-$, b-and c-bristles are very short; the longer of the d-bristles is about as long as the second endopredite juint, the wther is about $1 / 1-1 / 3$ of this length. Of the three dorsal bristles the proximal one is attached a short distance in front of the middle of the joint and is somewhat shorter than the longest d-bristle; the longest distal bristle is about as long as or somewhat longer than the mentioned d-bristle, the other distal bristle is less than half the length of its neighbouring bristle. All three are of the same type as the long d-bristle: i. e. they have long secondary bristles arranged in irregular wreaths and have short hairs distally. The cxopodite is about as long as the dorsal side of the first endupodite joint; of its two bristles the proximal one is of about the same length and type as the shorter of the distal bristles situated dorsally on the secont protopodite joint; the distal une, on the uther hand. is very short, extending only slightly beyond the point of the exopodite, and has short, stiff hairs sitnated very close together distally. Endopodite: ()f the form ventral bristles on the first joint the two longest are of about the same type as the long bristles on the second protopodite joint, i. e. they have long secondary bristles arranged in irregular wreaths; the two others have short hairs. Second joint: On the anterior side there are a great number of bristles of different types. Some of these, about eighteen, are more or less long: among these there are some which have long, stiff secondary bristles arranged in irregnlar wreaths, distally of which there are close (as in the specimen shown in fig. 7) or

Digitized by Microsoft ${ }^{\circledR}$

 fime hairs or ate almost bare. In addition there are mmerous short deaning bristes, ath

 with very pewerfat domble distal pertination (fige !: the spimes are shown in fig. 6). (on the postarior der this joint has. in addition. somewhat distatly of the middle two bristles, both Wif the same tere bather shor, hate and spine like, ome of them situated somewhat distally of the wher. Near the posterior distal bomdary of the joint there are also two smooth, staight, -pine-like bristles (fig. 10). situated at the side of each other: the lateral one of these is about as trong as the two last-mentioned bristles, but somewhat shorter than these, the mediab one is comsiderably stronger and is about twier as hong as the laterat one. The small end joint (fig. 10) is, "spectially pesteriorly: very strongly ehitimized. Of its bristles the fwo middle ones, the main dans: are extremely powerful. but short. being only about a fifth of the length of the second mondodite joint. and ver strongly serrated along the proximal two-thirds of their kength; (for practical reasons this seration is only (tram on one of these claws in the adjoining figure); of these two claws the lateral one is rather considerably shorter than the medial one. The two anterior ones, somewhat different in length from each other, are rather considerably shorter than the middle claws, weak and quite bare. Of the three posterion bristles, all bare, two are somewhat weaker than the two anterior ones, one of them being about as long as the longest. the other as long as the shortest, of the main chaws; the third one of these bristles is very short. Pilosity: The first endopodite joint has short hairs dorso-distally; the seeond endopodite joint has posteriorly groups of short, fine hairs placed transversalty.

Ilaxilla (fiy. 15): - Protopodite (fig. 16): First endite: The hristles on the only specimen of this species I have had the opportunity of examining were defeetive, ten strong, subequal bristles of moderate length were observed. All of them were furnished with rather numerous long. stiff secondary bristles: on the two (originally there were presumably three) inner ones the secondary bristles continned right to the point of the bristles, on the others they stopped a short distance from it. Of the latter three were trifureated distally and five had a simple strong print. Of the latter five one was smooth distally, the others were furnished with powerful distal sefondary tecth. The second endite has seven rather powerful, subecfual, moderately long bristles. All of them. exeept the one next to the outermost one, seem to be furnished at the middly with long. stiff secondary loristles: the four outer ones are pectinated distally, the three inner ones are smooth distally. The third endite has five moderately powerful distal bristles. of which the outer one is unusually long, about twice as long as the next outer one; the rest are moderately long, the inner one being somewhat shorter than the others. The imer bristle has short hairs: the outer one has, along a large part of its length, rather numerous, long and comparatively Hexible secondary bristles and is extremely finely peetinated distally. The three remaining ones of these bristles have a moderate number of long, stiff secondary bristles at the middle, and are pectinated distally; the pectination on the inner one of them is, however, very weak. The proximal bristle on the outside of this endite is about half the length of the outside of the proeess and has short hairs. The dorsal bristle of the coxale is attached at about

 filament: 480 x. 13. The b-bristle on the first antenna; 105 \times. 1't. The proximal filamont on the last-mentionmi
 trim inside: l65 \because 。
 of the distal bristles on the third emtite. The bristh on the bometary between the basale and the tirst endepedte joint is rather short, about as long as the proximat bristhe on the ontside
 and is displaced distally almost to the middte of the long first endopodite joint. Of its there bristles the two distal ones are subequal and about half the length of the first andopodito joint: the proximal one is omle about a fuater of the length of the distal omes. Whe of the distal ones is sparsely fumished with long hairs, the other is hare, the short proximal one has short hatis. Findupodite: The first joint has numerous transuersal creases on its outside; one of these (reases, somewhat distally of the exopodite, seems (ox extend across the joint; it can, however, sarecty he considered as an indication of a further division of this joint. The postero-distal part of this joint is not strongly chitinized nor developed as a cutting edge. Distally this joint hats (hig. 17) two bristles on the anterior edge (denoted by x in the figure), one rather long and powerml. somewhat hent into the shape of a daw distally and having there a thick cushon of tine. sult hairs, the other considerably weaker and only about half the length of the former ome and furnished at the middle with a few long, stiff secondary bristles. On the posterior moge there are the bre bises distally (denoted by y in the figure). Two of these are of about. the same length and strength as the longer of the two on the anterior edge and are very strongly pectinated distally, the third is weak, hare and only a little more than half the length of the two former ones. The end joint (fig. 17) has thirteen bristles: Four a-bristles, of which the next to the posterior one is of about the same type and size as the two powerful posterior distal bristles of the first endopodite joint, lut with a still better developed pectination, the three others are somewhat shorter, rather weak, and bare. There seems to be no doubt that the other nine bristles on this joint are to be homologized with the groups of b) - (e- and d-bristles on the end joint of other forms of this sub-fimily which are described in this work; this homologization is made very difficult. however, by the fact that the bristles are situated bery close together and are somewhat displaced. The attempt at homologization, the result of which is seen in the accompanying figure 17, cannot be taken as quite certain, although there is a rather great probability that it is correct. If this homologization is used, these bristles are developed as follow: Three b-bristles, two of which are of the same type as the longest a-bristle, one almost as long as this bristle, the other somewhat shorter; the remaining b-bristle is only about a third (n) a half of the length of the shorter of the two former b-bristles, rather weak and weakly pretimated. Three e-bristles, the two posterior of which are subequal and also of the same type as the longest a-bristle. but not quite half the length of this bristle; the thire, the anterion one, is very short, ahmost reduced and mony weakly pectinated. Three d-bristles, subequal and -f ibbout the same type and length as the shorter of the two long b-bristles. Pilosity: The inside of the first endite has some fine hairs, the outside of the third endite has very close, fine hairs. The palp and the exopodite. on the other hand, are smooth.

Fifth limb: - Protopodite: The first endite has eight powerful bristles of moderate length. The proportion between these bristles is about what is showh in fig. 1! of C. (Varguta) noregica, but bristles nos. 3 and 5 , comnting from the anterior side of the limb,

ate mhtively somewhat homer than in this figure. These wo bristles have at the middle a few
 listally with smilar senomdary hristles heme ton armaged more or hess distimedy in wreaths. Secomet endite (tige 1s): The tive inmer bristles ate merterately long, the midde ones being someWhat shorer than the outer ones, and powerful, the posterior one being somewhat mowe powerful than the rest. On the apecimen that was investigated ly me all these bristles. except the pesterior ome. Wern fumished at the middle with ond or a fow wreathe of long, stiff secondary bristles: the postorion bristle has no sum wreath at all or only a reduced one, represented by at few shot secomary bristles (see the drawing). Bristles nos. 1 and 2 . counting from the fromt, wee almost hare distally. only furnished with a few rather weak spines; me. 3 was shaply serrated distally: no. 4 was strongly pectinated; no. 5 was fumished near the point with rather few very powerful socondary teeth. proximally of which there were some weaker ones. The bristle on the anteriur side of this process was moderately long and had short hairs. The seven bristles of the third endite are powerful and moderately long; the proportion between them is about the same as is shown in fig. 21 of $(\%$. (Vergula) norregicte. Bristles nos, 1, 3, 6 and 7. comnting from the anterior side of the limb. are furnished at the middle with a wreath of long, stiff secondary bristles. the other bristles haw no such seeondary bristles. Bristle no. 1 is weakly pectinated distally: bristles nos. 2 and 4 are strongly pectinated distally; bristles nos. 3 and 5 are sharply serrated cistally; bristles nos. 6 and 7 are very strongly pectinated distally. The distal spine of the protopodite is of moderate size, fig. 19. The epipodial plate has 71 to 73 bristles. all with long hairs almost right to their points. The exopodite has frur joints. First joint: The main tooth is composed of seven constituent teeth, which have about the same equipment as is shown in fig, 22 of (C. (Iargula) norvegica. On the posterior side of this joint close to the main tooth there is a singlo bristle of about the same length and type as this bristle in the figure mentioned of C. (Varguta) noreegice. On the anterior side of this joint there are four bristles, which have about the same position and types as in the above-mentioned species; the third, counting from the inside, is, however, somewhat shorter relatively and has short hairs or is almost bare: the two inner omes are perhaps somewhat more powerful. The second joint has three a-bristles, ten b-bristles, one c-bristle and one (l-bristle. The a- and b-bristles are somewhat more powerful than the corresponding bristles in (. . (J'argula) norregica (cf. fig. 22 of this species). The c- and (l-bristles (fig. 19) are about as long and strong as in the species mentioned and of about the same type as each other, having close long and soft hairs at the middle and short hairs distally. The third joint is very small (fig. 19), its outer lobe even almost completely reduced. The inner lobe has four bristles distally: these are rather weak, have short hairs of are almost bare: two of them are moderately long. subequal; one is a little more than half as long as these, the fourth, the outer one, is quite short. Postero-proximally this lobe has. in addition, a bristle of about the same length as the shortest of the distal ones. The outer lobe has two bristles. one of moderate length and with short hairs and one, the outer one, rery short, almost reduced, naked or almost naked. The end joint is moderately large and somewhat rounded: it has five moderately long bristles distally, of somewhat different lengthe. They either have only short hairs or one or a few of them bave, in addition, a moderate

 seen from inside; $160 \times$. 24. Left penis seen from oulside; $160 \times$ (both penes drawn as if they were semi-transparent). 25. Furca (the secondary teeth of the claws are nut drawn); atl) 26. Up11ut lip; 96
mumber of long stifl secomdary bristles at the midde. Pilosity: The outer bobe of the third exopodite joint and the end joint haver at parts solt hairs.

Six (h 1 imb (fige 20): - Protofodite: The first endite has one rather long and pewerlut distal hristle. furnished with somb wraths of long, stiff secondary bristles and in addition, with two shore phamone medial bristles. The second embte has there distal bristles; two of these are rather long and powerfin and fornished at the middle with long, stifl arondary bristles. the dorsal one with short hatirs distally, the entral one rather strongy peetinated distally: the third is very shom and bare or almost so. This condite has, in addition, two moderately long. plamons. medial bristles. The thime endite has three distal bristles, two of which are rather long and powerful, with long, stiff seeondary bristles at the middle and short hairs distally. the third is rather short and has short hairs; in addition this endite has a moderately long medial bristle, which is phmons at the middle. The epipodial appendage of the protopodite is represented by five rather short bristles. Which are bare or almost bare. Exapodite: The endite of the first joint has the same equipment of bristles as the preceding cande: the ventral distal bristle, is, howewer, somewhat longer. The seeond exopodite joint has 32 hristles rentrally (the same number on both the right and the left limbs of the only specimen that was investigated); a momber of these bristles are displaced rather far from the ventral edge up on the inside of the joint; there is no prone unced gap between the posterior bristles and the others. The two posterior bristles, as is pointed out in the diagnosis of the subgenus, are rery large, directed backwards and fumished with long, soft hairs situated close together along their whole length. The other bristles are of different lengths. some rather long, some short, and of different types. some with long, stiff secondary bristles at the middle and short hairs distally, some with only short hairs; the long secondary bristles are only weakly arranged in wreaths: the short-haired bristles are usually the shortest. Pilosity: On the inside the limb has close, short. fine hairs; the second exopodite joint has latero-ventrally only groups of extremely short and fine hairs, but distally these hairs become somewhat longer.

Seventh limb (figs. 21 and 22): - This is very long, being almost as long as the shell. Cleaning bristles: Concentrated ventero-distally there are from 17 to 20 bristles varying somewhat in length; a few of the distal ones are moderately long or rather short; then there are a few rather long ones; the rest are moderately long or short; these bristles are furmished with from one to seven bells. On one side of the limb, proximally of and near the end comb, there are two moderately long bristles situated close to each other and furnished with five or six bells. In addition there are $15-19$ ventral and thirty dorsal bristles seattered irregularly; these vary somewhat in length; sume are rather short, usually furnished with three (in exceptional cases with only one or two) bells, some rather longer, usually with five (in exceptional eases four) bells. The bells are cut off transversally distally; the tongue of the distal bell is cut off very obliquely (of abont the same type as that shown in figs. 27 and 28 of C. (Macrocypridina) castanea). Proximally of the bells the eleaning bristles are smooth. The end comb consists of eleven or twelve distal teeth and on each side of these eight proximat teeth. Round the distal half of the ., lower jaw" at about equal distances from each other there are twelve simple, conical, pointed, bare and rather long and strong teeth.

Digitized by Microsoft ${ }^{\circledR}$

Penis: - This is construeted aceording to the type that is characteristie for this subfamily. For details see the accompanying figures 23 and 24 .

Furea (fig. थo 0): - This has six claws, the five posterior ones decreasing fairly uniformly and strongly in length and strength the more proximally they are situated. All the claws are well defined from the lamella except no. 2 , which is entirely mited to this. Proximally of the elaws the furea is smooth.

Upper lip (fig. 26): - The unpaired upper glandular field is rather large and has nmmerous pegs of about equal size ($=$ the mouths of the glands). The two paired ventral ones are moderately large. The fang-like processes on which the latter are sitnated issue dorsally from two rather large, wing-like processes, which are cut transversally off distally and there (ventrally of the fang-like processes) coarsely serrated, having about twelve or thirteen teeth. (It is to be observed that no glands have their mouths on these teeth.) The outside of the fang-like processes has a dense longitudinal row of bristles at about the middle. These bristles hang down like drapery; the proximal ones of them are about as long as the height of the processes proximally, rather broad proximally, narrowing distally and most frequently split at this part; the others decrease in length and breadth the more distally they are situated on the processes. Ventrally the fang-like processes are furnished thickly with fine more or less short hairs and dorsally they have groups of short, stiff hairs as well. The upper lip has groups of short. stiff hairs proximo-ventrally as well. The protuberance dorsally of the upper hip is small.

The rod-shaped organ (fig. 11) is very short and thiek, somewhat drawn in distally, so as to seem sharply truncated with a small projecting distal knob, the point of the organ.

The lateral eyes are very large
The back of the body has strong transverse folds.
No female is known.

Remarks: - Even with regard to the shell this speeies is distinguished so markedly from the other speeies of this sub-genus that there is no danger of any confusion. In the ease of none of the species M. (C.) favus, M. (C.) Baidi and M. (C.) asymmetrica is there information of any slell longer than 3 mm ., while the species described above is no less than $5,5 \mathrm{~mm}$. long. The shape and seulpture of the shells are also very different.

The relationship between these species is impossible to decide beeause of the incompleteness of preceding descriptions.

Differences from other species.

Habitat:- A ust ralia :
Cape Jaubert (type locality); depth: 2. mo; 13. V11. 1911: me mature male (coll. E. MJörberg).

It hy wo desertptuon －f this sub－／amul！is worked ellt．

1）ficienctes on the description of the pentes Phtlomedes． Viumher of genera．

Sub－Family Philomedinae．

Maynosis：－（＇f．（i．II．Medame，loce cit．
Remarks：－＇On accoment of the comparatively small number of species of this sub－family that 1 have had an opportunity of investigating closely，it has not seemed convenient to me to give in this commection a more detailed deseription of the sub）－family than the one quoted above，worked out by（ i ．W．Ml＇LLERR．Sueh a deseription would，in any case，be very uncertain beeaus of the uncertainty and incompleteness of the diagnoses and descriptions of the forms hitherto given．

I natural consequence of this is that several of the characters that in the present treatise are inchuded in the deseription of the genus Phitomedes are certain to be characters of the sub－family．

Five general of this sub－family have so far been established viz．：
Philomedes，W．Lilluelbork，1853，
Pleosehismu，G．S．Brady，1890，
P＇seudophitomedes．（i．W．M＇tLLER，1894，
Tetragonedon，G．S．Brady and A．M．Noradi， 1896.
P＇aramekodon，．．，．．，．，．．．，．，，，
In his symoptic work of 1912 G． \mathbb{W} ．MuLLER approves of only two of these five genera， viz．Philomedes and Pseulophilomedes．The genera Pleosehisma and Tetragonodon are in this work included under the genns Philomedes；Paramekodon is identified with Pseudophilomedes．

Unfortmately the descriptions of the species that are included in the genera Pleoschisma and Tetragonodon are very incomplete and presmably partly incorrect．It seems to me rather probable，however，that this procedure of G．W．MúlLER＇s is to be considered premature at least in one point．As far as I can see at least the species included under Pleoschisma represent so different a type that they must be dealt with as a special genus．With regard to Tetragonodon it does not seem impossible to me that it must be regarded as a special unit，perhaps as a sub－ genus of the genus Philomedes．These questions can，however，only be decided after a renewed investigation of these forms．－In the identification of Paramekodon with Pseudophilomedes Míllek certainly is correct．

Oecology of reproduction：－With regard to the phenomena connected with the repro－ duction nothing at all is known about the species described under the names of P seudophitomedes， Plensehisma and Tetragonodon．

The reproductive oecology of the genus Philomedes（sensu meo）has some very interesting peculiarities to show．

In the following exposition of some of these phenomena in the last－mentioned genus attention will chiefly be paid to a single species，Ph．（Ph．）globosa（IV．Lilldeborg）．This seemed convenient to me partly because of the great part this species has played in the investi－
gation of this problem, partly because this species was the only one of this genus of which there was ample material at my disposal.

I shall first give a résume of the history of the investigation of this species with a few remarks about other species.

The female was described in 1853, p. 171 by \mathbb{W}. Litlireborg and was placed by this anthor in the previonsly known genus Cypridime. In the same treatise, p. 176, an additional new Cypridinid was described. which had been found at the same locality as the former one. On account of the far-reaching differences that this form showed from all other species of this group then known to this author, it was established as a representative of a new genus, Philomedes.

In 1865 (i. O. SARs, pp. 109 and 110, gave ('ypritine globosa as a representative of a new genus, Bradycinetus. At the same time this author gave some interesting oecological information about this species. On pp. 111 and 112 in the work mentioned we read as follows: „Jalmindelighed har jeg fundet Borsterne paa de nedre Antenner, saaledes som de ogsaa ere fremstillede paa Lillueboras Figur, meget korte, aftagende i Laengde mod Spidsen samt ucilierede. Kun hos enkelte Individer, der forresten i et og alt stemme med de andre, finder man den maerkelige Afvigelse, at de til de 5 sidste Led faestede Borster ere saerdeles staerlit forlaengede og altsaa skikiede til Svomning. Herpaa blev jeg forst ganske ved et Tilfaelde opmaerksom. Blandt en Del Exemplarer, jeg havde staaende i et Glas Sovand saa jeg nemlig til min Forbanselse, et Individ pladselig opgive den traege krybende Beraegelse, som jeg ifolge de nedre Antemers Bygning lavde anseet som den eneste mulige for denne Slaegt og med en eiendommelig rullende Bevaegelse gjore en kort Udflugt op fra Bunden af Glasset. Ved Undersogelsen af dette Exemplar befandtes som jeg havde ventet de nedre Antemer forsynede med lange fjaerede Svommeborster. Paa Grund af denne Ulighed troede jeg, at Exemplaret muligens kunde vaere en Han, men fandt ikke dette bekraeftet ved den anatomiske Undersogelse. Senere har jeg blandt mine Spiritusexemplarer fondet flere saadanne for Sromning skikkede Individer og har overbevist mig om, at de ligesaavel som de med korte Borster forsynede ere Hunner. Heller ikke er denne Ulighed afhaengig af Alderen, da jeg saavel har fundet unge som aeldre Individer paa denne Maade udrustede. Fuldkommen lignende har jeg ogsaa fundet Forholdet has folgende Art." (= Philomedes (Ph.) Lilljeborgi) "Hos enkelte Individer, som jeg, uagtet jeg ikke har kunnet opdage nogen tydelige Copulationsorganer, maa anse for Hanner, vise disse Organer endnu en macrkelig Eiendommelighed, idet den kortere Gren (Bigrenen) er betydelig store end hos Hmmerne og forsynet med et langagtigt mennbranost med 2 korte Borster forsynet Endeled, der aldeles mangler hos Humnerne."**

[^43] foumd, though ratels. hohl in the mud of the boltom and in the phankton.

In Lsiat the same amher put forwand the motable supposition that Bradyerinetus globosus
 Pho globusps. Thas, mecording to the statement in this work, this species has two kinds of males, Ph. (Ph .) longieornis and the form that is distingished from the femakes by a powerful development of the endoperde of the second antema, and two kinds of females, those with shon and those with long matatory bristles on the exopodite of the second antemna. - This anther wherved the same conditions in a closely-related speeies. P 'h. (Ph.) Lilljeboryi.

It is certainse trme that for a short time Bradyeinetus globosus and Philomedes (Ph.) longionmis were still looked upon as belonging to two separate genera, as, for instance, in (2. A. BRam : work of 1871 , which is exceptionally inconsistent in dealing with this problem; the reasons in support of G. O. Surs's supposition were, however, so strong that this author's view that we are concerned with males and females of the same genns and even of the same species was very soon completely accepted.

In his large monograph on the 0 stracods of the Gulf of Niples C. W. Mutumer at the same time as he affirms the union of the genera Bradycinctus and Ihilomedes, puts forward a now view with regard to the dimorphism that (G . O. Suss had pointed out among males and females. On this MCleser writes, p. 187: , Die Fragen, die sieh nach dem Gesagten an Philomedes knüplen - Zusammengehörigkeit der Gattungen Bradycinetus und Philomedes, Existenz von zweierlej o bei B. - beantworten sich an der Hand der Entwieklungsgeschichte, resp. mit Huilfe von Zuchtversuchen sehr einfach dahin, daß 1) Bradycinetus als of oder als Jugendform zu Philomedes als ô gehört ; daßٌ2) die Individuen mit kurzen Schwimmborsten lediglich Jugendstadien der ó oder \& mit langen Sehwimmborsten sind.

Die Beobachtungen, anf welche jeh diese Siitze griande, sind liurz folgende. Es gelingt. aus typischen Bratyeinetus die of von Phitomedes zu ziehen, oder umgekehrt: die ò zeigen bis zum Eintritt der Geschlechtsreife in der Schale, sowie im Ban der 1. Antenne und der Freßwerkzouge durchans den Charakter der geschlechtsreifen of. (In der Gestalt des Nebenastes der 2. Anteme und in der Pigmentierung des Auges bereiten die letzten Stadien des of bereits dir secumblaren Geschlechtsmerkmale vor, was Shis in der oben citierten Stelle veranlaßt, von $\hat{0}$ von Bradycinetus zu sprechen.)

Fïr den zweiten Satz vom sogenamnten Dimorphismus der of will jeh folgende Beobachtungen geltend machen. Nie ist es mir gelungen, bei einem Weibehen mit kurzen Schwimmborsten

[^44]Eier oder ein entwickeltes Receptaculum seminis zu finden (auch sids erwähnt nichts von Viern); stimmtliche Jugendformen von Philomedes, vom 1. Stadium begimend, haben kurze Schwimmborsten. sind unfähig zuschwimmen; verschiedenfach habe ich ans Thicren mit kurzen Schwimmborsten \& mit langen Schwimmborsten gezogen. Was Sips zu dor Annahme eines Dimorphismus geführt hat, ist wohl der geringe Cröbsenunterschied zwischen den geschlechtsreilen Thieren und den letzten Jugendstadien und weiter der Umstand, dab man die Jugendstadien viel häufigrr erhält als die gesehlechtsreifen Thiere."

These statements of G. W. Milleme's are based on investigations cartied out on the thee species Ph. (Ph.) interpuncta (W. Ballis), Ph. (Ph.) aspera (i. W. Mitlusia and I'h. (Ph.) levis (i. W. Muller, all oceurring in the Mediterranean.

Afterwards this writer investigated very carefully the species that formed the basis of G. O. SARs's statements, namely Ph. (Ph.) globosa. The exccedingly interesting results of this investigation were given in a small essay of only five pages. found in ,, Mittheilungen ans dem naturwissensehaftlichen Verein für Nen-Vorpommern und Riigen in Greifswald", 1898. In this essay we read as follows, pp. 42, 43: ,Y/a meiner groben Ueberraschung fand ich bei einem der ersten Thiere, das ich untersuchte, Eier im Brutraum und an der ‥ Antenne kurze Borsten - also ein geschlechtsreifes Weibchen mit kurzen Schwimmborsten, danoben andero mit langen Schwimmborsten. Ich glaubte Sus Unreeht gethan zu haben, war einigermaßen begierig, die Beziehmgen beider Formen zu einander kennen zu lernen, die ja selır mannigfaltig sein konnten, vielleieht waren diese Weibehen mit kurzen Bursten Eier producirende Larven; hatte man es mit einem Fall von Pädogenesis zu thun, oder handelte es sich wirklich um einen Fall von Dimorphismus? An so viele Möglichkeiten ich auch nach der ersten flichtigen U'ntersuchung gedacht hatte, die Lösung, die sich bei genanerer Untersuchung ergab, ist mir zunächst nicht in den Sinn gekommen. Diese zeigte, daß bei den fraglichen Weibehen die Borsten der zweiten Antenne nicht von Haus aus so kurz waren, daß sie vielmehr naehträglich abgebrochen oder abgebissen waren. Um cine zufällige Verletzung konnte es sich dabei unmöglich handeln: Bruch einzeher Borsten war iibrigens selten; bei den fraglichen Thieren waren die Borsten stets in ganz bestimmenter Entfermung von der Spitze des Außenastes metwa in gleicher Höhe abgeschnitten. Da die große Mehrzahl der gesehlechtsreilen Wejbehen (vergleiche die unten gegebenen Zahlen) in dieser ganz typischen Art und Weise verletzt waren, scheint ein Zufall vollständig ausgeschlossen.

Son den Larven unterschieden sich die fraglichen Weibchen im Bau der zweiten Antenne dadurch, daf eimmal die Schwimmborsten nicht spitz, sondern stumpf, gerade abgeschnitten endigten, daß ferner dic Borsten der 4 letzten (ilieder deutlich gefiedert, nicht wie bei den Larven mngefiedert waren."
G. WV. Mülleli subjected a material amounting to 197 specimens to a careful investigation. During this he discovered:

114 larvae with short natatory bristles"
21 sexually mature males

The sexually mature females with long, mbonken natatory heistles had no egges at all in the brooel chamber.

Of the sexmally mature females with shod, broken matatory bristles
:3: han e"ers in the hrood chamber
1.5 had no

On the hasis of these facts this anther makes the following statement, pp. 43, 44: .. Id kann da natïrlich nur Vermuthmgengehen, glanbe aber, daß die folgente Hypothese eimmal mit den Thatsachen wohl verembar, auch sonst einige Wharscheinlichkeit für sich hat: Nach der letzten Haintung, mit der das Weibehen die langen, gefiederten Schwimmborsten erhält, thumelt es sich frei schwimmend im Wrasser bis es ein Männchen trifft und begattet wird. Darauf hegiebt sich das Thier danemd anf den Grund, um in Sand und Schtamm grabond seme Nahrung zu suchen. Die Sehwimmborsten haben ihren Dienst gethan, sie sind bei der unterirdischen. grabenden Lebensweise in ganzem Umfang nur hinderlich, - so werden sie zum größten Theil entfernt, vermuthlich mit Hiilfe des ersten Thoracalbeines (sog. 2. Maxille) abgebissen (dafïr spricht die Länge der Stmmel). Nach dieser Auffassung wären die Schwimmborsten der Weibehen vergleichbar den Flïgehn der Geschlechtsthicre der Ancisen und Termiten, welehe bekanntlich ebenfalls nur zum Hochzeitsflug dienen, nach der Begattung abgeworfen werden."

He then adds: . Wie steht es mum eigentlich mit dem von Suss behaupteten Dimorphismus, hat er Larven oder verstimmelte Weibchen als solche mit kurzen Borsten angesprochen. Unzweifelhaft beides, dem daß ihm Larven vorgelegen haben, erhellt aus seiner Beschreibung der Borsten, tic er als ungefiedert bezeichnet; andererseits miissen ihm auch verstiimmelte Weibelen vorgelegen haben, da or sonst nicht die fraglichen Thiere mit aller Bestimmtheit als Weibchen hätte ansprechen können."

Finally this writer states in this treatise that among the six species of the genus Philomedes that he had had an opportunity of investigating Ph. (Ph.) globosa is the only one in which females with broken natatory bristles are found.

When about ten years later, however, he investigated the Ostracod material from the "Dentsehe Sïdpolar-Expedition, 1901-3" he found the same oecological peculiarity in another species of this genus, Ph. (Ph.) ussimilis (i.S. Brady, which oceurs in the Antarctic. This find caused him to make the following statement, 1908, p. 89: "Uberraschend ist die Tatsache, daß wir denselben Gewohnheiten bei zwei Arten begegnen, von denen die cine die Arktis, die andere die Antarktis bewohnt, daß in den zwischenliegenden Gebieten Formen mit ählichen $G e w o h m e i t e n ~ f e h l e n, ~ w e n i g s t e n s ~ k e n n e n ~ w i r ~ k e i n e, ~ w a s ~ a l l e r d i n g s ~ n i c h t ~ v i e l ~ b e w e i s t . ~ D o c h ~$ diurfte es sich hier nicht etwa un eine Konvergenzerscheinung handeln, vielmehr um ein Erbtcil einer gemeinsamen Stammform. Ich betrachte Philomedesbrenda." (globosa) ,,(die arktische Form) und Ph. assimilis als die nächsten Verwandten, besonders mit Rücksicht auf den Bau der Furca."

In his essay quoted above G. W. MUllek does not touch on the important question whether Ph. (Ph.) globosa had really been found swimming freely in the plankton. Perhaps this writer did not know of any statements with regard to this. - Statements in this dircetion, though only very ferm; were, however, to be found in the litorature even before this author put forward his hypothesis quoted above. Thus G. O. S.lRs writes, 1865, in his work mentioned
above, p. 108: ., et enkelt Exemplar" (of Ph. (Ph.) longicomis, consequently a male) „togtes ved Lofoten ganske naer Overfladen af Vandet".* - W. Lilldeborg mentions, 1876, p. 4: ..Några hanar hafva tagits i hafsytan vid $79^{\prime \prime} 56^{\prime} \mathrm{N}$. och $15^{\circ} 0$., hvilket utvisar, att dessa med sina mera ïn honomas utbildade simorganer äro rörligare än de sednare, och sannolikt ofta simma upp till hafsytan, då deremot honorna hålla sig vid Jottnen".** - Finally C. W. S. Alriviluits in his work of 1896 states that this species (he does not say whether there were only males or both males and females) was taken in the plankton in Baffin's Bay during July.

By the investigations earried out by the "Conseil permanent international pour l'exploration de la mer" this species - like a few others of this genus as well - has been observed in the plankton on several oceasions. C. APstern, who in 1911 made an analysis of the plankton tables founded on these investigations, arrived at the following results about $P h$. ($P h$.) globosa, pp. 168 and 169: „Es ist zu erwarten, daß die Art nur während der Zeit der Fortpflanzung mit Planktonnetzen erhalten wird, in der iubrigen Zeit. da sie auf dem Boden lebt. gar nicht, oder höchstens dicht uiber dem Boden.

So fand sich dieser Ostracode 1907 II. \dagger Sc. $\dagger \dagger 23 \dagger \dagger$ mur in 138 m (Boden), 1903 VIII. D. N. 9 nur in $450-300 \mathrm{~m}$, vermutlich näher an 450 als 300 m . Sonst fand die Art sich nur noch im Mai, in Planktonfängen. mit Ausnahme des östlichen Skageraks:

Abgesehen vom ästlichen Skagerak und den beiden oben angeführten Fällen fand sich Philomedes Brenda ,,(globosa)" nur in Mai im Plankton von den Faeröer bis in das südliche Kattegat. Die Fänge im Ocean im April-Juni ergaben Exemplare der Art nur in Oberffächenfängen. In der Norwegischen Rinne und dem westlichen Skagcrak fand die Art sich in allen Maifängen an der Oberffäche. einmal außerdem in 430-100 m (D. N. 9), also wohl dieht uber dem Boden oder während des Aufsteigens zur Ober fäche resp. des Niedersinkens zum Boden. Im östlichen Skagerak war die Art fast stets in oberflächlichen Schichten zu treffen, im Kattegat mit seinen meist geringen Tiefen hauptsächlich an der Oberfläche, naturgemäß auch in dazwischen liegenden Wasserschichten.

Phitomedes Brenda ,,(globosa)" wird also von April bis Juni an die Oberfläche des Meeres steigen, um sich $2 u$ begatten. Eıne Ausnahme von dieser Regel finden wir im östlichen Kattegat, ob es sich dort im Februar 1904 auch um reife Tiere handelt, mïßte erst festgestellt werden; von

[^45]

1/! tmecel!g刀funs it Ph. I Ph.l glubusa. The samples jrom the bintom
 Harz 1906 gilt dassothe fatls nicht schon in Mär\% das Antsteigen begimnen sollte. Gegen das Anfsteigen zum Zwerke dor Begatang im Fobraar sprechen die ibrigen Untersuchmgen. Bs kännte *ich anch um das Aufteigen unmifer Exemphare infolge besemederer hadrographischer Vorhailtnisse hamdeln: solehe tinde ich aber fiir Febram $190+$ nicht: es könnte sich ja anch mur um Aenderungen des Wiassers dicht iiber dem Boden handeln, da die Tiere aní dem Boden leben."

In the phankton tables ol the .. Conseil permanent we.". there is no information ahout the ses of the specimens eaptured and consequently there is not in C. APswes's either any information as to whether temates of this species are to be found in the plankton or whether
 reforred to finds of males ontr: C. Apstern himself had evidently no opportmity of investigating the material on which the plankton tables in question were based.

The collection of Ostracods in the Swedish State Musenm comprises partly very abundant material of Philomedes (Ph.) globose (about a hundred samples amounting to many thonsand specimens: most of these speeimens had been captured at the bottom, but also plankton samples occur). partly representatives of fonr other species of this genus, viz. the Scandinavian Ph. (Ph.) Lilljporgi and the Antarctic Ph. (Ph.) rotunda, Ph. (Ph.) Eugeniae and Ph. (scleroconcha) Appellofi. This material has been subjected to a very careful investigation by me.

My investigations of Philomedes (Ph.) globosa gave the following results:
To begin with some bottom samples of this species from different parts of the year were examined. The results of these investigations are shown in the following table:

					Matur 33	Firs larval stage.	Second larval stagr.	Third Iarval slage.	Fourlis luval stag".	$\begin{aligned} & \text { Fifth } \\ & \text { larval } \\ & \text { stage. } \end{aligned}$
Jannary .		9		2	1	4	7	1		
Februar	1	4	1							
llareh.		5		\because	2	19	4			
:	3	7		5	3	9	5			
..	-	9	$\stackrel{ }{2}$	4	1	4	2			
Sth April		12	7	5		18	14	1		
16th ..		15	3	3	1	24	15			
-2nd May	t	15	6	2		10	8	2		
sth Jume	3	10	s	-		13	8			
Sth July	-	8	\because			10	6			
Angust		9	12	2	7	15	5	3	2	
	\because	20	4	1	2	18	7			
7th sept.		3	2			13	3		3	
3ith .,	1	10	3		2	\%	10	21	8	3

The samples on which this table is based were taken at Spitzbergen and Greenland, thus from two places with rather similar external physical conditions.

It must be pointed out here that the figures in this table state only how many specimens were closely investigated by me. They must, on the other hand, by no means be considered as statements of the approximative proportions between the eategories of the table. The samples in question were certainly rather incomplete; they had - if I am not mistaken - not been collected for quantitative investigations. In addition it may be mentioned that in some cases only a portion of the individuals found in the samples were investigated.

Several hundred additional specimens of this species from other samples were investigated. As, however, these investigations did not give any results beyond what are already shown in the above table, they were not included in it.

Maturefemales: lu the first eolumn of this table are inchuded such females as have no eggs in the brood chambers, have very small eggs in the ovaries and have their natatory bristles on the exopodite of the second antennae broken off. They are specimens that evidently had recently laid a hateh of eges. This is shown by the fact that the posterior parts of their bodies are pressed forward in the same way as in the females in whom the brood chambers are filled by the voluminous collections of eggs. - In the seeond eolummare included females whose brood chambers are filled with eggs; these eggs are often of rather different sizes in females of the same sample; the ovaries of these females contain very small eggs and their second antennac are distinguished by having their natatory bristles broken. The majority of the sexually mature females often seem to come into this category. - The females of the third column have no eggs in the brood chambers, have eggs in the ovaries and have the natatory bristles of the second antennae broken off. These females are distinguished from the females in the first column by not having the backs of their bodies pressed forward as in the females with their brood chambers filled with eggs. The eggs in the ovaries of these females are more or less developed, often very small. - The females in the fourth column are also without eggs in their brood chambers, the posterior parts of their bodies are not pressed forward as in the females of the two first eategories; they have very small eggs in their ovaries and are characterized by long (unbroken) natatory bristles on their second antennae.

Mature males: These were always very rare in the bottom samples of this species stored in the S wedish S tate Museum. They were quite absent from about eighty per cent of all the bottom samples of this species investigated by me. The same state of affairs has been observed by the preceding writers, both with regard to this species and other species of this gemus. Thus, for instance, II. Lilluebora writes with regard to Ph. (Ph.) globosu, 1853. p. 177, that among a very large number of females he observed only a single male. (i. O. SiRs, $1865, \mathrm{pp} .108$ and 111 says about this species that while females vecur in very great numbers. males are always extremely rare.

Larvae: Among the specimens of the first and second larval stage that were investigated by me the females and males were about equal in number.

All these lats strongly smport the eorreetness of the aboverghoted heponthesis put

 sable protably are to be interpreted in the following way:

1) The females of the fourth column represent specimens which have either not yet had their phanktomic period, in other words have not pet been iertilized or else have just finished it.
2) The females in the third colmm are somewhat older; they have just definitely returned to a life of creephing and digging in the mud of the bottom owing to the breaking off of their matator bristles on the second antemate.
3) The femates in the second column are still older; eggs had been pressed out into their brood chambers for further development there.
4) The females in the first column are the oldest; their brood chambers had just been emptied.

The fact that the eggs in the ovaries of the females of the third colmm were often very small indicates that the natatory bristles are probably broken off fairly soon after fertilization.

With regard to the breaking off of the natatory bristles on the exopodite of the second antema it is, as G. W. Mr'bLER has pointed out, quite mpossible that this is a case of accidental mutilation. This is supported, not only by the reasons given by this author, but also by the fact that the points of the bristles on the second to the fifth exopodite joint on this antema are practically never broken, although they are very fine and although these bristles are often somewhat longer than the broken natatory bristles on the following joints. - With regard to the way in which the long natatory bristles are broken off nothing can be decided with certainty. It does not seem improbable to ne, however, that G. W. Merlube's assumption that they are bitten off is correct. An investigation of these bristles on the females of the fourth eategory gave a negative result; no structural alteration could be observed in the region where the breaking off takes place.

What happens to a female after her brood chamber has been emptied?
It is perhaps too soon to give an opinion on this question. But it seems to me not improbable that they die rather soon afterwards. This is indicated by the fact that no moults seem to occur in the species of this genus after sexual maturity is attained. (Our knowledge in this respect is. however, very limited; cf. G. W. MULLER, 1894, p. 188.) Without any moult followed by a regeneration of the natatory bristles of the second antenna, it is, of course, impossible for these females to accompany the males when they soar aloft in the plankton. The possibility of fertilization during a continued life in the mud of the bottom is, of course, not exchuded, but does not seem very probable. Nor is it impossible that a sufficient quantity of sperm remains in the receptacula seminis for the fertilization of a new hatch of eggs. Nor, of course. is the possibility of a parthenogenetic development of the eggs in the ovaries fully

[^46]
Digitized by Microsoft ${ }^{\circledR}$

excluded. The last-mentioned possibility secm, however, rather improbable because an attempt at parthenogenisis that was carried out by G. W. Me'tLelz on a female of a nearly related species, Pl. (Ph.) interpuncta, had a negative result. (Cl. G. W. MÜLler, 1894, p. 175.)

The males seem to die fairly soon after copulation. - This is supported by the two following cireumstances: 1) Among the larvae the males and the females are found in about equal numbers, as has been pointed out above. Among the sexually mature specimens, on the other hand, the females predommate very strongly in number over the males, the latter being in most eases very rare. (I speak here of the bottom samples.) It does not seem probable that this scareity is due to the fact that the mature males more frequently avoid being captured in the dredge owing to their greater rapidity. 2) The most important reason in favour of this assumption is, however, that when the males reach sexual maturity, their jaws are very much reduced, they become quite unfit for dissecting food - ,,welehe beim Eintritt der Gesehlechtsreife unfähig werden, Nahrung aufzunehmen", G. W. MUlller, 1894, p. 188. G. W. MÜllab investigated, 1894, the stomachs of sexually mature males of this genus and found them empty. The same was also true of the stomachs of the male specimens of P. (Ph.) globosa investigated by me.

Another important result shown by the above table is that no clear periodicity can be observed in the appearance of this species:

1) Hature females with emptied brood chambers, the oldest specimens, were found in February, Mareh, May, June, July, August and September.
2) Mature femates with their brood chamber filled with eggs were found in all months. from January to September.
3) Mature females with broken swimming bristles on the second antemat and the eggs not yet pressed out into the brood chamber from February to September.
4) Mature females with long, unbroken swimming bristles on the second antema in January, March, April, May, June and August.
5) Mature males in January, March, April, August and September.
6) Larvae in the first and second stages were found in all months from January to September except in February.

It is to be noted here that the only February sample that I had aceess to was very poon: it contained only the six specimens given in the table. This deficieney in individuals is eertainly. to be explained by the incompleteness of the collection. The sparse oceurrence of young larvae in most of the samples investigated is certainly due to the same cause.

Unfortunately there were no samples from the last three months of the year. It seems. lowever, quite certain that all the eategories mentioned are to be found also during these months.

The fact that mature males. which - as has been pointed out above - cortainly live only a short time after the last larval moult, and females with long natatory bristles on the second antenare are to be found during all parts of the your definitely indicates that this species has no limited period for copulation; on the contrary, this fact makes it very probable that copulation takes place at all times of the year. Another consequence of this fact is, wf romese, that this species is to be found in the plankton during the whole rear.

This reanlt is wbemusly defintely "pposed the the vew quoted above as bemg put lomand he ('. Apspan, 1911, that Ph. (Ph.) globose has a single planktonic copmatien period limited (1) the months of April. May and June.

On aceome of this 1 carried ont new investigations concerning this problem. In the first phacel investigated about a humed phanken samples, taken during damary, February, May and July at skager Rak and Cattegat by the investigation vessel, ,skagerak" for the ...wedish Hyelrographical Biological Commission". Secondly the plankton tables published ly the .. Conseil permanent international pour l'exploration de la mer", on which C. AP'SAEIN had fonnded his view, were subjected to a renewed and careful investigation.

The results of the first investigation seemed to support the view put forward by APs'rein. In all the samples from Jamary, February and July this species was quite absent. Only in a few samples from the month of May; consequently within the period suggested by Apstein, did I succeed in finding it. Both males and females were discovered. This is interesting because the literature so far published does not clealy show whether both sexes are found swimming freely in the higher layers of the water. The results are shown in the following table:

	Surfare	20 m .	25 mm	A few metres from the botion
Outside Varberg $\text { s. } 1.1912,11-12 \mathrm{p} . \mathrm{m} .$	213.1 ¢	0	$33^{3}: 2$	$3330 \cdot 2$ ¢
Outside Varberg 9. V . 1912. $1-2,30 \mathrm{a} . \mathrm{m}$.	(68 0, 1	10 j	$1)$	65 j. $1+$
At Anholt	${ }^{1}$	11	1	20
28. 1. 1912, 1,30-1,50 a. m.				

The small number of females seems to indicate that the females return to the bottom more rapidly than the males.

The following are the results of my re-examination of the plankton tables published by the "Conseil permanent":

Philomedes (Ph.) globosa is stated in these tables to have been caught at the following stations on the following occasions: (The same terms are used in my work as those in these tables: cc means very common, c common, $\psi_{\text {, , }}$ either common nor rare", r rare, or very rare, - means that the species was not fornd).

1903: May: Da 7 , lat. $57^{0} 52^{\prime}$ N., long. $11^{\circ} 18^{\prime}$ E., depth to the buttom $=87 \mathrm{~m}$.
‥ V.. $1^{\text {h }} 10 \mathrm{a} . \mathrm{m}$. - 2 h $20 \mathrm{a} . \mathrm{m}$.
$75 \mathrm{~m} .-45 \mathrm{~m} . \mathrm{rr}$.
65 , - 0 .. +
10 , - 0 , ri.
$0, \%+$.

Da. 18, lat. $56^{\circ} 47^{\prime}$ N., long. $11^{\circ} 47^{\prime}$ F., depth to the bottom $=50 \mathrm{~m}$.

> 1. V., \&h p.m. - \& h in p. m. $50 \mathrm{~m} .-20 \mathrm{~m} .-$ 50) .. - 0 .. + 1.5 .. - 1$)$.. 0 ., r.
D. N. 9, lat. $57^{n} 52^{\prime}$ N., long. $7^{n} 20^{\prime}$ E., depth to the bottom $=463 \mathrm{~m}$.
3. V.. $7^{\text {h }}$ a. m. -10^{b} a. m. $430 \mathrm{~m} .-150 \mathrm{~m} .-$ 150 .. - 75 .. 75.. - 40 .. 40 .. 5 .. -万., - 0 .. -

1) ,, c.
sc. 16, lat. $61^{\circ} 46^{\prime}$ N.. long. $55^{\prime \prime} 50^{\prime} W^{r}$., depth to the bottom $=110 \mathrm{~m}$.
30. Y., $3^{h} \mathrm{p} . \mathrm{m}$.

$$
\begin{array}{r}
100 \mathrm{~m} .
\end{array} \begin{array}{r}
0 \\
0
\end{array}, \quad-\quad \mathrm{m} .
$$

Da. Atl. 2, lat. $62^{\prime \prime} 34^{\prime}$ N. long. $6^{n} 20^{\prime}$ W.; depth to the bottom $=115 \mathrm{~m}$.
7. V.. 10^{h} 25 a. m. - $10^{\text {h }} 50$ a. 11.
$100 \mathrm{~m} .-$. 5 5 111. -
10ヶ .. - 0 .. -
45 .. 0 . 0
0 .. IT.
August:
D. N. 9, bat. $57^{\prime \prime} 52^{\prime}$ N. long. $70^{\prime 2}$ E.; depth to the botom -468 m .
9. VIII., if $_{\text {h }}$ a. m.
$4.00 \mathrm{ml}-300 \mathrm{~m} . \mathrm{ml}$.
300 , - 0 ,
450 .. - 20..
20 ., 11 , -
0), -

1904: February:
S. 1. lat. $58^{\prime \prime} 03^{\prime}$ N.. long. $10^{\circ} 48^{\prime}$ E.; depth to the bottom 245 m .
16. II., $\mathrm{t}^{\mathrm{h}} \mathrm{a}$ a. m.

1 nO ml . 11 ml . .0) .. - 10 .. r.

11 ..

16. II. I h 40 p. m.
(i) $\mathrm{m} .-11 \mathrm{ml}$.

30 .. - 11 .. rr.
0 .. -
Mav:
$\therefore \therefore$ lat. $5 \sigma^{n} .52^{\prime}$ N. . long. $10^{\circ} 42^{\prime}$ E. : depth to the bottom - 135 m .

$$
\begin{aligned}
& \text { 10. } 1 . .4 \text { h } 10 \mathrm{p} . \mathrm{m} \text {. } \\
& 132 \mathrm{~m} .-0 \mathrm{~m} .- \\
& 13.5 \text {.. - } 60 \text {.. - } \\
& \text { (i) .. - } 0 \text {.. - } \\
& 0 \text {., } 1 .
\end{aligned}
$$

\therefore 13, lat. $58^{n} 30^{\prime} \mathrm{N} .$. long. $9^{0} 20^{\prime} \mathrm{E} .:$ depth to the bottom $=342 \mathrm{~m}$.

$$
\begin{aligned}
& \text { 12. 「.. 2 И p. m. } \\
& 250 \mathrm{~m} .-\quad 0 \mathrm{~m} .- \\
& \text {-40 .. - 100 .. - } \\
& 100 \text {.. - } 11 \text {.. - } \\
& 0 \text {.. r. }
\end{aligned}
$$

Dil. t. lat. $57^{0} 57^{\prime}$ N., long. $10^{\circ} 49^{\prime} \mathrm{E} .:$ depth to the bottom $=180 \mathrm{~m}$.

1. V.. $7 \mathrm{~h} 40 \mathrm{p} . \mathrm{m}$.

$$
\left.\begin{array}{l}
175 \mathrm{~m} .
\end{array} \begin{array}{lll}
11 & \mathrm{~m} . & - \\
171 & . . & -0 \\
101 & . . & - \\
101 & . . & -11
\end{array}\right) . r_{0} .
$$

Da. T. lat. $57^{\circ} 52^{\prime}$ N. long. $11^{\prime \prime} 18^{\prime}$ E.: depth to the bottom $=90 \mathrm{~m}$.
2. V.. $^{\text {tha. }}$ a.

$$
\begin{array}{llll}
90 & \mathrm{~m} . & -0 & \mathrm{~m} . \\
80 & \text { rr. } \\
80 & . . & -0 & . . \\
50 & \text { r. } \\
50 & . . & -0 & . \\
20 & - \\
20 & . . & -0 & . . \\
0 & 11 & -
\end{array}
$$

Da. 20. lat. $56^{\circ} 22^{\prime}$ N., long. $11^{\circ} 48^{\prime}$ E. : depth to the bottom 28 m.

1. $\mathrm{V}^{\circ} 11^{\mathrm{h}} 40 \mathrm{p} . \mathrm{m}$.

$$
\left.\begin{array}{cccc}
28 & 11 . & 20 & \mathrm{~m} . \\
28 & . & 0 & . \\
\hline 10 & . & - & 0
\end{array}\right] .
$$

Da. 21, lat. $56^{0} 67^{\prime}$ N., long. $11^{\circ} 11^{\prime}$ E.: depth to the botom 34 m .
2. V.. $4^{\text {h a. m. }}$

$$
\begin{array}{lllll}
34 \mathrm{~m} . & 15 & \mathrm{~m} . & - \\
34 & , & - & 0 & , \mathrm{rr} \\
10 & . & - & 11 & . . \\
& & - \\
& & & , & \mathrm{rr} .
\end{array}
$$

1905: May:
Dia. 4, lat. $57^{\circ} 57^{\prime} \mathrm{N}$. , long. $10^{\prime \prime} 49^{\prime}$ li. ; dopth to the loottom $=174 \mathrm{~m}$.

1. V., $5 \mathrm{~h} 40 \mathrm{~m} . \mathrm{m}$.

2. V...5月 $30 \mathrm{p} . \mathrm{m}$.

$$
\left.\begin{array}{cccc}
85 & \mathrm{~m} . & 0 & \mathrm{~m} .
\end{array}\right]
$$

1906: Frbmuary:

13. 1f., 10 h 30 a. m.
$0 \mathrm{~m} . \mathrm{rr}$.

10. II., $4^{\prime \prime} 30 \mathrm{p} . \mathrm{m}$.
$0 \mathrm{~m} . \mathrm{r}$.
May:
 $21 . V^{2}, 9^{\prime \prime} 40$ a. m.
$125 \mathrm{~m} .-12 \mathrm{~m} . \mathrm{rr}$.
Zooksio bidtan, fopsala. suprla-tid. I.

$21.1 \circ .$. h 1.5 p .1 m.
$\therefore \mathrm{HI} . \mathrm{M}$ ．
1！日年：Fobruary：

13s m．Ir．（kvidomty a bottom sample．）
リハパ：

s．l．． 10 h p ． m ．
（1 m．The abmmance not stated．

11．V．， 11 15 is．m．
430－150 m．The abmodance not stated．

13．Is．lat． $56^{n} 47^{\prime}$ N．．long． $11^{\prime \prime} 47^{\prime} \mathrm{K}$. depth to the bottom $=43 \mathrm{~m}$ ．
1．V．．万h 30 f．m．

$$
40 \mathrm{~m} .-10 \mathrm{~m} . \mathrm{r} .
$$

11 ．， 1 ．
1008：Nay゙：

$11 \mathrm{~m} . \mathrm{r}$ ．
．J1me：

9．VI．
$0 \mathrm{~m} . \mathrm{r}$ ．
In other words it was fond in phankton during the time from Angust 1902 to May 1908 in
．．Danish Seas＂（Fkager Rak，（attegat，The Great and Little Belt）
nine times during May
太kager Rak（Swedish portion）
five timos during Febrmary
four ．．：，May
North S゙ea（Cerman portion）
three times during May
once ．，Angust
North Sea（Dutch portion）
never
Sorth sea（Bolgian portion）
neser

```
North Sea (heottish prertion)
    twice during May*
    once ", June
English Chamel
    never
Athantic (Danish portion)
    once during May
Attantic (Norwegian portion)
    never
Arctic Ocean (Russian portion)
        never.
```

During this time the following numbers of stations were mvestigated:

	Fotruay	M:y	Aupust	November
"Danish Seas"	48	57	46	${ }^{61}$
Skager Rak, S'wedish portion	48	76	75	$1{ }^{12}$
North Sea, Crerman	59	$10: 3$	75	7.5
," :, Dutch	45	4.$)$	$: 36$	45
" ", Belgian	48	53	6.4	66
," .. Scottish	88	182	14:3	!1
English Chame	157	170	144	141
Atlantic, Danish portion	-	51	46	-
", Norwegian "	12	89	12	-
Aretic Occan, Russian portion	-	8	53	-

This species was thas caught during the month of February at five out of 505 stan

$$
\begin{aligned}
& \text {, :. ., ., May ., twenty }{ }^{* *} \text {., , } 834 \text {,. } \\
& \text { ". ., ". .. August ,. one .. ., 694t } \\
& \text {,., November .. none ., . } 5+0
\end{aligned}
$$

As is shown by the extracts given above lrom the plankton tables we ate concerned in most cases with finds containing a very few individuals, only on a few occasions during May and February are there more abundant finds.

It seems to be shown quite elearly from these statements that these tables camot ho ronsidered as supporting the view put forward by C. APs'TEA of a limited planktonical copulation period; the finds made are too sporadic for this.

A decided argument against this writer's view is the fact that the species was found in plankton at five stations during the month of February. It is beyond all doubt that in this case there can be no question of , das Aufsteigen mereifer Exemplare infolge besonderer hydro-

[^47]

 190h there wats an aseent to the surface of the sea from 673 m . (Stat. S. 7) and from 116 m . (Atat. A. 16). In ascent of this sort is eeptamly altogether too diffienlt for havae which have nu puwer of swimming. even if the hedrographic conditions were very menavorable!

On aeconnt of these facts and the facts shown in the lable worked out by me and given on po 3it. it seems to me probable that, is has been stated above, this species copulates during all parts of the rear.

It seems strange that Ph. (Ph.) globosu is so seldom met with in the plankton. This is -hown by the preceding literature as well. As instances I need only mention here that C. W.
 Bay (C. II. S. Alrivilidus, 1896. p. 211) and that the same writer did not find this species planktonically in skager Rak, in spite of careful studies of the plankton of this sea during several Years: the samples were taken during all the months of the year (C. W. S. Auriviluius, 1898). 1 may also here mention the fact that I only found this species in Skager Rak and Cattegat in :i few out of about a hundred samples of plankton from January, May and July (ef. p. 358).

What is the canse of this phenomenon?
This seems to be very difficult or perhaps it would be more correct to say impossible to decide with certainty at the present time. The fact that all the samples of plankton in whiel, I found this species were taken during the darkest part of the night, while the greater part of the samples which did not contain this species were collected during the day first led me to assume that the copulation of this species took place principally during the uight. This assumption seemed also to be supported by the statements of preceding writers. Thus, for instance, (i.N. Brady writes, 186 s b. p. 464 of Ph. (Ph.) interpunctu that it was ,taken abundantly in the towing-net at Cumbrae, chiefly at night time". G. W. Mưller writes 1894, p. I4 with regard to the Cypridinids: "Wenn man sic gelegentlich freischwimmend in der Nähe dop Kïstr gefunden hat, so handelt es sich dabei um cin zeitweises Aufsteigen, das vorwiegend bei N゙acht zu erfolgen scheint."

The extracts given above from the plankton tables published by the , Conseil per$1 m$ al 1101^{16} show. however, with all desirable clearness that this explanation is not correct. Tha finds included in these tables are distributed fanty equally over the twenty-four hours of the day.

It seems most probable to me that the explanation of this phenomenon is to be found, first, in the fact that the planktonic period of each individual is very short and, secondly, that, as in the case of termites and ants, with the wings of which G. W. MÜLler, as we have seen above, has compared the long natatory bristles of the second antenna of this species - the swarming individuals appear in flocks. An appearance in flocks would of course greatly decrease the chances of catching the species in the plankton nets. The idea that this species appears in flocks during its planktonic period seems to be supported especially by the samples from D. N. 9, 3. V. 1903, S. 1, 16. H. 1904, Da. 4, 1. V. 1904 and Da. 20, I. V. 1904. At all these stations this species was found abundantly or even very abundantly in a single stumple
while, on the other hand, in the other samples it was not found at all or only very sparsely. At the last-mentioned station, for instance, no specimen was found in the samples from 28 to 20 m . and $10-0 \mathrm{~m}$., only a few individuals were caught in the sample from $28-0 \mathrm{~m}$. ; in the sample from the surface, on the other hand, a very great many individuals (cc) were found.

Does planktonic copulation occur in other species of this genus besides Ph. (Ph.) globose? (otter species of thus
No investigations in this direction have as yet been carried out, but it seems rather probable that this question is to be answered in the affirmative. This assumption is supported partly by the fact that a number of other species of this genus have been found in the plankton, partly by the fact that some of the other species of this genus are characterized by the circumstance that the females with eggs in the brood chamber have the long natatory bristles of the second antenna broken in the same way as in Ph. (Ph.) globose.

The following species have been caught in the plankton: (No information is to be found as to whether females of these species have been found together with the males,)

Ph. (Ph.) Lilljeborgi:
The following finds of this species are given in the plankton tables published by the ,Conseil permanent":*

1903:
May: N. 2, lat. $61^{\prime \prime} 17^{\prime}$ N., long. $3^{0} 22^{\prime}$ E.; depth to the bottom, $3 s^{\prime} \mathrm{m}$.
22. V. $10^{\mathrm{h}} \mathrm{p} . \mathrm{m} .-12 \mathrm{~h} \mathrm{p} . \mathrm{m}$.

$$
\begin{array}{rrrr}
0 & \text { m. } & \text { c. } \\
100 \mathrm{~m} . & -0 & , & \text { c. }
\end{array}
$$

June: N. 24 , lat. $67^{\circ} 11^{\prime}$ N.. long. $10^{\circ} 26^{\prime}$ E.; depth to the bottom, 223 m .

1. VI., $10^{\mathrm{h}} 15 \mathrm{p} .1 \mathrm{~m} .-11^{\mathrm{h}} 3 \mathrm{l}^{\mathrm{p}} \mathrm{p} . \mathrm{m}$.

0 111. +
$\because 5$ 111. - 10 , -
100, , 0 , -
August: N. 2, Jat. $61^{\prime \prime} 22^{\prime}$ N., long. $3^{\prime \prime} 18^{\prime} \mathrm{E}$.; depth to the button n, 380111.

$\left.\begin{array}{ccccc} & & & 0 & 011\end{array}\right]$

1910:
At Anholt, lat. $56^{\circ} 46^{\prime} \mathrm{N} .$, long. $11^{\prime \prime} 5 \mathrm{I}^{\prime} \mathrm{E}$. (There is mo information as to depth, etc.) May: 1. I. rr.
July: 1. VIl. rr.
August: 15. KIll. rr.
November: 15. Xl. rr.

[^48]Digitized by Microsoft ${ }^{\circledR}$

1！111：
It hhe samme sation．（＇There is mo information as to depth，ote．）
April：1．IV．

These facts show that this species，like the preceding one，is as a rule very rarely fomel 10 plamben（it is to be mentioned that it is also rather rare in the bottom samples，moch mone
 and that it is fomme planktonieally at all times of the year．

Ph．（Ph．）interpuncta：
（i．A．Bkan writes lstis h，fr thet that this species was ，taken abuntantly in the luwing－net．＂

In the phanktom tables of the ，（＇onseil permanent＂this species is only mentione＇d unce：＊

1906：
 10 ml IT．

Ph．（Ph．）Macambei：

This spectes was also caught in the planktom only on one occasion by the＂Conseil りじ「111 allent＂：

19（5）：
lugust：Sc．$\overline{5}$ A．lat． $60^{\circ} 05^{\prime} \mathrm{N} .$, long． $0^{\circ} 48^{\prime} \mathrm{II}$ ．depth to the bottom， 111 m. $10 \mathrm{~m} .+$ ．
Besides I＇hilomedes（Ph．）globosa two of the species of this gemms that I have had an ＂pportunity of investigating．$P h$ ．（ $P h$ ．）rotumda and $P h$ ．（Scleroconcha）Appellöfi，were characterized by always having the long natatory bristles of the seeond antenna of the females with eggs in the brood chamber broken in the same way as is described above for the first－mentioned species．

In the case of $P h$. （Ph．）Lilljeborgi，among the specimens investigated by me，some lemales－both from Lofoten and from skager Rak－with eggs in the brood chamber had long．unbroken natatory bristles on the second antenna；most females of this kind were，however； rharacterized by having these bristles broken in the same way as in the three preceding species．

Ph．（Ph．）Eugeniae，on the other hand，always had long，unbroken natatory bristles on the second antenna in the females with eggs in the brood chamber which I have examined．

One other speeies of this genus，which is not included in this treatise，namoly Ph．（Selero－ （oncha）Folini，was investigated by me with regard to this character．In the deseription that （1．（）．Shks， 1887 ，pp． 52 and 53 ，gives of the second antenna in the female of this species we read the following statement：，2det Par Antenner hos Hunnen viser vistnok idethele samme

[^49]Brgning som hos de 2 foregatende shagter; men de ar forhokdsvis mindre liraftigt odviklede, og de til Svommegrenen laestete Borster er uabindelig kote, med Cilieringen grovere ob mindre taet. I Virkeligheden kan disse Lemmer hos Hunnen kun uegentlig kaldes Svommeantemer, da de ikke benytes til swoming, men kim som et slags Arme . . . ved Dyrets langsomme krybende Veraegelser pat Havbunden."* The drawing with which (. O. Strin illustrates this deseription shows an antema of abont the same structure as the larval one. i. e. with relatively short, mhoken bristles, well pointed distally, on the exopodite; curiously mongh in this drawing all the bristles of the exopodite have natatory hairs. From this description and figure it seemed to me probable that the peculiarity of breaking-off the natatory irristles would also be a characteristic of this species. In order to be absolutely certain on this point I wrote to Professors (i. O. Sars aud (4 . A. Brall asking for permission to investigate their specimens. Both these investigators were kind enough to send me several specimens. Among the specimens sent by Professor Liss there was only one (probably) mature lemale; this specimen unfortunately, howerer, was represented only by two empty valves. Among Professor Brabr's specimens there was a complete female with very large eggs in the brood chamber. Contrary to (f. O. SARs's statement this specimen had, on the expodite oll the seeond antema, like Ph. (Scleroconcha) Appellofi, relatively short and quite bare bristles on the second to the fourth joints: the bristles on the following joints were long natatory bristles of the same type as in the female of $P h$. ($P h$.) globosa during its pelagian stage.

What is the connection between these facts and the view put forward by G. W. Mitleri. 1908, that the peculiarity of breaking off the natatory bristles in the genus Philomedes is not a phenomenon of eonvergence, but that it is to be referred to a eommon inheritanen?

It is obriously difficult to fit them in with this theory. Philomedes (Scleroconchat) Appellafi and Ph. (Ph.) rotunda represent two types rather strongly differentiated from Ph. (Ph.) globosu and $P h$. (Ph.) assimitis: the first-mentioned species especially differs comparatively greatly from the others. In all these fonr forms the natatory bristles are broken off. In Ph. (Ph.) Eugeniae, which is certainly very closely related to $P h$. (Ph .) globnsa and Ph . (Ph .) (1ssimilis. and in Ph . (scl.) Folini. which is very closely related to Ph . (Scl.) Appellofi the natatory bristles remain unbroken thronghont the whole life.

Contrary to (I. W. MCluER's view, it seems to me necessary to assume that the peculiar character of breaking off the natatory bristles of the exoporlite of the second antema in the genus Philomedes is not the result of common inheritance but of eonvergence.

It is of course impossible at the present time to give any certain causes for this phomemenon. The following facts are, however, striking:

1) All the species (five) of this genus from warm or temperate seas that were inrestigated with regard to this character proved to have long, mbonken natatory hristles during the whole year.
[^50]The breakiug off "f the matatory hristles a. phemomemme of rancergener".
－2）Uf the six speries of this genus kiown from colder seas（Arotie and Antaretic）fom＊ ．re chatacterized be having these bristhes broken off in older females．

Thene facts indicath that rexternal，chamatio factors have perhaps cansed this pereular －ombergener．＊＊

It does but sem impussible that in the case of species which are characterized by having the matatory bristes of the second antenna mbroken throughont the whole life the femates arw imprenaled several times．The statement made－by（i．W\％．Milldik，1894，p．174，acoording ow which Ph．（Ph．）interpencta lays at least two lots of eggs，seems to me twisuphort this．

Genus Philomedes W．Lilljeborg．

 1sis b and 187．Philomedes（ of．q and juv．）a 1 torum；r．g．（i．O．Suss． 1869 and 1857：（i．W．Millem，1s94：（i．S．Brinh and A．M．Nonmoly，1896．Philomedes（part．）． （i．II．MithJ：R，191？．

W＂ith regard to the rolation of Plenschisma and Tetragomodem to this gemus rf．aloove the remark below the sub－family．

Jiugnosis：－Cf．（i．O．Sirss，1887．p．45and G．S．BRamy and A．M．Nobann，1896，p．653．
Deseription：－Shell：－This has marked sexmal dimorphism．
Fomale：－The shape of the shell varies rather considerably．The rostral incisur is uf a somewhat varying type，but is most frequently deep and narrow．The sculpture of the $\therefore u r f a c e ~ s e e m s ~ i n ~ m o s t ~ c a s e s ~ t o ~ b e ~ v e r y ~ w e a k l y ~ o r ~ e v e n ~ n o t ~ a t ~ a l l ~ d e v e l o p e d ; ~ i n ~ s o m e ~ e a s e s, ~$ （n）the other hand，it is very powerful．Seen from inside：The part of the shell between the list and the posterior margin of the shell is flattened and not curved in like a siphon，so that the two valres are near each other at this part when the shell is closed；only in exceptional cases is there any indication of a siphon：（cf．the description of Ph．（Scleroconcha）Appellofi）． Hedial bristles：These had in the species investigated by me almost exactly the same trpe： On the rostrum there was a row running at some distance from and almost parallel to the rentral part of the anterior margin of the rostrum sometimes continuing a little way along the anterior margin of the rostral incisur．Most of these bristles were rather long and finely feathered；

[^51] most posterior-rentral bristles in this row are, however. sometimes atmost rompletely smooth. Inside the imer edge of the rostral incisur, somewhat posterionly, there is a short, simple bristle. Apart from these the rostrum and the part rombl the incisur are guite without bristles. I short distance behind the incisur on a rather short part of the list there is a somewhat varying number (abont ten to twenty) of moderately long and finely feathered bristles: apart frem these the list is almost entirely withont bristles along the ventral margin of the shelt; inside the posterior margin of the shell it has a moderate number of rather short, smooth, fine bristles. Along the ventral margin of the shell the list is narrow, posterioly it is somewhat wider. The selvage is almost exactly similar in all the species of this genus that have been investigated by me. It is well developed both on the rostrmen and along the whole ventral side of the shell; on the rostrum and along the edges of the incisur it is very wide (the incisur is quite filled by it), but it is also rather wide along the whole ventral margin of the shell. On the rostrum and along the edges of the incisur it is divided by a coarse striation into narrow rectangular portions; this coarse striation gradually comes to an end, however, behind the incisur; along its whole length the selvage is also finely cross-striated; this cross-striation is, however, sometimes mather difficult to verify with certainty at rertain parts. (on the rostrum the selvage has at the edge rather fine hairs (el. fig. 4 of Ph. (Ph.) Lilljeborgi) which vary in length: on the part atong the posterion edge of the incisur and just behind the incisur there are, in addition to such short hairs. rather long marginal hairs as well, and, besides, issuing at about half the breadth of the selvage, there are often a number of comparatively long bristles. Along the ventral margin of the shell the selvage is also divided at the edge into short, fine hairs of different lengths: on the posterion part they are somewhat shorter and more equal in length than they are anterionly (see fig. :3 of I / h. (P'h.) Lilljeborgi). (In the specimens of Ph. (Steleroconchat Appellafi I have had an oppertmity of investigating the selvage was very much worn, so that all the details given here - reproduced for Ph. (Ph.) Lilljeborgi - could not be verified with absolute certainty for them.) Inside the list a part of the imer lamella of the shel] just behind the rostrad incisur is characterized by about nine to twelve striace, situated close together and rmming parallel to the margin of the shell (see fig, a of Plo. (Ph.) Lilljeborgi), With strong ealeareous inmstation. The forms are rather large or of moderate size.

It ale: - This differs from that of the female espectially by being considerably nome elongated and by having the rostral incisur considerably more shatlow and widur. The two sexes also seem to differ a good deal in length. The male shell is less strongly calcified. In thense cases in which a strongly marked sculpture is present it is less developed in this sex.

First antenna: - This has strong sexuał dimorphism.
Female: - This is relatively short and has six joints. The original fifth joint is
 uniting of the original fourth and fifth joints seems to be resy diffienlt to decide with certainty at present: judging from the situation of the bristles the original fifth joint seems, at any rate in this genus, to be very muth reducod and it does not seem impossible that it has herm ediminated. at least in some forms. an assmption that seems to be suppurten bey ermparison with the

 wherved. The propertions between the juints seem to be subjeed. only to slight variation; the conditions in the forms investigated he me were abont as forlows (the figures ate taken from measimements of l / h. (Ph .) glolusite):

$$
1_{12}^{14}: 11_{9}^{15}: 111_{3}^{4}: 11_{0}^{5}: 1_{3}^{3}: 11 \frac{1}{1} .
$$

With regard 10 the empipment of bristles on this antemat a rather slight amome of Fariation was wherved in the speries dealt with in this tratise. On ateoment of the uncertainty of the statements in the literature attention is paid below only to the eonditions in these speries that I have veritiod mrself. The second joint has three bristles, all sitmated near the distal bemelary of the joint. one amteriorly one posteriorly and one laterally. The third joint las whe bristle distally-posteriorly and a somewhat varying number (from two to four were observed) -ituated in most cases distally -anteriorly. The fourth joint has four bristles distally-posteriorly and one or two bristles distally-anteriorly. The original fifth joint is quite without the sensory bristle that is characteristic of most other genera of this family. All the bristles mentioned so fare. like that on the original sixth joint, are of about the same type: They are of the ordinary type. with short hairs distally and fumished in most cases with one or more wreaths of long, stiff secondary bristles near the middle; in some cases. oftem mot quite constantly, the long seeondary bristles may be missing on one or two of these bristles; the length of these bristles is somewhat different in different species. On the end joint eight bristles are to be observed, thas one more than on the seventh and eighth joints in the sub-family C'ypridimime. Four of these bristles are sitnated on the original seventh joint, four on the original eighth joint. The bristles on the former of these two joints are situated as follows: one is situated anteriorly, one medially and somewhat anteriorly, two posterionly. The anterior one of these bristles is of the same type als the bristles on the preceding joints. The medial one is a typical sensory bristle; it is about as long as the anterior sides of the second and third joints: it is powerfnlly anmulated proximally, the ammation becomes weaker distally and may even almost disappear; on its anterior side this bristle has a few very fine sensorial filaments, of equal thickness throughont, lyyatine or only weakly and finely amulated and bare: distally these sensorial filaments are somewhat rounded and provided with a short, fine (sensory?) hair; one or two of these filaments were (W)served near the middle of the bristle and three close together near its distal point. The two posterior bristles of the original seventh joint are of about the same type as the last-mentioned bristle, but differ from it by having a somewhat larger mmber of anterior sensorial filaments: five to seven proximal ones and four distal ones were observed. The four bristles of the original eighth joint have the same positions as in the sub-family Cipridininue. All four are subequal ()r differ nomy very slightly in length: they are about as long as the two posterior bristles of the original sevmen joint. The two that are situated elose to each other laterally are simple, rather narrow of abont equal thickness throughout, bare, rather fincly anmulated sensorial filaments as in the sub-family just mentioned. The two bristles that are situated more medially are of the same trpe as the two posterior ones on the original seventh joint: on the anterior ome of
them fonr to six proximal and four distal sensorial filaments were observed, on the posterior one three to six proximal ones and four distal ones.

Il a 1 e: - This is somewhat more elongated than that of the female; as an instane it may be mentioned that some males of Ph. (Ph.) ghobrose with shells about 3 mm. long had first antemae about $1,8-1,9 \mathrm{~mm}$. long, while on some females of the same speeies with about the same length of shell as the above-mentioned males this limb was only about $1,4-1,6 \mathrm{~mm}$. It has six joints. The original fifth joint is represented by a small, reduced part, most strongly developed posterionly (where the sensory bristle of the fifth joint is attached); it is in most cases rather elearly defined from the fourth joint (cf. the accompanying figure 8 of P / h. (P / h. .) globose), but it might perhaps, all the same, be convenient to follow (. W. Méleer and not to take this part as a special joint. The original eighth joint is somewhat displaced laterally; traces of a union between this joint and the original seventh joint can still be observed. The proportions between the joints seem to be fairly constant and about as follows; (the figures are taken from measurements of Plo. (Ph.) globosa:

$$
\mathrm{I}_{11}^{15}: 1 I_{11}^{201} ; 111_{1}^{5}: 1_{6}^{6}: V_{5}^{5} ; 1_{3}^{2} .
$$

The comparatively strong development of the end juint seems to be specially noticeable. Bristles: In this sex, contrary to the female, there is found on the part that has bren stated above to be the remains of the original fifth joint a very well-developed posterior sensory bristle. This sensory bristle seems to br developed in about the same way in all the species of this genus; it is about as long as the anterior side of the second joint, is rather thick and is strongly annulated proximally, grows very narrow distally and is very funcly annulated there or quite hyaline; on its posterior side it has, along the proximal half, very mumerons thin bare, distally rounded sensorial filaments, of about a miform thiekness throughout and ending with a short, fine hair; in most cases these filaments are somewhat more than half the length of the bristle; on the distal half this bristle has only a few sensorial filaments of the same type as the proximalones, but considerably shorter. With the exception of this bristle the second to the fifth (definitive) joints have the same bristles as these joints on the female first antenna and these bristles show in most cases about the same type in both sexes. The end joint has the same number of bristles as in the sub-family Cypridininae, i. e. seven, three of which are, as in this sub-family, attached to the original seventh joint, four to the miginal eighth joint: only one posterior bristle is developed in this sex on the original seventh joint. With regard to their types they show rather elnse agreement with the corresponding bristles in the female; in length they are, however, very dissimilar, as the anterior and medial bristles of the original seventh joint and the two laterat and the posterior medial bristles on the origimal eighth joint are rather considerathy shortenef, white the posterior bristle of the original seventh joint and the anterior-mediab bristle of the original eighth joint are very much lengthened; the two latter bristles are about an long as the shell. The number of sensorial filaments on the bristles of the end joint is often different in the two sexer.

S'econd antenna: - This shows strong sexual dimorphism.
Female: - The protopodite has nobristles. The exopodite is somewhat longer than the protopodite (exopodite: protopodite about [6--i]: i). The proportion betwern the joints is about the same in all species:

Digitized by Microsoft ${ }^{\circledR}$
$1: 11.111: 11: 1: 11: 111: 1111: 10$ appoximately $11: 11: 5: 1: 1: 1: 1: 1: 3$.
i. ". the tirst joint is somenhat longer than the total hengh of all the ather joints; the seromel jomt in about as hong as ur somewhat shorter than the total length of the thise and feurth joints. The tirst joint has venterodistally a very short, almost spindike, bare bristle. The bristles on the seeond and the third. the serond the thenth or eren the second to the filth joints are all of the same tyre and length, being about as long as the first to the thire proximal joints, .and rather powerfal, pointed, bare or harnished with short spines. The bristles on the other jointa are. with the execption of a few of the bristles on the end joint, long and pewerlul natatory brister. most of them of abont the same size, with rather long and wide matatory hairs along the ervater part of their length, without any spines, not hyaline distally nor having any structure there indicating a sensory function. The end joint has more than fome bristles, of wheh some of the dorsal-medial ones are comparatively short. Sometimes basal spines are developed, -ometimes they are not present; the end joint never seems to be furnished with any of these. The second to the righth joints are provided distally, both on the lateral and the medial sides, with a close scries of short. often rather line, hairs, those situated on the medial side being often somewhat longer: sometimes some transverse rows of short, fine lairs can also be observed on the distal part of the first joint. The a n dopodite is always small and weak, more (1) less distinetly two-jointed. The first joint is short and wide; the boundary between it and the protopudite is often difficult to determine; it is furnished with some short bristles. The socond joint is somewhat longer; its equipment of bristles varies; it always has a single bare (sensory?) bristle distally.

Male: - The protopodite is considerablymore powerful than that of the female; as an example it may be mentioned that in some mates of $P h$. (Ph.) globosa with shells abont $2,6-2.7 \mathrm{~mm}$. long this joint was about $1,1 \mathrm{~mm}$. long, while in some females of the same species with the same length of shell it was only about $0,8-0,9 \mathrm{~mm}$. The exopodite is somewhat longer than the protopodite; the proportion between it and this joint is about the same as in the female. The thiret joint or sometimes the second and third joints are rather considerably lengthened. The first joint is without bristles (always?). The bristhe on the second joint is comparatively short, being about as long as the first joint, pointed, bare or furnished with shert spines. The bristles on the wher joints, with the exception of a few wn the end joint, are long matatory bristles. The padopodite is developed as a powerful organ lor seizing the female. It has three joints, the two distal mes are very mukh lengthened, the end joint may be folded in aqainst the preceding joint. The first joint is rather slightly lengthened and has about the same equipment of bristles as in the female. The second joint has some bristles ventrally at the middle. The end joint has one bristle near the proximal boundary and distally it has two very short and somewhat sunken bristles situated close to each other. In other respects this limb agrees with that of the female.

Mandible: - This shows considerable sexual dimorphism.
Female: - This is rather long and very powerful. The endopodite is rather decidedly flattened at the sides, its second joint is only slightly narmed distally. The pro-

Digitized by Microsoft ${ }^{\circledR}$

portion between the joints seems t b be fairly eonstant; the following figures may be given th illustrate it (from a specimen ol Ph. (Ph.) globosu):

$$
\text { Pr. } 1 \frac{32}{32}, \text { Pr. } 11_{32}^{29} \text { End. } 1_{11}^{26} \text {, End. H1 } \frac{24}{21}, \text { End. } 11 I_{2}^{2} \text {. }
$$

(lt thus dilfers from the mandible in Ciypritininae especially by the relatively great longth of the first codopodite joint and the relative shortness of the second endopodite joint.) Protopodite: The endite of the coxale is moderately large but very powerful and is deeply bilurcated distally; the two main points are rather strongly chitinized, well pointed and most frefuently furnished with some moderately strong secondary spines (see fig. 8 of Ph. (Scleroconchat Appellofi); it is furnished with a moderate number of rather long and stiff hairs arranged in a few groups; in addition it has proximally laterally a single short bristle, apart from which this joint has no bristles. Basale: On the inside of the proximal half of the joint there is a group of rather short bristles, some of which are powerful; in all the species of this genus that are dealt with in this treatise this group had six bristles, three of which were powerful, furmished with powerful secondary teeth, the three others were moderately strong and had a wreath wf long, stiff secondary bristles at the middle and short hairs distally. Acattered along the ventral side of this joint there is a somewhat varying number of bristles; in the species investigated by me from six to twelve bristles were observed at this place, all of the same type, having one or a few wreaths of long, stiff secondary bristles at the middle and short hairs distally, of moderate length or rather long. Dorsally this joint has a varying number of rather long bristles, two of which are always situated distally close to each other. The ex"podite is in most cases. somewhat shorter than the dorsal side of the first endopodite joint. It is drawn out to at rather fine point and has dorso-distally a sort of cushion of exceedingly fine hairs situated chose together (the mouths of a gland). Eindopodite: The first joint has four ventral distal bristles. some or all of which are long. Second joint: (On the anterior side this joint has a number of bristles, situated in two more or less distinct groups, one of which is placed about half-way along the joint, the other somewhat proximally of this. The bristles in the latter group seem to vary rather considerably in number and type. The former group, on the other hand, had. in all the species investigated by me. six bristles, all rather long but differing somewhat in longth, the longest ones often about as long as the joint, and with one or a few wreaths of long. stiff secondary bristles at the middle and very fine, short hairs distally. Postero-distally this joint has two groups of bristles, one situated somewhat proximally of the other. Both groups eomsist of three moderately long and moderately strong bristles, about subophal and furnished with short hairs; those in the distal group are somewhat shorter than those in the proximal group. The end joint has seven bristles. In all the species investigated by me these were developerd in about the following way: The two middle ones were developed as long, powerful and somewhat curved claws, the lateral one of which - which is somewhat longer that the other - is often as long as the second endopodite joint. Of the two anterior bristles one is mather powerful. almost as strong as the middle claws but mather comsiderably shorter than these the other is weak and in most cases somewhat shorter than the first-mentioned one. The three pertertor bristles are all weak and of somewhat different lengthes, the longest one somewhat shomer than
 the previons one. The powerfal clats of the cade joint are hare, the weaker bristles of this joint are often finely peetinated.

Il a 1 e: - This diflers from that of the female especially by the reduction of the masticatory parts. It has formerly always been stated in the literature that the coxale is enterely whont ang emble. (At any rate 1 have fomed no statement that this endite exists, muless the
 bularium pars basilaris intus tuberenlo modo minimo pilis 2 brevibns obsito tut rudimento partis incisivate mandibularmm instructa." Inhisworla of 1887 G. O. S.Ws does not mention any difference with regard to this endite in the males and lemales of this genus. Thas statement of (6.0. S.uss' is repeated without any alteration by (3 . S. Brans and A. Il. Nomand in their work of 189G,
 1894 as well as sereral other writers definitely state that there is no endite on this joint.) (On the single male of this gemes that I had an opportunity of investigating, the male of I 'h. (I'h.) globuse, this process is. however, developed, but it is extremely reduced and probably without any function (see fig. 13 of the species mentioned). The medial bristles on the proximal half of the second protopodite joint are developed to the same number as in the females, but are wery weak. Other bristles too show some, though only a very slight, difference from those of the lemales.

Ilaxilla: - This shows strong sexual dimorphism.
Female:-Protopodite: The basale in rather large and well defined from the first endopodite joint. The three powerful cmedtes are always immoveably joined to the protopodite; the third of them is rather pointed distally. All the species investigated by me showed a rather close rescmblance with regard to the bristles on these processes. (Because of this I have not considered it necessary to reproduce them for more than one species, Ph. (Sc.) Appellöf ; a detailed description of them is given under the first species, Ph. (Ph.) globoste.) The first endite in the forms investigated by me has ten to twelve distal bristles, the second has six, the third has nine or ten. Proximally on the outside of the third endite there is a single bristle. Dorsodistally on the coxale there is a single bristle with soft, long hairs. On the boundary between the protopodite and the endopodite there are some bristles: one close to the exopodite, one at about the middle of the inside of the palp and one or more on the anterior edge of the palp. This genns seems to be without any epipodial appendage. G. W. MULLER writes with regard to this appendage in this genus, 1894, p. $56:$,,bei Philomedes habe ich an seiner Stelle nur einen flachen, fein behaarten Hautsaum entdecken kömen". In the species investigated by me the place at which in the sub-family Cypridininae the epipodial appendage issues had also a ..Hautsaum" with fine, soft hairs situated close together Exopodite: This is small and short, ahost verruciform and naked and sitnated on the boundary between the protopodite and the endopodite. Endopodite: First joint: Anteriorly near the distal boundary this joint has, in all the forms investigated by me, one bristle, posteriorly-distally there are on this joint a somewhat greater number ($4-5$ were observed). These bristles are of moderate length and strength. decreasing somewhat in length the more anteriorly
they are situated. This joint has not the distal-posterior cutting ofge that is characteristic of most geneta of the sub-family Cypridininae. The little end joint is moderately strongly chitinized and is furnished with a rather large number of bristles (see fig. 14 of $P h$. (I'h.) globosa). With regard to these bristles the species investigated by me showed only slight variation. One group, consisting of three to five bristles in the species investigated by me, forms a transverse row somewhat posteriorly on the outside of the joint; these bristles are of moderate length and strength and decrease somewhat in length the more anteriorly they are situated. The other bristles are situated more or less distinctly along the distal edge of the joint and are rather different in length and strength. One group of these is situated distally inside the other bristles; on the species investigated by me this group, like the former one, numbers from three to five bristles; these are comparatively weak, the posterior ones are moderately long, the anterior ones in most cases rather considerably shorter. Besides these bristles I observed on the species investigated by me five more bristles (only on one specimen of Ph. (Ph.) Lilljeborgi were six observed on the maxilla of one side). The three middle ones of these are very powerful and of moderate length, the anterior one being somewhat shorter than the two others, and weakly curved. The bristle that is situated in front of these three is somewhat weaker and in most cases somewhat shorter than the anterior of them and is moderately strongly pectinated. The bristle situated behind these three is in most cases somewhat shorter than the posterior one of them, of moderate strength and moderately strongly pectinated. Pilosity: The first endopodite joint has along its anterior side rather mmerous transverse rows of short fine hairs. (The en dopodite and the exopodite are so similar in appearance within this genus that it did not seem necessary to me to reproduce them for more than one species: Ph. (Scl.) Appellofi; the end joint is also reproduced for $P h$. ($P h$.) globoste.)

Male: - This is of the same fundamental type as that of the female, but it seems certain, however, that it cannot be used as a masticatory organ. It is somewhat smaller than that of the female, and is only weakly jointed; its museular system is almost completely reduced and all its chitinous parts are soft, thim and hyaline. The bristles seem to be the same or almost the same as on the female maxilla; the bristles that have long secondary bristles in the female maxilla are in the males provided with abundant long, soft hairs along the greater part of their length; similar hairs seem, however, to occur, though more sparsely, also on bristles that have short hairs in the female; distal secondary teeth are quite absent from the bristles. Pilosity: The hairs on the first endopodite joint are more abundantly developed; on the protopodite there is a "Hantsam" with hairs similar to that fornd on the female maxilla.

Fifth limb:* - This has marked sexual dimorphism.
Female: - All the species investigated by me showed a very close agremment with regard to this linb. (Beeause of this I did not think it necessary to reproduce it for more than one species: $P h$. (Scl.) Appellofi; a detailed deseription is given under the first species, $P h$. (Ph.) globosto.) Protopodite: In the species investigated by me the first endite constantly has six bristles, of which the four middle ones are situated in a row, the anterior one and the

[^52]

 forms of the sub-famity ('ypridminne. 'Thre ppipodial plato has an indication, thomgh moly at faim onse of the car-like shape that is chameneristice of the family Asteropedee. On its marginal bristles the houg hats contimu right out or almost right wit to the points; the points of these bristles are mot modifed to function as sensory orgaths. This appendage timishes domsally with an irregular. powerful, spane-tike chitimons swelling. The exopodite always seoms 10 have four joints. The proximal joint is rather small and weak (ef. lig. 21 of Ph. (s.ch.) Ippellafi). The main tooth, wheh is fixed obliguely-transversally is developed somewhat hess strmgly than in the suh-family Cypridimene and does not seem to play so important a part in hreaking up the food as it does in the sub-family montioned. It seems to be subject tu bather slight ramiation. In all the species investigated by mo four constituent teeth wern ohserved: the anterior one of these is longest and most powertul, the others decrease greatly in length and strength the more posteriorly they are sitnated, the most posterior one often boing very small and weak and may eren. in very exceptional cases. be quite missing. The (emstiturnt teeth are often slightly bent batwards, sometimes almost straght, and are fumished on ther posterior edge with irregular teeth which vary in form and number. The anterior, stronest, eonstituent tooth has proximally on the inside a powerful irregular tooth-shaped protuberance. On all the specios of this genus that I investigated there is a single bristle on the posterior sido of this joint, elose tor the main tooth, and three bristles on the anterior side of the joint. two of which are situated close to the main tooth and the third farther out on the joint (cl. fig. 21 of Ph . (ぶcl.) Appellofi). - These fom bristles seem certainly to be homologous with the similarly situated four bristles that were observed in the majority of the forms belonging to the sub-family C'ypridiminue that I have investigated. - The second exoporlite joint, on the other hand, is rather large exceedingly strongly chitinized and differentiated on the inside to a powerful, tooth-like ahmost triangular process. This process is weakly bent inwards and backwards. in other words in the same dirertion as the constituent teeth of the main tooth on the precoding joint. In the species investigated by me this process is furmished on the inner edge near the base with a few rather weak, irregular secondary teeth; on the outside it has a rather powertul, conically rounded. smooth secondary tooth directed obliquely outwards and forwards; apart from this it is quite smooth. This tooth-like joint is certainly the most important masticatory organ of the limb. With the differentiation of the joint itself to the most important masticatory organ a paralle\} reduction of the bristles on this joint seems to have taken place. In all the species of this genus that were investigated by me only five bristles were observed in this joint: four of these bristles were situated on the posterior side of the large inner tooth-like proeess, three in une group, the fourth by itself somewhat proximally of the former ones. On account of the position of these bristles in the male it seems probable that the group of three bristles corresponds to the important masticatory bristles in the sub-famity Cypridininge called the a- and h-hristlex. white the single hristle is homolegons with the e-bristle in this sub-lamily.

On the anterior side of this joint, on the powerful and conically rounded secondary tooth that is directed forward, there is a single bristle; judging from the position of this bristle on the male fifth limb it is presumably to be considered as homologons with the d-bristle in the sub-family Cypridininue. The two distal exopodite joints in the species investigated by me were rather small, furnished with a number of bristles. It may be pointed out that on all the species in question the inner lobe of the third joint was furnished with three; the outer lobe with two, bristles, thus the same number as is most frequently found in the species belonging to the subfamily Cypridininae.

Male: - The epipodial appendage of the protopodite is of about the same size and type and has the same number of marginal bristles as in the female; its muscular system is powerfully developed. The other parts of this limb are also of the same fundamental type as in the female. It is somewhat, though only rather slightly, smaller than that of the female, has a rather weak division into joints, its museular system is almost entirely reduced and all the chitinous parts are soft, thin and hyaline. The exopodite has four joints as in the female. The two proximal exopodite joints are, as in the sub-family Cypridininae, of about equal size. The main tooth of the first joint is represented by four, in exceptional cases by only three, soft, hyaline, irregularly conical processes, with close, soft hairs; these processes are of about the same size as or very slightly smaller than the corresponding constituent teeth in the female. The imner tooth-like process of the second exopodite joint is represented by a process of about the same kind as the one that represents the anterior constituent tooth of the main tooth of the preceding joint. The equipment of bristles on this limb is the same or almost the same as that on this limb of the female. - G. W. Müller states, 1912, however, that there are considerably fewer bristles on this limb in the male than in the female. - All or almost all the bristles have close soft, long hairs at the middle, but they have no secondary teeth distally. Pilosity: The hairs on this limb are more abundantly developed than in the female. - It seems certain that this limb, like the maxilla, cannot be used for mastication.

Sixtblimb: - Just as in the case of the maxilla and the filth limb, all the species of this genus that were investigated by me showed a close resemblance with regard to this limb. (On account of this it did not seem necessary to me to reproduce this for more than one species, Ph. (Scl.) Appelloff; a detailed description is given under the first species, Ph. (Ph.) globosa.) It shows weak sexual dimorphism; G. W. Múleer states that this limb is similar in males and females. The bristles on the endites of the protopodite and the first exopodite joint, like the anterior bristles on the second exopodite joint are, on an average, somewhat, though in most cases only very slightly, more weakly developed in the males. In the female all or almost all these bristles are furnished at the middle with long, stiff secondary bristles, and are moderately strongly pectinated distally; in the male they have long, soft hairs at the middle and are finely pectinated or even bare distally. The second exopodite joint: This is very much wider than it is long. It has abundant bristles, all situated on or near the ventral edge, sometimes, however, some of them are considerably displaced dorsally on the medial side. The posterior and the anterior of these bristles are not separated from eath other by any pronounced gap. The posterior bristles are, on the average, somewhat longer than the
anterior mos and have fong. suft hairs, wither, as in the case of those situated farthest baek, right out th their peints, or else mbly along the greater part of their hength; in the hastmentemed case the have shom hatirs distatly. Most or all the anterior hristles have fong, stiff secomdary bristles at the midde and are moderately strongly or finely peetimated distally. The framsition from the anterion to the posterior type of bristle is gradual.

Seventh limb: - This shows weak sexnal dimorphism (G. W. Moldar states, 1!112. p. an, that this limb is simitar in both sexes).

FE emale: - The mumber of chaning bristles varies somewhat, from right to over forty were whered. Some of these are sithated close together distally, the others are phaced irregularly along the distal part of the limb; with regard to the position of the latter it is to be noted that it is moly exceedingly seldom that there is more than one bristle on the same side of the same joint. The end comb consists of a rather stight or a moderate momber of teeth from about swen to nearly twenty, which, unlike in most forms of the sub-family Cypritininac, camot be divided into proximal and distal teeth. Dorsally near the end comb the wall of the limb beeomes somewhat thicker and is furnished with a varying number of chitinous pegs; in addition the wall is sommhat concave here, the depth of the concavity varying. The dorsal and ventral walls of the concavity are not moveably joined to each other, nor is there any special adductor such as is found in many of the forms belonging to the sub-family Cypridininae. Whether, in spite of this, the end comb can be pressed in towards the dorsal edge of the concavity I have not been able to decide, as 1 have had only preserved material of these forms at my disposal. I wish merely to state here that among the material investigated by me I never found any specimen with its end comb pressed inwards, although 1 had very abundant material.

Male: - Differs from that of the female especially by the cleaning bristles laving a somewhat, though only very slightly, smaller number of bells and by a slight reduction of the end comb.

Penis: - This is small, but has a rather well-developed muscukar system. Distally it is divided into two rather short, curved processes, both having a few bristles distally ($=$ the exopodite and endopodite of an original biramous limb?). It is rather weakly chitinized and has no strongly thickened lists.

Furca: - This has weak (or is sometimes quite without?) sexual dimorphism. C. 11. MLLLER states, 1912, p. 25 , that in this genus this organ is quite alike in males and females.

Female: - The lamellac seem to be subject to rather slight variation with regard to type; they are moderately elongated. From six to fifteen, in most cases from nine to twelve, furcal claws have been observed; the mmber of claws seems to be subject to some, thongh only a rather slight, variation in several species of this genus. In a number of species main claws and secondary claws can be clistinguished, in others a division of this kind cannot be carried ont; all the claws are well defined from the lamella. On all the species of this genus that were investigated by me the equipment of the claws is about as follows: The first claw has two rows of smooth secondary teeth; the inner row, which is displaced somewhat dorsally, consists for the most part of powerful teeth pointing distally, the teeth in the outer row are either powerful or there is an irregular alternation between powerful and weak ones - in this respect
there is variation within the species; like the secondary teeth on the succeeding claws, they are directed obliquely ventrally-distally. On the following three to five claws the medial row of teeth is absent; the lateral row on these is about the same as the corresponding row on the first claw, but the tecth are somewhat weaker the more posteriorly they are situated. These four to six claws are bare or almost bare dorsally; their distal parts are also quite bare. Of the sncceeding claws the anterior ones, like the preceding ones, are furnished with a lateral row of rather coarse teeth; distally they are moderately strongly pectinated dorsally and ventrally right to their points; the coarse secondary teeth become more and more rare on these claws the more posteriorly the claws are situated; on the most posterior they are often quite missing; distally the posterior claws are finely pectimated dorally and ventrally. On the anterior claws there is often a transverse row of long, stiff, smooth bristles proximally-medially. Similar bristles may also be found on the lamellae medially close to the claws. The pilosity of the lamellae varies.

Male: - In this sex the furca is of about the same size as in the female, but it is constructed more weakly. The number of claws is the same or only slightly less than in the female; their equipment is somewhat weaker.

Upper lip: - This shows no sexual dimorphism. - It seems to be subject to only very slight variation within this genus. Because of this I did not think it necessary to reproduce it, but merely refer the reader to (. IV. Mulafer's reproduction, 1908, pl. VI. fig. 15. It is rather small and somewhat helmet-shaped, with an unpaired conical median process, pointing somewhat upward and forward; on the point of this process there is a small glandular field. Between the lip and the frontal organ there are some irregular protuberances.

The median eye is well developed in both sexes (it is less pigmented in the female than in the male). The rod-shaped organ is also similarly developed in the two sexes; it is long and narrow and grows slightly narrower distally.

Lateral eyes: - These are reduced in the female, being only represented by a little claviform umpigmented process on each side, in the distal part of which there are remains of the crystalline cones of a few ommatids. (hometimes quite disappeared?). In the males. on the other hand, the lateral eyes are very well developed and situated rather far towards the back.

There are never any gills.
Special terminology: - Eirst antenna: - The far-reaching agreement that I have stated between the position of the bristles on the original seventh and eighth joints in this genus and the position of the bristles on the corresponding joints in the subfamily Cypridininae can seareely be explained in any other way except by an assumption that these bristles are really homologous. Because of this I considered that I was justified in using the same alphabetical notation for these bristles in this genus as was used above for the subfamily just mentioned. Of the bristles on the original seventh joint the anterior one is accordingly called the a-bristle, the medial one the b-bristle and the two posterior bristles the c_{1} and c_{2} bristles. Of the bristles on the original cighth joint the two that are situated close to each other laterally are called the d-and e-bristles (the anterior one the d-bristle and the posterior one the e-bristle), the interior-medial one the f-bristle and the postero-medial one the gr-bristle.

Maxilla: - Find joint: The hristles of this joint, as will be seen from what has been said abose, also show an excedingly close agreement with regard to their position with the bristles of the corresponding joint in the sub-fimily (ymbilininae. On account of this there can searedy be any donbt that there is real homology present. In this ease too I have thomght. myself justified in using a similar abphabetical notation, based on homologization, for these bristles as for those of the sub-family just mentioned. The group whose (three to five) bristles form a transwerse row on the outside of this joint are conseguently denoted as a-bristles, the group (two) distally-anteriorly $=$ b-bristles, the group (three to five) distally-medially $=$ c-bristles and the remaining bristles, situated postero-distally on this joint $=$ d-bristles.

Fifth limh: With regard to the homologization of the bristles on the second exupodite joint I merely pefer to what has been written above in the description.

The classuficafion of this Eenus.

Remarks: - The five species of this genus that have been described in this work certainly form yuite a natural classificatory unit.

One of these forms, Ph. Appellofi, is, however, opposed to the others in some characters, espeeially by its strongly marked shell seulpture and its jointed rod-shaped organ. On aceount of this it seemed comvenient to distinguish this species as a representative of a new sub-genus, which has been given the mame of Scleroconcha.

Of the species of this genus dealt with in the literature it is rather certain that three others belong to this sub)-genus, viz.:

Ph. Folini. (f. S. Brady, 1871, p. 294, pl. XXVII, figs. 1-5.
.s sculpta*. : :" ,. 1898, p. 434, pl. XLIV, figs. 15-20.
flexilis, ., ,. .. 1898, p. 435, pl. XLIV, figs. 1—14, pl. XLV, figs. 15, 16.
All these three forms are characterized by a very powerful shell seulpture, developed in the form of extensive ridges. At least two of them, Ph. Folini and Ph. flexilis, have, in addition, a jointed rod-shaped organ of the same type as $P h$. (Scl.) Appellöfi. In Ph. sculpta, unfortunately, this organ is unknown. - It does not seem impossible that another species, Ph. Wyville-Thomsoni, (i. S. Brany, 1880, p. 160, pl. XXXVI, fig. 1, a-c, is to be referred to Scleroconcha too. Because of the incomplete description - this species is referred by G. W. Müller, 1912, to ,,Cypridinidarum genera dubia et species dubiae" - nothing, however, can be said with certainty about it.

With regard to the mutual relations of the other species referred to this genus it is still too early to make any definitive statement; the descriptions are generally, unfortunately, too incomplete. It will probably be necessary - cven after distinguishing Pleoschisma and T'etragonodon as special elassificatory units, ef. p. 348 above - to carry out a further division; I need only point out here that such aberrant forms as Ph. longiseta Cif. Juday and Ph. lomae Cif. Juday certainly cannot be retained in this genus.

Detailed diagnoses of the two following sub-genera may conveniently be postponed until a greater number of species of this genus have been subjected to a closer re-examination.

[^53]
Sub-genus Philomedes W. Lilljeborg.

I'hilomedes (pirt.), a utorum.

Diagnosis: - See above, p. 380.

Remark: - As to the number of species of this unit, see above, pp. 348 and 380 . Sub-genotype is Ph. (Ph.) globosa (LiduJ.).

Ph. (Philomedes) globosa W. Lilljeborg.

Cypridina globosa, W. Lillemborc, 1853, p. 171, pl. XVII, figs.e—10, pl. XVIII, figs. 1-3, 7.
Philomedes longicornis, II. Lilljeborg, 1853, p. 176, pl. XXVI, figs. 4-6, 14-16.
Asterope groenlandicu, S. Fischer, 1855, p. 26, pl. XX, figs. 26-34.
Philomedes longicomis, Wr. Bard, 1860 a, p. 202, pl. LXXI, fig. 5 .
Cypridina globosa, (1. O. SARs, 1863, p. 60.
Philomedes longicornis, (G. O. SAPs, 1865, p. 107.
Bradycinetus globosus, G. O. Sars, 1865, p. 110.
brenda, (\%. S. Brady, 1868 a, p. 128.
1868 b, p. 466.
Philomedes globosus, (. O. SARM, 1869. p. 355.
brenda, ", 1872, p. 280.
Bradyeinetus .. G. S. Brady and D. Robelitsori. 1872, p. 70.
Philomedes globosus, II. LidAEEORG, 1876, p. 3.
Bradycinetus brenda, G. S. Brady and D. Robertson, 1876, p. 187.
Philomedes
G. O. SARS, 1886, p. 74.
globosus, H. J. HaNsen, 1887, p. 255.
.. brenda, A. M. Nomman, 1891, p. 119. 121.
(. S. Brafy and A. N. Nomman. 1896, p. 654, pl. 1.1, figs. 1-3, pl. LNT. figs. 1-3.
globosus, C. W. S. Aurivillits', 1896. p. 211.
", brenda, E. VANHIÖFFEN, 1897, p. 285, pl. I., fig. 3.
globosus, C. W. S. Adrividits, 1898, p. 398, 400.
brenda, (.. W. MťLler, 1898, p. 40, figs. 1-3.
Ti. Sсотт, 1899, p. 89.
G. W. MUller, 1901, p. 10, figs. 18, 19.
(.) S. Brady. 1902 b, p. 99.

Tif. Scott, 1905, p. 208.

A．K゙，Lハに0，1907．p．19\％．

1．II．NomaniN and（6．S．Buanf，1909，1．359：

（ ．APstanc．I！ll，p．L6s，Ill．XXIII．
（i．IV．MC゙LAER，191』，1）．32．

bremelu．．．．．1！13，p．З亏̃3．
1！17．p．306．

Description：－Female：－
Shell：－Length $2.3-3.1 \mathrm{~mm}$ ．：only specimens from the most northem locales，freenland， Apitzbergen ete．have shells as long as $2,9-3,1 \mathrm{~mm}$ ．the specimens from the more southem locales are，on the arerage，rather considerably shorter；thus，for instance，the specimens from skager Rak that were investigated by me were，on an average，only about $2,4-2,6 \mathrm{~mm}$ ， Length ：height，about $1,4: 1$ ；length：breadth about 1,75 ： 1 ．Seen irom the side， （fig．3）it has a somewhat varying shape，though the variation is rather slight．The greatest height is at about the middle．The dorsal margin is rather weakly arched；this arehing is，however，some－ what different in different individuals；it is somewhat sloping posteriorly and with broadly younded corners passes over into the rather steeply sloping anterior and posterior margins．The ventral margin is miformly and moderately strongly curved and is somewhat pouting just behind the incisur．The posterior part of the shell forms arather slightly projecting and somewhat rounded corner somewhat ventrally of half the height of the shell；above this corner the posterior margin of the shell is straight or is only slightly arenated．The rostrum has a more or less rounded anterior corner，projecting in most cases almost at a right angle；its ventral corner is rather pointed and has a small spine－like process．The rostral incisur is rather deep and narrow and is defined from the ventral margin by a weak protuberance．Seen from below the shell is oval，with its greatest breadth at about the middle，the anterior and posterior ends of about the same shape，the side contours almost uniformly curved（about the same as in the aecom－ panying figure 2 of the male）．The surfaee of the shell has no marked protuberances except one weak ridge behind the rostral incisur，continuing on to the above－mentioned small protuberance that forms a bountary between the ventral margin of the shell and the incisur， and the small spine on the point of the rostrum．It is covered with numerous rounded cavities， situated fairly close together；these are very often difficult to discern，especially on the specimens from the more southerly locales，and sometimes they even seem to be quite absent．The whole surface has scattered short，stiff bristles，situated rather close together；among these there are also a few somewhat longer bristles，distinguished by the fact that from a short rather thick basal part they taper to a fine point（these bristles are，however，not quite so long as those on the shell of the males），see fig．4．The pores of the surface are very difficult to discem with certainty in most cases；they are rather small and mmerons．Seen from inside：Merlial

Digitized by Microsoft ${ }^{\circledR}$

bristes: The row of brestes on the rostrmm has rather mumerous bristles fabout the same as shown in dig. "O of $P /$. (Ph.) Lilljeborgi). On the pesterior part of the list there is a moderate momber of bristles partly aranged in gronps. Between the list and the posterior margin of the shell there is a rather small mumber of short bristles (about the same as shown in fig. 3 of Ph. (I'h.) Lilljetorgi). The marginal haiss on the rostral selvage are mather long. The long serondary brist les on the selvage behind the incisur, issuing from inside the margin of the selvage, are very few in number: they sometimes seem to be entirely absent. Between the list and the posterior margin of the shell there is moneket-like formation as in Ph. (Ph.) Lilljeborgi. Colom: Acording to (. . Asmen, 1911, it is a beatiful red; the preserved speeimens are a whith yellow.

Fiirst antenna: - Of the thee bristles on the seeond joint the anterior one is about as long as the anterior side of the third joint or the third phas the fourth joints, the posterior one about as long as the total length of the third and fourth or the third to the fifth joints, the lateral one is in most cases slightly shorter than the posterior one. The third joint has most frequently two anterioy bristles and one posterior bristle distally. Of the two anterior ones the posterior one is often abont as long as the total length of the third and fourth joints, the other is only abont half this length. The posterior one is, in most cases, about as long as the fourth joint. In some cases three anterior distal bristles are found on this joint, either on both antemae or only on one. The fourth joint has one anterior bristle, which is abont twice the length of the fifth joint, and four posterior bristles. Of the latter the two lateral ones are about as long as the posterior side of the second to the fourth joints, the one nearest to them is about as long as of a little longer than the anterior bristle on this joint, the remaining one, the inner one, is only about half as long. The bristle of the fifth joint is about as long as the last-mentioned bristle. The a-bristle on the end joint is about as long as the anterior bristle of the fourth joint. Either all these bristles are equipped at the middle with one or a few irregular wreaths of long, stiff secondary bristles or else some of them may be without such wreaths; the following bristles were sometimes found to have no wreaths of bristles: the shorter of the two anterior bristles on the third joint and one of the long ones of the four posterior bristles on the fouth joint; the wreaths on these bristles vary both from one individual to another and on the right and left antennae of the same individnal. As is seen from what has been said above, the length of these bristles varies somewhat; the variation is, however, rather slight. End joint: The b-bristle has one sensorial filament somewhat proximally of half its length and three distal sensorial filanents; in one case two proximal sensorial filaments were found on this bristle on the first antenna of one side, the other first antenua liad only one, as usual. The two c-bristles have in most cases five proximal and four distal sensorial filaments: in one case (on both the first antennae) five proximal sensorial filaments were found on one of these bristles and six on the other; in another specimen (similarly on both the first antemae) six proximal sensorial filaments were found on both these bristles; finally in a third case five proximal sensorial filaments were discovered on one of these bristles on both first antemae, on the other six on one antenna, seven on the other. The f -bristle has four proximal and four distal sensorial filaments; only in one case were six proximal sensorial filaments found on this bristle on the first antenna of one side. The g-bristle always has three proximal and four distal sensorial filaments. The position of these
sensorial filaments is quite the same as is shown in fig. 8 of $P h$. (Ph.) Lilljeborgi. Pilosity: The second joint has rather abundant transverse rows of short, stiff hairs. (This limb agrees entirely with that of $P h$. (Ph.) rotunda; ef. the figure 3 for this species).

Second antenna: - Exopodite: The first joint is rather short, being only about as long as the total length of the following joints. The bristles on the second to the fifth joints are about as long as the first joint or even as the total length of the three proximal joints; they are bare and have a simple point distally. The proportion between the length of the long natatory bristles and the exopodite is about eight to five. The end joint has seven bristles, the three dorso-medial of which are short; of these three the longest one is about as long as the first or the first three joints, the shortest is only about as long as the total length of the three to the five distal joints; the shortest one often has short hairs, the two others are nsually equipped with rather sparse long natatory hairs. In females with their embryos far developed the long natatory bristles are broken off; after this they are of about the same length as the bristles on the second to the fifth joints or are even still shorter. The second to the eighth joints have rather short and weak basal spines, smatlest on the proximal joints and sometimes apparently even quite absent on the second joint. In most cases the basal spines are simple; sometimes, however, they have two or three points. Sometimes one or more smaller spines ean be observed close to one or more of the basal spines; these small spines (presumably like the basal spines) are obriously only strengthened separate hairs in the rows of hairs that are found distally on these joints. Endopodite: The first joint has six bristles, with short hairs or almost bare, moderately long and strong; five of these are situated in one group, the sixth is situated somewhat distally of the others. The second joint varies somewhat in shape: but has in most cases the shape reproduced in fig. 12. Tentrally this joint has usually only one bristle, situated somewhat proximally of the middle of the joint. This bristle is rather long, but its length varies somewhat; it is furnished at the middle with several irregular wreaths of long, stiff secondary bristles and has short, fine hairs distally. On one specimen this endopodite had, botl on the right and the left antema, an additional bristle distally of the former one; this bristle had the same type as the former one, but was not quite half as long as it. (In another specimen a bristle of this sort was observed on the antenna of one side, the one of the other side having only a long one. Finally in one specimen this joint had ventrally two bristles of about equal and moderate length; both of these had a few irregular wreaths of long, stiff secondary bristles at the middle and short hairs distally. The distal bristle of this braneh is about as long as the second joint, sometimes, however, a little shorter, sometimes a little longer; distally it is finely rounded. In one specimen, both on the right and the left antenna, a proximal protuberance was observed on this bristle; this protuberance was of about the same type as that which G. IV. MÉsLer observed in Ph. (Ih.) lewis (1894, pl. 3, fig. 31).

Mandible: - Protopodite: The basale has from six to eight moderately long bristles ventrally, most of them subequal; one or more of those situated most distally are slightly longer than the others. Dorsally this joint has, in addition to the two distal bristles, two other bristles, one situated somewhat in front of the other just in front of the mitdle of the joint. One of the distal bristles is about as long as the anterior side of the first endopodite
joint, the other is about twier as long as this. The two others of the bristles mentioned are sub)embal and about as long as the shomer distal bristle. All four are of about the same type, with at weath of longe, stiff seomelary hristles at the middle and excedingly fine, short hairs distally. Lixupodite: The distal bristle is most frequently about the same length as this bamelt, the other is rather slighty shorter: either they both have a wreath of long, stiff secondary bristles at the midelle and excedingly fime. short hairs distally or else one of them has no wreath of bristles. Lindopodite: First joint: Three of the four ventral bristles are long and have a few wreathe of longe stiff secondary bristles at the middle and fue, short hairs distally; the fourth is manally only about a thitd of the length of these three and has one wreath of long secondary bristles at the middle and short, fine hairs distally. (The propertions of these bristles are about the same as in fig. 11 of Ph. (Ph.) Lilljeborgi). Second joint: The proximal group of bristles on the anterior side most frequently number three, sometimes four; these are somewhat different in length, the longest being from a third to a half the length of the anterior side of this joint: they all manally have exceedingly fine, short hairs; sometimes, however, some of them may have some long secondary bristles at the middle. Between this group of bristles and the distal anterior group there is on the medial side one bristle (on one mandible of one specimen two bristles) of the same length as the bristles in the proximal group, but with somewhat coarser short hairs (abont the same as in fig. 11 of $P h .(P h$.$) Lilljeborgi). End joint: The longest middle$ claw is about as long as the second endopodite joint; the anterior claw is searcely half this length. Pilosity: The second protopodite joint and the sceond endopodite joint have groups of short, stiff hairs on the inside.

Maxilla: - Protopodite: First endite: This has ten bristles distatly. The two imner ones of these are subequal, of moderate length and strength, furnished at the middle with one or two oblique wreaths of long, stiff secondary bristles and fairly strongly pectinated distally. Four bristles of about the same strength and length as the preceding ones - their length and strength varies, however, to sume extent - usually have one, sometimes two, wreaths of long, stiff secondary bristles at the middle, and rather powerful secondary teeth, olten rather few in number, distally; the number of these sccondary teeth varies, however, rather greatly: Three of them, one situated just outside the two first-mentioned ones, one at the outside of all the other bristles of this process and one about half-way between the two others, are somewhat shorter and weaker than the six already described; they usually have a wreath of long, stiff secondary bristles at the middle and are rather strongly peetinated distally; sometimes their distal secondary bristles are also rather long. The remaining bristle is situated almost opposite the middle one of the three bristles just mentioned and is very short and rather weak; sometimes it has short hairs and sometimes a wreath of long, stiff secondary bristles at the middle (see fig. 12 of Ph. (Scl.) Appellofi). Second endite: This has six distal bristles of moderate length; sometimes all these are subequal, often one of the anterior or the posterior ones is somewhat shorter than the others. The two middle ones are powerful, considerably more so than the others, and are furnished distally with a somewhat varying number of strong secondary teeth; the four others with a moderately strong pectination distally. All six usually have a wreath of long. stiff secondary bristles at the middle (see fig. 13 of Ph . (Scl.) Appellöiz).

 c- and foristles are broken. $j: 160 \times$. 9. Wistal balf of the semomial bristle of the lifth joint of this antema; the

 $160 \times$. 12. Endopodite of the left second anteman. $312 \times$. From soecimens from skiger hak.

Digitized by Microsoft ©

The thire endite has nine or ten bristles distally. Of these nos. 1, 2, 3, 4 and 9, coming from outside, are of about the same type subequal, moderately kong and strong, with a wreath of long. stiff secomdary bristles at the middle and mather finely peetinated distally; on bristle mo. 3 , which is somewhat more powerful than the others, the pectination is also somewhat stronger. Bristles nos. of and sare of about the same length as the former ones, but rather eonsiderably more powerful, furnished distally with a valuing mumber of powerful secondary teeth and a number of weak ones: these two bristles are quite without long secondary bristles. Between these two bristles there is a bristle of the same type but in most cases rather considerably shorter. The remaining bristle or, in the case of ten bristles(which seems to be the more usual), the two remaining ones are in most cases somewhat longer than the others, are rather finely pectinated distally and usually have two wreaths of long, stiff secondary bristles at the middle (see fig. 14 of Ph . (A゙C.) Appellifi). The bristle situated proximally on the outside of this process has long hairs or is ahmost bare; it is of about the same length and strength as the outer distal bristles on this process. The dorso-distal bristle on the protopodite is of about the same length as the last-mentioned bristle. On the boundary between the protopodite and the endopodite there are three bristles: one close to the exopodite, one at the middle of the inside of the palp and one on the anterior side of the palp. The first of these is about as long as the endopodite and is usuathe furnished at the middle with two wreaths of long, stiff secondary bristles and with short hains distally. Of the two others the one on the inside of the palp is of the same type as the former one, but somewhat longer, and is in most cases furnished with three wreaths of bristles; the bristle on the anterior edge is about as long as the first endopodite joint and has in most cases a collection of long, stiff secondary bristles at the middle and short hairs distally. Fxopodite: Of the three bristles two are usually long, suberual or somewhat different in length, and about as long as the endopodite, in most cases furnished with some irregular wreaths of Fong, stiff secondary bristles at the middle and with short hairs distally. The third is considerably shorter, often only about half the length of the former ones, often furnished with some long secondary bristles at the middle and short hairs distally; on one specimen this bristle was about as long as the two other bristles. The long secondary bristles on these three bristles scem to vary a good deal. Endopodite: First joint: The bristle situated distally on the anterior side is not quite as long as this joint; in most cases it has one or two wreaths of long, stiff secondary bristles at the middle and short hairs distally. Distally-posteriorly this joint has five bristles, with short hairs or almost bare. End joint (fig. 14): This has four bare or almost bare a-bristles, four or five. in most cases five, c-bristles with short laairs. The three strong bristles among the b-and d-bristles are failly strongly or else weakly pectinated at the middle. Pilosity: The third endite has soft hairs situated close together on the outside; the first endopodite joint has, especially on the anterior side, mumerous transverse groups of short, fine hairs. Fifth limb: - Protopodite: First endite: Of the six bristles the four middle ones are subequal, moderately long and strong; the anterior one and the posterior one are considerably shorter and weaker, in most cases less than half the length of the four others. All these bristles have one or two oblique wreaths of long, stiff seeondary bristles; bristle no. 2 , comnting from the anterior side of the limb, is rather strongly pectinated distally; on bristle

Digitized by Microsoft ${ }^{\circledR}$

no. 3 the long secondary bristles continue almost to the point of the bristle; nos. 4 and 5 are in most eases furnished distally with a comparatively few powerful secondary teeth; the short anterior and posterior bristles are sometimes bare distally, sometimes rather strongly pectinated (see fig. 17 of Ph. (Scl.) Appellöfi). The second endite has nine bristles, in exceptional cases only eight. They are subequal and of moderate length and strength; they are either all furmished at the middle with long, stiff secondary bristles or else one or two may be without these; most of them are rather strongly pectinated distally; on a few the peetination is comparatively weak (see fig. 18, Ph. (Scl.) Appellofi). The third endite has thirteen bristles, of moderate length and strength; the anterior bristle seems to be always a little shorter and weaker than the bristle situated nearest to it; the others decrease on the whole somewhat in length the more posteriorly they are situated. On some bristles there is a wreath of long, stiff secondary bristles at the middle, but most of them have no such bristles; all the bristles are pectinated distally, some rather fincly, most rather strongly (see fig. 19 of Ph. (Scl.) Appellofi). The epipodial appendage has about fifty to sixty marginal bristles. Exopodite: First joint: The main tooth consists of four constituent teeth of about the same type as that reproduced for Ph. (Ph.) Lilljeborgi, i. e. with a very coarse and clumsy anterior tooth. The short posterior constituent tooth is often very weak; on one specimen it was even missing altogether on the limb of one side; in exceptional cases this tooth has no secundary teeth at all. On the inside of the anterior constituent tooth there is a coarse, clumsy, smooth, often somewhat bifurcated, tooth-like protuberance. The bristle near the main tooth on the posterior side of this joint is about as long as the anterior constitnent tooth, is rather powerful and is fairly strongly pectinated distally; it has no long secondary bristles. Of the three bristles on the anterior side of this joint the two situated near the main tooth are subequal, somewhat longer but weaker than the bristle on the posterior side of the joint; these two bristles are finely pectinated distally: the outer one has a wreath of long, stiff secondary bristles at the middle. The third of these bristles, the one situated farther out on the joint, is rather short and is furnished with moderately long hairs. Close to this bristle there is a group of short, stiff hairs. Second joint: The middle bristle in the group of three and the bristle situated by itself, the c-bristle, are subequal and of moderate length and strength; the two remaining ones in the group of three are subequal, considerably shorter and weaker, being in most eases not half as long as the two preceding ones. All these four bristles are often bare or almost bare; in some eases the e-bristle may have sparse, long secondary bristles at the middle. The bristle on the anterior side of this joint, on the anteriorly pointing tooth, is short, weak, bare or almost so; it is in exceptional cases missing (pulled off in such cases?). The two distal exopodite joints are weakly developed; the outer lobe of the third joint especially is almost completely reduced. Third joint: The inner lobe has three bristles distally, all of moderate length and strength. One of these is somewhat more powerful than the others and is furnished distally with a number of moderately strong secondary teeth. The second is moderately strongly pectinated distally and has a varying number of long, stiff secondary bristles at the middle. The third is somewhat shorter and weaker than the others and is bare or is only sparsely furnished with short secondary bristles. Variation was observed in the relative length and strength of these bristles, but it was rather slight. The
muter bube has two subergal bristles of moderate lemgth and strength, sometimes furnished with - bue wreatrs of hong, stiff secondary bristles, sommetmes with demse, long, soft hairs ahong the Ereater part of their length, and with short hats distally. The ond joint is moderately large and has in must catses six. sometimes seren, bristles distally. These are somewhat difforent in hemeth and all moderately fong and strmar at the midelle they have one or more weaths of hong. stifl secomdary bristles. distally they are fimely petinated. Variation was observed with pegard to the length and equipment of the bristles, but this was rather slight. The emd juint ul the exoprelite is partly fumished with soft hairs especially on the outside.
sixth limh: - l'rotopodite: The first endite has two rather short medial bristles amd one moderately long and strong distal bristle; the medial bristles have soft hairs, the distal mistle has two or three wraths of longe, stiff secondary bristles placed obliquely, contimuing in most cases right to the point of the bristle. The second endite has one medial hristle and three, exceptionally four. distal bristles. The third endite has one medial bristle and sewon to nime distal bristles. The endite on the first exopodite joint has one, rarely two. mediat bristles and seven to nine distal bristles. The medial bristles on the three lastmentioned endites are moderately long, in most cases with long, soft hairs at the middle or sometimes with rather stiff, long secondary bristles; distally they are bare or finely peetimated. The distal bristles on these processes are of slightly different types, subequal or differing rather slightly in longth, moderately long and strong; all or ahnost all of them are fumished at the middle with long. stiff secondary bristles and have moderately strong pectination distally. The length, strength and equipment of these bristles are subject to some, though only rather slight, variation. The epipodial appendage of the protopodite is represented by four. very rarely three or five, short bristles with soft long hairs. The second joint of the exopodite is about twice as broad as it is long: distally it has twenty to thirty bristles differing somewhat in length. This joint has fine, short lairs both on the medial and on the lateral side; hairs may also be observed on the protopodite.
serenth limb (fig. 16): - This is of moderate length, being a little more than half the length of the shell (in some speeimens with shells about 3 mm . long this appendage was from 1.7 tu 1.9 mm . long). Cleaning bristles: Situated close together distally there are from six to nine dorsal and four to five ventral bristles; proximally of these there are from nime to thirteen dorsal and seven to twelve ventral bristles scattered irregularly. These bristles are of moderate and of somewhat different lengths, varying somewhat both from individual to individual and on the right and left limbs of the same individual. They are furnished with from three to nine bells eut off transversally distally; the tongue of the distal bell is also cut off rather transversally; proximally to the bells there are seattered irregularly on the cleaning bristles a moderate or rather small number of rather weak secondary spines. The end comb consists of about seven to nine moderately long teeth, decreasing somewhat in length the more proximally they are situated. These teeth, some of which are reproduced in figs. 17 and 18 , are furnished proximally with from one to three rather strong secondary teeth on each side; in addition they are provided on both sides with thin wing-like processes, which often continue with a free point to some distance beyond the central point, which is often well-rounded, of the tooth (fig. 17);

Digitized by Microsoft ${ }^{\circledR}$

sometimes, however, the points of the wings do not reach the central peint of the tooth: of. fig. 18. Dorsally of the end comb there are a number (seven to nine, in most cases eight) of rather low, smooth, chitinons pegs, in most cases arranged in two irregular parallel rows ruming longitudinally. The cavity dorsally of the end comb is moderately deep.

 sperimens from skager lak.

Furea: - The type of the lamellae and the claws is about the same as that reprocheced for Ph. (Ph.) Lilljeborgi in fiy. 15. It has nine to twefre, in most cases ten, claws, decreasing fairly uniformy in lengtly posteriorly; the number of the elaws is somettimes the same on both lamellae, sometimes different. On the four or fire posterior claws there arr no lomg. stiff bristles
peoximally and inwares: the other chaws have at this part a cluster of bristles, varying somewhat in mamber. On the lamethe there are usually no longe stifl secondary bristles medially near the four or fise anterion claws: medially near the posterior claws, on the other hand, there are witen rather sparse bristles of this kind. At the anterior side of the first claw the lameltae often have short, fine hairs: behind the chaws too the lamellat have short, fine hairs, Apart from these they are in mest casces quite withomt hairs.
 3 mm . long the rod-shaped organ was from 0,5 to $0,6 \mathrm{~mm}$. long. In most cases it was weakly hent ventrally; it is quite without joints; somewhat proximally of the middle the wall seems, howewer, somewhat weak (the organ is flexible here?); (listally it is finely rounded; it is smooth.

Nale:-
Shell: - Jength $2.4-3.2 \mathrm{~mm}$. As in the case of the females, large individuals, with shetls from 2,9 to $3,2 \mathrm{~mm}$. long, are found only in northerly locales, for instance at Greenland and spitzbergen, ete. The males seem, on the average, to be slightly longer (not shorter, as other authors have stated, e. g. (i, W. MiLLEER, 1901, p. 10) than the femates from the same locale. length : height, about 1.7:1; length: breadth about 2: S. Seen from the side (fig. 1), it has its greatest height at about the middle. The ventral margin is somewhat less arched than in the female; it has no pouting behind the incisur. The posterior projecting corner of the shell is rather broadly rounded; above this corner the margin of the shell is straight or weakly concave. The anterior and ventral corners of the rostrum, especially the latter, are well-rounded; the ventral corner has no spine-like process. The rostral incisur is almost rectangular; the small verruciform process, which in the female forms a boundary betreen it and the rentral margin of the shell, is practically absent altogether. Seen from bencath (fig. 2), it is of about the same type as the shell of the female, but somewhat narrower. Surface of the shell: The sculpture is somewhat more weakly developed than in the females. It has a few seattered bristles, some short and some long, just as in the female; the long ones, situated especially on the posterior part of the shell, are of the same type as the long ones in the female, but rather considerably longer, seen from within: With regard to medial bristles and selvage there is a fairly close resemblance between the two sexes.

First antenna (fig. 8): - Most of the bristles on the second to the fifth joints are somewhat shorter than the corresponding bristles in the female; with regard to the four posterior bristles on the fourth joint it is to be noted that the two middle ones are somewhat longer than the medial and the lateral ones. In most cases there are no long secondary bristles on the anterior bristle of the second joint, on the shorter of the two anterior bristles of the third joint and on one to three of the four posterior bristles on the fourth joint. The sensory bristle of the original fifth joint has four sensorial filaments distally. situated in the same way as the distal sensorial filaments on the c-, f- and g-bristles of the female (cf. fig. 9). End joint: The a-bristle is about as long as the fifth joint and has no long secondary bristles. The b-bristle is about as long as the anterior sides of the third and fourth joints; it has two proximal and four distal
sensorial filanents: in the specimens from northern locatities, Spitzbergen, (iremondad, ate. one of these distal sensorial filaments was somewhat displaced proximally. The d-e e- and g-hristles are subequal, about as long as the total length ol the thee distal joints. The lastmentioned one has three proximal and four distal sensorial filaments. thens the same number as in the female. The $\mathrm{e}-\mathrm{and}$ f-bristles are subequal or else the latter is somewhat shortm than the former: on all the specimens investigated the c-bristle had thirtern, the f-bristle twelve sensorial filaments. clistributed fairly uniformly along the whole length of the bristle. The hairs on this limb are somewhat more weakly developed than in the female.
speond antenna: - Exopodite (fig. 10): This has abont the following proportions between its joints:

i. e. the first joint is about as long as the total lengtly of the second and third joints and the third joint is about as long as the total length of all the following joints. The bristle on the second joint is furnished ventrally at about the middle or somewhat proximally to this point with about four to six rather strong. smooth spines. The natatory hairs on the natatory bristles are perhaps somewhat wider than in the female. The end joint has only six bristles, one of the shorter ones of the female being missing; either both the two short bristles on this joint are provided with long natatory hairs or else the shorter one of them has short hairs. Endopodite (fig. 11): The first joint has quite the same equipment of bristles as in the frmale. The second and the third joints are long and of about the same length. The former has ventratly at the middle three moderately long, subequal bristles with short hairs. The latter is rather strongly bent; its concave side. which is turned towards the second joint, is somewhat undulated and has about five or six weak transverse chitinons ridges distally and no deep notch proximally: its proximal bristle is rather short, about a quarter or a third of the length of the joint, and rounded distally: its two distal bristhes are subergual. about as long as the distal breadth of the joint.

Il andible: - Protopoditn: The endite of the eoxale is sometimes of about the type shown in the figure 13, sometimes it is of about the same type as in the female, only considerably smaller. The two main points are sometimes of about equal length, sumetimes one is rather considerably longer than the other; the latter seems to be most often the case: the chitinization is weak, the bristle situated laterally at the base is similar to that in the female: there is most often scarcely any armature. Basale: The six proximal-medial bristles are of about the same length as in the female, all rather weak and finely pectinated; most of them are without any long secondary bristles; only the distal one often has a wreath of them at the middle. This joint has six or seven bristles ventrally, of the same length as in the female: the proximal ones have considerably more abundant long secondary bristles; these secondary bristles are, however, less stift. Of the four dorsal bristles on this joint the long distal bristle is about the same as in the female. the three others are in most eases relatively shorter and have no long secondary bristles. The two bristles of the axopodite are in most cases without any long secondary bristles; sometimes, however, ome or even both may have a wreath of these bristles

 bristles. The brist es of the end joint are somewhat sherter and waker than the of the femate: the propertion hetween the hength of the anterime side whe the seeond endepodite joint and the lengeth of the longest elan is in the female abme $28: 28$ and in the male athent $28: 24$: the middle dins are finely peremated. The pilosity is the same as in the hemali.

Ilaxilla: - Protopodite: The fist endite has nime or ten bristles. Eallopodita: The first joint has four hristles postero-distally. The end joint had on ome epecimen only there a-bristles on the maxilla of ome side, otherwise there were four as in the female. Apart from this it is equipped with bristles in quite the same way as the lomale. The proportion betwern the bristles is sometimes about the same as in the female, but it is subject th variation. The bristles of the protopodite and the exopodite, like thosi on the first endopodite joint, are furnished with long, soft hairs either at the middle or along the greater part of their Jength. Some of the bristles on the end joint of the endopodite may be sparsely furnished with soft hairs tore Pilosity: The first endopodite joint has very abudant and rather long hairs on the outside: on the protopodite and the end joint of the endopodite there are also grompsi of slort, fime hairs to be observed.

F'ifth limb (fig. 15): - Protopodite: The three endites generally have the same number of bristles as in the corresponding processes in the femate, though they sometimes have one or a few bristles less. Exopodite: The d-bristle on the second joint sometimes seems to be missing: the inner lobe of the third joint sometimes has four bristles: apart from this the apmipment of bristles is similar to that of the female. The two bristles on the outer lobe of the third joint are somewhat larger than in the female and have very abundant long hairs. The outer of the six bristles on the fourth foint is often considerably fonger than the other bristles on this joint and is often bare. The relative length and the pilosity of the bristles of this limb are subject to variation. Pilosity: Large parts of this limb have groups of short, fine hairs.

Sixth limb: - The epipodial appendage seems in most cases to be represented by only three short bristles.

Seventh limb: - This is somewhat shorter than in the female: in specimens with shells about 3 mm . long it was about 1,4 to $1,6 \mathrm{~mm}$. long. The secondary spines on the cleaning bristles proximally of the bells are more weakly developed than in the female or are quite absent. The end comb has the same or a slightly smaller number of teeth, which are, however, exceedingly weak, often arranged somewhat irregularly; their basal spines and wing-like processes are very weakly or not at all developed. The carity situated dorsally of the end comb is often more or less compressed. The chitinous pegs on the dorsal edge of this cavity are in most cases somewhat fewer than in the female. It is probable that the end comb in this sex is not used as a cleaning organ in the real meaning of the term.

Penis (fig. 6): - (0ne distal branch has near the base a somewhat bent and rather strongly chitinized peg-like process. Distally on the two distal branches there are in most

Digitized by Microsoft ${ }^{\circledR}$

 wher: all these bristles ate shont and subepual.

 and tom on the other: other eombinations ohsereod were: nine and nime eight and nine. The anterion clatw are somewhat mere bont than in the fomale. The "quipment of the elaws is mother considerably weaker than in the remale: chan 20.2 is lumished with two rows of teeth, the imer ome of wheh is, howerer, in most cases mather sparse; on the three or fome posterior elaws there are mo lomg bristles medially-basally:

Remark: - As is seen from the list of synonyms given above this species is known in the literature principally under two names, Ph. brende (II. Bannd) and Ph. ghobosus (II. Lithjebokg), the former of which has been used most frequently of late.

Which of these two names onght really to be used?
The original description of Ph. brenda, or, as \mathbb{W}. Bamb called this species, Cypridima Grenda. is to be found in W. Bamb's work of 1850 at, 1'. 181, pl XXIII, figs. 1 , a-g. It is quite char from this description that this form of Banmb's cannot be considered identical with the one dealt with above by me. Whether it is identical with any other species now known seems to be impossible to decide with certainty, lut it does not seem improbable that it belongs to the sub-gemus Vargulu. It is perhaps identical with C. (V.) megalops G. O. Suks. As an argument in favour of this statement of mine 1 may quote and discuss here a mumber of facts from Burv's deseription.

This author writes: ,,The shell or covering is oval, rounded at both extremities, rather narrower at the anterior, where it is deeply notehed in front, producing a kind of short beak; the valves are smooth and tumid. - The eye is large and ovoid, with about twenty areolae. - The first pair of antemae is divided into five articulations; the first being the largest, and the others gradually becoming shorter as they descend, the last sending off four long, plumose filaments. The second pair is curved, and formed of five joints: the basilar being stont and rather short; the second, longer, arehed on one side, and provided with three or four long: simple setae; the third is the shortest of all, with a projection on its under edge, which gives off two stont. plumose setae; the fourth, longer and narrower than the preceling, is armed on its outer edge with five simple setae; and the fifth is very slender, and terminated by four short, simple spines. - The natatory feet are large, and like those of preceding species :(Ph. Mac Andrei)", except that the long filaments are distinctly and beautifully plumose. and that there was apparently no appendage attached to the basilar joint."

The figure with which \mathbb{W}. Barde illustrates his deseription of the shell agrees closely with the description. It shows a shell of an egg-shaped type, with its greatest height somewhat behind the middle and the posterior part of the shell clearly larger than the anterior part; the dorsal and the ventral margins are boldy, uniformly and ahost symmetrically eurved: the anterior and the posterion margins well rounded, the rostrum without a decided anterior comer,

Digitized by Microsoft ${ }^{\circledR}$

In addition - unlike the shell of Ph. Vae Amerei - it is quite without any coserine wh hair. The agreement between this type of shell and that of ('. (Vargula) megalops is striking. As is seen from the information given above, the femates of the genus Philomedes have extremely strengly reduced lateral eyes or else the latter are quite absent. The species discussed by W. Ballab has, on the other hand, large, well-developed lateral eyes, composed of about twenty ommatids. In this point too it thas agrees with (. (V.) megalops. It can be considered certain that the first antenna does not belong to any species belonging to the genus Philomedes; this is shown partly by the description quoted above and partly by the figure reproduced by II. Bann (fig. I e). Everything indicates, on the contrary, that we are concerned with a first antema of a species belonging to the the sub-family Cypridininae. I wish here only to point out that a long powerful bristle issues posteriorly on the fifth joint (W. B.ort) says the fourth joint. but this writer has clealy overlooked the boundary between the third and the fourth joints). With regard to the natatory antenna it is clear from W. Balas's figure that only the bristle of the second joint on the exopodite is relatively short, withont natatory hairs and furnished only with short secondary spines; the bristles on the third to the fifth joints are long natatory bristles with natatory hairs. There seems to be no endupodite on this limb. The latter fact may perhaps seem to support the identification of this species witlı (\%. O. Suss's (. (Vargula) meyalops, as the endopodite is, as we know, very much reduced in the latter species. Two reproductions of the mandible - which Batmo took to be the second antenna - are given, both very incomplete and impossible to use for the purpose of identification. (Once of these, fig. ce, seems probably to belong to a species of the sub-family Cypridininue the other (fig. c^{*}) to a Philomedes species!

Additional facts could be given to show that this species of B.anm's is not identical with the species dealt with by me above. It seems, however, superthous to do so. as those already mentioned ought to be more than sufficient to show the impossibility of this identification.t

The first to identify this species of Burar's with Lulldebori's species was G. S. Bradry 1868 b , p. $46 \overline{7}$. As a reason in favour of this identification omly the following is given: ..I have not had the opportunity of examining the type specimens of this species; but as I believe Ur. B.und considers them to be identical with Bradycinetus globoses, 1 have here adopted that view."

It is consequently a very weak argument, which of course cammot influence in any way the statement made by me above as to the necessity of rejecting this synomymization. The name brenda is therefore not the right one to use for this species.

It may, on the other hand, be taken as absolutely certain that the specjes described by IV. Lhlejebohi, 1853, p. 171, under the name of Cypridima globosa is identical with the form dealt with by me above. There are eertainly differences in some details between LIILJEBORG's description and the facts observed by me - for these 1 need only refer the seader to a comparism between my description and Lhdsebola's - but it is certain that these are to be accounted for by errors of observation on the part of Lidablehit. The type specimen of this spectes of

[^54]Digitized by Microsoft © ${ }^{\text {B }}$

 hanc beom inseatigatad ber me and thoir ielentity with the form deserthed by me abowe

 the abmer identification.
 "ff C'ypritime globesa. The mate is deseribod afterwards muder the name of Phetomedes lomgicomes

 an elster stelle angefithet wird". I have taken globosa as the name for the species in this work.
IV. B.ank states in his work of 1860 a . p. 200 that the species Cypridina excina de-
 Brenda and supports this syonymization be a personal examination of Sthapsov's specimens, ,.tide specimens". Whether this statement proves that this fom of spapson's is identical with the species described by me above is uncertain. The statements as to locale do not contradict it; as will be seen below, I have found Ph. (Ph.) globose common in Fortune Bay, Nuwfoundland, whith is a locale near Sramsor's type-locale. Sthusox's original description and tigure are unfortunately too incomplete to permit of a certain identification. 'This synomymization would, however, make it necessary to assume that this anthor had committed very great mistakes in his reprodnction of the shell and I have consequently considered it inconvenient to adopt this view of BulRD's.

The chief reason why I - like a few preceding anthors - have included Asterope groenIandica. S. Flichers, 1855 - a form that has been incompletely and certainly very intorrectly deseribed - as a syonym of the species dealt with here is that the very abondant Ostracod material I have had an opportunity of investigating seemed to intirate that this was the only species belonging to the family Cypriducdue that is found in direntand - at any rate it is by far the most aboundant. It was first incheded in the genas dealt with here by (i. O. SAls: $\mathbf{1 8 6 5}$, P. 110, and G. S. Bhady writes. 1868 b. p. 466 ..and is either identical with, or closely allied to, Bradycinetus Brenda". In his Naples momograph (r. WV. Méluer writes of this species, that it ..vielleicht" is a synonym of Ph. (Ph.) globosa.

The reason why A. M. N(AiMn's Phitomede longicomeis, 1867 , p. 198 and 1869, p. 295 has mot been meluded as a synonym is that this writer identifies this species of Lald.JEBORG's with Philomedes interpuncte (W. Buran). NuFMA\. 1861. p. 280 also has a form Ph. longicomis: it is clear, howerer. from his accompanying figure that it is Pll. imterpuncta and not glebosa that was before the author on this oeceasion.

Nor are Ph. lomgenmis in the older work of (A . S. Bhably (and I). ROBERTsen) inchadel in the list of symyms given above. This writer serems also in the begiming not to have distinguished between Ph. globose and interpenctas (f. (i. S. Bistins. 1880. p. 154. where these two forms are synonymized,

It is crident that Bradyemetus brenda, (i. S. Brans, 1871, p. 292, does not even bolong 10 the genus Philomedes. as is clearly shown by pl. XXVI, fig. (i. Aecording to BaAbr's own
 and this statement is not contradieted by the figure in puestion.

It is possible that Ph. brenda. R. W. Shame 1609, jo. 428 is synonymous with the speeies dealt with here. The figure of the make shell given by Shame differs, however, so deeidedly from the type of shell observed by me that it did not seem right to include this name in the list of synonyms given above.

Habitat: - West coast of swedon:
S. of Hyen, 16. VII. 1897, depth $36-41 \mathrm{~m}$. day: 5 specimens (1) a g a Explo J. G. ANDersion):* \mathbb{W}. of Landskona, 1892, depth 10 -2 0 m., clay containing dead shells: 1 specimen, (coll. H MLXTHE); W. of Landskrona. 27. VI. 1892, depth 45-50 m., clay: 29 sperimens (call. H. Munthe); of Ḱullen. lat. $56^{n} 12^{\prime}$ N., long. $12^{n} 26^{\prime}$ F., 16. VII. 1878.
 F. Tryboy): Skelderviken (typelocality), 12 and 15. VIl. 1897, depth 25 m., day: (i2) specimens (1) a gat x p., J. (t. A才torssoy), R. M. S. so; S. of Murupsbank, lat. $56^{0} 50^{\prime}$ N., long. $12^{0} 12^{\prime}$ E. $12 . V^{\top}$ VIT. 1878. Aepth 45 m ., clay with worm tubes: 8 specimens (., (in nh ild l^{6} Exp., Ho. Thée and F. Thisbom), R. M. S. S1; W. of Varberg, 8. V. 1912: at the surface: $\therefore 2$ planktonic specimens, R. M.S. 104: depth 25 m. planktonic: 5 specimens, R. II. S. 105; depth
 Varberg, 9. V. 1912: at the surface planktonic: 69 specimens, R. M. S. lot; depth 20 m , planktomic: 10 specimens. R. M. S. 108; planktonie just above the bottom: 66 specimens. R. N. S. 109 (S wadish Hydr. Biol. ('omm.); Anholt, 28. V. 1912, planktonie: just
 Nidingen lat. $57^{\circ} 199^{\prime}$ N., long. $11^{0} 27^{\prime}$. E. L 10 . VII. 1878, depth 80 m ?, clay: 5 specimems (Gunhild Exp., Hs. Théel and F. Trybou), R. M. s. 82: Gulluar Fiord, Skår, depth
 (coll. J. (i. A才bersion), R. M. S. 86 ; Skår. Ang. 1890, depth 125 m., chay: 1 peremen (coll.

 R. II. S. 92; Väderöarna, K. of L. Knappen, 1. VI. 1897, depth 140 m. clay: 2 sperimens (eroll.

[^55]

がkator R：k：

 4．5 m．clay： 1 sperimen（心．A．R．）．R．N．S．4！

Nいva \％embla：
Inatotschkin Fedarr．8．VII．1875．depth ！－18 M．，sand： 4 specimens（A．E．

spitzhorgen：
 Yellowish－red chay，temperature at the bottom +0.20 （ ${ }^{\prime}$ ：about 200 specimens（S．S．R．）R．
 fine dark gray clay：about 350 specimens（S．S．E．）．R．N1．S．51；Rivalen＇s Sound，\＆．VIII．נ 898 ， depth $100-110 \mathrm{~m}$ ．，fine clay with stomes．temperature at the bottom－ 1.45°（＇：about 175 speci－ mens（心．S．E．）．R．M．S．52 and 53：Swedish Foreland．Cape Hammerfest，8．VIll．1898，depth
 long． 19° Lia．15．TIII． 1861 ，depth 180 m．，fine elay：I specimen（S．S．E．），R．II．S．3；Enbay， lat． $79^{\circ} 45^{\prime}$ N．．long． 20° E．，5．VIII．1861．depth 90 m．fine clay： 1 specimen（S．S．R．），R． II．S． 4 ：Parry＇s Island，8．IN．1868，depth $55-70 \mathrm{~m}$ ．，gravel： 4 specimens（S．S．E．）R．M．S．万： Costrén｀：dslands．T．IX． 1868 ．depth $50-70 \mathrm{~m} .$. clay with stones： 103 specimens（ S ．S．E．）， R．II．S．6：Sheal Point，lat． $80^{\circ} 9^{\prime}$ N．．Jong． 18° E．．15．V1I． 1861 ，depth 5．5 m．．clay： 144 specimens．
 4（1m．．clay：I specimen（S．S．E．），R．IV．S．9；at the same station．17．VI．1861，depth 55m．， clay with stomes： 17 specimens（S．S．E．），R．M．S．10：Mossel Bay，at 16 different stations， I．—IV．1873，depth $3-18 \mathrm{~m}$ ．，sand or clay：about 6 ão specimens（S．S．F．）．R．M．S． $11-24$ ： lat． $79^{\circ} .5 j^{\prime}$ N．．．long． 15^{0} E．，at the surface，planktonie，3．V1I．1873： 10 mature males（S．S．E．）， P．M．N．25：lat． 8° N．．long． 13° E．，depth 125 m ： 18 specimens（S．S．E．），R．N．S． 26 ： Wijcle Bay．July 1861，depth $55-70 \mathrm{~m}$ ．．Clay： 1 specimen（S．S．R．），R．M．N．27：Hakluyts Headland，lat． $79^{\circ} 50^{\prime}$ N．，long． 11° E．，22．V． 1861 ，depth 30 m ．，clay：some hundreds of specimens （心．S．E．）．R．M．S． 28 and 29：Danes（tat，lat． $79^{\circ} 40^{\prime}$ N．，long． 11° E．，10．IX．1861，depth 36 m ， clay： 39 specimons（太．S．E．）．R．M．S．3n；Kobbe Bay，depth 5 m．，sand： 1 specimen（S．S．E．），

[^56]R. 11. A. 32: Norl Fiord, lat. $78^{n} 27^{\prime}$ N., long. $150^{\prime \prime} 00^{\prime}$, E., 19. VIl. 1898 , depth 175 m ., dark brown clay: 4 specimens (S.S. E.), R. M. A. 34; Ice Fjord. ('oles Bay, 22. VII. 1908, depth $3-4$ m., temperature $+5^{0}$ (, loose day: 45 sperimens (S. S. E.), U. M.; Sassen Bay, Sept. 1861, depth 18 m., clay: 49 spetimens (S. S. E.), R. M. S. 35; at the same locality, Sept. 1861, depth 35 m ., clay: 39 specimens (S.S. E.), R. M. S. 36 ; Advent Bay, Ang. 1861, depth $20-50 \mathrm{~m}$., fine clay: 40 specimens (S.S. E.), R. M. S. 37; at the same locality, 10. VIII. 1908, depth $11-19 \mathrm{~m}$. . fine clay, temperature at the bottom $+3^{0}$ ($: 25$ specimens (S. S. E.), U. M.; Iee Fiord. (ape Boheman, 21. VII. 1898, depth 36 m ., clay and gravel: 20 specimens (S. S. E.), R. M. S. 113; Bel sound, depth $10-20$ m., clay: 16 specimens (S. S. E.), R. 11. S. 38; at the same locality, depth 35 m ., clay: : speeimens (\sim. S. E.), R. M. S. 39 ; at the same locality, depth 55 m , clay: 16 specimens (S. S. E.), R. M. S. 40 ; Horn Sound, depth $70-100 \mathrm{~m}$., clay with stones: :2l specimens (S.S.E.). R. M. S. 41: Whales Point, 9-10. VIII. 1864, depth $35-55 \mathrm{~m}$., clay: 16 specimens (S. S. E.), R. M. S. 42 ; at the same locality, 10. VIII. 1864, depth $55-70 \mathrm{~m}$., clay: 10 specimens (S. S. E.). R. M. S. 43 ; lat. $76^{0} 40^{\prime}$ N.. long. 18^{0} E. . 29 . VII. 1868, planktonic at the surface: 21 specimens, males and females (S. S. E.), R. M. S. 45 ; Ginevra Bay, lat. $78^{n} 3 \overline{9}^{\prime} \mathrm{N}$., long. $20^{\circ} \mathrm{E}$., $\mathfrak{2}$ l. VIII. 1864, depth $7-12 \mathrm{~m}$. fine clay: 13 specimens (S. S. E.), R. M. 凡. 46 .

Greenland:
Clavering Island, 17. VII. 18:99, depth $25-40 \mathrm{~m}$. mud and sand: some hundreds of specimens (S. G. E.), R. II. S. 59 ; small Pendulum Island, kat. $74^{\prime \prime} 3 \bar{s}^{\prime} \mathrm{N} .$, long. $18^{0} 23^{\prime} \mathrm{W}$. , 6. VII. 1899, depth $18-21 \mathrm{~m}$., mud and sand: 3 specimens (S. (i. E.), R. 1]. S. 114 ; Franz Josef Fiord, lat. $73^{0} 6^{\prime}$ N., long. $27^{\circ} 17^{\prime}$ W., 12. VIII. 1899. depth $1-9 \mathrm{~m}$. , mud and sand: about 300 specimens (S. G. E.). R. M. S. 115; at the same locality, II. VIII. 1899, depth 23 th
 $24^{\prime \prime} 35^{\prime}$ W., "28. V1II. 1899, depth $100-110 \mathrm{~m}$., mud with gravel and stomes: 2 specimens (S. (i. E.), R. M. S. 117 ; lat. $72^{\prime \prime} 43^{\prime}$ N. long. $26^{\prime \prime} 50^{\prime}$ W., 23. YTlI. 1896 , dopth $35-60 \mathrm{~m}$., mud: 122 specimens (S. (1. E.), R. M. S. 118 ; King (oscar Fiord, lat. $72^{\circ} 56^{\prime}$ N., long. $24^{0} 49^{\prime} \mathbb{I V}^{\prime}$. 24. V1II. 1899, depth 125 m . mud with gravel and stones: 2 specimens (S. (t. E.), R. M. S. 119: Scoresby Sound, lat. $70^{\circ} 50^{\prime} \mathrm{N} ., \operatorname{long} 22^{\prime \prime} 31^{\prime} \mathrm{W} ., 4$. VIII. 189!, depth ! m., mud with algate: 25 specimens (S. (G. E.), R. M. S. 120; lat. $70^{\prime \prime} 27^{\prime}$ N., long. $22^{\prime \prime} 35^{\prime}$ W'.. 30 . VII. 1899. depth $13-18 \mathrm{~m}$., clay, mud and sand: 30 specimens (S. (. E.). R. M. S. 1.21 ; lat. $70^{\prime \prime} 43^{\prime}$ N.. long. $22^{0} 29^{\prime}$ W., 7 . VIII. 1899, deptlı 70 m ., mud: 2 specimens (S. (i. E.), R. II. S. 122: Sukkertoppen,

 at the same locality, 8. V'II. 1870, depth 200 m . elay: 4 spermens (心. (i. E.). R. Il. S. 64;
 locality, 14. VIII. 1870. depth 215 m.. clay and sand: some hundreds of pperimens (((. W.), R. M. S. 66; (fodhavn, depth 50-90 m., clay: 4 speecmens (S. (i. R.). R. M. S. 67; Diseo

 (犬. (: K.). R. M. ㄷ. $7!$ B:IIIn B: ! :
 (i. E.). R. If. S. 76 , hat, i2" $^{\prime} 4^{\prime}$ N., long. $59^{\circ} 5 t^{\prime} W^{\prime}: 1$ specimen (S. G. E.), R. M. S. 77. Now found land:
Lat. $46^{\circ} 13^{\prime}$ N.. Hong. $51^{\prime \prime} 46^{\prime} W^{\prime}$.. 16. V'lll. 1871 , depth 100 m ., sand and shells: 2 specimens

Mistrimution: - This species seems to be of an arctic-boreal mature - not aretie, as 1. N. Nolimil states. 18:91. p. 120. According to statements formerly made in the literature it wours:* round Great Britain (G. S. Brabs, A. Il. Nohsan and D. Robelrtsux), along the west and horth coasts of Seandinavia (IW. Lhlaelighg, G. O. Sars, A. M. Norman), in the Kara sea and off the Murman coast (G. O. Sain and H. J. Havise), at Franz Josef Land (Tin, scott). Apitzbergen (II. Lulldeborg, G. O. Sins), Jan Mayen (G. O. Sars), Greenland
 lat. 77° N., lung. $71^{\circ} 37^{\prime} \mathbb{N}$. (IV. Bamb).

Retation to hegdroyraphical conditions: - According to the results arrived at by the ('onscil perm. internat. pour l'explor. de la mer", collected by C. Apstein, 1911, this species is restricted to comparatively low temperatures. It had been observed at $8.210^{\circ} \mathrm{C}$ and $+1.3^{\circ} \mathrm{C}$. As is shown by the information given by me above, it has been found at a still lower temperature $-1,45^{\circ} \mathrm{C}$. Salinity: from 35 to $19,96 \%$.

Ph. (Philomedes) Lilljeborgi (G. O. Sars).

> Bralycinetus Lilljeborgi, (i. 0. S.1ns, 1865, p. 112.
> Ihitomedes :. ., 1869, p. 357. 1872,1 . 280.
> "Bradycinctus (i.s. Bhads and D. Robertson, 1872. p. 70.

[^57]

 of the selvage of the ventral margin of the mstrum: $325 \times .5 .1$ part of the selvage just belind the restral incisur

 f: pl. I, II, figs. :3. I.

P. T. CLIETE, 1!日!3, p. 24.

Hescription: - Female:-
ふhell: - Length $2.15-2.6$ mun. It does not seem to be decidedly larger in northern than in sonthem locales: a few specimens from Lofoten that I had an opportunity of investigating had shells about 2.3 mm . long, which was the aberage length of the specimens from Skager Rak that were investigated by me. Length : height, about $1,45: 1$: length : breadth, about $1.8: 1$. Seen from theside (fig. 1) it is ,,mounded-sub-quadrangular", with its greatest height at about the middle. The dorsal margin is only weakly arehed, sometimes almost straight, ruming almost parallel with the longitudinal axis of the shell, and with broadly rounded corners passing into the rather steeply descending anterior and posterior margins. The ventral margin is uniformly and moderately eurved and weakly pouting just behind the rostral incisur. The posterior part of the shells forms, somewhat ventrally of half the height of the shell. a rather small but characteristic beak - which is perhaps the easiest means of distingnishing this species from $P h$. (Ph.) globosa. Above this beak-like process the posterior margin of the shell is straight or very slightly arched. The rostrum has in most cases a rather pointed anterior comer. which projects ahmost at right angles; its ventral corner is rather pointed and is armed with a small spine-like process. The rostral incisur is rather deep and narrow, defined from the ventral margin of the shell by a slight protuberance. Seen from bencath the shell is oval with its greatest breadth at about the middle; the anterior and posterior extremities are almost similar. the side contours are uniformly eurved (agreeing fairly well with pl. LlI, fig. 4, G. S. Brady and A. M. Norman, 1896). The surface of the shell is smonth. without any marked protuberances except the little spine on the ventral corner of the rostrmm and a very slight ridge behind the rostral incisur, ruming out on the little protuberance, which. as has been mentioned above, marks off the rostral incisur from the ventral margin of the shell. It has only some scattered and moderately long bristles; these bristles are characterized by coming to a fine point from a rather broad basal part - they are of about the same type as the long bristle in fig. 4 of Ph. (I'h.) globosa. The pores of the surface are of moderate size, rather numerous and often very difficult to observe with certainty. Leen from inside (figs. 2 and 3): Hedial bristles: The row of bristles on the rostrum consists of a rather large number of bristles, about as in fig. 2. On the posterior portion of the list there is a moderate number of bristles, partly arranged in small groups. On the part of the shell between this part of the list and the margin of the shell there are a few very short bristles.

Digitized by Microsoft ${ }^{\circledR}$

 sellowish collour.

Fifst antenola (tig. 万): - of the thee bristles on the second joint the posterion one. Which is somewhat lomere than the for others, is manally as long as the total length of the third and fourth joints. The thind joint has three or four, usually three, bristles anteriomy; the anterior one of these is rather short. usually mot quite so long as this joint, the others are subequal and in most cases about as long as the fourth joint. The presterior bristle on this joint is shore about half the length of the next joint or somewhat longer. 'The fourth joint has the same bristles as in Ph. (Ph.) globosa; their length is however, on the average, somewhat less than in this species, the two medial ones and the four posterior ones especially are rather short. The bristle on the fiftly joint is about the same length as this joint. The a-bristle on the end joint is about the same as the anterior bristle on the fourth joint. Most of these bristles have one or a few wreaths of long, stifl secondary bristles at the middle; these are, however, often missing on the short anterior bristle and the posterior one on the third joint. Variation in the secomdary bristles may, however, be observed; in the length of the bristles so far mentioned I have also observed some, though only rather slight, variation. The bristles of the end joint (fig. 8) have the same equipment as in $P h$. (P h.) globose, i. e. the b-bristle with one proximal and three distal sensorial filaments, the e-bristles with five proximal and four distal sensorial filaments, the f- and \underline{n}-bristles with four and three proximal sensorial filaments respectively and four distal sensmial filaments: in one speeimen six proximal filaments were observed on one e-bristle on the antema of one side. The pilosity is about the same as in Ph. (Ph.) globosa.

Seeond antanna: - Exopodite: This is very like that of Ph. (Ph.) globrosa. The proportion between the length of the first joint and the total length of all the following joints is about $43: 37$. In some cases females with rather large eggs in the brood chamber were discovered with their long natatory bristles quite intact; in most eases, however, these natatory bristles were broken off as in Ph. (Ph.) globosa. This may perhaps indicate that this character, of having the long natatory bristles broken off is not completely fixed in this speeies. There seem sometimes to be no basal spines at all on the sceond, or the second and third, joints. In most cases the basal spines are simple; sometimes, however, they have two or three points. In some cases one or more small spines may be observed close to one or more of the basal spines ((f. p. 385 above). Endopodite (figs. 9 and 10): The first joint has quite the same equipment of bristles as this joint in Ph. (Ph.) globosa. The second joint has several bristles rintrally: One rather long one - its length varies somewhat, however - situated somewhat proximally of the middle of the joint: this bristle is furnished at the middle with several irregular wreaths of long, stiff secondary bristles and with short hairs distally. Distally of this bristle there are in most eases three moderately long bristles; on one specimen only two bristles were observed on the antemn of one side; whether the third had been broken off eould not be deeided with any dertainty, though probably it had not been. G. S. Brame and A. M. Norman, 1 saf

Digitized by Microsoft (®)
 and equipment: difterences may be whered. not only between one individual and another, but akse between the right and left antemate of the same individual. Rometimes it is the distal one. sumetimes the proximal one and sometimes the middle one that is longest; sometimes one or two of them hate an irregular weath of long, stiff secondary bristles at the middle and short hairs distally. While the two or one that remain have shopt hairs: sometimes all thee have only shot hatrs. The distal bristle of this joint is about as long as the joint or somewhat longer: it is findy rounded distally. On one antemat of one individual there wate observed, proximally on this bristle, a protuberance of about the same type as (. W. Móldive observed on Ph. levis (1s94, ple 3, fig. 31).

Il andible (tig. 11): - This is very like that of Ph. (Ph.) globosa. Protopodite: The hasale has eight or mine hristles ventrally, of about the same length as in the species just memtioned. Dorsatly this joint has besides the two distal bristles, five (sometimes four) bristles on the distal half. As in Ph. (Ph.) globosa the shorter distal bristle is about as long as the anterior side of the first endopodite joint, the longer one is about twice as long. The remaining five are subequal and about as long as the shorter distal bristle. In most cases all these bristles of this joint have a wreath of long, stiff secondary bristles at the middle and exceedingly fine hairs distally; sometimes, however, there may be no wreath on some of them. lindopodite: The second joint differs from Ph. (Ph.) globosa by having five, sometimes even six, bristles in the anterior-proximal group.

It a xilla: - This is very like that of Ph. (Pho) globosa. We may note: Protopodite: On the bondary between the protopodite and the endopodite there wre on the anterior edge of the palp two bristles with short hairs, usually subequal and varying somewhat in leagth. sometimes only about half as long as the first endopodite joint, sometimes about as long as the rorresponding bristle in $I M$. (P / h.) globosa. On one specimen three of these bristles were observed in this phace on one maxilla. Exopodite: The equipment of the three bristles is rather variable; the short bristle often seems to be without long secondary bristles. Endopodite: End joint: This has usually, as in Ph. (Ph.) globosa. four. sometimes five, a-bristles; on one specimen three b-bristles were observed, two of which were powerful; four or five, usually four c-bristles; the three d-bristles are sometimes subequal. in most cases, however the relation between their lengths is the same as in Ph. (Ph.) globosa.

Fifth limb: - This is quite like this appendage in Ph. (Ph.) globosa.
sixth 1 imb : - This is very like that of I 'h. (I'h.) globoser; we may note that the second joint of the exopodite has $28-33$ bristles.

Seyenth limb (fig. 13): - 'This has about the same retative length as the corresponding appendage in $P h$. (Ph.) glubosu. The cleaning bristles are relatively few, usually ten, sometimes eleven, of moderate, somewhat varying length. Usually six of these are sitnated dorsally, three close together distally and three scattered somewhat proximally of the former. Four, sometimes five, are situated ventrally, two close together distally and two or three somewhat proximally of the former. Equipment of the cleaning bristles: Three to six bells cut off transersally
distally; also the tongue of the distal bell is cut off rather transversally distally; proximally of the bells these bristles are furnished with short hairs, which are either rather fine or comparatively coarse; at least some of them are arranged in a few wreaths; sometimes these hairs seem to be almost completely absent. The end comb (fig. 14) consists of about eleven to seventeen teeth of modcrate length and strength, decreasing somewhat in length the more proximally they are situated. These teeth are furnished proximally on both sides with a powerful secondary spine and are rather well rounded distally; they are provided on each side with a thin wing-like process, which in most cases, as far as I could see, did not continue as free points (as is the case in Ph. (Ph.) globosa). The cavity dorsally of the end comb is rather deep. Between the end comb and the distal dorsal bristles there are two parallel and somewhat irregular rows, running

Fig. LXXIH. - Ph. (Philomedes) Lilljeborgi (G. O. Sars), - 15. Furca seen from inside; the teeth are not drawn: $120 \times$. (From a specimen determined hy G. O. Sars.)
longitudinally, of rather short, claviform, smooth chitinous pegs, each row comprisiug about four or five pegs (sometimes somewhat fewer, broken?).

Furca (fig. 15): - This has ten claws, decreasing fairly uniformly in length and strength posteriorly. On the three postcrion claws there are no long, stiff bristles proximo-medially. Otherwise it is about the same as in Ph. (Ph.) globosa.

Rod-shaped organ: - This is of quite the same type as in Ph. (Ph.) globosa; its length is a little more than $0,3 \mathrm{~mm}$.

For the male ef. the description by (t. S. Brady and A. M. Norman, 1896, p. 658.
Remark: - On account of the incompleteness of the original deseription of this species I wrote to Professor G. O. Sars for permission to re-examine the type-specimen. In answer to my request Professor Salis informed me that the type-specimen seemed unfortunately to have been lost, but sent me at the same time, however, two specimens (one male and one female) taken at Vallö, Christiania Fjord, thus near the type-locality which had been determined by him as belonging to this species. The determination of G. O. SARs' is presumably quite correct. The new description of this species given above is based on this female; of course several nther specimens were also taken into account. - The male sent by G. 1). SAzs was unfortumately so dirty that it was not suitable for description and reproduction.

The materal on which my descripteon is based.

 180 11．：chay： 130 specmems，mature femates mel larva（coll．monown）：R．N．S．125．The
 mbnown）：R．Il．S．Iロ4．

Christiani：a Fiord：
Vallö：depth，360－400 m．： 11 specimens，mature femates and larvae（coll．G．O．Saks）； （＇ねr．\％．II．

Skater Rak：
．．dkger Rak＂（without definite localities；the depths indicate，however，that all these samples were taken in the Norwegian Depression；coll．J．LiNDAHL）：depth， $150 \mathrm{~m} .: 9$ specimens， femates and larvale，R．M．S．126：depth， 200 m ．： 2 females，R．M．S． 127 ；depth， 300 m ．： 15 speci－ mens，mature females and larvace，R．M．S． 128 ；depth， $350 \mathrm{~m} .:$ ： 211 specimens，mature females and juvenes，R．M．凡．1•9．Lat． $58^{0} 26^{\prime}$ N．，long． $0^{0} 40^{\prime}$ E．；4．VII． 1872 ；depth， 350 m ；elay： 1 mature female（coll．J．LiNDAML）；R．M．S．130．„Bassinen＂in the Norwegian Depression（no definite locality）：6．VH． 1877 ：depth， 360 m ．；clay mixed with sand： 1 female（ S w e d is h ，Gun－ h i 1 d＂Exp．，st．10．，C．Borillius and Hı．Théel）；R．M．S．131．Lat． $58^{0} 21^{\prime}$ N．，long． $9^{\circ} 11^{\prime}$ E．；17．VIl． 1879 ；depth， 360 m ．；fine brown elay： 2 females（S wedish „Gunhild＂ Exp．，st．14，C．Botallus and HJ．Theel）；R．M．S．132．Lat． $58^{0} 14^{\prime}$ N．，long． $8^{0} 56^{\prime}$ E．； 17．VIl． 1879 ；depth， 415 m ．；fine brown elay： 11 specimens，mature females and juvenes （Swedish ，Gunhild＂Exp．，st．15，C．Bovallues and Hj．ThÉel）；R．M．S． 133.

West eoast of Norway：
Lofoten Islands at a depth of $360-540 \mathrm{~m} .: 5$ specimens，mature females and juvenes； collector unknown；R．M．S． 134.

Distribution：－Skager Rak；west coast of Norway，Beeren Island（H．H．Gran） Iceland（H．II．Gran）；between Faroe Islands and Norway and between lat． 45° and $50^{\circ} \mathrm{N}$ ．， long． 10° and $15^{\circ} \mathrm{W}$ ．（G．S．Brady and A．M．Normay）．

Ph．（Philomedes）Eugeniae n．sp．

Description：－Female：－
Shell：－Length 1，6－1，75 mm．；length ：height，about 1，5：1；length ：breadth about 1．8．）：1．Seen from the side（fig．1）it has its greatest height at the middle．The dorsat margin is rather strongly and almost uniformly curved，sometimes，however，somewhat less than is shown in the figure；in most eases it passes over into the anterior and posterior margins without any decided comers；sometimes，however，when the dorsal margin is less strongly arehed， distinct，though broadly rounded，corners may be observed．The ventral margin is miformly arehed，but less strongly than the dorsal margin；it is weakly pouting just bchind the ineismr．

The posterior part of the shell is, at about a third of the height of the shell, drawn out into a well-marked, ahmost reetangular, and in most eases rather fointed, corner-sometimes, however. somewhat less pointed than in the accompanying figure. Above this corner the posterior margin of the shell is very weakly concave or almost straight. The rostrum has a rather strongly projecting, almost rectangular, but rounded, anterior corner; its ventral corner is about of the same shape as the anterior one and has an exceedingly small, almost eompletely reduced, spine. The ineisur is rather narrow and deep, and not, as in Ph. (Ph.) globosa, Lilljeborgi and several other species of this genus, marked off from the ventral margin of the shell by a protnberance. Seen from beneath the shell is oval, with its greatest breadth at about the middle, the anterior and posterior ends being almost symmetrical, the side contours uniformly curved. The surface of the shell is, at least partly, covered with small, rounded, sla law, rather elose foveolae, in most eases difficult to observe, but apart from these it is quite without sculpture. It has rather sparse, seattered and rather long bristles, somewhat more numerous near the margin of the shell; these bristles are characterized by the fact that they suddenly grow narrower from a rather thick basal part (of about the same type as the long bristle in fig. 4 of $P h$. ($P h$.) globosa). The pores of the surface are diffienlt to observe, rather small and numerous. Se en from inside: Merlial bristles: The bristles in the row on the rostrum are rather numerous (about the same as in figs. 2 and 6 of Ph. (Ph.) Lilljeborgi). On the posterior part of the list there is a moderate number of bristles, partly arranged in small groups. On the part of the shell between this part of the list and the margin of the shell there are a few bristles (of about the same type as in fig. 3 of $P h .(P h$.$) Lilljeborgi). There is no such pocket as characterizes this latter species.$ The selvage on the rostrum has short, marginal hairs.

First antenna: - The three bristles on the second joint are most frequently subequal and about as long as the fourth joint. Either all the bristles or one of the two anterior ones and the posterior bristle on the third joint were without long secondary bristles in the case of the specimens investigated by me. The same was true of the a-bristle on the end joint. Each of the other bristles on the second to the fifth joints had only one wreath of long, stiff secondary bristles at the middle. Otherwise this antenna agrees very closely with that of Ph. (Ph.) globosa. No variation was observed in the sensorial filaments on the end bristles.

Second antenna: - Exopodite: This is very like that of Ph. (Ph.) globosu. The bristles on the second to the fifth joints are about as long as the total length of the two or three proximal joints and are furnished at about the middle with a series of about ten rather strong, smooth ventral spines. The long natatory bristles were unbroken in the femates investigated by me, atthough some of these had rather large eggs in their brood chambers. Endopodite (fig. 2): The first joint is of the same type and has the same equipment of bristles as this joint of Ph. (Ph.) globosa. The second joint is rather elongated and has two bristles ventrally, somewhat proximally of the middle, the one situated somewhat proximally of the other. The proximal one of these bristles is rather long and has several wreaths of long, stiff secondary bristles at the middle and short hairs distally. The distal one is rather short and has only short hairs. The end bristle on this joint is somewhat longer than the joint and is fimely rounded distally.

Alandible: - With regard to this limb the type-specimen showed practicatly complete agrement with Ph. (Ph.) globosa. In a few other specimens this limb was rather considerably more slender, and its bristles, especially those on the endopodite, were relatively shorter: on the latter specimens the secondary bristles also seemed to be more weakly developed.

Fis. LXXIT. - Ph. (Philomedes) Eugenine n. sp.. ㅇ. - 1. Whell, seen from the side; $56 \times .2$. Endopodite of the left second antenna seen from inside: $312 X$. 3. Seventh limb; $312 \times$.

In one ease three bristles in addition to the two distal bristles were observed dorsally on the second protopodite joint.

Maxilla: - This is like this limb in Ph. (Ph.) globosa. The equipment of almost all the bristles is somewhat weaker than in the species mentioned. Protopodite: The bristle on the anterior side of the palp on the boundary between the protopodite and the endopodite is comparatively short, being sometimes not even half as long as the first endopodite joint; it has wo long secondary bristles. Exopodite: Its three bristles have in most eases only
a very fow long secondary bristles. Endopodite: The first joint has distally-posterionly only four bristles. The end joint has there a-doristles and three e-bristles; the d-bristles are often subequal.

Fifth limb: - This is very like this appendage in Ph. (Ph.) globosa. As a rule, however, the equipment of most of the bristles seems to be somewhat more weakly developed than in this species.

Sixth limb: - This is very like that of Ph. (Pho) globosa; we may add that the epipodial appendage is represented only by three bristles and that the second joint of the exopodite has only seventeen to twenty bristles.

Seventh limb (fig. 3): - This has about the same relative length as the corresponding appendage in Ph. (Ph.) globosa. There are, as in Ph. (Ph.) Lilljeborgi and rotunda, three dorsal and two ventral cleaning bristles situated close together distally; proximally of these there are from five to seven dorsal and four to six ventral bristles scattered irregnlarly. The cleaning bristles are moderately long and differ sumewhat in length from each other, varying also to some extent from individual to individual and on the right and the left limb of the same individual. They are furnished with three to seven bells cut off transversally distally, the tongue of the distal bell being also cut off transversally. Proximally of the bells these bristles are furnished with short, and in most cases rather fine, hairs, partly, at least, arranged in one or a few wreaths; these hairs seem sometimes to be almost entirely lacking. The end comb eonsists of eleven to fifteen teeth of the same type as is deseribed for $P h$. (Ph.) rotunda. The cavity dorsally of the end comb is rather deep and is furnished dorsally with two rather small. elaviform, smooth chitinous pegs.

Furca: - The five posterior claws have no long basal-medial bristles. Apart from this the furca of this species agrees completely with this organ in Ph. (Ph.) Lilljeborgi.

Rod-shaped organ: - This is of precisely the same type as that of Ph. (Ih.) globosa. It is about $0,3 \mathrm{~mm}$. long.

The male is noknown.

Remark: - This species is very closely related to Ph. (I'h.) assmilis (. S. Bradr, but differs from it by the equipment of the endopodite of the secomd antema and by having more numerous cleaning bristles on the seventh limb. In addition, unlike the species just mentioned, it has not the peculiarity that the older females break off the natatory bristles on the second anterma.

Habitat: - Tierra del Fiuego: Strait of Magellan; depth, 7 mı: : 3 mature females (The Swedish ,Engenic", Expedition, 1851-1853); R. H. S., om slides. Off Cape Valentyn; 12. 1II. 1896; depth, 270 ml ; bottom of dead shells: 1 mature female and 5 juvenes (The Swedish 11 agellan Exped.); R. M. A. 135.

Type specimen: on slides in R. M. S.

Rivatuon (o) wher spertis.

Ph. (Philomedes) rotunda n. sp.

Description: - Female: -
 1,6:1. Aeen from the side (fig. l) it has a broal oral shape, with its posterior part somewhat larger than the anterior part, the greatest height being at about the middle. The dorsal, posterior and rentral margins are uniformly rounded, passing into each other without, any conners; the ventral margin is weakly pouting just behind the incisur. The rostrmm has a broady romed anterior comer, its rentral comer is rather pointed, but is without any spine (such as we find, for instance, in Ph. (Ph.) globosa, Lilljeborgi and other species of this sub-genus). The incisur is moderately (leep and narrow, and is not marked off from the ventral margin of the shell by amy protuberance (cf., for instance, Ph. (Ph.) globosa and Lilljeborgi). seenfrombeneath it is oval, with its greatest breadth at about the middle, the anterior and the posterior ends rather broadly (more so than in Ph. (Ph.) globosa, for instance; cf. the figure for this species) and almost symmetrically rounded; its side contours are uniformly arched. Surface of the shell: This has no marked sculpture; in transmitted light it appears to be rather finely and irregularly reticulate (cf. fig. 2); in reflected light each mesh seems to correspond to a rather shallow eavity. It is sparsely furnished with moderately long, scattered bristles, which are characterized by suddenly becoming narrower from a rather broad basal part (their type is about the same as the long bristle in fig. 4 of Ph. (Ph.) globosa). The pores of the surface are rather small and mumerous and very difficult to observe with certainty. Seen from inside: Medial bristles: The bristles on the rostrum are about as numerous as on $P h$. ($P h$.) Lilljeborgi; most of them seem not to lave any long hairs distally. Posteriorly on the list there are a moderate number of bristles, partly arranged in small groups. Between the posterior part of the list and the margin of the shell there are a few short bristles. On the other hand there is at this place no such pocket as has been given as characteristic of Ph. (Ph.) Lilljeborgi. The rostral selvage has rather short marginal hairs.

First antenna (fig. 3): - This agrees in its details with this antenna of Ph. (Ph.) globosa. No variation was observed in the number of sensorial filaments on the end bristles. There are rather abundant hairs on the second joint, and short, stiff hairs were also observed on the first joint, especially ventrally.

Second antenna: - Exopodite: This is very like that of Ph. (Ph.) globosa. The bristles on the second to the fourth joints are about as long as the first joint. In females with large eggs in the brood chamber the long natatory bristles were broken off as in the species just mentioned. The endopodite is also very like that of Ph. (Ph.) globosa. Sometimes a rather short bristle, with short hairs, may be found somewhat distally of the long ventral bristle on the second joint. The distal bristle on this joint is perhaps somewhat more pointed than in Ph. (Ph.) globosa.

Mandible: - Protopodite: Basale: This has from seven to nine bristles ventrally, some of which are rather long and some of moderate length. Apart from the two

Digitized by Microsoft ${ }^{\circledR}$
distal hristles there is anly one briathe dorsallys, sitmated just in from of the middle of the joint; this bristle is about of hong as this joint. Tho two distal bristles are somenthat different in length, somewhat homer wherer than this joint. All thee are whem the same type, with one or a few whathe of hong stifl secomdary hristles at the middle and short, fine hairs distally. The wo bristes of the exopodite are somewhat shorter than the distal bristles on the seoond protuperdite juint. hat wif abont the same type ats these. Endopodite: Of the four ventral bristles on the tirst joint the shomest one is about half as long as the second emdopodite joint the thee uthers are about as lone ats this joint; they are all furnished at the middte with ome or a lew wreaths of long, stifl secondary bristles and with short hairs distally. Second codoporde joint: The anterion proximal group of beristles comprises three bristles, of which the medial ones are somewhat shorter than the latral one, the latter being about half as long as this joint: all of them are usually furnished with short, tine hairs. End joint: 'The longest middle claw is about as long as the second endopodite joint. The anterior claw is only about a thire of this length. The weak anterior bristle in this species is somewhat longer than the anterior claw. Pilosity: The sceond protopodite joint and the second endopodite joint have gromps of short, fine, stiff hairs on the outside; similar hairs are also found distallyanteriorly on the first endopodite joint.

Il axilla: - This is very like this limb in Ph. (Ph.) globosa. Protopodite: The bristle on the anterior side of the palp on the bomdary between the protopodite and the endopodite is long, being about as long as the endopodite, and has no long seeondary bristles. Endopodite: This has four or five bristles on the first joint distally-posteriorly. The end joint has three or four e-bristles; the powerful bristles among the b-and d-bristles have a very weak equipment, almost smooth.

Fifth limb: - This is very like the corresponding appendage in Ph. (Ph.) globosa. In one speemen three bristles were observed on the outer lobe of the third exopodite joint on this limb of one side.

Sixth limb: - Very like that of Ph. (Ph.) globosa. The second exopodite joint has, on the arerage, somewhat more numerous bristles.

Seventhlimb (fig. 7): - This has about the same relative length as in Ph. (Ph.) globosa. Cleaning lristles: These are rather numerous, $23-26$ being observed; in most cases, as in Ph. (Ph.) Lilljeborgi, three dorsal ones and two ventral ones are situated close together distally, sometimes three dorsal ones and three ventral ones were observed; the rest are seattered irregularly proximally of the former ones, being in most cases somewhat more numerous on the dorsal side of the limb. They are of moderate and somewhat varying length, and are furnished with from two to five bells, cut off transversally distally; the tongue of the distal bell is also cut off transversally. Proximally of the bells the cleaning bristles are furnished with from one to five wreaths of short, stiff hairs, placed obliquely. The end comb (fig. 8) consists of about twelse to sixteen teeth of moderate strength and length, decreasing somewhat in length the more proximally they are situated. These teeth are furnished proximally on each side with a rather strong seenulary tooth and are rounded distally; there are no wing-shaped processes at the sides (such as are found, for instance, in Ph. (Ph.) globose and Lilljeborgi), or if they do exist,

Digitized by Microsoft ${ }^{\circledR}$

they are very weak and have no free points. The cavity situated dorsally of the end comb is rather deep and is furmished dorsally with three moderately long, claviform, smooth, chitinous pegs (fig. 8).

Furca (fig. 5): - This has ten claws, diminishing in length posteriorly, without any clear division into main chaws and secondary claws. Claws nos. 2 to 4 are rather decidedly bent; this bending varies. howere, to some extent. The five anterior claws have a proximalmedial group, of long, stiff bristles. the posterior ones have no such bristles. Nedially close to

 are broken: $680 \times$.
the claws there are on the lamellae sparsely seatered stiff bristles varying in length and momber. In front of the first claw and behind the posterior one the lamellae are furnished with short, fine hairs; apart from these they are most frequently quite smooth.

Rod-shapet organ (fig. 6): - This organ is about 0.5 mm . long. It is fincly pointed distally. Somewhat proximally of the middle of the organ a rather considerable pertion of it is thin-watled; at this part the organ is flexible. There is no division into joints at all. It is smooth.

The mile is unknown.

Relnantol\%.| 1 1) livempes lozdiy.

hemarks: - It is impossiblde to decide for certain whether this speceies is intentical with Ih. (I'h.) lactipes, though it does not seem impossible. As a preliminary I comsidered it best
 1!ms, p. 12 is exemdingly defiemt. Cherl! (ratw up) without the anthor having the necessary kinnwedge of the forms belonging to this sulbegems.

In passing I may point ont that Ph. lecerpes is probably a latran of the speetes Ph. Charcont. Which is deseribed hy le. von 1)way in the same treatise. Downy himself indicates the persibility of these wor forms being identical. Thus we read on pr To of this treatise: , Din général, les partieularités de louganism rappellent beaucomp la Philomedes ('harcoth, et, si lat structure des pattes vermiformes ne diflérait pas antant, on pourrait rémir les deux espèees, vu que tontes denx sont du mème endroit ,, (hat côte de lîle Booth-Wandel, Terre de Gralbam, Intaretis)". cneore que capturées à des dates differentes." Aecording to this author the seventh limb of Ph. laetipes is. unlike that of Ph. Chereoti, yuite bare. This character to wheh Dabsy attached such great importance that he derived the name of the species from it, can, of eourse, not be regarded as any reason for not identifying these species. It is known that this absence of armature on the seventh limb is a chameter of the larva; all species of this genms seem to have a seventh limb of this trpe during the third larval stage. Other charaeters as well, such as the length of the shell. the number of fureal claws, ete. support the idea that Ih. laceipes is a larva of Ph. Charcoti in the third stage.

The form dealt with by me here seems to differ from I h. Charcoti. of which only the male is deseribed. in at least one character, namely the number of bristles on the seventh limb. $P h$. Chareot is said to have only thirteen bristles, six on one side and seven on the other, while P. (Ph.) rotuda is characterized, as we have seen above, by having a somewhat larger number (23-26).

Another species to which $P h$. rotunde is certainly very closely related is Ph. (Ph.) orbicularis - which. curiously cough and certainly incorrectly, is regarded by its author, G. S. BRaD t, as a sonthern variety of Ph. (Ph.) globosa - , It is in all respects very similar to the well-known Furopean species P^{\prime}. Brende" (globosa), , and may perhaps be fairly looked upon as a southern variation of that form'. (I.S. Brabs's deseription is unfortunately too ineomplete to permit of a certain identification. The relatively great length of the shell ($2,5 \mathrm{~mm}$.) and the fact that .the surface of the shell is smooth and densely clothed with a villons coating of very short hairs" (G. A. Bradr. 1907. p. 4) seem. however, to argue against the identity of these forms. It is, however, not impossible that they are identical, nor can it be considered impossible that G. W. Mtiller was right when in 1912 he identified $P h$. orbicularis with Ph. laevipes.

Habitat: - South (icorgia: S.A.E.. Station 18, mouth of the West Fiord, Cumberland Bay, lat. $54^{\circ} 15^{\prime} \mathrm{S}$., long. $36^{\prime \prime} 25^{\prime} \mathrm{IV}^{\prime} ; 22 . \mathbb{I V} .1902$; depth, 250 m .; loose clay; temperature at the bottom $+1,2^{\circ} \mathrm{C}: 1$ mature female; R. M. S. 136. S. A. E. Station 22, off May Bay, lat. $54^{0} 17^{\prime} \mathrm{s}$., long. $36^{0} 28^{\prime} \mathrm{W}$. (type locality); 14. V. 1902 ; depth, 75 m ; ; elay with scattered algae; temperature at the bottom $+1,5^{\circ} \mathrm{C}: 1$ inature female; R. M. S., on slides. \therefore. . E., Station 23 , oft the mouth of Morän Fiord, lat. $54^{\circ} 23^{\prime} \mathrm{S}$., long. $36^{\circ} 26^{\prime} \mathrm{W}_{\text {.; }}$ 16. V. 1902;
depth, $64-74 \mathrm{~m} .:$ grey clay with gravel and stones; temperature at the bottom $+1,65^{0}$ (: 4 mature females and 14 larvae; R. M. S. 137. S. A. E., Station 24. off Grytviken, lat. $54^{\prime \prime 2} 22^{\prime}$ S., long. $36^{0} 27^{\prime}$ W.: 20. V. 1902 ; depth, 95 m ; clay: 2 juvenes; R. .I. S. 138 . S. A. E., Station 30, Morän Fiord, lat. $54^{\prime \prime} 24^{\prime}$ S., long. $36^{\prime \prime} 26^{\prime} \mathrm{V}^{\top}$; 26 . V. 1902; depth, 125 m .; clay with seattered stones; temperature at the bottom - 0,250 ${ }^{\circ}$ C 1 mature lemale; R. M. S.. on slides. Type-speeimen, on slides, R. M. S.

Sub-genus Scleroconcha n. sub-gen.

Philomedes (part.), a utorum.
Diagnosis: - See above p. 380.
Remark: - For the number of species see above, p. 380.
Sub-genotype is $P h$. (Scl.) Appellofi n. sp.

Ph. (Scleroconcha) Appellöfi* n. sp.

Description: - Female: -
Shell: - Length, $3,3-3,6 \mathrm{~mm}$. length : height about $1,5: 1$; length : breadth abont $2: 1$. Seen from the side (fig. 1) it varies, though only slightly, in shape. It is somewhat sub-rhomboidal with its greatest height at about the middle. The dorsal and ventral margins are boldly arched. The former is somewhat irregular, its posterior part is sometimes more flattened than is shown in the accompanying figure and with a distinct corner marked off from the posterior margin of the shell. The ventral margin is uniformly curved, passing without any corner into the posterior margin of the shell. The posterior part of the shell is drawn ont into a strongly projecting, rounded beak-like process somewhat ventrally of half the height of the shell. The rostrum has a strongly projecting, rounded anterior comer; when the shell is seen from the side, the ventral margin of the rostrum is covered by a stromgly projecting. powerful process, somewhat rounded distally (cf. fig. 3). The incisur is broad, almost rectangular, and is marked off from the ventral margin of the shell by a rather large and somewhat bifureated protuberance. Seen from beneath (fig. 2) the shell has ahost parallel sides anteriorly and posteriorly converging irregularly and suddenly towards the anterior and posterior points. The surface of the shell has a powerful, decorative sculpture: partly four strongly projecting longitudinal ridges, and also mumerous irregular foveolae of moderate depth and size, situated close together. Of the four ridges two, one dorsal one and one ventral one, rm close to the margin of the shell, which they cover to a great extent when the shell is seen from the side; the dorsal one splits about half-way along the shell into two ridges ruming close to each

[^58]other and almost parallel, both contiming down to the rostrum. The two mher ridees rum mom patalled to the lemgitudimal axis of the shell, we somewhat above, the other somewhat below laslf the height of the shell. 'The former continues anteriorly the thatrum, where in most cases it joins the dorsal ridege; posteriorly it joins the efidge that rums along the ventral margin on the pusterior heak-like process of the she th: the anterior part of this gidge is weakty and farty miformly curved dersally: behind the midde of the shell, on the other hand, it is very irregular with at heast two very striking, nodose, projecting coners. The latter, the ventral one of the ridges that rum more parallel to the longitudinal axis of the shell, is almest staight and suddenly comes to an end fosterionly a short distance in front of the posterior heak of the shell with a rather strongle projecting protuberance; anterionty just behind the rostral incisur it is joined by means of a low but distinet transserse ridge both to the ridge rmming most dorsally to it and to the

Fig, LXXTll. - Ph. (Scleroconcha) Appellofi n, sp, of. - 1. Left valse seen from the side (in reflected light): 23×2. Shell seen from below; $14,5 \times$.
ridge that rms along the ventral margin. The foveolae are sometimes considerably less developed than is shown in the accompanying figure. The ridges, like the bottoms of the foveolae, have a senlpture with small cavjities, sometimes very difficult to observe (in some cases not even existing?). The surface of the shell is sparsely furnished with small hairs, more numerous and somewhat longer near the margin of the shell. Pores of the surface are found to a moderate number; they are small and difficult to observe. Seen from inside the posterior beaklike process appears to be slightly hollowed out in the shape of a siphon. Medial bristles: The row of bristles on the rostrum is rather sparse; a number of bristles in this row do not seem to have any long distal secondary bristles. The bristles on the posterior portion of the list are difficult to observe with certainty: they seem to exist in moderate number and not to be arranged in clear groups. Between the list and the posterior margin of the shell no bristles seem to occur, mor is any pocket-like formation observable here.

First antenna (fig. 4): - Of the three bristles on the second joint the posterior one is the longest, being in most cases about as long as the total length of the third to the fiftll or the third to the sixth joints; the lateral one is the shortest, in most cases about as long as the total length of the third and fourth joints. The third joint has two anterior bristles and one

pesterior bristhe. Wif the twanterne obes. which are sithated somewhat distally of the middle of the joint the anterion one is wfon somewhat longer than the wher and about as long as the total length of the third and fourth joints. The posterior bristle on this joint is in most cases about as long as the shorter of the two anterion ones. The fourth joint has two anterior and four pesterion bristles. The latere are of about the same relative lengeth as in Ph. (Phe) glodesa, the two anterior ones are in most cases about as long as or somewhat longer than the two anterior bristles on the preceding joint. The bristle on the fifth joint and the a-briste on the end joint are subequal, their length being about the same as the total length of the lourth and fifth or the fourth to the sixth joints. The length of the bristles diseussed so far varies somewhat, though only slighty; their equipment is usually two to four irregular wreaths of long, stiff seeondary bristles. The sensory bristles on the end joint (fig. 5) have the following equipment: the b-bristle has two proximal and three distal sensorial filaments: the e-bristles have seven proximal and four distal sensorial filaments: the f- and g-bristles have six proximal and four distal sensorial filaments. Pilosity: The second to the fifth joints have rather abundant transverse groups of short, stiff hairs.
sceond antenna: - Exopodite: This is very like that of Ph. (Ph.) globose. The proportion between the length of the first joint and the length of all the succeeding joints is about the same as in Ph. (Ph.) Lilljeborgi. The bristles on the second to the fourth joints are about as long as the two to three proximal joints, bare, and finish distally as two short, fine points. In femates with large eggs in the brood chamber the long natatory bristles are broken off in the same way as in Ph. (1 h.) globosa. There are no basal spines, but a number of hairs in the distal rows of hairs on the second to the eighth joints are considerably strengthened and are like spines at the place where in other species the basal spine is to be found. Endopodite (fig. 6): The first joint is very similar to that of Ph. (Ph.) globosa. The second joint is rather short: ventrally it has only one bristle, situated somewhat proximally of the middle of the joint. This bristle has mumerous wreaths of long, stiff secondary bristles at the middle and short hairs distally and is exceedingly long, almost as long as the protopotite of this antenna. In one specimen (the type-specimen) there was observed on the antenna of one side, somewhat distally of this bristle, an additional bristle of about the same length and type as the bristles on the first joint. The distal bristle of the second joint is about as long as or somewhat shorter than this joint; it is rather pointed distally.

Mandible (fig. 8): - Protopodite: The basale has ventrally ten to twelve, usually ten, bristles of different lengths, some moderately long, some, especially among the distal ones, rather long. Dorsally this joint has, apart from the two distal bristles, only one bristle, situated somewhat in front of the middle of the joint; the latter bristle is about as long as this joint. the two distal bristles differ somewhat in length. the longest being about as long as the dorsal side of this joint or even somewhat longer: these bristles have one or a few wreaths of long, stiff bristles at the middle and fine, short hairs distally; sometimes the proximo-dorsal bristle has no wreath. The two bristles of the exopodite are of about the same type and length as the two distal bristles on the second protopodite joint, sometimes they are rather longer, sometimes a little shorter. Endopodite (fig. 11): The four ventral bristles
on the first joint are all of about the same type, with one or more wreaths of iong, stiff secondary bristles at the middle and short, fine hairs distally. Three of

these bristles are subequal, somewhat fonger than the anterior side of the second endopodite joint; the fourth is somewhat shorter. Second joint: The proximo-anterior group of bristles contains four bristles, the imner one of which is rather short and rather

 setn from inside; 2 亿o X.
of long. stiff secondary bristles at the middle. End joint: The longest middle claw is almost as long as the second endopodite joint. The anterior claw is in most eases somewhat konger than half the Jong midde claw. Pilusity: The second protopodite joint and the second endoporlite joint have gromps of short, stiff hairs on the inside; the first endopodite joint has a row of similar hairs distally-anteriorly.

 19, Ioft sixth limb seen from inside: $110 \times$.

It a xilla: 'This is very like the comersponding appendage in I'h. (Ih.) globose.
 many as welve were ohserved on the maxila of one side, on amother mbly nime, but in the later case it smom probable that one or more bristles had been broken ofl. The extra bistle was phaced clase to the short once and was smmewhat shater and weaker than the powerful bristles; it had a weath of hong, stifi secomdary bristles at the middh and was faisty strongly pertinated distally. la the ease of twelve bristles the two extra bristles were of the type just deseribed. second modite sore lies. 13. The thind endite (fig. 14) has mine bristles. As in Pho (Pho) glotusu. the expipment of the bristles. espectally the distal ones, and the mumber and strength of the secondary teeth are subject to variation. The bristle on the anterior side of the palp at the bomedary botween the protopodite and the endopodite is very short and almost bare. Exopodite (fig. 1.5): The equipment of the three bristles varies: one of the long ones often has no lomg seeondary bristles. Endopodite (fig. 15): End joint: This has usually theee a-bristles and three or four, usually three, e-bristles; the powerfol b- and d-bristles are almost bare.

Fifthlimb: - This is very like the type described for Ph. (Ph.) globosa. I'rotopod it e: First endite (fig. 17): The anterior and the posterior Inistle are in most cases somewhat shorter than in the species just mentioned and have no long secomdary bristles. The second endite (fig. 18) has only seren, the third (fig. 19) only eleven bristles. Exopodite: The anterior constituent tooth of the main tooth (fig. 20), like the tooth-like protuberance situated at its base. is less clumsy than in the species mentioned. The bristles on the anterior and posterior edges of the main tooth are subequal and of moderate length and strength; there is sometimes a wreath of long, stiff secondary bristles at the middle of all three; sometimes the bristle situated behind the main tooth has no such wreath. Second joint (fig. 22): One of the outer bristles in the group of threebristles is relatively long, being about two-thirds or three-(puarters of the length of the long middle bristle. Third joint: Of the two bristles on the outer lobe one is relatively short and weak, being only about half as long as the other. The shorter of these two bristles has a few long, stiff secondary bristles at the middle, the other has a few wreaths of similar hristles. In one specimen four bristles were observed on the inner lobe of this joint on the limb of one side.

Sixth limb (fig. 16): - This is very like that of Ph. (Pll.) globosa. We may add: Of the two medial bristles on the first endite of the protopodite one is short, the other usually moderately long. The endite on the first joint of the exopodite has one or two medial bristles and from eight to ten distal bristles. The second exopodite joint has $32-36$ bristles distally.

心eventh limb (fig. 23): - This is about half the length of the shell. The cleaning bristles (fig. 24) are comparatively few in number, only ten to twelve being observed; of these three dorsal ones and three ventral ones are plated closely together distally, and from four to six, two or three on each side, are scattered somewhat proximally of the former ones. Some of the distal bristles are rather long. the others are of moderate and somewhat varying length. On the long bristles there are about six to ten, on the shorter ones two to six, bells cut off transersally distally; the tongue of the distal bell is also cut off transversally distally: Proximally of the

 joint the d-lmistle is to lo alsavival: :3t2
betls the deamerg histes arm lumished atong the greater part of thoir length with dense, shom time stifl hatrs, arment into from about two to tive weaths. The emd comblag. (fig) is rather weak and comsists of about serem or cight subequal terth of moderate length. These teeth are romeded distally and ate furnished on both sides with from one to there weak secombary toeth. The eavite dorsalte of the eme eomb is shatlow. fromisheed at about the midder with a chat mous perg of about the sime type and size as the teeth of the eme eomb (fig. e5).
 number is found on both lamellare. somtimes it is different; the combinations $15-15$, $15-14$ and $15-1: 3$ were observed. Claws nos. 1 , 2 and t aro powerful, daw no. 3 is somewhat shorter and rather considerably weaker than no. 4. From claw mo. 5 , which is pretty considerably shorter and weaker than no. 4 , the following claws decrease fairly umiformly in length and strength the more posterionty they are situated. On chaw no. 3 the secomelary tecth extend in most cases right to the point. On the two distal claws there is basally-medially a group of rather long, stiff bristles: these bristles are in most fases rather weakly developed and sometimes seem even to be missing on claw no. 2 . (On the following claws there are no such bristles at all. On the inside of the furcal lamellae there is at the base of the claws a rather abundant supply of fairty long, stiff bristles birrying in length, in most cases without any evident arrangement in groups. In addition there are at this part copions short, fine hairs more or less clearly arranged in groups of something like rows: behind the claws the lamellae have fine hairs. The pilosity is subject to variation.

The length of the rod-shaped organ (figs. 9 and 10) is about $0,7 \mathrm{~mm}$.; its proximal two-thirds is segmented; distally it is either finely pointed or rounded. It has sparse, short, scattered hairs.

The male is unknown.

Habitat: - South Georgia: S. A. Re, Station 20, Antarctic Bay, lat. 54 $\mathbf{I V}^{\prime}$ S., long. $36^{\circ} 50^{\prime}$ WI.; 6. V. 1902; depth, 250 m. ; small stones: R. M. S. 139. S. A. E., Station 22.
 clay with seattered algae; temperature at the bottom, $+1,5^{\prime \prime} \mathrm{C} ;$ R. H. S. 140. S. A. E., Station 24,
 s. A. E., Station 30, Morän Fiord, lat. $54^{0} 24^{\prime}$ S., long. $36^{\prime \prime} 26^{\prime} \mathbb{I V}^{\prime}$; 26. V. 1902; depth, 125 m .; clay with scattered stones; temperature at the bettom, - $0,25^{\circ} \mathrm{C} ;$ R. M. S. 142 . At these stations twenty or thirty specimens were captured in all, mature fomales and juvenes in clifferent stages.
S. A. E.. Station 6, ※. II. of snow Hill Island, lat. $64^{\circ} 36^{\prime}$ S.. long. $57^{\circ} 42^{\prime}$ II.; 20. I. 1902; depth 125 m .; stones and gravel: one specimen, a larva presumably belonging to this species, was captured; unfortunately it was too young for certainty of identification; R. M. S. 143 . Type-specimen on slides in the collections of the R. 3. S.

DFOX

 $1+2 H$

Family Asteropidae.

Fam. disterpider, (i. S. Brady and A. II. NormiN゙, 1896. p. 6ies.

.. .. Asteropinae, (2. W. Möllier, 1912. p. 42.
Deseription: - Shell: - This shows sexual dimorphism. - It has a well-developed rostrum. The incisur is rather deep; in most cases, the inner (posterior) part of the upper incisur lip covers the inner part of the lower incisur lip, with which it is also mited at its imermost part. (This is expressed by (r. O. SARs, 1887, p. 186 as follows: The rostral incisur ,er nedentil begraendset af en indad skraat fremspringende, staerkt chitiniseret Lamelle".) The selvage waries in type, sometimes being rather broad, with a smooth margin, sometimes almost quite absent or divided into fine. short hairs. The list runs in an even closed bow from the rostral incisur along the ventral and posterior margins of the shell, coming to an end posteriorly near the hinge of the shell; it is in most eases narrow along the ventral margin of the shell, and somewhat wider inside the posterior margin of the shell. The distance from the list to the margin of the shell is on the average somewhat greater along the posterior margin of the shell than along the ventral margin. The valves are always joined along less than half the circumference. Contrary to the females, the males are always characterized by a ring of long hairs round the posterior part of the shell; in some forms, however, this wreath of hair is very sparse.

First antenna: - This shows rather strong sexual dimorphism. - The sensory bristle of the fifth joint is always developed. The original sixth joint has always only one bristle, situated distally-medially. This antenna has six or seven bristles distally, three of which are probably to be considered as belonging to the original seventh joint, and from three to four probably belong to the original eighth joint. In most cases, perlaps always, the anterior end bristle is claw-shapect.

Second antenna: - This shows dimorphism. - The endopodite in the female is small and weak, in the male it is always developect as a three-jointed clasping organ; the end joint of this branch has only one bristle, fixed distally in the females, proximo-ventrally in the males.

Mandible: - This has rather slight sexual dimorphism (sometimes even none at all?). - The protopodite joints, fike the two proximal endopodite joints, are
always large and well developed, the end joint of the endopodite is, on the other hand, comparatively small; the exopodite is more or less strongly reduced, but is always distinetly developed. Protopodite: The endite of the coxate: This is always well developed both in the male and the female. It is comparatively large, but it is certain, all the same, that it can not be used for mastication. It is bifurcated, but the two points are so close to each other that at first sight it seems to be undivided. Its dorsal point is differentiated into a hyaline, rather long, narrow, flexible and somewhat scythe-shaped process, which is compressed from the sides like a lamella and is directed towards the mouth. Its ventral point is considerably shorter and is rather narrow. The second protopodite joint is differentiated proximo-medio-ventrally" into a conieal process, which is armed with bristles and points towards the mouth. The exopodite has two bristles, situated ventero-distally, and in most cases very short. There are always a large number of glands emerging on the exopodite. Endopodite: This is always three-jointed, its end joint has a somewhat varying number of bristles.

Maxilla: - This has no (or sometimes very slight?) sexual dimorphism. - It is of a very strange type, differing greatly from all other 0 stracods so far known; see fig. III: 4 . It is not developed as a masticatory organ. It is moderately large, but rather weak, with weak chitinization and a rather weakly developed muscular system. It seems, like this limb in Cypridinidae, to have had five joints originally, three protopodite and two endopodite joints, but it has now only a slight indication of division into joints or even sometimes no division at all. The three joints of the protopodite always seem to be quite united; the boundary between the protopodite and the endopodite. like the boundary between the two endopodite joints, often seems, on the contrary, to be more or less perceptible. - Protopodite: The procoxale and the coxale are rather voluminous, but presumably rather short. The basale, which, like the two preceding joints, is directed forward and somewhat outward, seems, on the other hand, (contrary to what is the ease in other known forms) to be comparatively long; it grows somewhat narrow distally and is somewhat arched in two planes, partly downwards and partly - like the procoxale and the coxale - inwards. On the procoxale and the cuarale there are reduced endites, which are certainly quite useless for breaking up food; there are no endites on the basate. Lateroventrally along the whole length of the protopodite there runs a lather strong chitinous list, coming to an end posteriorly on the medial side of the limb just behind the proximal cndite, after having curved round the proximo-ventral part of the protopodite. From this list issues a very dense series of homogeneous bristles pointing ventrally and situated close together almost like the plates of baleen of a baleen whale. These bristles are rather long and stiff. comparatively narrow and not annulated; they decrease fairly uniformly in length from front to back. The posterior bristle in this series differs somewhat in type. The protopodite always secms to have an epipodial appendage dorsally. There never seems to be any trate of an exopodite or else it is represented by a single bristle or a small gromp of bristles sitmated distally-laterally-ventrally on the basale. The endopodite is rather short, in most cases considerably shorter than the basale; it points downwards and when at rest is almost at right angles to the protopodite; it becomes namow towards the puint. The first condopodite joint is rather well developed, somewhat alongated; the end joint is, on the other hand, very short.

With regard to the diflemenes betweon the previous athense interprotations of the doflement parts of this limband that which is followed in this worls, sed above ppe 33 and 36 .
f: ifth limb: - This has mo (or sometmes very slight?) scomal dimorphism. - Like the preceding limb it has a bery preuliar type of strocture, very diflement from all other
 joints are differentiated into a rather longe marow, tongueshaped and quite unjointed organ, strongly mompressed from tho sides. This organ is bont slighty inward, - in the same way as the protoporlite of the maxilla, - pointing anteriorly and outwards and twisted su that its ventral edge is peinted whiquely downwards towards the maxilla. Along the ventral dede of this orgat them is a demes serise of moderately fong or more or less short bristles. The distal part of the exopodito is reduced, being moly represented by one or a few bristles, more sedum by a small veruciform process laterally somewhat in front of the middle of the tongucshaped organ formed by the protopodite and the two proximal exopodite joints. The ep ipodial appedrdage is supported by rather powerful chitimous lists, which end dorsally, as the do ventrally, in a strong, spine-like part. The ventral one of these spines forms the end, so to speak, of the tongue-like part posteriorly; it is not free, as one would be inclined to believe from the descriptions of previous writers, but is attached to the wall of the body along the whole of its dorsal side; cf. fig. 14 of A. aberrata.

With regard to the differences between the interpretations of the different parts of this limb that have already appeared in the literature and that accepted in the present work see above pp. 38-42.

Sixth limb: - This has no (or sometimes very slight?) sexual dimorphisin. - It is alwass rather large and rather considerably lengthened in the longitudinal direction of the body, lamelliform, quite unjointed, but in other respeets it varies considerably in type.

Scventh limb: - This has no or sometimes very slight sexual dimorphism. - It has from two to four end combs arranged in pairs. In other respects it varies considerably in type.

Penis: - This is small and is only weakly chitimized. Distally it is split into two lobes.
Gills: - These have no or only very slight sexual dimorphism. - Contrary to what is the case in all other known 0 stracods* well-developed gills are found in this group. They consist of a number of lamellae, attached along the dorsal side of the posterior part of the body and arranged in two longitudinal rows separated by a narrow space. The lamellae are placed transversely, pointing backwards and upwards and, when the animal is seen from the side, they cover the greater part of the dorsal side of the back of the body. With regard to their fine structure they resemble the lamellac of the gills in the other closely-related Crustacean groups.

Speciul terminology: - First antenna: - The far-reaching resemblance shown by the end bristles, with regard to their number, position and type, to the end bristles on this limb in the family Cypritinitae can only be explained as real homology; on account of this I considered it best to make use of the same notation for this group as for the family just mentioned (ef. remark on genus Asterope, p. 462).

[^59]Mandible: - The dorsal peint of the endite on the first protoperdite joint is calted ,the seythe-shaped process", the rentral point the .,rod-shaped process". The eonical process situatert proximo-ventero-medially on the second protopodite joint (.,Ruckwärts gerichteter Fortsatz"
 pointing process".

Il a xilla: - The demse series of hristles situated latero-ventrally aloug the protnpotite is called, the bakeen", the single bristle ., the baleen bristle".

Fifth 1 imb : - The narmo tongue-shaped organ formed by the protopodite and the two proximal endopodite joints is called "the comb", its ventral bristles , the comb bristles".

Instorical: - The first deseription of a speries belonging to this family that is fonud in literature is that of A. PillifPI in , Archivfiir Naturgeschichte". 1840. pup. 186to 188. The species in question was pronounced by Pifmapf to be a type of a new genus, Asterope, ..der Ostracopoden". for he fomed that not only the shell, but ,auch das Thier sownhl von ('ypris and Cytherina" ($=$ Cythere, part.) , als auch von Cypridina Mnde-EnलARAs so bedeutend verschioden ist, daß es nothwendig ein aigenes (denus bilden mula". The new gemus would differ from the genus Cypridina principally , I. durch den Einselonit: der 'ichabe*. 2 . indem mur zwei Paar blattartiger Füße vorlanden sind. 3. indem der Bchwanz einfach ist (bei Cypridine besteht er aus zwei Lamellen)". Thus entirely mistakes! Although the description is very incomplete and consists principally of mistakes, there can searcely be any real dond that the species in question - A. elliptica - is really very chosely related to and belongs to the same genus as the forms that are included in the gemns Asterope in the present work.

During the first three deades after 18to, however, Pillifpi's new name for the genus did not gain recognition. The writers who dealt with forms belonging to this grons during this time referred them to other more or less closely related genera that had been previonsly described. Thus H. Niconet (Gis, 1849, p. 294) deseribes a species that reptainly belongs here under the namb of Cypris bimaculata: J. D. DAN.'s Cypridina olivacea, 1849, P. 51 can - on account of the shape of the shell and the wreath of hairs roumd the back part of the shell - be reforred to this genus. though with some doubt.** E. (flabbe, 1859, also refers forms belonging here to the genus Cypridinet, and A. M. Nordidx, who adopts the generic name dsterope in his later works, in 1861 deseribes one of these species under the name of Cypridina teres, and lator on. 1867. p. 198, includes it in the genus Bradycinctus (- Phitomedes). None of these writers wives any reasons for this method of procedure of theirs. W. Bunn, who comsistently refers these forms to the genus Cypridina in all his works upon them, 1847, 1850 a and 1850 c. explains this, $1847, p$. 21 by the fact that in disseeting two species, "which I can only reler to the germs Cypridime".

[^60]

The dessretption of the fiest reppresentertise of this gromp.

The sumus Astornpur
"wes rejucted in the begint!ms.
 this mixture of the charamors of the two gempan and taking into consideration the minutemess
 positions under ditherent miteresopes and with difforent obsemers. I am inclined to bedieve

 Tusome cxtent mather meritorions and which is based on the dissection of thee ('ypridinids (ome species belonging to the gemus Phitomedes and two spee ies belonging to the lamily Astero-
 kerese. die seitliche Augen und die hekannten ..geringelten Anhänge" besitzen. den Namen ('ypridina bei." F. MCLAER explains this point ol' view by stating that the amatomy of all the species then deseribed was too inaderpately known to permit of a seientifically fommed division of the forms belonging to this mit into smaller systematio units.
(i. O). SWes. in his work of 1865. p. 100. points out that Asterope must be considered as a suecial genus, well distinguished from other C'ypridinids.
 induded two species previously grouped mader the genus C'ypridina, C. Mariae W. B.ans. and ('. teres A. M. Normin. Brady did not. howerer, retain this new generie mame bong: already in his work of 1871 he identifies (p. 292) the genus Cylindroleberis with Asterope Porlurrl and in all his subsequent works we only find the latter name. In spite of this a mumber of investigators wher afterwards dealt with forms belonging to this unit have nevertheless retained the name Cylindroleberis, thus, for instance, G. W. Metaleen in his works of 1893. 1894, 1906 hand 1908 (not 1890 , where he uses the generic name Asterope), J. A. C'timan, 1906, CH. JIDAY, 1907, R. W. Sharle. 190日 and Th. stebring, 1910. The reasm for this is to be found in the fact that in the same year (at the same time?) as A. Pfillippl published his essay on the genns - Asterope two other inrestigators (AlLLER and Troschel) described a new Echinoderm gemus under the same name. As, however, according to modern nomenclature, the generic name Asterope camot be used for the Echinoderm genus established by the two latter authors, this difficulty may be considered to have disappeared. Accordingly in the present work I considered it convenient to follow G. S. Brabl's example - as G. W. Mutleer did in 1912 - and use the name given by 1 . Phalifpi for this genus.

The genus Copechate, E. Hense, 1878 may be briefly dealt with here. This genus was identified by (i. O.s.irs, 1887, p. 13 with the genus Asterope Pinhipl:, At den af Hesse under Benaemelsen Copechaete opforto Slaegt er identisk med Asterope, er ntvivlsomt"** G. S. Brady and A. II. Normin, 1896. adopt this name as ..undoubtedy" symonymous with Asterope, .,but what his species are it is impossible to say'. (i. W. Me"ller goes still farther: in 1912, pp. 45

[^61]and 46 he succeded in identifying the four seecies established by HEnse. - For several reasons I find it impossible to follow these authors. It is certainly true that the drawings with which E. Hesse ilhustrates his descriptions show in a number of respects, such as, for instance the shell and furea, a certain, though only a superficial resemblance to the genns Asterope, but in most of the characters it is, however, quite impossible to find the slightest resemblaner. Let us look, for instance, at pl. XII, fig. 6, which, aceorting to the explanation, represents the anterior portion of the body. This figure agrees very well with E. Hesen's description, p. 18: ,Antemes formées d'une seule paire, grêles, longues et multiarticulées, suivies de pattes thoraciques biramées. larges, plates. au nombre de cimp, garnies de fortes épines, de soies pennées ou de très-long crins divergents et ramifiés." The first antenna is long and very narrow, composed of nine joints of about equal length, each joint provided with from one to three short, fine, simple bristles. The second antema is not. as in the genus Asterope, composed of a large muscular protopodite, a reduced endopodite and a long. slender exopodite with long natatory bristles along the ventral (anterior) margin, it consists, on the contrary, of two moderately long, subequal, broad, thattened branches of which the anterior one (the exopodite?) has a series of long matatory bristles along the posterior edge, a number of moderately long bristles along the anterior edge, the posterior one having a series of moderately long bristles along both the anterior and the posterior margins. The following limbs, two of which are drawn. are all of the same type; they are bifurcated, the. anterior branch (the exopodite), with four or five joints, is relatively long, about twice as long as the posterior one, which has two or three joints; both branches are Hattened and are furnished along both the anterior and the posterior edges with a series of powerful, moderately long or relatively short bristles. The latter limbs show a certain resemblanee, though only a superficial one, to the posterior limbs of the free-swimming ('opepods; they have, on the other hand, not the faintest resemblance with the peculiarly characteristic limbs ol the gems Asterope. It may be unnecessary to draw any further comparison. If any importance at all is to be attached to the description and the figures the genus Copechaete must be eonsidered as being not identicat with the gemus Asterope. E. llesse himself puts his new genus as a representation of a new family by the side of , ta familte des Bosminidiens" of the Ofadocers. Whether this is correct I must leare for further discussion. It is certain that the gemus Copecherter cannot be comonted among the 0 stracods. It sems most convenient, at least for the present, only to state that we do not know the natural position of this genns.

Of the older writers who tried to give a deseription of forms belonging to this gromp, those whose descriptions are not merely confined to a general aceount of the shape and appearance of the shell commit very serious mistakes with regard both to the description and the explanation of the different organs. This is not suprising when ome remembers the great difficulties these authors had to contend with.

[^62] bil alder athllouse If the descroptomen amd erplanallomenfibedif fromeltorgans. - The progerss wf nut limon ledger of thase aragus.

Thus the incomplete deseription by which A. Plllarplintroduced A. pllipticel into the literature consists, as has been indicated above, almost exelusively of mistakes. The strome natatory antemae are interpreted by this author as the first (and onty) pair of antemar of these forms, „Fibhthömer". Behind these there are . awei Paar Fiblo . . . welehe beide nach vorn gerichtet sind und mur zweighedrig erscheinen. . . In der Basis der Fïlse sitzen awei

 and the mandible: the organ that is assumed to be gills, is probathy the maxilla, the there mentioned tamella is the sixth limb and the thee pairs of patps finally mentioned seem to correspend to the comb and the epipodial phate of the fitth limb. 'The nature of the cleaning limbs has obvimsty mot bern understond by this athor: these appendages are ealled ,em l'and extindristher. geringelter, mit dingen Borsten besetzer Fäden"; they are eompared to the gills. four of which were observed, and it is assmond that, like these, they serve ,zom Anheften der Fier". (This interpretation was presumably influened by Maxt: Ebwaras, who in 1840 called the seventh limb a . .patte wiere".) Aceording to Phinarly the furca consists of only one lamelta.
 a ..natatory font". the mandible is explamed as the second pair of antennae, the maxilla as the .second pair of jaws". the fifth limb as the "first pair of jaws". the sixh limbs as ,,mandibles?" and the seventh limb, which in the deseription is included between ,the natatory foot" and the maxilla. as the ,oviferons foot". With regard to the scythe-shaped process on the first protopodite joint of the mandible, a figure of which is given, this anthor writes: „The part is unique, but I do not know its mature or nse."
E. (RRIBR's description of C'ypridinu ($=$ Asterope) oblonga, 1859 , shows in many respects an important adrance in our knowledge of these forms. This anthor was the first to observe the rod-shaped organ in this family (as is shown on p. 164 this organ had, however, been ubserved in other Cypridiniformes by \mathbb{U}^{*}. LILLIEBORG, 1853 and in Halocypriformes by J. D) DANA, 1852): (Bll Bemamed, however, ignorant as to the nature of this organ. This author gives drawings of the limbs which are, at keast in parts, rather good. The first and second antemae and the mandible aro given their right names, the endite on the first protopodite joint of the mandible is drawn attached to the base of this limb; it is called ,"hakenartige Fortsatz", without the author's attempting to give any indication of its nature. With regard to the explamation of the other limbs Gimbe is, however, less successfinl. He calls the maxilla ..ter sichelförmige zarte Wulst . . am Rande der Mandibelpalpe". The fifth limb is placed some distance behind the sixth and is turned backwards; its epipodial appendage is called the first maxilla, its comb the second maxitla. The sixth limb is sad to correspond to , der dade der Mandibetpalpen" or else in belong to the ..first maxilla". With regard to the seventh limb
 the nature of this wran as a limb: this appendage is called ..griffelformiger Anhang". Both the lamellae of the furca were observed. C'urionsty enough the gitls, on the other hand, escaped attention. (ikt be writes about these as follows, p. 334: . Was die vicu wurstförmigen hinter demselben" ($=7^{\text {th }}$ limb) .,am Rücken emporstehenden Körper bedenten, die Philippl an semer Asterope abbildet. jst nicht näher angegeben, sind es vielleiclit abgelöste und dort angebackent Eierklumpen:*

In (i. S. Brans's works 1stis a and lstis b, on the other hand, some, though only miner, advances are noticeable. The descriptions and reproductions of the limbs certainly leave much to be desired, but the author is somewhat more fortunate than his predecessors in interpreting them. The first and second antennae, the mandible and the maxilla are explained correctly and the seventh limb is called the ,oviferous font": the fifth and sixth limbs, of which a particularly misleading figure is added ($1868 \mathrm{~b}, \mathrm{pl} .41$, fiys. f. g), are, however, incorrectly explained; their relative positions have been inverted and they are called the third and the second maxilla respectively.

After all these mistakes, due, of course, to the smallness of the object and the curious type and very concentrated position of the limbs, G. (). S.12s, 1869, pp. 358-359, gives in the diagnosis of Asterope norregica the first correct explanation of all the limbs; the description of these organs is, however, rather incomplete, nor is it illustrated by any figures.

Fritz Métaer's essay ,,Bomerkungen ii ber Cypridina* also denotes an advance in some respects. The rod-shaped organ is discussed, its capacity as a sensory organ is verified (c.. p. $16+$ above); the number and the nature of the gills is established (the occurrence of gills in forms belonging to this group was mentioned cursorily by this anthor as early as 1864, p. 73); contributions are made to our lonowledge about the heart and the circulation of the blood (the orcurrence of the heart in these forms was olserved cursorily by this author as early as 1864. p. 72: (f. p. 164 above). With regard to the middle limbs, however, F. MÜLler gives no information at all ,,um die Zahl der nur muthmablichen Deutungen nicht um noch eine zu vermehren".

Our knowledge of this family has subsequently been very considerably increased, especially

As early as 1865 (. . (). Sum points out (p. 101) that the species deseribed by Wr. BanbD under the name of Cypridina Adamsi sems to form ..en distinct Alaegtstyp", - a "listinet genus type - closely related to the gemus Asterope.

In his large monograph of $189+$ (. W. MULLEE : states (p. 218) that the then known forms of the gems Asterope s. I. may be divided into natural grous; an attempt at sum a division was also made, but the groups that were set up reepived no special mames. In the first group there were placed Lobiancoi. (i. W. Mitllele, 189t, brecis. G. W. Melleer, 1890 and americant, (x. II. MíluER, 1890; they were characterized by their short, rounded shells, the uniting of the fifth and sixth joints of the first antenna and by their short, strong main claws. ahways few in number (three or four) on the furea. Agfessizi (Fit. Molluerk, 1870) and fusca. (6. IV. MClles. 1890 were to form one group; these two forms were characterized by lists ruming in the same direction on the surface of the shell, by the uniting of the sixth, seventh and eighth joints of the first antenna, by the small number of sensorial filanents on the sensory bristle of the fifth joint on this limb in the female and by the fact that the furca has only three slender and rather fong main elaws. Of the other specios oblonga (E. (ina be, lsma), elliphicu.
 were characterized by the fact that the fifth, sixth and seventh joints on the first antema are free and by having six main claws on the furca. (i. W. Mollese assummed that noreegice,

The clemsiflctuthen of thes family.
The deststome ente mutural sroutp...

 in Asterope. Frontal tentacle stont, $: 3$ - (or $2: \%$ jointed. The first joint ol the mandibulat foot has a faleate masticatory process as in Asterope but much more elaborately spinons; the second joint. instead of being produced backwards in an angular process, bears on its distal margin a darge tomge-like appendage wheh extends as lar as the extremity of the following joint. The last limb (vermiform font) is very profusely armed with setae, many of the segments bearing two or three on cach lateral margin. In other respects the anatomy is that of Asterope." 'This new gemus was based on investigations of two new forms, C'. Hendersomi and ('. orbicularis. It is not directly stated which of these two species is to be regarded as typieal for this gemus; one can. howerer, read between the lines that the species that is first deseribed in the treatise, ('. Mendersoni, is looked upon as the type-species by (i. S. Brably. This assmotion is fully
 a spereies taken in Madras Harbour." (. Hendersoni is given (1897, p. 87) as having been ..dredged . . . in Hadras Harbour"; C.orbicularis is stated to have come from Valparaiso. -
 asterope. At the same time he feels compelled to modify the diagnosis of the genus given in 1897. (1) p. 1 sl we read: .. The shape of the shell can no longer be maintamed as a generie character, several other species having been diseovered. wheh with a very different form of shell combine the other distinctive characters of Cyclasterope. The points which 1 now suggest as diagmostic of the genus are the presence of a digitiform process on the penultimate joint of the mandibular font, the profusely setiferons character of the vemiform limb, each ring of which toward the distal extremity usually supports two or three setae, and the spmous armature of the joints of the swimming-branell of the antenna."

In his work of $1906 \mathrm{~b} \mathbf{G} . \mathbb{W}^{2}$. Meldek adopts the generic name C'yclasterope. At the same time he points out. however, that a differentiation of this genus camot be carried out on the basis of the diagnosis given by (C . S. Branl, partly because the eharacters given by that author are too indefinite, partly becauscone of them is due to incorrectubservations (the mandible). (i. 11. Mi'Llef then adds, p. 3:2: .Trotzalem scheint eine Abgrenzung der sehr kurzen annähernd kreisfömigen Arten. welche bei Brawh die (iattung Cyclasterope biden, nicht umberechtigt. Dieselben charakterisiren sich schari durch den Ban der Furea, bei der auf 3 oder 4 kurze, kräftige, stark gebogene Dornen, welche in gröberem Abstand von einander stehen, noch eine größcre Anzahl dicht stehender borstenartiger Gobikde. welche sich in ihrer Form scharf von
 for the first of the three natural groups into which he hat divided the gemus Asterope in his work of 1894 . In addition to these three species which were refered to this group in 1894 this anther makes the genus ('yelusterope include fon more species, Cyclasterope ortrcularis. (i. S. Brans.
 On the other hand C'yclustorope Hendersome, the species given by (i. S. Braws as the type-species. is not included in this genus. This species is smonymized with Asterope Milgendorfi.
 gemus Asterope. ..sie passen zn dieser (Gattung (Cyedusterope) weder nach der Schalenform, noch nach dem Ban der Furea". According to G. IV. Mís, ER's view, the gems Asterope includes. besides the two last-mentioned species, almost all the remaining species in this group. This genus was characterized by the fact that the furca is armed with at least five ahmost similar, slender claws the distance between which is relatively small. ..Zwischenram klemer als die Dornen an der Basis breit". This author then points ont that with a classifieation of this sort there is no room for Asterope fusca. (i. W. Molder, 1890. He writes, p. 33: .Keinen Platz wiirde bei dieser Trennung finden Cyfindroleberis fusca. In der Differenzirung der Furealdomen wïrde sie sich Cyclasterope, im Bau der Jomen Cyfindroleberis s. str. anschlicßen. Nach dem Bau der Sehale nimmt sie unzweifethaft eme ganz gesenderte Stellung in der Unterfamilie dor ('ylimboleberinae ein: bei einer Revision dersetben mïbto für diese Art eine besondere (fattmog aufgestellt werden."
(i. W. Méllbr takes practically exactly the same view in aranging these forms in ..I) as Tierreieh", 1912; the only exception is that Cyelasterope tenera is transferred to the heading ,Cypridinidarm genera dubia ot species dubian". Asterope fuse is referred to the gemus Cyclasterope.
G. O. SARS, 1869. p. 359 is the first to show that the genus Asterope is very decidedy different from other C'ypridinids and that a higher systematic unit ought to be formed from this gemus, but this author does not set mp any such unit. - We find a similar statement in (: S. Brady. 1871, p. 292. but this author does not establish a systematic unit of this sort either. (6 . (LALS writes in 1876, p. 94, mote 1: ,. Tch wïde die hervorgehobenen, namentlich auf die Mandibeln. die beiden Maxillenpaare und den Besitz won Kiemen beriiglichen Eigenthïmlichkeiten für vollkomnen ansreichend erachten, um Asterope den C"ypridime ähntichen (battungen gegenïber als Familie der Asteropiden zu sondem. Jene (tattungen. Cypridina. Monopin. Phitomedes. Bradycinetus stehen emander vicl näher und wîden als C'ypridiniden vereinigt werden können." - (. (1, ds is aceordingly to be regarded as
 are its authors, 1896, p. 628. - (i. W. Mitatels, 1906b) and 1912. gives the Antaropids as a sub-family; this author divides as we know. the sub-order Myodecoper directly into families: C'ypridimidar, Halocypridue and Podycopidue.

Remerks: - The sustrmatie division of this group carried out be previons authors, even that which is given by (i. W. Möldere in .. Was Tierrofeh", l9日2, met be comsidered mather

The perstlum of the Astronpuds:
 havie paid attantion to low hw rhatamers．

 matertaim！af these deseriptions．In epite af this I themght it best to make the attempt．

Limus Asterope：－
For dareription spe helow．
The mamber of specios imeluded in this genms has been comsidembly restrieted． In addition to the speries described by me below the following forms probatble bedong un this gemus：


```
elliptica．1．Philmpl，1840．p．188，pl，11H，figs．9－11．
glacialis．（i．IV．Mílder，I！os．p．93，pl．VIII，figs．11－－15．pl．IX．figs．17，18．
．．gracilis．（i．Sectacha，18s5．vol．5．p．is．v．4．pl．II，fig．9．
```



```
pl．Lh，figs． \(11-20, ~ p l\) ．LII，figs． \(10-15\) ．
```

（＇ylindroleberis Marine．J．A．（1smmA，1906，p．366．pl．XXIX．figs．1！－25．
（in．J小IY，1907，p．143．pl．N1N，figs．7－11．

oblonga．E．（ill BE，1859，p．322，pl．Xll，figs．2－5．
Asterope ．．（＇．（1．．AT S ． 187 （i．p． 92.
（：0．S．hRs， 1887 ，p．31，pl．I．fige． $5-8$ ，pl．If，figs．1－2．pl．V＇．V1．
C＇yfindroleberis ．．R．IV．SHAR11：1909，p．423．pl．1．XII．figs．1－4．
（ypridina dicaces，J．D．D）A\A， 1849 ，P． 51 ＊＊．
Asterope oralis，（．（1LIts．1876．p． 93.
pacifica，L．（ikN\M丁．，1！15，p．29．fig． 4.
quadrata．©．S．Bkows，1898，p．432，pl．N1K．figs．17－21．
Cypritina teres．A．M．Nokmax，1861，p．280，pl．N1「，fig．10．

Type species: Asterope elliptica A. Pullin'l, cf. below.
Divergencesfrom the genus Asterope. (i. W. Mtuler, Igle:
The following species are included in this genus by this author, but are excluded by me: ('ypridina Atlamsi, IV'. B.11s!, 1847.
Asterope Arthuri, T. Stebbiva, 1900.
('yclusterope faseigera, (G. S. Brabs, 1902 a.
, Hendersoni, (土. S. BELDEY, 18:97.
Asterope Milgenderfi. (i. IV. MOlleer, 189M.
, lichenoides. (i. S. Brabs, 1902: a.
Species which, contrary to G. W. Miller, 1 include in this genus:
C'ypris bimaculata, H. NiCOLET, 1849.
(ypridina nitudula, Fr. Méller, 1870.
The two last-mentioned species are put by (i. W. Aritlen under the heading: „(ypridinidarum genera dubia et species dubiae." ln spite of the incompleteness of the original description. there can scarcely be any doubt that Cypritima mitulutu really belongs to Asterope in the sense that this genus has been taken in the present work. (This form is placed together with the forms in this group by (. W. MClLLE: 1894.) But ('. bimaculata is doubtful. Everything indicates, howerer. that this species too belongs to this unit.

Genus C'yelasterope: -
For description see below.
For reasons that are best seen in the historical resume given above pp. 438, 439 it seemedt to me necessary to give this genus quite another scope than G. W. Muller had given it in $\mathbf{1 9 1 2}$.

Besides the species C'. faseigera, re-deseribed by me below, the following species are probably to be included in this genus:

Cyclasterope Hemlersomi, (. S. Braws, 1897, p. 86, pl. XT. figs. 1-12.
 pl. XXV'I, figs. 4-6, 17.
Nor does it seem impossible to me that Asterope Arthuri, T. Stebmina, 1900, p. 660 . pl. LXXII, A should be included in this genus, but the position of this species is sommerbat uncertain. (It is described from a male larva.)

Type species: Cyelasterope. Hendersoni, of. p. 438 above.
It was necessary to set up two new genera. These have been given the names (iyduleberis and Asteropteron.

Genus C'ycloleberis:* -

D) iagnosis: - The shell, seen from the side, is rounded and has no demided posterior corner and no decided sculpture.

Second antenna: Exopodite: The natatory bristles have a strong equipment of spines; the basal spines are very powerful. Endopodite: This has rather numerous bristles on the first joint.

[^63]7oolog bidrag. UPpnsala. Supp! - Trd I

II andable: 'The exopedite is relatively latge. The emble of the first proteperdite joint has comparatiody mumeroms and powerful vent rat spines and hristles. The second proteprotite joint and the serond amdopedite joint hate a very abundant supply of bristles.

It a xilla: There ate a moderate mmber of bristles dorsu-proximally on the basale; the end joint hats bather mumerons bristles.
sixill limb: The anterior and posterior margins are comeave, the anterion and the pasterion wental comers. seen from the side, are peointed.
 distally, two 0 thee of these on the same side of the satme ring. There are only two end combs?
 uf (always rather mumerous) bristle-like secondary claws.

This genus comprises on the whole the same forms as G. W. MCLEER, 1912 included in the genus C'yelasterope. The following species are probably to be placed in it:
 pl. XXVII, fig. 11.
.. brecis
1890 , p. 239, pl. NXV, fig. 10, pl. XXV', fig. 7, pl. NXVH, figs. $7-10,15,16$.
('ylindroleberis Lobiancoi, (i. IV. MCłLEER, 1894, p. 220, pl. IV. figs. 40, 42, pl. V, figs. 2, 3. $26,32,34,40$.

Cyelasterope orbichlaris, (i. S. Bransi, 1897, p. 87, pl. XY. figs. 13-19.
orvlum. .. ., .. 1898, p. 432, pl. XLIII, figs. 24-30.
tenera, :, :. $\quad 1898$, p. 433 , pl. XLTY, figs. 27-29.
zealandica*. $\because \quad 1898$, p. 433, pl. XLIII, figs. 15-23.
TYpe species: Cycloleberis Lobiancoi (G . W. MlÜlleer).
D) ivergencesfrom the genus (yclasterope, G. W. Mtuler, 1912:
species included by this author in Cyclasterope, but not by me in the genus Cycloleberis:
C'ypridina Agassizi, Fil. Méller, 1870.
Asterope jusca. (G. IV. MC̈ller. 1890.
species inchuded by me in Cycloleberis but not by 6. W. Mübler in Cyclasterope: C'yclasterope tenera, (: S. Brathr, 1898.
The last-mentioned species is placed by G. W. MƯLLER, 1912, under the heading ,,Cypridinidarum genera dubia et species dubiae". It is very incompletely deseribed and the type specimen was presumably far from being mature. In spite of this I think one may put it together with the species on which I have based this genus, without running too great a risk of being mistaken. (i. WV. ML̈LLER in his work of 1906 b also places C. tenera together with these forms.

Genus Asteropteron**: -
Diagnosis: - The shelf varies somewhat in form. It is characterized by a very decided sculpture, (always?) with strongly projecting, partly longitudinal, ridges.

[^64]Second antenna: Exopodite: The natatory bristles have no spines and there are no basal spines. Endopodite: The two proximal joints in the female have no bristles.

Mandible: The endite of the first protopotite joint has a moderate number of comparatively weakly developed ventral spines and bristles. The second protopodite joint and the second endopodite joint have a moderate number of bristles.

Maxilla: This has few or no bristles dorso-proximally on the basale.
Sixth limb: Seen from the side, this appendage has both an anterior and a posterior pointed corner.

Seventh limb: This has a moderate number of cleaning bristles, in most cases only one on the same side of the same ring.

The furca has three long, curved. rather slender main claws, behind which there are a number (always rather few?) of considerably shorter and weaker secondary claws. if

This genus includes two of the species placed by (\%. W. Móluerr, 1912, in the genus Cyelasterope, viz.:

Cypridina Agassizi, Fr, Müller, 1870, p. 255. pl. ViII. fig. 26, pl. IX. if
Asterope fuscu. (. WV. MU'ldeli, 1890, p. 242, pl, XXV, figs. 11-13, pl. XXVII, fign. 19 to $22,25$.
It is possible that Cyelasterope Ligurice. L. (FRANITA, 1915, p. 30, fig. 5 is also to be included in this genus; the position of this form is, however, very uncertain on account of the deficiency of the deseription.

Type species: Asteropteron fuseum (X . WI. Müllef).
A number of other species are described, of which it may certainly be said that they belong to this family, but whose position, apart from this, is unknown on aceome of the ineompleteness of the descriptions. Among these there are:

Cypridina Adamsi, IV. Bampi, 1847. p. 22, pl. VII. This species is included, as is seen above, in the genus Asterope by G. W. Mellef, 1912; it does not seem to me impossible that it belongs to the genus Cyclasterope. (., W. MCLLER writes: "Vielleicht identisch mit A. Milyemtorfi?"

Asterope lichenoides, (1. S. Branly, 1902 a. p. 180, pl. XXIHI, figs. 22-24. This speries was also included in the genus Asterope by (. W. IlitLeER. I have myself had an opportunity of investigating the type-specimen of this species.* Unfortunately there was only the shell of this specimen and the distal part of one cleaning limb, which I thecovered inside the shell. These organs were not sufficient to enable me to classify the species with complete certainty. I ean however say that it does not belong to the genus Asterope in the sense in which this genus is taken in the present work. It will presumably be necessary to set up a new genus for it. The shell, which it is, as a matter of fact, absolutely necessary to describe again, indieated a close relationship to C'yelasterope; the eleaning limb was of about the same trpe as that of ('ycloleberis.

Besides these two species two forms placed by C . W'. Méllem under the heading .. 'ypridinidarmm genera dubia et species dubiae" also come into this category. These are:

C'yelasterope similis, (九. S. Brany, 1902 a, p. 183. pl. XXIII, fign. 2.5-29.
Asterope squamiger, T. SCotT, 1894, p. 140, pl. XIV, figs. 56, 57, pl. XV, figs. 14, 22, 23, 26.

[^65]speciles incortae solls.

 the two forme just mentioned. On aceount of the size and shape of the shell and the armagement of the lixing spots of the shell maseles, it does not seem to me impossibte that this spereies may also belong to this lamily, and that it is most closely relatod to the gemus C'yclasterope.

It semes still tow early to give an opinion as to the matual relations of the four gemera dealt with abobe. It can, however. be said with a fair degree of erertainty that Gyclasterope and ('ychederis are comparatively closely related to each other. The genus Asterope, on the other hand, oceupies a comparatively isolated position. The same thing may also be sad of the genus Asteropteron.

Ocenlogy of reproduction: - As in the case of the suh-fanily Cypridininae extremely little, or pertaps it would be more correct to say nothing at all, is known of the phenomena comected with the oceology of reproduction in this family. I myself ean mfortunately contribute very little to the solution of this problem.

All the facts seem decidedly to support the view that in this family as well breeding is not limited to a more or less short period but takes place during the whole year.

Then working at the material of the genus Asterope, so rich both in individuals and in species, on which the present work is based, it was very striking to notice how exceedingly rare the males were among the mature specimens, in most species they were even quite missing. In investigating the last larval stages I observed, however, that the males and the females were about equal in numbers, in some cases the males were even decidedly in the majority (three to one): ef. A. ('rimaldi, below. (i. W. MULLER had precisely the same experience previously (1894). As an explanation of this phenomenon he assumes (p.13) that the males could escape the net owing to their supcrior powers of movement. „Eine andere Erklärung scheint mir kanm zulässig"

I cannot say for certain whether this explanation is correct. One may, however, imagine another explanation, which seems even more probable. This is that we have in these forms an oecology of reproduction which agrees with that which has been observed in the gems Plitomedes. In other words after the last larval monlt males and females live for a shorter or longer period planktonically. During this planktonie life copulation probably takes place. Dfer copulation both sexes return to the bottom, the males dying comparatively soon afterwarls. the females returning to their burrowing or digging life. It is probable that the planktonic life is longer in the case of the males than in the case of the females.

The fact that on several oceasions these forms were found in plankton strongly supports the assumption of a planktonic copulation. I have myself found a male (undescribed) in the plankton material collected by the Swedish South Polar Expedition. G. S. Branry in his work 1868 a, p. $1 \geq 8$ mentions that both A. Mariae and A. teres were caught planktonically, ,though never very abundantly". The same anthor adds: "It would seem, indeed, that these animals do not come to the surface except after sumset". The same author mentions, 1898 , p. 431 , that males of A. uustralis were caught ,abundantly" in plankton in "Otago Harbour". But females seem also to have occurred in the find in question, as is indicated by the following

Digitized by Microsoft ${ }^{\circledR}$

statement: .,The Otago gathering consisted almost entirely of males, the lesser swimming-power of the females doubtless keeping most of them at or near the bottom". In his work of 1902 a (i.S. Brably mentions (p. 180) that A. oculate was canght in plankton, ,plentifully". "These gatherings consisted, with one or two exceptions, entirely of males." Finally G. W. Muluer, 1906 b, p. 36. mentions that A. australis and inermis were caught planktonically, in both cases only one male.

The assumption that the males die comparatively soon after copulation is supported first by the fact that they are so seldom found benthoically, secondly by the fact that, owing to the modification of the first antenna during the last larval moult, they are less fitted to return to the burrowing life which they, like the females, led during their larval stages. It is to be noted, however, that the parts of the mouth do not - as in Philomedes - undergo reduction during the last larval moult; on the contrary, they are quite as well developed as those of the mature female.

Genus Asterope A. Philippi.

Asterope, autorum; for instance A. Phllappi, 1840; (r. O. Salis, 1865, 1869, 1870, 1872. 1886, 1887; G. S. Braby, 1871; C. Clals, 1876; G. W. Müller, 1890 (part.), 1912 (part.). (Non Asterope, S. Fiscier, 1855.) (ypridina (part.), antorum; for instance: W. Batrod, 1847, 1850 a and b; J. D. DaNa, 1852; E. GRube, 1859; A. M. NokMali. 1861; F. Míller, 1870. Cypris (part.), GAy, 1849. Bradycinetus (part.), A. M. NokmaN, 1867. Cylindroleberis, autorum; for instance: G. S. Brady, 1868 a and b; G. W. MC̉LLER, 1893 (part.), 1894 (part.), 1906 b (part.), 1908 ; J. A. CushmiN. 1906; (H. Jud.Ay, 1907; R. W. Sharpe, 1909 (part.), Th. Steibing, 1910.

Description: - Shell: -
Female: - Seen from the side it is of a somewhat varying type, sometimes more or less elongated, elliptical or cylindrical, with its greatest height at about the middle, sometimes more or less short, egg- or pear-shaped, with its greatest height somewhat behind the middle and the posterior part more or less strikingly larger than the anterior part. Rostrum: The anterior margin does not project like a comer, but is broadly and uniformly rounded; its ventral corner is almost rectangular and is only slightly rounded. The incisur points obliquely upwards, is deep and rather narrow. Seen from beneath the shell is in most cases narow and egg-shaped with its posterior part somewhat larger than the anterior. It is always a little higher than it is broad. The contours are well rounded and have no sharply projecting corners. The surface of the shell is smooth. without any decided sculpture; only after very strong magnification ean one notice - besides the pores - a dense and exceedingly fine punctulation (very small foveolae?); it is practically puite without hairs and bristles. The sclvage* is very narrow, with a smooth margin except along the imer part of the lower lip of the incisur and inside the part where the posterior margin of the shell passes into the dorsal margin, where it is broken up into rather short and very fine hatirs (ef. A. aberate.

figs, 3 and 4). List: Juside the rentral margin of the shell this is more or less narrow, bither gute without bistles or only with a very few shent ones. Inside the posterior margin of the shell it is developed as a comparatively hoad, hyathe lamella of uniform breadth and is provided with a sombwhat rarying momber of soft, hyaline. somewhat sword-shaped spines and with at greater or hess momber of more or less short, fine stiff. simple, bare bristles. The lyatine spines are often son transparent that they cammet be seen with full certainty. but their mumber is ease to verify by means of the oral fixing areolac. It is also very diffieult to establish their bength. for when the shell is looked at from the inside though the mieroseope, they are in most cases direeted towards the eye of the ohserver; the length that l have drawn in the accompanying figume may often eonsequently be not quite correct. The latter part of the list is called in this work, as will be seen below, .the spine-bearing list" and forms a rather good species character, as the number of hratine spines and bristles is often rather different in different species, but varies only slightly within each species. On the inside of the shell, on the restrum, inside the inctur and betwen the list and the margin of the shell there are a varying number of simple, smonth. stiff bristles varying somewhat in length, which, on account of their momber, length and expecially on account of their sitnation. provide good characters for the species. Between the spine-bearing list and the posterior margin of the shell there is in a number of species a smaller number of broad pores and close to these a greater or less mumber of fine ones; the former were, at least in a number of cases. provided with low, hyaline pegs (which are protrusible?), the fine ones do not seem to have either pegs or bristles. (The latter, the fine pores are ealled by (i. II. MíLLER, 1894, p. 219 , ,kJeine Spitzehen", the inner medial bristles on the rostrum are, on the other hand. called pores by the same author, ibicl.) The shell is rather strongly ealeified. The forms are moderately large.

Il a le: - This differs from that of the female as a rule by its greater length, though sumetimes the female may be somewhat longer (cf. A. curta) and by the fact that the posterior part of the sholl is somewhat lower. The wreath of hair round the posterior part of the shell is sometimes rather sparse; it consists of very fine hairs.

First antenna: -

Female: - This is very powerful and rather short and has its joints very much flattened from the sides. It has six or seven joints, according to whether the third and fourth joints are free or are united to each other; but even when these two joints are obviously free, they seem to have only a rather slight power of moving mutually; traces of the original boundary between them can ahways be discerned. The first and second joints are subequal and are each about as long as the total length of all the other joints. The third and formth joints differ very much in shape from the other joints, as they are more or less triangular; the posterior edge of the third joint and the anterior edge of the fourth joint are very much shortened. The shape and the relative length of these two joints afford rather good characters for the species. The two next distal joints are always well developed and rather large; the end joint is small. All the species investigated by me appeared to have almost the same equipment of bristles. The second joint has on the anterior edge near the distal boundary a single rather powerful bristle, usually pointing forware and bent somewhat upwards, about as long as or rather slightly longer

Digitized by Microsoft ${ }^{\circledR}$

or shorter than the anterior edge of this joint. Ventrally this bristle atways has at the middle numerous long, stiff secondary bristles, some of which are arranged in pairs; distally it has short, fine hairs. In addition this joint has disto-laterally a bristle that is usmally short and weak, with short, fine hairs. The third joint has along its anterior edge a series of five or six bristles (ct. also A. abyssicola, p. 536 of this treatise), of which the proximal one and the distal one are in most cases of about the same length as the bristle on the anterior edge of the second joint, the others being somewhat shorter. (On account of this only the approximate length of the anterior bristle on the second joint is given in the following descriptions of species.) All these bristles are rather powerful and point more or less forwards and are bent more or less upwards. The proximat one (= bristle no. 1) has about the same equipment as the anterior bristle on the second joint; most, sometimes all, of the remaining bristles are furnished at the middle with a greater or less number of more or less long and stiff ventral secondary bristles and have short. fine hairs distally; the one or more that remain have short hairs but no long secondary bristles. The equipment of these bristles was, in the species investigated by me, fairly constant within the species. On the short posterior edge of this joint there is only one exceedingly short and weak bristle. On the short anterior edge of the fourth joint there is also only one bristle. which is of about the same length and strength as the distal bristles on the anterior edge of the third joint and always has short, fine hairs distally. Postero-distally on the same joint there issue two rather weak bristles with fine, short hairs. These bristles are of moderate and rather different lengths; the length of these bristles was observed to be rather different in a number of species, but within each species it was subject to very slight variations. The fifth joint has only une bristle, ..the sensory bristle of the fifth joint". In all the species of this genus that were investigated by me this bristle consisted of a rather powerful, densely annulated trumk, of about uniform thickness, differing somewhat in length in different species and having disto-anteriorly six subequal and rather thick sensorial filaments placel chosely together, of about the same length as or somewhat longer than the trunk of the bristle. In a number of species there is an additional sensorial filament on this bristle (this making seven altogether) at about the middle of the anterior side of the trunk; this sensorial filament is considerably narrower than the six former ones and is in most cases not quite half the length of the trunk of the bristle. All these sensorial filaments are of about a uniform thickness and are distally rounded, ahmost completely hyaline, bare and provided with a short, fine sensory hair at the point. - It is to be noted that J. A. Ctsiman, 1906 , pl. 29 , fig. 22 draws this bristle as simple without any lateral filaments, althongh sensorial filaments are drawn on the bristles of the end joint in the same figure.* - The bristle on the sixth joint was of the same type in all the species of this genms that were investigated by me, being in most cases somewhat longer than the total length of the three distal joints, rather powerful and furnished with short hairs. The small end joint. Which is in most cases rather strongly chitinized, has six or seven bristles. The a-bristle, situated anteriorly, was, in all the species

[^66]of this gemme that I investigated, deveroped as a very powerfal moderately long, strongly ehitinized digging daw. hem slighty mowats and dimeted somewhat forward, only slighty ammated; it is demoted as the ..alectaw in the following deseriptions of species. All the other hristas on this joint are developed as semsory bristles.* The b-bristle is situated behind and somewhat medially of the a-claw. It is of gute the same type in all the sperese investigated by me, about as long as or rather slighly longer or shorter than the total hagth of the third to the seventh joints: its proximal half is rather powerful and grows gradually barrower distally and is closely ammulad: its distal hali is difterentiated as a rather thim sensorial fitament of about umilorm thickness and more or less eompletely healine: at abont the midde of its anterior side there issue, faity chose to each other. three subegual sensorial filaments, whely are abont half as long as the bristle, and somewhat proximally of these there is a considerably shorter filament, which is also situated on the anterior side of the bristle; the distal part of this bristle, like its filaments, is parlly furnished with extremely fine and short hairs. The e- and g-bristles: The e-bristle is situated posteriorly and proximally on the joint. the g-brist e is somewhat in front of and distally of the former. These are of the same type, subequal, about as long as the anterior side of the second to the fourtlo or sometimes even the second to the sixth joints; they are rather powerful proximally. closely amulated; they grow gradually narrower distally, the ammation disappearing at the same time, and become a rather thin and more or less completely hyaline sensorial filament: on the anterior side they have more or less unformly distributed, moderately long and rather thin sensorial filaments in moderate and somewhat varying number (from five to nine were observed); these filaments are bare. The f-bristle is fixed laterally on the joint. It is somewhat shorter than the e- and g-bristles and is of the same type as these. Its sensorial filaments issue, however, on its posterior edge; this has probably some comection with the fact that this bristle is always directed forward at about a right angle or even somewhat upwards, whike the b-, c- and g-bristles are only pointed very weakly forward. (Often, however, somewhat more than is shown in the accompanying figures; for practical reasons one or more bristles have been drawn in these figures pointing somewhat more ventrally than they actually did in the corresponding preparations.) The number of sensorial filaments observed on this bristle was four or five; the distal part of the bristle, like the filaments on the posterior side, are often partly furnished with very fine, short hairs. The sensorial filaments on both b-, e-, f- and g-bristles are of about equal thickness, more or less completely hyaline and, like the main bristle, distally rounded and furnished at the point with a short, very fine hair. D- and e-bristles are situated laterally. somewhat behind the f-bristle; they are simple, rather narrow and almost equally thick sensorial filaments, romnded distally, closely and finely annulated, sometimes almost hyaline distally: The e-bristle, often about as long as the total length of the third to the seventh joints, is always well developed. The d-bristle is well developed in a number of species, but is always somewhat weaker and shorter than the e-bristle; in most species, however, it is reduced; even in these cases, however, I was always able to observe it on the speeies investigated by

[^67]me as a smatl veruciform process situated anteriorly ol the e-hristle. Piksity: The finst and second joints are often fumished with more or less abundant groups of fine, short, stiff hairs, olten arranged in transverse rows on the second joint.

Male: - This is not quite so powerfully built as that of the female and is somewhat longer and more slender in comparison. Its joints are not so much flattened at the sides. ft. has six or seven joints; the third and fourth joints are abways free. The fifth joint is well defined from the fourth; on its proximal edge there are the distal fastenings for no less than three rather powerful muscles. The boundary between this joint and the sixth joint is, on the wher hand. sometimes not so well developed; sometimes, perhaps, these joints are quite mited; the sixth joint is not moved by any sperific muscles. The relative proportion of the joints is subjert to some variation within the genus. The following figures may he given as examples the measurements are from A. norvegica, with a shell 2.42 mm , long):

$$
\text { I } \left.\left.\frac{33}{27}: \text { II }{ }_{24}^{43} ; \text { III }{ }_{2}^{18} ; \text { IV } y_{3}^{5}: V^{\frac{7}{2}} ; V\right]{ }_{8}^{12}: V^{7}\right]{ }_{14}^{6}
$$

For the sake of comparison the corresponding figures for the female are also given here. (The same species as above, with a shell $2,2 \mathrm{~mm}$. long. The scale is the same as above.)

The proportion between the joints in this antena of the male and the female conseguently differs fairly considerally (cf. also A. curta. p. 501 of this treatise). The fifth joint is rather considerably shortened, its posterior edge is so short that the sensory bristle often seems to be attached close to the two posterior distal bristles of the fourth joint. The seventh joint is very considerably larger than in the femate, its posterior edge especially is very considerably lengthened. The boundary between the sixth and the seventh joints is of so irregular a trpe that mistakes can easily be made. Observation is often rendered difficult, in addition, by the fact that sometimes it is not very distinctly developed and that accessory dhitinous croases arise. I neeal only refer here to fig. 11 of A. Grimaldi and fig. 7 of A. curta; in the former the contom of the boundary of one side is drawn with an mbroken line. and that of the other side with a dotted line. I have been and am ahost still in doubt as to whether that part of the end joint on which the (d-), e-. f- and g-bristles are fixed, is really to be considered as a special joint or not. The idea that this part is a special joint is supported especially by the fact that it can move freely by means of two powerful muscles. The fiact that 1 do not accept this interpretation but consider this part as a portion of the seventh joint is due entirely to its exceedingly small size; the muscles seem, as a matter of fact, to he fixed directly to the basal part of the bristles.* The number and position of the bristles is the same as in the female; with regard to their development, however, there is a not inconsiderable difference between the two sexes. The lateral bristle on the second joint is somewhat longer than in the female. The anterior bristle on this joint is somewhat weaker. The bristles on the anterior dige of the thied joint are alsen somewhat weaker than in the female and are somewhat shortenerl; some of them are even very much shortened. The semsory bristle of the filth joint: la what seems to be the

[^68]majority of speribs the trmak is comsiderathly stronger and alse somewhat longer than in the femate and is furnishad with very mumeross semserial filaments along alomest its whole length; the six distal ones of these filaments are practieally ghite like the six distal sensorial fitaments on this hristle in the lemale, with wheh they are akse probably homologns: the other semserme
 mentioned; the are situated on one side - on the anterior-medial side - whe the bistle along the proximal pare of the stem of the bristhe. and are arraged more on all sides distally: they arm also, at least partly, armaged in a mamber of transersal mows (in the cases investigated about thirten to twenty rows were observed). In at mmber of forms (ef. A. carta p. 5 oll of this

 Whwn on premb of this treatise is very closely related to A. curle; the male of this spectes appears to be characterized by having this bristle rather woakly developed and provided with only a few sensorial filaments, according to the text ,etwa vier", according to the areompanying figure five (pl. 8, fig. 15).* The a-e taw is rather considerably Weakened. but is distinetly eliw-like. The b-bristle is only mother slightly lengthened; its sensorial filaments, which are only slighty or else not at all inereased in nomber (in all the cases investigated the number was increased by only a single filament) are somewhat more milormly distributed along the proximal half of the bristle. The e-and f-bristles are of the same type 1s in the female, but are cnomonsly lengthened. being about $1^{1 / 3}$ times on $1^{1 / 2}$ times as long as the shell, and have a considerably greater number of sensorial filaments. The g-bristle is only slightly longer and the number of its sensomial filaments is rather slightly greater than in the female. The f-bristle is not. as in the female, directed rectangularly forward, but in the longitudinal direction of the antemn, the b-, (- and g-bristles are also pointed somewhat less forward than in the female. (on the end joint there is latero-posterionty a powerful chitinous verruca. which is quite absent in the female (ef. fig. S of A. norvegica). From it the r-bristle issues basally-anteriorly: this bristle is of the same type as in the female; it always serms to penetrate between the c-and g-hristles and is held medially of these bristles (ef. fig. 8 of A. norvegica. fig. 11 of A. (irimaldi and fig. 7 of A. curta). I could not observe any trace of the d-bristle. Whether this latter bristle is developed in the males of such forms as have it developed in the females, I amot decide, as no such forms were present in my collection. The pilosity is weaker than in the fomales.
second antenna: -
Female: - The protopodite has a very short bristle distally-medially close to the exopodite: this bristle was observed in all the species dealt with in this treatise exerpt A. Crimaldi and its variety. The exopodite is about as kong as the protopodite: the proportions between its joints are as follows:
$$
I: I I: I I I: I V: V: V I: V I I: V I I I: I X=30: 6: 3: 3: 3: 3: 3: 3: 2,
$$
i. e. the first joint is about as long as or somewhat longer than all the following joints together. the second joint is about as long as the total length of the two following joints. The first joint

has no bristles. 'Tlue bristle of the second joint is pewerful and is about the total length of the seven distal joints; ventrally it is furnished with short, stiff secondary bristles but has no spines; only in exceptional cases (ef. A. aberrata) are these secondary bristles relatively long; distally it has a fine point. The bristles on the third to the eighth joints are long, powerfuk natatory bristles, some of whiel are sometimes ahmost double the length of the exopodite. These bristlen have rather long but comparatively narrow natatory hairs and are furnished with short spines along a large part of the rentral side; these spines are as a rule rather strong on the proximat natatory bristles, very weak on the distal ones; in a number of species l have even been quite unable to observe them on the most distal of these bristles (with REICILIET's oc. 4, Leith' imm. 1/12) (quite missing?). The end joint has three or four bristles, two of which are tleveloped as long natatory bristles. On these two, which ahways seem to be somewhat shorter than the other natatory bristles, I have succeded in observing, at least in some eases, weak ventral spines; in most cases, however. there seem to be no spines at all on these bristles. These two bristles, like the other natatory bristles, are furnished distally with a short, fine hair, but apart from this they are not differentiated as specific sensory organs. The two remaining, dorsal, bristles of the end joint have short hairs but have no spines; one of them is often about as long as the total length of the four or five distal joints, the other is somewhat shorter; one of them may sometimes be quite absent. The fourth to the ninth joints - less frequently the third to the ninth - are each often furnisbod with a basal spine. Thesp spines are often broadly conical; the one on the ninth joint is the largest. being sometimes about as long as this joint, the others decrease more or less miformly in size and strength the more proximally they are attached, the proximal one being in most cases rather weak, somtimes even scareely perceptible. In a number of speeies, however, the number of hasalspines is reduced, sometimes they are even 'puite absent. Distally-dorsally on the second to the eighth joints there is a series of hairs, in most eases very shor't ant rather coarse, or of weak spines; on one or more joints, differing in differentspecies. ther are sometimes not inconsiderably longer than on the other joints. On the first joint there were observed in most of the species deseribed in this work one or two transverse rows of fine. rather short hairs dorsally near the distal boundary. The endopodite is more or less elearly three-jointed and has only one bristle the distal bristle of the end joint; this bristle is closely and fincly annulated, of about uniform thickness and is rounded distally. Sometimes a short bristle was observed distally on the second joint; this was obviously abnommal.

Il ale: - Both the protopodite and the exopodite are considerably more strongly developed than in the female. Exopodite: The proportions between the joints are somewhat different from those of the female (cf. the descriptions of the species). 'Tle bristle of the second joint is considerably lengthened, but it is not quite solong as the natatory bristles on the nearest joints. The end joint has three long natatory bristles, as one of the short bristles of the female is rather considerably lengthened - but not guite so long as the natatory bristles of the nearest joints - and is provided with well-developed natatory hairs. In species with four bristles on the end joint the fourth bristle is also somewhat longer than in the femate and is provided with well-developed batatory hairs. The natatory hristles on the thire! to the ninth joints are ako somewhat longer than in the female. All the bristles are without amy spines.

Digitized by Microsoft ${ }^{\circledR}$

 hatk against a corresponding furow on the seeond joint. 'The first joint has no bristles at all. The serome joint has (always?) then bistles rentrally at about two-thirds or there-quaters alone the joint. Ther end joint has a single bristle preximatly on the outside; this bristle is of athont uniform thiekness and is romeded distally.

Mandible:
Female: - 'This is relatively short. but is very powerfully built, with its joints deededly flattened at the sides. The proportions between the joints are about the same in all the species investigated by me and are ilhstrated by the following figures (from measurements (arried out on a specimen of A. norvegica, f):

$$
1 \text { Pr. }{ }_{3}^{34} ; 11 \text { Pr: } \frac{15}{20} ; 1 \text { End. } a_{2}^{11} ; 11 \text { End. }{ }_{12}^{12} ; 111 \text { Vind. } \frac{1}{2} \text {. }
$$

I'rotopoditu: Coxale: This has no bristles. The endite issues from, or perhaps it womd be more eorrect to say forms basally, a chitinous list, which extends transversely across the joint; ef. (i. O. sars. 1887 , pl. IV, fig. 4. The seythe-shaped process is mifomly and moderately strongly curved in two planes, partly upwards, partly inwards, and is, in addition, slightly twisted so that its medial side is turned somewhat upwards; it is thus turned towards the mouth, in which 1 often found it inserted (already observed by G. W. MÜLLER; cf. 1804, p. 46). On the distal part of its rentral edge there is always a more or less strongly developed spine, pointing proximally: characterized by the fact that it is contimed by a low ridge, in most cases rather short. on the lateral side of the proeess. This ridge forms a curve which is concave proximally and is furnished. like the spine, with a close series of rather short, fine, stiff spines, pointing proximally. Proximally of this spine there is along the ventral edge of the process a number — in most cases rather small - of protuberances or spines; these are most frequently somewhat different in number and type in different speeies; within the speceies they are certainly not constant, but their variation is not so grat that they camot to some extent serve as a character for the species: I often found them rather strongly worn, which may, of course, modify their appearance considerably. From some of these spines a serios of low protuberances runs in a dorso-proximal direction on the lateral side of the process; in a number of species these protuberances are rather numerons, in others they are more or less sparse; in addition they are also subject to some variation within the species. Distally of the middle the dorsal edge is oltern serrated along, in most cases. a rather short part; the teeth vary in size. in some species they are even almost completely reduced. The dorsal edge is, in addition, distinguished by a single bristle, in most cases rather long, which is situated almost opposite or somewhat distally of the above-mentioned proximally pointing spine on the ventral edge of the process. On a grat pati of the surface of the process there are numerous striations, generally speaking parallel to each other, of which the distal ones at least are fumished with close, extremely short and fine hairs pointing distally; these hairs are searcely perceptible even with very strong magnification (REICHERT's oc. 4, Leitz's immers. $\frac{1}{12}$). Similar striations, ruming across the process in distally concave
curves, are found both on the latemal and the medial sides of the process; they are, howerere very much more mumerous on the lateral side. The striatory systems of the two sides eross, because the striations on the medial side, which are also distinguished by having somewhat coaser hairs, form a more acute angle to the longitudinat axis of the process. I have observed. howerer, that the two systems join each other, at least on the dorsal edge of the process. The distal part? of the process las no striations; this part is covered laterally by a mat in most cases wery thick - of short, very fine hairs. There are alwo often short, fine hairs on the bristle of the dorsal edge. In addition there are some transverse rows of rather short, fine hairs laterally-ventrally somewhat proximally of the middle of the process. Some irregular lists (strengthening lists according to (f. W. MÜLLER, 1894, p. 46) run in the longitutinal direction of the process: these are in most cases not drawn at all in the figures given in this work of mine. The rod-shaped process is rather narrow, not quite falf as long as the scythe-slaped process. Along the greater part of its length it is furmished with rather short, strong bristles; on both the medial and the lateral sides of the process most of these bristles are arranged in a rather small number (about three to six) of transverse rows; the ventral bristle in each row is in most eases the longest, the others decrease fairly uniformly in length dorsally. The rod-shaped proeess is blunt distally and is provided there with three or four short spines or bristles. Basale: The backward pointing process is well developed and is furnished with a rather small number of bristles (from six to eleven were observed on the species investigated by me). Of these bristles the three or four nearest to the point of the process are rather long and powerful and are charaterized by having numerons short secondary spines. arranged in two rows and placed close together, along the greater part of their length; these spines are rather powerful proximally and become more and more fine distally (cf. fig. 9 of A. spinifera). From one to five, in most cases from three to five, of the other bristles are also most frequently rather long and powerful and are characterized by having a greater or less number of secondary spines, arranged in two rows and situated close together distally; the distal pair of these spines is the most powerful, extending no inconsiderable distance distally of the point of the bristle; the others are rather short. The remaining one or two bristles are short and weak, bare or provided with exceerlingly fine. short hairs. In the neighbourhood of these bristles a rather large number of unicellutar glants have their openings on a more or less developed veruciform proeess. Dorso-distally this joint always has two bristles with more or less short hairs: these bristles are, as a rule, considerably longer than the anterior side of the first endopodite joint. Apart from these the dorsal side of the second protopoclite joint is quite without bristles in a mumber of species in others it has a larger or smaller number of these, characteristic for the specjes. Exopodite: The two venterodistal bristles of this branch are ahays very short. This branch is furnished dorsally with exeredingly numerous short. fine hairs (the exits of the oflands). Endopodite: The first joint has only three ventral bristles. of these the two posterior ones especially are very long: they are in most cases somewhat longer than the anterion side of the endopodite and are always furnished at the middfe with a mumber of rather long and powerful anterior secondary bristles, arranged in two rows; proximall! of these secondary bristles there is in a number of species a varying number of short secomfary bristles; these two bristles have shent, fine hairs distally. Tha

 Antemalistally this joint is in exceptiontal ases lumished with powerhel chithoms spines (w. A. spenifere, tig. 10). 'The secoml juint has pusterentistally three rather long bristles with -hort time hairs: two of these bristles are sitated chase to each wher somewhat distally wh the thital. 'The proportions betwern these bristhes were subject to only slight variation in the sperios investigated by me: one of the two distal ones and the proximal one are either subergal or dse the latter is somewhat longer: the remaning one of the lwo distal bristles is comsiderably shorter than the two former ones and is also often characterized by being somewhat curved domsally. Along the anterior edge of this joint there are a rather large number of bristles. Amomg these may always be noticed four powerful and rather fong ones, in most cases suberpal. sithated at about equal distances from each other along the whole whe joint and genemally sparsely provided with short and fine hairs, sometimes apparently even quite bars. 'These four bristles are called the .,main bristles" in this treatise and are denoted prosimo-distally with the letters :1-d. Proximally of and close to the proximal one of these bristles, the ,main bristle a", there are from one tor a small mmber, different in different speeies, of rather weak bristles with short. fime hairs or bare, often rather considerably shorter than the main bristles. Between the main bristles b and e there is in a number of species a rather weak bristle with short, fine hairs. This bristle is of rather comsiderable length, in most cases, however, not quite so long as tho main bristles; in a momber of speeies it is quite absent. Between the main bristles e and d there is in all the species investigated by me a similar rather weak bristle with short, fine hairs; this bristle is often about as long as the main bristles. An additional bristle of this sort, but somewhat shortor, was always observed distally of and just near the main bristle d. Fimally there is anteriorly on the medial side of this joint a greater or smaller number of moderately long or rather short cleaning bristles, characterized by being furnished distally with close, rather short. in most cases rather powerful secondary bristles, arranged in the shape of a feather. These bristles are partly arranged in a few more or less distinct rows running slantingly upwards and forwarls. On the species investigated by me 1 have always seen a row of this sort, rumning within the main bristle c. In these rows of bristles the anterior bristles are somewhat, sometimes even considerably, longer and more powerful than those sitnated farther back. The cleaming bristles bary somewhat within the speeies both with regard to number and position; they may, however, be used to some extent as a character of the species. The end joint has six bristles, of about the same type and position in all the species investigated by me. The anterior one is developed as a powerhul claw. Three have about the same type and length as the main bristles of the second endopodite joint. Of the two remaining ones, both rather weak, with short hairs, one is sitnated dlose to the claw, the other between the two posterior of the three long and powerful bristles; the former of these two bristles is always somewhat longer, the latter always somewhat shorter than the claw. Pilosity: The second endopodite joint has numerous groups of short. fine, stiff hairs on the inner side.

It a le: - As has been pointed ont above, the male mandible agrees in all essentials with that of the female. It seems to be too early to try to generalize the dimorphism, because of the
comparatively small number of species of which both male and female are known. I refer the reader to the deseriptions of the species and will only point ont here that variations have been observed in the backward pointing process on the basale (in some species), the equipment of the shortest of the three ventral bristles on the first andopedite joint, the bristles proximally of the main bristle a of the second endopodite joint and the eleaning bristles of this joint.

II axilla: - Protopodite: On the procoxale and coxale thome are two very strongly, sometimes ahost completely. reduced endites. Of these endites the proximal one was, in all the species investigated by me. provided with lour bristles. three of which were suberpal, rather long and powerful, the fourth, situated between tho two proximal of the three former mess was rather weak and not quite half as long as these. The distal endite is in most cases furnished with only three bristles, which are sometimes subequal and of about the same length and strength as the there long bristles of the proximal endite, while sometimes the middle ome of them is somewhat shorter. In only one species, A. oculata, was there observed betwern the two distal of these three bristles a bristlo of ahout the samo lind as the short bristle on tho proximal endite. The long bristles on these endites always have, at least in parts, rather lomg hairs, of which those that issue from the distal part ol the bristles are arranged in the shape of a feather and are rather coarse. The one (or the two) short bristles are bare or have very fine and short hairs. The posterior bristles in the baleen are only about a third or a half the length of the anterior ones. The baleen bristles are widened ont distally somewhat in the shape of a lanept and are pointed (not bhont as in pl. 5, fig. 15a, (i. W. Molder, 189t; "f. p. 465 of this treatise of mine), somewhat boat-shaped (if 1 am not mistaken) and lumished at the edge with exceedingly fine hairs searcely percoptible even with very strong magnification (REICherf's oc. 4, Lemt's immers. $\frac{1}{12}$) : cf. fig. if of A. (irimaldi. The posterior bristle in the baleen is of about the same type in all the species investigated by me; it is of moderate length, its distal part is somewhat lancet-like. inclined lorwards and finely and chosely perctimated along the ventral edge: of. fig. 15 of A. (irimaldi. On the outside of the protopodite there is only a single bristle; it is moderately long, and situated on the basake about. half-way up the joint, beneath the epipodial appendage: it is of about the same type in all the species investigated by me. (on the inside of the protopodite there are a momber of bristles. which afford rather good characters for the species by their number and relative length. Domsally, just in front of the fastening of the epipolial appendage, there js a single bristle: I was unable to decide with certainty whether this issues on the coxale or on the basale. Dorsally on the distal part of the basale there is in most of the species one or a small number of bristhes. About half way along this joint there is ventrally one or a small momber of bristles. A short distance distally of this (them) there is in most cases a very short bristle situated ventrally on the joint between the baleen and a list-like medial part; this bristle is in most cases very dilfirult to observe with certainty on aceount of its small size and its concealed perstion. Finally. the basale has a rather long bristle ventrally and somewhat laterally (dose to the benudary of the endopodite. This latter bristle is furmished with rather long and exeecdingly fine haits. the other bristles of the protopodite are bare or have extremely fine, short hairs. Tha a pipodialappendage, issumg presumably distally on the conale is eompressed at the sides

Digitized by Microsoft ${ }^{\circledR}$

 asainst the dorsal side of the protepodite. Ther ordopodite has a constant mumber of hriates: The tirst joim has a short, whem hares hristhe on the anterior side, situated in most cases - momewh distally of the middle of the joint. This joint has in addition postero-distally a lone
 The inside of the proterodite and the epipedial appendege ame abomantle furnished with show. time hairs, arranged in groups or irregular rows.
foifth limb: - ln all the species of this gomes investigated be me this limb has practically the same structure it has mot heen used, as we shall see below, as a chameteristioc for the species. - The comb is relatively narow, with a unformly corved dorsal edge. The comb bristhes are rather mumerous: those situated nearest to the anterior point of the eomb are somewhat longer than the others: they are all pointed and fincly amolated and are equipped with abmedant short, fine hairs. Host of the comb bristles are situated right on the ventral margin of the comb, a few are displaced somewhat dorsally; thas from three to five of these hristles were ahwas observed displaced somewhat dorsally ip on the lateral side of the eomb near the long bristle of the distal exopodite joints. The distal joints of the exopodita are represented by a long, powerful bristle pointing forwards, extending in all the species investigated by me a short distance bevond the anterior end of the comb and thickly furnished with long. fine hairs arranged in the shape of a feather: ef. p. 465 below. Fomewhat ventrally of this bristle there are always two short, subequal bristles, pointed similarly forward; only in one of the species investigated by me, A. norregice, was only one of these bristles observed. Dorsally of the distal comb bristles there is a series of rather long and coarse hatrs; apart from these the comb is to a great extent bare; at some places, however, short, fine hairs may be ubserved. The epipodial appendage is somewhat ear-shaped and is chatacterized by the fact that the bristles somewhat ventrally of the middle decrease very markedty in length and then again increase strongly in length on the ventral lobe; a greater or smaller portion of the distal part of these bristles is often bare or furnished with short hairs. but, as far as ome can see. is not modified as a smony organ. See fig. 14 of A. uberrata.

Sixth limb: - Seen from the side it is lamelliform. The posterior margin is straight or very slightly concave or convex and is marked off from the ventral margin by an always well-rounded comer. The ventral margin is stightly and in most cases fairly unifomly convex. The anterior margin is more or less decidedly concave, with a pointed corner marked off from the ventral margin. Seen from beneath it is rather decidedly flattened anterionly, somewhat sole-shaped. with a well-rounded anterior edge; posteriorly it is narrow and lamelliform: cf. fig. 16 of A . Girimaldi. (on the anterior edge there are usually two bristles with short hairs or bare (= remains of endites on the protopodite and the exopodite?); one of these is usually. attached at or somewhat above, the other somewhat beneath a point half way up the limb: sometimes there is only one, the upper one, of these bristles, sometimes the ventral ome is duplicated: (f. also the description of this limb in A. abyssicola. Along the anterior edge of the sule-shaperd flattened part of the ventral side there is a small mumber of rather short bristles,
the mmber differing in different species. Separated from these bristles by a marked gap there is along the posterior part of the ventral margin a smaller or larger number of bristles, the anterior ones of which are usually rather short, the posterior ones moderately long. All these ventral bristles have rather long and often rather fine hairs along a smaller or greater part of their length and have short hairs distally; the posterior ones, however, often have long hairs right to their points. Some of the bristles along the anterior edge of the anterior sole-shaped flattened part of the ventral side always seem to be developed, the other ventral bristles may be quite absent: (f. A. aberrata. This limb is covered to a great extent with abundant short, fine hairs, many of which are arranged in groups.

Seventhlimb: -
Female: - This is moderately long; in one female specimen of A. norvegica the shell of which was 2.1 mm . long it was $1,2 \mathrm{~mm}$. The distal part ol the limb is rather slighty widened and is supported by rather broad chitinous rings, which articulate with each other at the middle by processes, both on the medial and the lateral side. The rings situated more proximally on the limb hare no such processes and are also narrower and often rather irregular. Near the point of the limb there is an oval of irregular chitinous pieces, moveably joined to one anothre and enclosing a longitudinal monscle consisting of four parts; this apparatus is apparently used to press the end combs against each other; cf. A. Grimaldi var. Vicina, fig. D: this apparatus is, however, often rather difficult to observe with certainty. There are a comparatively small number of cleaning bristles, never more than one on the same side of the same ring. Their number and position vary to some extent, but not so much that they cammet be used as characteristics of the species. Each cleaning bristle has a rather small mumber (from one to five were observed) of bells, ent off transversally; the tongue of its terminal bell is cut off rather obliquely. Proximally of the bells the cleaning bristles are bare. There are only two symmetrical end combs with teeth of a somewhat varying type; these teeth are characterized by the fact that they are always furmished with a larger or smaller number of fine or more or less coarse secondary teeth arranged in the shape of a feather.

Male: - This has sometimes rather fewer bells on the cleaming bristles.
Furea: - This has very slight or is sometimes even quite without sexual dimorphism.
Female: - The lamellae are short their breadth is somewhat greater than their length. Each lamella is armed with from seven to ten claws, all well divided from the lamella. The anterior claw is comparatively long, the others decrease fairly umiformly in length posteriorly. the posterior ones are short and are shaped like bristles. A division into main chaws and secondary claws is, at least in many cases, ahmost conditional; at least the five anterior ones must. however, be considered as main claws. The claws are rather weakly curved along the greater part of their length; distally, on the other hand, they are rather strongly curved. The posterior bristle-like claws are often rather strongly and irregularly enrved; the type is shown in fig. 17. A. Grimaldi. Only one out of all the species investigated by me was characterized by another type of claws; cf. fig. 12, A. aborrate. The main claws are armed rentrally with two rows, whe medial and one lateral, of shot, strong, pointed teeth. In alt the species of this genus described in this treatise a number of these teeth are of somewhat greater length; on eachl claw from
 from whe another: on the pesterior main daws the berome fewer and ferwer and shorter and shorter: in some spectes. howerer. they are rather shore exem on the anterior elaws. 'The man daws at heast the anterion comes. are fumbed dorsally with short hairs. Chas nos e and is are very timely sermated dorso-distally: I (atmot say with certainty whether amilar sermation oedus in all the speries deseribed in this treatise as this part of the claws is ofteb rather eomsiderably worm. The posterion claws are finely pectinated. Sometimes the pesterior claws ame tinely amolated and on account of this they are exceedingly like bristles; this character emmot. lonwerer. be used as a criterion in chassifing the chaws into main dans and secondary chaws, as it varies at least in a mumber of species: in some forms there secoms to be mo ammation at all. The lamellae often have short, fine hairs behind the claws.

Il a le: - In some species it has the same momber of daws as in the female, in others it has slightly fewer. It is practically impossible to discoser any division into main claws and secondary claws. The first claw is. at least in a number of species, somewhat more slonder and somewhat more boldly eursed than in the female. The equipment of teeth on the elaws is somewhat weaker, especially on the first claw; this flaw is almost entirely marmed; its distal quarter is eren quite smooth.

The upper lip is small and has two lobes: ff. (i. O. Sims, 1887. pl. V, figs. 4 and 5 . It has a very small field of glands.

The rod-shaped organ is rather long. of moderate breadth and rounded distally; its shape is somewhat irregular, most often somewhat broader at the middle; mojointed. In most of the species described below of about the same type as that reproduced in fig. 11 for A. Ohlimi.

The lateral eyes are most often well developed; see below, A. abyssicola.
Gills: - These are of quite the same type in all the species l have investigated. (1. G. O. Saps. 1887, pl. V1. figs. 6 and 7 . There are fourteen of them, seven in each row. They are all of about the same type, rather long and broad lamellae, of uniform width and more or less well rounded distally.
special terminologig: - Shell: - The list inside the posterior margin of the shell is called , the spine-bearing list".

For the terms for the distal bristles of the first antenna see the special terminology of the family.

Mandible: - Thescythe-shaped process: The spine which is directed proximally on the distal part of the ventral margin and which is characterized by the fact that it is continued on the lateral side of the process by a low, bow-shaped ridge, armed, like the spine. with a close series of stiff, rather short hairs, is called ,,the main spine". The protuberances and spines on the ventral edge proximally of the main spine are ealled ,,ventral spines". The serrate teeth of the dorsal edge are called ,the dorsal serrate tecth". The bristle distally of these serrate teeth is called , the dorsal bristle". The backward pointing process: The three or four bristles situated distally on this process, which are characterized by the fact that their secondary spines become weaker and weaker distally are called , the
distal bristles". 'The bristles whose distal pair of secondary spines are more powerful than the proximal ones are called , triaena bristles". The short, weak bristles are termed "dwarf bristles". Bristles on the anterior edge of the second endopodite joint: The four long powerful bristles are called .,main bristles" and are denoted proximo-distally by the letters a-d. The bristles situated proximally of the main bristle a are denoted as ,proximal bristles". The row of cleaning bristles within the c-bristle is called , the lower cow". The cleaning bristles in this as well as in the other rows are always counted from front to back. The anterior bristle of the end joint is called ,the end claw".

Maxilla: - Medial bristles of the protopodite: The bristle situated dorsally, just in front of the fastening of the epipodial appendage, is called ,the dorso-proximal bristle". The bristle or bristles situated dorsally on the distal part of the basale are called „the dorsodistal bristles". The bristle or bristles situated ventrally, at about the middle of the basale: are called ,,ventral bristles". The short bristle, situated somewhat distally of this bristle (these bristles), is called , the short ventero-distal bristle", to distinguish it from the long bristle that issues ventero-laterally on the distal boundary of this joint, which is called „, the long venterodistal bristle".

Sixth limb: - The bristles situated along the anterior edge of the anterior solestaped flattened part of the ventral side are called ,the anterior ventral bristles", the other ventral bristles are called ,the posterior ventral bristles".

Remarks: - The literature is not clear as to the number and the boundaries of the joints of the first antema. In most cases no information is given on these points; and the writers who do deal with these guestions make statements that contradict each other. It is certainly true that variation in these characters does occur in the genus, but these contradictions seem to be due, mostly if not entirely, to mistakes of one kind or another on the part of the authors.

I shall first give rather cursorily some indications of mistakes made with regard to the boundaries between the joints, which have caused statements that are certainly incorrect to be made about the number of bristles that is characteristic for each joint. Nost writers give no or practically no information in the text as to the number and position of the bristles. To judge from their figures. however, it would appear that rather considerable variations existed within the genus. Thus (. O. SARs, 1887, p. 18, states in his genus description that the joint next to the distal one on the female first antemn is armed with a powerful claw and also with a pair of narrow, annulated bristles, the end joint would have four annulated bristles, furnished with sensorial filaments on one edge. The a-claw and the e-bristle would thus belong to the sixth joint. The same author writes on p. 12 in the description of the gemus: ,articulo penultimo in utroque sexu ungue forti antice eurvato armato". Although G. W. Mélderi states in his genus diagnosis, 1894, p. 217 , that the a-claw belongs to the distal joint and gives in the accompanying figures an exposition of the number and position of the bristles on this limb that is on the whole quite correct, subsequent authors make mistakes, all the same, with regard to these things. Thus G. S. Bhamy and A. M. Normat write, 1896, p. 628 , in the diagnosis of the family, ,penultimate joint in both sexes furnished with an unguis" an expression

Digitized by Microsoft © ${ }^{\text {B }}$

 fig. \& nu less than fomr bristles issum distally on the sixth joint. - J. A. C'usman, who is the maly anthor besides (i. II. Mrasta who has recently given reprotuctions of this limb, alsa makes mistakes with regatd to the pesition of the ent bristles: al. 1906, pl. 29.

1 have fome the conditions with regard to the number of joints on the lemale first, antemato be very chear in all the specees 1 have investigated. As will be seen from the information given above. I found'six or seven joints, according to whether the third and fourth joints were free or were united to each other. Previous writers have, on the whole, given quite correct information with regard to this. The only important remark that can be made is that, some of them have been too quick to generalize; they have adopted in their genus diagnoses what they discovered in the few species they were able to investigate. Thus (. (). SARS, 1887, p. 18 states in his genus diagnosis that the female first antema always has six joints. - (G. W. Millum writes. 1894. p. 217, that the first antema is ., 6 - oder 7 -gliedrig, bem of Gilied $7+8$ ofer $5+6$, $7+8$, oder auch $6+7+s$ verschmolzen". But, to judge from p. 4 , figs. 14 and 30 , the latter part of this statement ..oder $5+6,7+8$, etc." refers to forms that turned ont later not to belong to this genus. - (i. S. Brams and A. M. Norman, 189\%, do not include the mumber of joints in their genus diagnosis: in the descriptions of the species, on the other hand, they give quite correct information about it.

The number and boundaries of the joints on the male first antema is, on the other hamd, very difficult to ascertain with certainty. And the statements of previous anthors on these points vary considerably. No quite correct information seems to lave been given so far.
(t. O. SuRs states. 1887, p. 18 that the male first antenna has eight joints, as the third and fitt joints of the female have each in the male been divided into two joints by an obligue suture. This author takes as the eighth joint a small part on which are situated the four end bristles that are furnished with sensorial filaments, a part that would be homologous with the small end joint in the female. - Accorting to (. W. Mílush, 1894, p. 217 are , ,beim of (stets?) $5+6$ verschmolzen, die iibrigen Gloder getremet". In other words the made first antenna would have seven joints, with the original seventh and eighth joints free. The ent joint, i. e. the original eighth joint, is relatively large and has all the seven distal bristles on it; cf. pl. 4, fig. 15. Information contrary to this exposition is given in the same work, p. 23; it is there stated in the table that the male first antema has seven joints, with the fourth and fifth joints joined together. - In (r. S. Bramr and A. M. Nomma we find direct information as to the number of joints in the male first antenna only in the description of one species, A. Hariue. This species is said, p. 632, to have six joints in its first antenna. The text shows that these writers take the fourth and fifth joints as one joint. as the sensory bristle of the fifth joint is given, p. 633 , as being on the fourth joint ,fourth joint at the extremity below, a very large sensory urgan". The accompanying figure, pl. L. fig. 2 , shows, however, seven distinct joints, the fourth and fifth joints are well divided; all the end bristles issue from the moderately large end joint except the a-claw, which is attached antero-distally on the next to the distal
joint. One can understand indireetly from the text that these anthors considered that the conditions were the same in the other male investigated by them, the male of A. teres. - Finally I wish to mention in passing that J. A. (ushman, 1906, p. 366 states that the ,,last joint of antemula in male 3 -jointed". As this statement does not even agree with the figures given by this author, pl. 29 , figs. 21 and 22 , it may be disregarded here. It ought perhaps also to be mentioned that the figures in question are not correct either.

As is shown by the description of the genus given above the facts ascertained by me to not agree with any of the preceding anthors' accounts. All the males of this genus* that were investigated by me had a seven-jointed first antenna, the original third and fourth joints were always differentiated; the boundary between the fifth and sixth joints was sometimes, however, at least partly, not distinctly developed. The part on which the (d-), e-, f- and g-bristles are fixed ought perhaps to be distinguished as a special eighth joint (see p. 449 above).

A more detailed study of the structure of the first antenna seems to show with all desirable clearness the incorrectness of G. O. SARs's view that the fifth (i. e. the original sixth) joint of the female first antenna should in the male be divided into two joints and that the small part of the male first antenna on which the b-, e-, f- and g-bristles are situated corresponds to the whole of the little end joint of the female first antenna.

The small end joint of the female first antema is moved by three museles, namely one extensor and two flexors. The extensor is attached proximally at the anterior part of the boundary between the fourth and fifth joints. distally on the end joint anteriorty and somewhat laterally. Of the two flexors one arises posteriorly at the boundary between the third and fourth joints, and is attached distally on the end joint posteriorly and somewhat laterally; the other arises posterionly at the medial bomdary between the fourth and fifth joints, and is attached distally on the end joint somewhat medially. In addition there is a very weak, ahmost completely rechuced flexor, arising posteriorly at the lateral boundary between the fourth and fifth joints, and fixed distally on the end joint posteriorly and somewhat laterally, in most cases a little in front of the flexor that arises posteriorly at the boundary between the third and fourth joints; cf. fig. 10 of A . Crimuldi. The seventh joint of the female first antemat is moved by dquite the same museles in all the species belonging to the sub-family Cypridininue that have been examined by me. These muscles are also found on the male first antema in the family Asteropidae. The only differences are that the proximal fastenings of the two flexors that arise on the boundary between the fourth and fifth joints are displaced somewhat anteriorly and that the lateral of these two muscles is much more strongly developeck. These four muscles do not, however, move the small part that G. O. Sum has homologized with the female end joint but the large joint that I have deseribed above as homologous with the female seventh joint; ef. fig. 11 of A. Grimaldi. Another reason against the assumption put forward by (d. O. Surs that the original fenale sixth joint has been split into two joints in the male may possibly be considered superfluous, but I shall, however, state it here. There is always a bristle distally-mediallyon this joint in the female first antema (in this genus as in the famity ('ypridinidue). The same

[^69] in the lemate. beemse of the smathess of the cond joint. but in the mate it is rather far memed fomm these bristles. It is cortain that we ate not comerned here with a displacement of this hristle as in the mate, just as in the female it, is sithated distally on the sixth joint; on the combary its remosal from the other bristles is dae to the strong development of the end joint.
 is Wear that this hristle ought still to be situated chose to the end bristles; in orter to reach its present placo it mast have shifted right atross the joint that (i. O. Saks deseribes as the seventh, a phomomemon that sems anthing but probable.

Sur is the small part that (6,0 , SARs denoted as the ene joint homothgons with the part that I showed above onght perhaps to be distinguished as a special, an righth, joint. Aceording 10 ($i, 1$, sims the former part camies the b-, c-. f-and g-bristles. The latter part, on the wher hand. has the (d-). e- f- and g-bristles. The latter part is moved in the male by two very strong museles. fixed proximally at about the boundary betwern the sixth and seventh joints. These museles have no homologon in the females of this gemus. (On the other hand the eighth joint of the first antenna of all the species belonging to the sub-family Cypridininae that 1 had an opportunity of investigating closely is moved by two museles which are rertainly homologous with these. In this sub-family as well these museles arise on the boundary between the sixth and serenth joints, but, on account of the comparatively smaller size of the seventh joint they are not inconsiderably smaller.

It follows from this that G. W. Mưlserk's idea of the male end joint, quoted above, is also incorrect. - Nor can this author's statement that the fifth and sixth joints of the mate first antema are always mited be correct either, as is shown by the genus deseription I have given above; for all the species investigated by me had these joints free. But it does not seem impossible, however, that in some species of this genus these two joints are joined into one. This view is supported first by the fact that the bundary between these joints is sometimes, at least partly: rather weakly developed, secondly that the sixth joint is not moved by any *pecial muscles. It is, however, to be noted that (i. W. MüluER's own figures both those in his large monograph of 1894 and others as well, directly contradict his statement. I shall only point out here that in pl. 4, figs. 15 and 17 , of the mentioned work the boundary between these two joints is very well drawn, although on the former the boundary between the fourth and the fifth and on the latter the boundaries between both the fourth and the fifth joints on the one hand and the sixth, seventh and eighth joints on the other are not drawn. As far as this Writer's statement, 1894, p. 23 that the fourth and the fifth joints are always joined in the male first antenna is conerned, this seems to be exceedingly problematical. In the first place I have always found these two joints well divided from each other on the species investigated by me, and secondly the fifth joint is moved by no less than three special muscles.

From what has been said above it also follows that G. S. Brad y's and A. M. Norman's information, 1896, is not 'fuite correct.

A mumber of facts show the correctness of the homologization of the varions distal bristles on the first antenna of the male and the female which has been adopted above. It may of course
seem curions, as regards the two strongly lengethened bristles in the male, that they shonk be homologized with the ventral of the two longest bristles in the female and the comparatively short bristle, which points forward almost at a right angle, of this sex. At the first glance it may perhaps seem more reasonable to assmme that the two longest bristles in the male romespond to the two longest bristles in the female. The following three reasons may be given in support of the former explanation. In the first place the relative position of the bristles. As is shown by a comparison between the strongly magnified part of the male and female first antenna reproduced for A. norcegica (figs. 7 and 8), the two strongly lengthened bristles of the male (denoted by c and f) have quite the same position as the posterior of the two longest bristles and the bristle that is pointed forward at about right angles on the same limb of the femate: the former is situated posteriorly on the joint, the other laterally somewhat belind the strong end claw. An argument that is perhaps still stronger is to be obtained from embryologry. During the last larval stage the male and the female first antennae are of almost precisely the same type; dimorphism can, however, be observed in three bristles. Two of these, the one situated farthest back on the joint and the one situated laterally on the joint somewhat behind the strong end claw have, it is true, the same orientation as the correspondingly situated bristles on the first antenna of the mature female, but are somewhat longer comparatively and are, in addition, characterized by a very marked increase in the mumber of the sensorial filaments; ef. fig. 12 of A. Grimaldi. The remaining one of these three bristles, the one that has the same position as the anterior one of the two longest bristles of the mature female, has scareely increased in length and is distinguished by a very slight increase in the number of sensorial filaments. While the latter bristle in the mature female is of puite or practically quite the same type as the posterior bristle on this joint, it is thus in the male, even at this stage, of a type differing exeeedingly from it. On the other hand the posterior bristle on the joint and the bristle that points forwards at right angles are both modified in the same direction in this male larva. (Such a modification of these bristles ean, as a matter of fact, be already traced in male larvae in stage II, but not earlier. The female larvae, on the other hand, do not show any modifieation of this sort at all; they are, on the contrary, very close to the type of the mature fermale.) Finally a third reason: As is shom by the deseription of the gemus given ahove, the bristle that points forward at right angles on the first anterma of the female is characterized by the fact that its sensorial filaments issue from the posterior (-ventral) side of the bristle, while all the other distal bristles on this antenna are distinguished by the fact that their sensorial filaments issue along the anterior sitle. In the mature male ton only one of the distal bristles has sensorial filaments along the posterior side; this bristle is the anterior of the two strongly lengthened bristles. This is naturally a rather strong argument in favour of the homologization of the bristle that points rectangularly forwarl in the female with the anterior of the two strongly lengthened bristles in the male. The homologization of the four (five) other distal bristles scarcely seems to need any additional reasons. The situation of these bristles is quite identieal in the two sexes and even the difference in type is onty very slight.

As appears from the genus deseription given above the capoolite of the secomel antema is distinguished in the forms of this genus examined by mo by marked dimmphism. This organ
 are (o) he wherved in the propertims of the joints, in the development and equipment of the bristes and in the basal spinms. whe This dimuphism semes presumably to be chatacteristie of the gemes as a whole. The fact hat it has not beon property pointed ont before is probably due to the rather superficial nature of perions investigators observations. It is certainly true
 of the male socond antema is relatiwe longer than the corresponding joint in the femate: this statement is not fomb, howerer, in later works by his anthor. Of the other writers there is only (8. O. Surs, 1857. p. 20 whe points out the existence of dimophism: „Idethele or srommeantemerne hos Itamen kjendelig kraltigere udviktede end hos Hhmen, skjondt, mat undtages Bigrenen, af et temmelig overensstemmendo Uilseende"*.

With regard to the endopodite of this antenma (. O. SIRS, 1887, p. 19 states that this branch is chatacterized by two bristles in the female, one the comparatively long and bristle and the other a short bristle situated distally on the second joint. In a few cases a smimar short hristle has also been ohserved by me on the seeond joint, as will be seen from the descriptions of the species givon below: the bristle in question is then attached at about the same place as that where this joint of the male endoporlite has three short bristles; it is presumably to be considored as an abnormally appearing homologon to one of these hristles. There is no question of any genus character.

I might also point out in passing the abnomal type of the endopodite of the female second antenma that is reproduced on fig. 10 of A. norvegica and whose resemblance to the mate endopodite during the second larval stage is striking. In this type, which has been observed, as a matter of fact. in other forms within the Cypridiniformes, though only very seldom, we perhaps have a proof of the homology of the distal bristle on the femate end joint with the proximal bristle on the same joint in the male.

In all the species of this genus that were investigated by me the epipodial appendage of the maxilla was of about the same relative size and type. In the gems deseription given by me this organ has also been stated to be of about the same type and relative size throughout the whole genus. All the reproductions of this organ that occur in the literature also show the same size and type as was observed by me, with, however, one exception, G. W. Mưller's drawing, 1894, of A. teies, pl. 5. fig. 15. In this figure this organ is drawn considerably smaller than I found it and its type is also somewhat different. I did not make any reservation for this species in my general genus description because there seemed to me to be strong reasons to believe that G. W. MÜLLER had made a mistake on this point either by drawing ineorrectly or by taking an abnormal specimen as a type for the species. As will be seen from the remark under the species A. Mülleri described below, one specimen of this species from the Gulf of Naples, determined by G. W. MULLbr as A. teres. had a maxilla with an epipodial appendage of quite the same type as I found in all the other species of this genus.

[^70]The distal parts of the baleen bristles are drawn by (: Wr. Motuen differently from the type deseribed and reprotheed by me for the gemus as a whole; of. fig. 14 of A. firimaldi. G. W. Millde's drawing, $1894, \mathrm{pl}$. 5 , fig. 15 a , is made from A. teres. An examination of a apecimen of this form showed it to have the type described by me: on account of this I have assumed that (i. Ur. Metuler has made a mistake on this point as well and have consequently made no reservation in this character for this form in the genus diagnosis given above.

As is pointed ont in the description of the genus given above, the large lateral bristle on the comb of the fifth limb extends with its point somewhat beyond the anterior and of the comb in atl the forms investigated by me. G. W. Míllete draws this bristle (1894) in A. oblomga as not inconsiderably shorter relatively, pl. 4, fig. 50; in another figure of the same species, pl. 4. fig. 49, this bristle is reproduced with the same relative length as I ulserved in the species investigated by me. On examining a specimen from the coulf of Naples, identified by (G. II. MÖLler as A. oblonga, the same condition was observed as in pl. 4, fig. 49; because of this I considered it probable that fig. 50 is incorrectly drawn in this character and have therefore made no reservation for this species in the above genus description.

In the key that G. W. Mutlen set up for this genus, 1912, p. 43 we find in no. 5 the following statement: .Am 1. und 2. Furcaldorne finden sieh zwischen den dicht stehenden kurzen Spitzen langere Borsten in geringerer Anzahl (5 resp. 3)." This character would distinguish only a single species. A. quadrata G. S. Bratli. This is certainly a mistake on the part of this writer, as these ..Ionger bristles" are undoubtedty no specific character for this species; on the contrary they are certainly identical with the long ventral spines that are shown in the above description of the genus to be characteristic of the females of all the species of this genus that were investigated by me. Similar Iong spines have, as a matter of fact, been reproduced by (C . 11 . MULLER himself: cf. 1894. ph. 5, fiy. 23.

The genus Asterope, in the sense that it is taken in the present work, seems to be a very natural systematic unit.

Is an additional division of this genus possible and proper?
A number of the species described by me below may fairly naturally be arranged in smaller and presumably natural gromps, and some wecupy a more or less isolated position. It seems to me, however, rather inconvenient to look upon these groups as special sub-genera, first because we are concerned with rather small differences and secondly because, in my opinion, these groups will probably prove to be very difficult or even quite impossible to distinguish when in the future the number of well investigated and described species is increastd. so far I have distinguished three groups, which 1 shall subsequently call:

1) the Quinquesetae group
2) , M ̈lllen
3) :, Cirimuldo

With reference to the descriptions of the species given below 1 shall give a brief account here of the characters that distinguish these groups:

Quinquesetae g roup:
Female: - Shell: - Seen from the side this is somewhat oblong, more or less weakly pear-shaped, with the posterior part rather slighty larger than the anterior part.

Fifin limb.

Furca.
r'lassiflerollon of A A Pr゙opm.

First antenna: - The semsory bristhe of the fifth joint has seven semseriat filaments. Jtsend juint has semen bristless as hoth the d- and the e-hristle ate well developed (the (d-bristle is. however, distinctly weaker than the e-bristle).

Il a mdible: - Protopodite: Finst joint: 'Thor rod-shaped process of the emetite has thee or four shord powerful spines distally. Second joint: The backward pointing process: The triana bristles have relatively numerons (; - 15 pairs) socondary spines proximally of the distal pair of spines. Two dwarf bristles are developerd on this process. On the middle of the dorsal side of this joint there are a momber of bristless. Eindopodite: The second joint has from iwo to four proximal bristles and ome long, narmw bristle, with short, tine hairs, between the b- and e- main bristles.

Serenth limb: - This has rather mumerous cleaning bristles. The terth of the and combs are finely and eventy peetinated.

The median eye is bare.
The male is unknown.
To this group belong - at least with complete certainty - only two of all the species so far deseribed: these are deseribed by me bedow:
A. quinquesetae and
.. spinifera.

Milleri group:
Female: - Shell: - Seen from the side, this is rather high and short, somewhat pear-shaped, with the posterior part rather strikingly larger than the anterior one.

First antenna: - The sensory bristle of the fifth joint has six sensorial filaments. Its end joint has only six bristles: as of the d- and e-bristles only the latter is well developed, the former being represented by a very small veruciform process.

II andible: - Protopodite: First joint: The rod-shaped process of the endite is furnished distally with three short, fine points. Seeond joint: The triaena bristles of the backward pointing process have rather few (from one to six pairs) of secondary spines proximally of the distal pair of spines. Only one dwarf bristle is developed on this process. There are no bristles at all on the mitdle of the dorsal side of this joint. Endopodite: The second joint has one proximal bristle and one long, narrow bristle, with short, fine hairs, between the b - and c-main bristles.

Seventh limb: - This has twelve cleaning bristles, six of which are situated near the point of the limb, three on each side and six somewhat proximally of these. The teeth of the end combs are variously equipped, the most distal ones having considerably stronger and fewer secondary teeth than the proximal ones.

The median eye has short, fine hairs.
The males are practically unknown. According to a statement of G.S. Brams's, however, at least one species has ahundant sensorial filaments on the sensory bristle of the fifth joint of the first antenna.

The following speries of those investigated by me belong to this group:

Digitized by Microsoft ${ }^{(B)}$

A. Mülleri.

., " var. longiseta.
\therefore Ohlini.
The formi A. curta deseribed below also seems to be closely related to this group. In some characters, however, it occupies a special position:

Female:-First antenna: On the anterior side of the third joint there are conly five bristles (six in the former species). II a ndible:-- The backward pointing process on the second protopodite joint has two dwarf bristles. The seventhlimb has more than twelve bristles; the teeth of the end combs are evenly and finely peetinated. II a le:- The first antenna has only six sensorial filaments on the sensory bristle of the fifth joint.

For the relation to this group of the following species not investigated by me see pp. 488 - 490 ,
 1868 b. Asterope oblonga och ovalis, C. Clads, 1876, Cylindroleberis teres, G. W. Mïller, 1894 , Asterope teres, (2. S. Brady and A. Il. Norman, 1896 and A. oculata, G. S. Braby, 1902 a.
A. glacialis is very closely connected to A . curta; cf. the remark under the latter species.

Cirimaldi group:
Female: - Shell: - Seen from the side it is more or less elongated, with the posterior and anterior parts of about the same height.

First antenna: - The sensory bristle of the fifth joint has seven sensorial filaments. Its end joint has only six bristles, as of the d-and e-bristles only the latter is well developed, the d-bristle being represented only by a very small verruciform process.

II a ndible: - Protopodite: First joint: The rod-shaped process of the endit. has three short powerful spines distally. Second joint: The backward pointing process: Thetriaena bristles have rather few (from two to five pairs) of secondary spines proximally of the distal pair. Two dwarf bristles are developed on this process. On the middle of the dorsal side of this joint there is usally one, but sometimes no or two bristles. Endopodite: The second joint has one proximal bristle and has no long, narrow bristle, with fine. short hairs, between the main bristles b and e.

Seventh limb: - This has twelve cleaning bristles, six of which are situated near the point of the limb, three on each side, and six somewhat proximally of these, there on eath side. The treth of the end combs are evenly and finely pectinated.

The median eye is bate.
Il ale: - The first antema has numerous sensorial filaments on the sensory bristle of the fifth joint. For other examples of dimorphism see the descriptions of the species.

The following species of those investigated by me belong to this group:

A. Grimaldi

.. ,, var. vicina
., aculata
., norvegica.
A. abyssicola is also very closely related to this group. It differes from it, however, in a number of characters: Il andible: - The second endopedite joint has two proximal
 from wher kown forms of this gemus in being guite without lateral eyse
of those speches that I have had mo opportunty of investigating myself A. inemme,

Fon the redation te dhis group of the following species that have not been investigated

The only species among thosedeseribed below that has not beem mentioned so far, A. aberratu. occupies a somowhat isolated pasition. It seems to be most closely related to the Mïlleri gromp.

The characters in which it differs from this group are as follows: -
The elliptieal shape of the shell.
First antenna: - The marked reduction of the thind and fourth joints.
Ifandible: - Second protopodite joint: The backward pointing process: 'The triaena bristles have from five to cleven secondary spines proximally of the distal pair of spines. Two dwarf bristles are developed on this process. At the middle of the dorsal side of this joint there isome bristle.

The sixthlimb, unlike that of other known fomens, has no posterior ventral bristles.
The seventh limb has less than twelve bristles. The teeth of the end combs are finely and uniformly pectinated.
A. elliptica. (i, O. Sus. 1887 is probably rather closely related to this form. As to the position of A. elliptica, A. Phllin'l, 1840 see below p. 509.

With regard to the systematic position of those of the species not investigated by me that have not so far been mentioned I slall not try to put forward any opinion, as, on account of the incompleteness of the descriptions, this would be so uncertain that its scientific value would be exceedingly small.

Which of the species so far known are to be considered the most primitive?
At the present moment this cuestion can searcely be discussed. It can only be said that in one respect - the development of the d-bristle on the first antenna - the Quinquesetae gr F "up is more primitive than the others. Whether it is also to be considered as more primitive in other characters camot be decided with any certanty, though it does not seem to me to be impossible.

The first species of this gemus to be described was A. elliptica, A. Phmirrl, 1840. As this
 form - as is shown by the historical sketeh. p. 433 - must be said to be unidentifiable as a species, it can scarcely be convenient to consithr it as a type species for this genus. I suggest instead as the type species A. elliptich. (3. O. Shis. 1887, a species of which, it is true, we camot say with absolute certainty that it is identical with the form described by Pumberp, but which is. however. presumably very closely related to it. (G. W. Mi'l.LER makes this identification, 1912, p. 46. but adds a query:) The form deseribed by (i. O. S.lis certainly needs to be re-described, but it must be denoted as me that is identifiable as to its species. It may be noted that the type-specimen of this form - according to a written commumication to me from Professor
(i. O. Shis - has unfortunately been lost. It seems to me rather probably that in describing this species (i. O. Sars has not confused two forms, as G. W. MéLer seemed inclined to believe at first - cf. G. W. M'Ller, 1894, p. 218.

Key to the speejes described in this treatise (applies also to the males investigated by mer):
The end joint of the first antema has seven bristles, two simple sensorial filaments, d-and e-bristles. - 2 .

1. The end joint of the first antenna has six bristles. only one simple sensorial filament, the e-bristle, is developed, the d-bristle verueiform. - 3 .

The first endopodite joint of the mandible is furnished anterodistally with powerful ehitinous spines.
The first endopodite joint of the mandible has no powerful chitinous spines at all.
A. spinifera.
A. quinquestlue.

The second endopodite joint of the mandible has a long, narrow bristle. with short, fine hairs. between the band e- main bristles. The sensory bristle of the fifth joint on the female first antenna has only sis sensorial filaments. - 4.

The second endopodite joint of the mandible has no such bristle between the b- and a- main bristles. The sensory bristle of the fifth joint on the female first anteuma has seven sensurial filaments. - 8 .

The sixth limb has no posterion ventral bristles.
, .. ., has ,. ., ., - 5 .
The (original) third joint of the first antenna has five bristles on the anterior edge.
A. curta.

The (nriginal) third joint of the first antema has six bristles on the anterior edge. - $\mathbf{6}$.

The distal bristle of the endopertite of the second antema is about as long as or only slighty longer than the endoporlite. Thas second endepodite joint of the mandible has comparatively momeroms deaning bristles, seven in a distinet lower row. from five to cight in a distinct upper row.
The distal bristle of the endopodite of the second antenma is twice or more than twier as long as the endopodite. The second emdopodits joint of the mandible has comparatively few eloming bristles. five of six in a distinet lower row, two ur three in an uper row. - i.
A. (Jhtim.

Digitized by Microsoft ${ }^{(B)}$
4. aberorta.
. curla.
Maxilla: 'Ther dersu-distal berstle on the basale is abome as lomeas or a litthe shorter than the first modeperdite joint. A. Ihalleri.The dorso-distal bristle on the basahe is comsiderablytonger thain the first cmelopodite joint1. Willleri viar. lomysisela.Withom lateral eyes.
With well developed lateral eyes. - 9.
The exopendite of the mandible is more than hatf the length ofthe anterior side of the first endopodite joint. - 10.The exopodite of the mandible is considerably shorter than hallithe anterior side of the first endopodite joint. - 11.Maxilla: The distal endite has three bristles, the basale has fivedorso-distal bristles... The distal endite has four bristles, the basale has twodorso-distal bristles.
A. morregich.
A. ocutata.The second protopodite joint of the mandible has a bristle onthe middle of the dorsal side.
A. (irimaldi.
The second protoporlite joint of the mandible has no bristle on the middle of the dorsal side.

Asterope quinquesetae n. sp.

Description: - Female: -
Sloll: - Length $2,95-3,1 \mathrm{~mm}$. length : height about $1,75: 1$: length : breadth about \because : 1 . Seen from theside (fig. 1) it is rather elongated, with its greatest height somewhat behind the midelle and the posterior part somewhat, though only slightly, larger than the anterior part. The dorsal and ventral margins are moderately and almost uniformly eurved, with almost the same shape, but the dorsal margin is somewhat more flattened anteriorly than the ventral one; they passevenly into the anterior and posterior margins without any comers. The anterior and posterior margins are uniformly and boldly. almost semi-cireularly, rounded. The rostral incisur is situated rather considerably ventrally of half the height of the shell. Seen from beneath (fig. 2) the shell is rather narrow and egg-shaped, with its greatest breadth somewhat behind the middle: the posterior end is somewhat more broadly rounded than the anterior one, the side contours are evenly curved. Seen frominside: Medial bristles: On the rostrum there is a farly distinct, moderately close, row of moderately long, stiff bristles, ruming somewhat within and about parallel with the anterior margin of the shell. Within this row there are usually only: rather ferr scattered bristles on the rostrum: some of these bristles are moderately long, most of them, however, are very short; they vary somewhat in number. In the incisur there are rather numerous moderately long. stiff bristles; all quite without any definite arrangement. On the part

Digitized by Microsoft ${ }^{\circledR}$

just behind the incisur there are rather few or a moderate number of seatered bristles, of which those that are situated near the margin of the shell are moderately long, those situated farther in more or less short. Along the middle part of the ventral margin of the shell there are a moderate number of long or rather short, stiff bristles, most of which are arranged in a rather distinct row rumning somewhat inside the ventral margin. Between the ventral half of the spine-bearing list and the margin of the shell there are rather numerous moderately long, stiff bristles, sometimes arranged in a more or less distinct row, running about parallel to and somewhat inside the margin of the shell, in most cases, however (as in the accompanying figure 3) arranged more or less irregnlarly. Dorsally of these bristles there are a moderate number of seattered, very short bristles right up to the dorsal boundary of the bristle-beariug list. About half-way between and parallel to the posterior margin of the shell and the dorsal half of the spinc-bearing list there is a sparse row of six or seven broad pores; each of these pores is furnished with a freely projecting hyalinc peg (I was unable to ascertain with certainty the shape of these pegs). The spine-bearing list is weakly undulated and is provided with about 32 to 35 hyaline spines. varying somewhat in size, and with a close row of stiff and rather short hristles, varying somewhat in length; on an average about three bristles were observed for each hyatine spine. Neither on the right nor on the left valve was there a sharp edge similar to that described and reprodnend as characteristic of the posterior part of the right valve of A. spinifera (ef. this species, fig. 3).

First antenna (fig. 5): - This has six or seven joints; the third and fourth joints are sometimes free, sometimes more or less strougly united. These two joints form together one sub-rectangular joint, whose length is somewhat less than its height and rather considerably less than the total length of the two following joints. The distal boundary of the fourth joint is moderately concave. The anterior bristle of the second joint is about as long as the anterior side, of this joint. The third joint has six anterior bristles. Of these nos. 5 and 6 and sometimes noe: 3 and 4 as well are situated at the side of each other. Bristles mos, $1,2,4$ and 5 are armed ventrally: with long, stiff secondary bristles; the secondary bristles on bristles nos. 3 and 6 are short and fine, often pressed rather close to the bristle, so that they are sometimes rather difficult to observe with certainty. The longer of the two postero-distal bristles of the fourth joint is somewhat longer than the fifth joint, but somewhat shorter. however, than the total length of the fifth and sixth joints. The stem of the sensory bristle of the fifth joint is about as long as or somewhat shorter than the total length of the third to the sixth joints; it is provided with seveu sensorial filaments. The end joint has seven bristles. thed-bristle is developed, unlike in most of the speries in this genus. The a-claw is decidedly longer than the anterior side of the two next distal joints and is smooth. The f-bristle has five sensorial filaments. The ('- and g-bristles have six sensorial filaments. The d-bristle is in most cases considerably shorter and rather considerably more slender than the e-bristle. Pilosity: The first and second joints have aboudant gronps of short. exceedingly fine. stiff hairs - only just suggested in the adjoining figure - the anterodistal part of the second joint seems, however, to be always without hairs. There are no hairs along the distal bomedary of this joint.

Seeond antenna: - The protopodito has distally a very short bristle on the inside close to the exopodite. The end joint of the "x opodite has four bristhes

 \therefore Posterior fart of the right value seen from insidp: $105 \times$. 't 'The fixing sumts whe shell masele; right value semf from mitsidu: $110 \times$. 5. Right first antenna spen from nutside: $105 \times$. 6. Wight maxila sem from inside: $115 \times$.

The fourth to the ninth joints of this branch each have a basal spine. The endopodite is distinetly three-jointed; its distal bristle is slightly longer than the stem.

Mandible: - Protopodite: Coxale: The scythe-shaped process (figs. 8, 9): The part distally of the main spine narrows miformly and gently into a fine point; its ventral edge is even and rather decidedly convex. The distance from the point of the process to the main spine is about as long as or somewhat longer than the distance from the latter to the proximal ventral spine. The dorsal bristle is fixed at about a similar distance from the point of the process as from the main spine and at a distance of about its own length distally of the latter; it extends only slightly distally of the point of the process. The dorsal serrate teeth are very weak; some are scarcely developed. The main spine is moderately strong. There are six ventral spines; of these the three proximal ones are rather strong, the distal ones sometimes rather weak; the distal one, or sometimes the two distal ones, is pointed proximally. On the part distally of the main spine there are seven or eight transverse rows of hairs. The rod-shaped process has three or four short, strong distal spines. Basale: The backward pointing process has four end bristles, three or four triaena bristles and two dwarf bristles. The triaena bristles have from three to fifteen pairs of secondary spines under the main pair of spines. The glands emerge on a rather weakly developed papilla (this papilla is weaker than in fig. 9 of A. spinifera). Dorsally at about the middle this joint has five rather short bristles, subequal or of somewhat different lengths, equipped on the anterior side with short, fine hairs (the species has derived its name from this character); close to these bristles there are groups of short, fine, stiff hairs (fig. 7). The exopodite is, if its two end bristles are included, about as long as or rather slightly shorter than half the length of the anterior side of the first endopodite joint (fig. 7). Endopodite (figs. 7 and 10): Of the three ventral bristles on the first joint the shortest has short, fine hairs, the two others are furnished with short secondary bristles proximally of the long secondary bristles; on one bristle about ten to fifteen, on the other about twenty to thirty pairs of similar short secondary bristles were observed. This joint is not armed with spines antero-distally. The second joint has two proximal bristles of somewhat different lengths; the longest is somewhat less than half the length of the main bristle a. Between the main bristles b and c there is a long narrow bristle with short hairs. The medial cleaning bristles are rather numerous and are arranged in two rather steeply descending rows. They vary to some extent; three specimens that were investigated showed the following conditions:

Type specimen: Right mandible $\left\{\begin{array}{l}6 \text { bristles in a distinct lower row. } \\ 4.0 . \% \text { upper } \quad \% \\ 1 \text { bristle above bristle no. } 2 \text { of the latter row. }\end{array}\right.$
:, ", Left

Zoolog, bidrag, Uppsala. Suppl.-Bd. I.
specimen no. 2. Lati mandible
specimen no. 3. Right

$$
\cdots \quad . . \text { left } \because\left\{\begin{array}{l}
! \\
:
\end{array}\right.
$$

End claw very powerful, about as long as the anterior side of the second endopodite joint, smootl.

Maxilla (fig. 6): - Protopodite: The distal endite is armed with three bristles; the middte one of which is nsmally somewhat shorter than the other two. The dorso-proximal bristle is moderately long. The ventral bristles on the basale vary both with regard to number and position not only from one individual to another but even on the right and left maxillae of the same specimen; from four to seven of these bristles were observed; of moderate and somewhat varying lengths. In addition the basale has three subequal and rather short dorso-distal bristles. The short ventero-distal bristle of this joint is developed. Endopodite: The posterior distal bristle of the first joint is somewhat shorter than the bristle on the end joint.

Sixth limb - The posterior edge is rather well rounded, the posterior ventral corner is rather broadly rounded. There are $22-24$ postero-ventral bristles and five or six antero-ventral bristles. On the anterior edge only one bristle, the upper one, is developed.

Seventh limb (figs. 11-13): - This is armed with $22-26$ cleaning bristles of moderate and somewhat different lengths, seattered fairly regularly along the distal part of the limb. The number and position of these bristles vary both from one individual to another and from the right to the left limb of the same individual. Each cleaning bristle has from three to five bells. Each end comb consists of $17-19$ teeth. All these tecth are of the same type, closely and evenly pectinated; they are strengthened distally; cf. fig. 13.

Furea: - This has eight or nine claws; of the three specimens investigated two had mine, the third, the type-specimen, had only eight, one of its secondary claws was absent, but I could not decide if the specimen in question was defective, which is, however, not improbable. Of these claws the six or seven anterior ones are to be denoted as main claws. The first and second main claws have no ventral basal teeth. One or two of the posterior secondary claws are annulated.

The lateral eyes are well developed. The median eye is smooth.
The male is unknown.

Fig. LXXXV. - Asterope quinquesetar n. sp., q. - \quad. Jight mandible spen lrom outside; $128 \times$. 8. The seythe-shapent process; the rows of hairs on the concave side are only indieated, they extend across the process ; 352 \times. 9. Ventral terth of this process; $880 \times$. 10. The anterior part of the serond mondopodite joint of the right mandible seen from inside; $212 \times$. 11 . Seventh limb; $1: 37 \times$. 12. Cleaning loristte of this limb (diatal part); $680 \times$. 13. Tooth of one of the end combs: liso \times.
Digitized by Microsoft ${ }^{(B)}$

Remark：－As will be sem below， 1 fomm hesides mature fembes，there female larvae as well of this species from station mo． 34 of the \mathcal{S} wedish ．，Antaretie＂Expedition． Twe of these larvae were $2.44-2.45$ man．long，the third was only 1.95 mm ．If we assume－and the assumption is supported be amatomical investigation－that these two classes of length represent the two ohlest latwal stages，we obtain，by using Brooks＇s law，a enefficient of growth of $1: 25$（ $2.44: 1.95 \quad 1,25)$ ．If $2,44 \mathrm{~mm}$ ．then is multiplied by 1,25 we get $3,05 \mathrm{~mm}$ ．，a value which thus coincides with the length of the mature female．

Hatritat：－South Georgia：S．A．Ji．，Station 34，of the mouth of Cumberland Bay，lat． $54^{0} 11^{\prime}$ S．，long． $36^{0} 18^{\prime}$ W．（type－locality）；5．WI．1902；depth，252—310 m．； grey clay with seattered stones；temperature at the bottom，$+1.45^{\circ} \mathrm{C}$ ： 4 mature females and 3 juvenes；R．M．S． 162.

Trye specimen on slides in the collections of the R．M．S．

Asterope spinifera n．sp．

Description：－Female：－
Shell：－Length 2，55－2，6 mm．；length ：height about $1,5: 1$ ；length ：breadth about $1.7: 1$ ．Seen from the side（fig．l）it is of about the same type as the shell of the preced－ ing species，from which it differs chiefly by having the posterior part dominating over the anterior one in a somewhat more striking way，by the dorsal and ventral margins being somewhat more strongly curved and by the rostral incisur being situated somewhat more dorsally．Se en frombeneath（fig．2）it is also of about the same type as the shell of the species just men－ tioned，but is somewhat broader comparatively．Seen from within：Medial bristles： Parallel to and somewhat within the anterior margin of the shell there is on the rostrm a distinct， moderately close，row of moderately long，stiff bristles．Within this row there are on the rostrum， in the incisur and on the part just behind the latter rather numerous stiff bristles，all scattered， most of them moderately long，a number，especially amongst those situated farthest in，more or less short．Along the middle part of the rentral margin of the shell there are a moderate number or rather numerous moderately long or rather short，stiff bristles，either seattered or arranged in a more or less distinct row rumning somewhat within the margin of the shell． From a point somewhat in front of the ventral boundary of the spine－bearing list this row of bristles is continued by a very close，distinct row of moderately long，stiff bristles，ruming about parallel to and somewhat within the margin of the shell up to about half the height of the shell， from where it is continued by a considerably more sparse row of rather short and weak bristles， which continue right up to the dorsal boundary of the spine－bearing list（fig，3）．Apart from these bristles there are usually no medial bristles on the part between the posterior margin of the shell and the spine－bearing list．The spine－bearing list has not an undulated edge and is provided with $35-38$ hyaline spines of somewhat varying sizes and a very close row of rather short bristles of somewhat different lengths；about four to six bristles were observed for each

Fiy. LXXXV) - Astempe spinifera n. sp. - 1. Shell spen from the side, q; $23 \times$. 2. Shell spen from below, of; $20 \times$
 5. Endmpodite of the second antenna, $\circ: 231 \times$. 6. Endopodite of the serond antenna, $\dot{\sim}$ Stage $11 ; 312 \times$.
hyobline spme. At about half way between and paralled to the posterior margin of the shell and the dorsal half of the spine-bearing list there is a sparse row of about six or seven broad pores: each pere is furnished with a freely projecting hyaline peg (the shape of these pegs could not he ehserved with certainty). Behind the dorsal half of the posterior mediad row of bristles is seen in fig. 3 a domble line mming transversely wor the shell; this corresponds to as sharpedge. The part between this and the posterior margin of the shell is sitmated rather comsiderably more laterally and this, when it is looked at through the mieroseope from inside, rather considerably deeper than the part situated within the donble line. This character is in most cases only distinctly developed on the right value, as on the left valve this ridge is so near the margin of the shell that it often seems quite to coincide with the latter.

First antenna (fig. 4): - This has seven joints, the third and fourth joints are free from each other. These two joints together form a joint that is somewhat shorter than it is high and also somewhat shorter than the total length of the fifth and sixth joints. The distal houndary of the fourth joint is rather strongly concave. The anterior bristle of the second joint is somewhat longer than the anterior side of this joint. The third joint has six anterior bristles, of which nos. 5 and 6 are fixed at the side of one another. Nos. 1, 2 and 4 of these bristles are armed ventrally with long, stiff secondary bristles, the others have short hairs. The longer of the two posterior distal bristles on the fourth joint is not quite as long as the the fifth joint. Sensory bristle of the fifth joint: The stem is about as long as the total length of the third to the fifth joints; it is furnished with seven sensorial filaments. The end joint has seven bristles, the d-bristle is developed as in the preceding species but unlike all the other species of this genus in which this character is known. The a-claw is somewhat longer than the total length of the anterior side of the two next distal joints and is exceedingly finely and weakly pectinated proximoanteriorly. The f-bristle has four or five sensorial filaments. The c- and g-bristles have a someWhat varying number of sensorial filaments: on the type-specimen the c-bristle had nine, the g-bristle seven on the antenna of the right side; on the antenna of the left side the c-bristle had seven, the g-bristle eight filaments; on two other specimens both these bristles had seven sensorial filaments on both the right and the left antennae. The d-bristle is somewhat more slender but rather slightly shorter than the e-bristle. Pilosity: The first and second joint have numerous groups of stiff, fine hairs on the greater part of both the inside and the outside (not drawn in the figure); there never seem, however, to be any such bristles on the anterior distal part of the inside of the second joint. Distally the second joint has a close row of short, stiff hairs antero-laterally.

Second antenna: - Distally on the inside close to the exopodite the protopodite has one very short bristle. The exopodite has four bristles on the end joint; the fourth to the ninth joints of this branch have basal spines. The endopodite is distinctly three-jointed; its end bristle is about as long as the stem (fig. 5).

Mandible: - Protopodite: Coxale: The scythe-shaped process (fig. 8): The part situated distally of the main spine grows uniformly and gently narrower in a fine point; its ventral edge is even, almost straight or even slightly concave. The distance from the point
of the process to the main spine is somewhat greater than the distance from the latter to the proximal ventral spine. The dorsal bristle is attached somewhat nearer to the point of the process than its distance from the main spine and about as far as its own length distally of the latter; it extends to a distance of almost half its length distally of the point of the process. The dorsal serrate teeth are rather large. The main spine is unusually powerfully developed. There are five or six ventral spines, in most cases rather strong, of which the two distal ones point proximally; the distal one of these spines is sometimes even of the same size and type as the main spine. On the part distally of the main spine there are only a few transverse rows of hairs, one or two were observed. The rod-shaped process has four short and powerful distal spines. Basale: The backward pointing process is of about the same type as in the preceding speeies (fig. 9), but four or five triaena bristles were observed and the glandular papilla was somewhat more powerfully developed. The dorsal side of this joint has about ten to twelve rather short bristles with short hairs (eleaning organs? they are often very dirty); these bristles are spread along almost the whole of the joint and between them there are numerous short, strong, pointed spines, arranged in groups; in addition there are dorsally on this joint groups of short, stiff hairs. The exopodite (fig. 7) is, even if its two distal bristles are included, somewhat less than half the length of the dorsal side of the first endopodite joint. End o podite (figs. 7 and 11): The shortest of the three ventral bristles on the first joint is only armed with short, fine hairs; of the two others one has from about seven to nine pairs of short secondary bristles proximally of the long ones, the other has either no such short bristles or only a few (one to four were observed). This joint is armed antero-distally with four short, powerful, pointed chitinous spines (from which the speeies derives its name); ef. fig. 10. Second joint: This has four rather short proximal bristles, subequal or only differing rather slightly in length; the longest of these is only about from a quarter to a sixth of the length of the main bristle a. Between the main bristles band e there is a long, narrow bristle with short hairs. The medial cleaning bristles on this joint are very numerous, but vary. Four specimens that were investigated showed the following conditions:

Type specimen: Right mandible
.. \quad Left \quad..

[^71]

Fig. LXXXV11. - Asterope spinteran. sp., 운 - Mandible. Z. 1.eft mandible, seen from inside; the cleaning bristles of the second endopodite joint are not drawn: the large lateral muscles of the first protopodite joint are only indicated by their outlines; $123 \times .8$. The endite of the coxale: $383 \times$. 9. The backward printing process of the basale; the glands are of course much more numerous; $325 \times$. 10 . Dorso-distal part of the firct endopodite joint; $371 \times$.

Specimen mo. 2. Right mandible
.. Left
-
,. , Lafft

8 bristles in a distinct lower row.
5 .. ,, ,, ,, upper .,
$\because \quad$.. inside the main bristle b.
1 bristle between the main bristles a and b.
2 bristles close to the main bristle a.
8 bristles in a distinct lower row.
7 ," ,, ,. ," upper ,.
1 bristle above bristle no. 5 of the latter row.
3 bristles in a row inside the main bristle b.
1 bristle between the main bristles a and b.
1 .. inside the main bristle a.
6 bristles in a distinct lower row.
6 upper ..
$\because \quad$, inside the main bristle b.
1 bristle between the main bristles a and b.
2 bristles close to the main bristle a.
7 bristles in a distinct lower row.
1 bristle below bristle no. 3 of this row.
6 bristles in a distinct upper row.
7 bristles in a distinct lower row.
6 ," ,. ,, ,. upper .,
4 .. not forming a distinct row, inside the main bristle b.
1 bristle between the main bristles a and b.
1 ", close to the main bristle a.
7 bristles in a distinct lower row.
6 ,. ., ., ., upper ..
"., .. ., .. row inside the main bristla b.
1 bristle between the main bristles a and b .
2 bristles close to the main bristle a.
\qquad

1 bristle above bristle no. 3 of the latter row.
2 bristles inside the main bristle b.
1 bristle between the main bristles a and b.
1 .. close to the main bristle a.

The end claw is powerful, about as long as the anterior side of the second endopodite joint to the fixing point of the main bristle d, smooth.

Maxilla (fig. 12): - Protopodite: The distal endite is armed with threer subequal bristles. The dorso-proximal bristle is rather long. The basale has one ventral bristle
of ahout the same length as the donso－proximal briste．This joint has one rathere short dorso－ distal bristhe and has the short ventero－distal bristle developed．Endopodite：The postero－ distal bristle of the first joint and the bristle of the end joint are subergal．

Fig．LXXXVIII．－Asteropesptnifera n．Sp．？－If．Intorior jart of the seondendopodite joint of the left mandible seen from inside：＇ftis X ．12．Right maxilla seen from inside： 1 t $7 \times$ ． 13 ．Right sixth limh seen from oulside； $105 \times$ ． 14．Seventh limb：176 x ．

Sixth Iimb (fig. 13): - The posterior edge is in most cases almost straight; the posterior ventral corner is, however, well rounded; 23 - 28 postero-ventral bristles, six antero-ventral bristles; the anterior edge has two bristles.

The seventhlimb (fig. 14) is practically of quite the same type as in the preceding species. From seventeen to twenty cleaning bristles, from eight to ten on each side, were observed. On one specimen only two bells were found on one eleaning bristle. Each end comb consists of from sixteen to eighteen teeth.

Furea: - This has ten claws, of which the cight anterior ones may be denoted as main claws. The two anterior main claws have no basal teeth ventrally. The secondary elaws are annulated.

The lateral eyes are well developed. The median eye is smooth.
Male unknown.
Remark: - This species resembles very closely with regard to the shape of its shell A. australis. G. S. Braby, 1890, p. 515, pl. IV, figs. 1 and 2. (i. S. Brady, 1898, p. 431, pl. XLIII, figs. $1-8$ and Th. Scott, 1912 a, p. 586, pl. XIII, figs. 18, 19. This species of Brad 1's is certainly not a real unit, as is shown, among other things, by the length of the shell, 2.1 mm ., Brady, 1890, $1,4 \mathrm{~mm}$., Brady, $1898,2,75 \mathrm{~mm}$. SCott, 1912 a. It is quite impossible to decide the relation of the species deseribed by me above to the specimens on which these three accounts are based, on account of the deficiency of the deseriptions given by the above writers.

Habitut: - South Georgia: S. A. E., Station 34, off the mouth of Cumberland Bay, lat. $54^{\prime \prime} 11^{\prime} \mathrm{S}$., long. $36^{\circ} 18^{\prime} \mathrm{W}$., (type-locality); 5. VI. 1902; depth $252-310 \mathrm{~m}$.; greyish clay with scattered stones; temperature at the bottom, $+1,45^{\prime \prime} \mathrm{C}: 7$ mature females and 1 male juvenis; R. M. S. 163.

Tierra del Fuego: S. M. E., Straits of Magellan, Puerto Condor; 26. 11. 1896; depth., 70 m .: one female larva; R. M. S., on shides.

Type-specimen on slides in the collections of R. M. N.

Asterope Mülleri* n. sp.

Cydindroleberis teres, (4. IV. Müluek, 1814. p. 220, pl. 4, figs. 13, 30, 43. pl. V', figs. 15 , $24,25, \mathrm{pl}$. VIII, fig. 5.

Description: - Fpmale: -
Shell: - Length, $1,37-1,41 \mathrm{~mm}$. ; length : height about $1,42: 1$; length : breadth about $2: 1$. Seen from the side (fig. 1) it is somewhat pear-shaped, with its greatest height just behind the middle and the back part strikingly larger than the front. The dursal and ventral margins are almost of the same shape, moderately and uniformly curved, somewhat flattened anteriorly; they pass evenly into the anterior and posterior margins. The posterior parts of the dorsal and ventral margins form, together with the posterior margin, almost a semi-

[^72] the shell is narrow and wiform, with its greatest brath just behind the middle; the pesterior end is somewhat more broadly romded than the anterior end; the side contours are eventy curved. seen from inside: Medial bristles: On the rostrm there are rather few or a moderate number of bristles, of which those that are situated nearest to the anterior margin of the sheh show signs of being armaged in a sparse row running somewhat within and abont parallel to the anterior margin of the shell; the rest are scattered. Host of these bristles are of moderate length, a number, espectially amongst those situated farthest in, are more or less short. In the incisur there are similarly rather few or a moderate number of moderately long bristas, some of which are seattered on the anterior wall of the incisur, and some arranged in a close, distinct row ruming somewhat within and about parallel to the ventral margin of the rostrum. On the part just behind the ineisur there are rather few or a moderate number of scattered bristles. of which those situated farthest in are more or less short, the others moderately long. Along the ventral margin of the shell to the spine-bearing list there is a single sparse row of rather short bristles. Amost paralled to and half way between the posterior margin of the shell and the spine-bearing list a distinct row of moderately long bristles runs; this row, which extends along the whole of the spine-bearing list, is rather close ventrally: but becomes more and more sparse dorsally, and the bristles become shorter at the same time (fig. 3). The spine-bearing list has 29-37 hyaline spines varying somewhat in size. There are usually no bristles between the ventrally situated of these spines; there is usually one short bristle between each of the others, but sometimes there is no bristle even between these latter spines. There are no broad pores at all between the list and the posterior margin of the shell.

First antenna (fig. 4): - This has seven joints, but the third and fourth joints are rather slightly separated from each other, especially on the lateral side of the limb. These two joints together form a joint considerably shorter than it is high and somewhat shorter than the total length of the fifth and sixth joints. The distal boundary of the fourth joint is rather deeidedly concave. The anterior bristle of the second joint is somewhat longer than the anterior side of this joint. The third joint has six anterior bristles, of which nos. 5 and 6 are situated at the side of each other. Of these bristles nos. 1, 2 and 4 are armed ventrally with long, stiff secondary bristles; bristles nos. 3 and 6 atso have long secondary bristles, but these are considerably fewer and perhaps somewhat shorter and weaker than those on the three former bristles; bristle no. 5 has short hairs. The longer of the two postero-distal bristles on the fourth joint was somewhat shorter on the type specimen than on the Naples specimen and about as long as the totat length of the fifth to the sixth joints. The stem of the sensorial bristle of the fifth joint is about as long as the total length of the third to the fifth joints; it has six sensorial filaments. The end joint has six bristles; the d-bristle is represented only by a verruciform process. The a-claw, which is very weakly pectinated dorsally, is somewhat longer than the total length of the anterior sides of the two next to the distal joints. The f-bristle has four sensorial filaments; the c- and g-bristles have five distal filaments. Pilosity: The first joint has short hairs, though only sparsely, dorsally, especially on the outside, and ventrally, especially on the inside. The second

Digitized by Microsoft ${ }^{\circledR}$

joint is very sparsely furnished with short hairs both on the anterior and the posterior sides; along the distal boundary of the last-mentioned joint there is on the ontside a series of short, stiff hairs, often somewhat longer than the other hairs.
second antenna: - Distally on the inside close to the exopodite the protor podite has a very short bristle. The exopodite has four bristles on the end joint. The fourth to the ninth joints (on the Naples specimen the third to the ninth joints) of this branch have basal spines, which decrease in size and strength the more proximally they are situated, the one on the fourth joint being scarcely perceptible. The endopodite (fig. 5) is small with scarcely distinguishable joints; its end bristle is about twice the length of the stem.

Mandible: - Protopodite: - Coxale: The seythe-shaped process (fig. 7): The part situated distally of the main spine grows uniformly and gently narrower inter a fine point: its ventral edge is even and somewhat convex. The distance from the point of the process to the main spine is abont as great as the distance from the latter to the proximal ventral spine. The dorsal bristle is attached somewhat nearer the point of the process than its distance from the main spine and is situated somewhat more than half its length distally of the latter; it extends to a distance of not quite lalf its length beyond the distal point of the process. The dorsal serrate teeth are exceedingly small; they seem sometimes practically even to be absent; they are not indicated in the figure. The main spine is rather small. There are four or five ventral spines, the proximal one of which is rather strong, the rest are very weakly developed. On the part situated distally of the main spine there are about eight or nine transverse rows of hairs. The rod-shaped process is blunt distally and is there furnished with three short, fine, bristle-like points. Basale: The backwards pointing process has three or four distal bristles, four triaena bristles and one dwarf bristle. The triaena bristles lave from one to six pairs of secondary spines under the distal pair of spines. The peg on which the glands emerge is rather small. The dorsal side of this joint is quite smooth, without either hairs or bristles. The exupodite (fig. 6) is, if we include its two distal bristles, about as long as or slightly longer or shorter than the anterior side of the first endopodite joint. Endopodite (fig. 6): Of the three ventral bristles on the first joint the shortest one has short hairs, the two others have, proximally of the long secondary bristles, respectively about six to nine and ten to sixteen pairs of short secondary bristles. Antero-distally this joint is not armed with chitinous spines. Second joint: This has only one proximal bristle, which is about a fifth of the length ${ }^{\text {P }}$ of the main bristle a . Between the main bristles b and a there is a long, narrow bristle with short hairs. The medial cleaning bristles are relatively few: the specimen from the coast of England that I was able to investigate showed the following arrangement of these bristles:

> Right mandible $\left\{\begin{array}{l}\overline{3} \text { bristles in a distinet lower row. } \\ \hdashline\end{array}\right.$
> $1 \because \quad, \quad$ below the main bristle b.
> -
> Laft mandibla
> $\left.\right|_{1}$ (bristles in a distinct lower row.
> $1: 2$.. betow the main bristle b.

Digitized by Microsoft ${ }^{(B)}$

The Naphes specmeon showed the following arrangement:
Right mandible $\left\{\begin{array}{l}5 \text { bristles in a distinct lower row. } \\ 2 \text {.. upper .. } \\ \text { 1 bristle elose to the man bristle b. }\end{array}\right.$

Lelt mandible I bristles in a distinct lower row.
3 upper .,

The end claw is unusually powerful, about as long as the anterior sides of the two distal joints: it is very weakly peetinated.

Ilaxilla(fig. s): - Protopodite: The distal endite has three bristles, the middle one of which is some what shorter than the two others. The dorso-proximal bristle is very short. The basale has one moderately long ventral bristle: the short ventero-distal bristle is developed and one dorso-distal bristle of moderate length. Endopodite: The postero-distal bristle of the first joint is only about half the length of the bristle on the end joint.
sixth limb: - The posterior edge is fairly straight: the posterior ventral comer, however. is rather broadly rounded (about the same as in fig. 7 of A. Milleri var. longiseta). It has about sixteen posterior and two anterior ventral bristles. Two bristles are developed on the anterior edge.
seventh fimh: - This is armed with twelve eleaning bristles of moderate and somewhat different lengths. Of these bristles six are situated close together distally, three on each side, sixare scattered somewhat proximally of the former, three on each side of the limb (about the same as in fig. 10 of A. Ohlini). Each cleaning bristle has three or four bells. Each end comb consists of about ten to twelve teeth, which increase somewhat in strength the nearer to the point of the limb they are situated. The two or three proximal teeth on both sides of the end comb are armed with from about four to six pairs of rather fine secondary spines (about the same as in fig. 8 of A. Mulleri var. longiseta). The distal teeth are armed with one or sometimes two pairs of very powerfu! secondary spines. The points of the teeth are very powerful. lancet-like. finely serrated (about the same as in fig. 8 of A. Mïlleri var. longiseta).

Furca: - This has nine claws, of which the six anterior ones may be denoted as main claws. The two anterior main claws have no basal ventral teeth. The three secondary claws are more or less distinctly anmulated.

The lateral eyes are well developed. The median eye has short, fine hairs (indieated in the acconipanying figure 9).

The male is unknown.
Remarks: - The lescription given above is based chiefly on one specimen, a mature female that was kindly sent to me by Professor (G.S. Brady and that was determined by this investigator as Asterope teres (A. M. Normay).

This species of A. I1. NokMAn's was introduced into the literature, 1861, p. 280 under the name of Cypridinuteres. The original description, which is based on the investigation of an empty shell, - ,animal incognitum" - is very incomplete; only the following information
is given: ., Shell ovate, not produced, very slightly widening just below the middle, quite smooth, pure white, moderately and regularly convex. Oral slit narrow and somewhat semicircular

 from inside; $1: 2 \times$. 9. Roul-shaped organ and median eye: 2itl x.

 helomging to the family Asteroputue was before the writer. This figure shows an owitorm shedt with its greatest height sumewhat behind the midde and the posteriot part of the shell comparatively slighty harger than the anterior part: the proportion of the length the theight is
 than the hatter.

These facts obtained from the original deseription and figme seem to show with all desirable cheamess that Professor G. A. BRom's identification of the speemen on which the spectes I have described is based as A. teres (A. II. NokmN) eamot be considered as having sufticient proof to support it.

Ahhomgh this speries of A. Il. NonMAS's is based only on an incomplete investigation of an empty sholl, subsequent writers have nevertheless suceeded in identifying with it not only forms that they have investigated themselves. hat atso forms incompletely described by other authors and obrionsly not re-examine by themselves. Thas (t. S. Braws and A. Il. Nomsm in their work of $18!6$ inchude this species and give the following forms as synomys
 and Cylinetroleberis teres, (\ddagger. W. MCLEER, 1894. - (i. W. MUlush atso inchodes this species of Norman's in :D a s Tierreich"; as synomym of it are given: ? Beadycinetus teres, A. M. Nurmax, 1867, Asterope oblonga and A. ovalis, C. Clals: 1876, Copechuete armoricana + C. fissu, E. HEsEE. 1878. Cylindroleberis teres, G. IV. Moldek, 1894 and? Asterope veulatu. G. S. Bishm, 1902 a. -

As far as one can see these investigators have followed the principle of combining into one species all forms of the genus Asterope which are characterized by having the posterior part of the shell dominating more or less strongly over the anterior part. It seems certain that this method of procedure can searcely be considered justifiable and that it can only be explained as due to these writers' deficiency of knowledge of these forms. A study of the species of this genus that are dealt with in this treatise will show this quite clearly. Compare, for instance, A. Milleri var. longisetu, A. Ohlimi and A. curta with the species dealt with above. These species clearly show that forms quite ubviously distinct from one another with regard to the limbs, etc. may, all the same, show a striking resemblance with regard to the shape of the shell; i. e. that in this range of forms the shape of the shell alone cannot be considered sufficient to characterize a species.

It seems best, in order to avoid further confusion, to delete A. teres altogether from the list of identifiable species, at least for the present. Only if a careful study of the Ostrocod fauna at the type-locality, Oban, Firth of Lorne. Scotland, were to prove that only a single species is found here with about the same type of shell as these forms would it be proper, to adopt this species name of Norman's again.

The form described by G. S. Brady $1868 \mathrm{~b}, \mathrm{p} .465$, under the name of Cylindroleberis teres (Normin) shows a very striking resemblance to the species described by me above with regard to the shape of its shell. - On the other hand the resemblance to the species of
A. M. Normax's discussed above is consequently far from striking. - Nor do the description and the figures of the limbs, pl. 41. figs. $2 \cdot \operatorname{a}-\mathrm{d}$, form any direct argument - if we leave out of account obvious mistakes in observation and drawing - against this form of (G. S. BRADY's being possibly identical with the species deseribed by me above. All the same 1 have not carried out this synonymization, as is seen above, as it would in any case be so uncertain as to have practically no scientific value.
C. CLats, 1876, p. 93, writes that this form described by Brady, is ., wahrscheinlich"* identical with a species found by him at Trieste, which he also identifies with E. Grabe's C'ypridina oblonga*. Both G. IV. MÜller and (土. S. Branl and A. M. Nommdx justly rejected the latter identification without further discussion. but these writers seem to hesitate a little more about the correctness of the former identification. It will be seen above that the two later writers, 1896, add a query to this synonymization and so does G. W. Méller as well, 1894 , p. 220; this was. however, deleted by (x. W. Muller in 1912, as is seen above. Clats does not give in the text any information about the shell of the species dealt with by him, but adds a figure of the shell as seen from the side. This figure shows an oviform shell with its greatest height just behind the middle; the proportion of the length to the height is $1,55: 1$; the posterior part of the shell dominates very slightly over the anterior one; the dorsal and ventral margins are evenly and almost symmetrically curved. The limbs are reproduced and described, but in such general terms that it is impossible to identify the species with certainty. It seems to follow from this that this form cannot very well be adopted as a synonym of the species described by me above. Nor can it be identified with any other of the forms dealt with here without disregarding the facts.

As is seen above. I have illentified the species deseribed by me above with G. W. NiLLER`s species ('ylindroleberis teres, 1894. This identification is not based on 6. Wr. Mibleris description and figures. It is based instead on an investigation I made of a specimen from the Bay of Naples, which Irof. (i. W. AOteER had determined as Cymdroleberis teres and which was kindly placed at my disposal by this investigator. On the contrary (. . 1 . Miller's deseription and figures show not a few differences from the type-specimen described by me above. According to this the Bay of Naples form is chistinguished by a shell only $1,24 \mathrm{~mm}$. long; the shape of its shetl, to judge from pl. 8 , fig. 5, differs from the form deseribed above, though only in details; the spine-bearing list has only 25 hyaline spines. First antenna: The boundary between the fourth and the fifth joints is not slightly concave, but forms a sharp, almost a right. angle. Maxilla: This has a strongly reduced epipoctite; without any dorso-proximal bristle and without the short ventero-distal bristle on the basale; the proximal endite has no short bristle; the baleen bristles are bhunt distally. - In all these character's the specimen from the Bay of Naples investigated by me clusely agreed to the species described above. Its shell was $1,41 \mathrm{~mm}$. long** and with regard to the shape of the shell it showed complete

[^73]: gresment wht the figures given in this treatise; the bristle-hearing list hat e9- 31 spines. Fias :mbena: 'The homdary betwen the fourth and lifth joints was like that shown the digure siven he me similarly the maxilla agred entirely with that of the speries described athere. Tha diflemere I abserved betwem the spermen from the Bay of Naphes that I investigated and the typesperemen of this spereses with reward to the hatime spines on the spine bearing list. the pesteredistal bristhes on the fometh joint of the lirst antemat, the hasal spines on the experedte of the second antema and the medial cleaning bristles of the mandible (sere above) cammen be censidered to stand in the way of this identification, as these are eharacters wheh, als I showed in the deserption of the gemus, I did not find guite fonstant in the speries of this gomus. With regard to the postero-distal bristles on the fourth joint of the first antemat (i. IV. M"blaths fig. 30, pl. 4 agrees well with mine, a lact which may, of course, be considered (1) support this identification still further.
(i. S. Br.an sand A. II. Norman's species Astorope teres. 1896 , differs strikingly with regard 10 the shape of its shell both from the former anthor's Cylindroleberis teres, 1868 b, and from the spectes of G. WI. Middris disenssed above. Nor does the latter athor symonyme these forms with each other. 1912. Consequently this form cannot well be symonymized with the species described be me above either. (i. S. Brans's and A. M. Nonmas's description and figures are of such a nature with regard to characters other than the shape of the shell that all that can be said - due consideration being paid to probable and certain errors in observation and drawing on the part of these anthors - is that this form is presumably comparatively clusely related both to Bramb's species, 1868 b. and to the form deseribed by me above.

With regard to (i. W. Mülles's synonymization of C'opechete armoricana and C. fissa with forms that come into this genus see the historical summary of this family, p. 434 above. For his symonymization, 1912, of Asterope oculata (S. S. BRADY see the remarks under this species in this treatise.

On account of the absence of deseriptions and figures nothing certain can be said about the rlation of the following forms to the species described by me above: Bradycinctus teres,

 1. teres, (i. A. Bramy and D. Robertson, 1874. p. 115, A. teres, (i. S. Br.mb and D. Robertson, 1876. p. 187. A. teres, A. II. Norsin and (., S. BRady, 1909, p. 359 and Cylindroleberis teres, 0. de Btes. 1916. p. 365.

In connertion with this question of momenclature I wish to point out here, though only in pasing and as a curious fact. (: O. S.lis's assumption that Asterope teres is the femate of A. Mariae (W . Barrn). This assmption was put forward in his work of 1869, p. 357, obviously under the influence of his discorery of the dimorphism in the genus Philomedes (G. O. Sus 1869. p. 355). It first (i. S. Br.mh hesitated abont this assumption, 1871, p. 29.5, but then he adopted it altogether (G.s. Bratry H. W. Crosshey and D. Robertson, 1874, p. 218); in his later works he passed it over quite in silence. Other authors do wot even trouble to discuss it. (i. ©. sum mantains it, however, even in his latest work on these forms, 1857. 1. 13.

Habitat: - Coast of England: Saleombe. English Channel (type-loeality): one mature female and one larva (coll. (i. S. Braby): R. N. S., on slides. Il a diterrancan Śea: Naples: one mature female (eoll. (f . W. MíLLER); on slites, R. M. S.

Asterope Mülleri n. sp. var. longiseta n. var.

Description: - Female:-
Shell: - Length, $1.62-1,66 \mathrm{~mm}$.; length : height about $1,4: 1$, lenght : breadth about 1,9 : S Seen both from the side and from below (figs. 1 and 2) it is of cuite the same type as the shell of A. Milleri. Seen from within: Medial bristles: These also show a great resemblance to those of the type species; it is to be noted, however, that the rather few bristles in the incisur are scattered and the row of bristles between the spinebearing list and the posterior margin of the shell is either only developed along the ventral half of the spine-bearing list or else - and this seems to be the most common ease - it is represented dorsally by single bristles (cl. fig. 3). The spine-bearing list has about $31-32$ hyatine spines which vary somewhat in size; its bristles are like those of A. Mïlleri; two bristles were very seldom found between a pair of hyaline spines. As in A. Wülleri there are no broad pores between the list and the posterior margin of the shell.

First antenna: - This is very like this limb in A. Mülleri. It is to be noted: The third and fourth joints form together an almost puadratic joint, only rather slightly shorter than it is high and somewhat shorter than the total length of the fifth and sixth joints. The distal boundary of the fourth joint is moderately concave. The longer of the two postero-distal bristles on the fourth joint is shorter than the total length of the fifth and sixth joints. The e-bristle has five, the f-bristle has forur or five and the g-bristle five or six sensorial filaments.

Seeond antenna: - Distally on the inside close to the exopodite the protopodite has a very short bristle. The end joint of the exopodite has four bristles. The fourth to the ninth, sometimes the third to the ninth. joints of this brach have basal spines. The endopodite (fig. 4) is very small, almost quite unjointed; its distal bristle is more than twice, sometimes as much as three times, as long as the stem.

Il andible: - This is very like the corresponding limb in A. Milleri. We must note: Protopodite: Coxale: The seythe-shaped process (fig. 5) has six ventral spines, all with double points, the distab ones rather weak. Sometimes, when the fine points are worn off on the four distal spines, the latter are only represented by weak, rounded swellings as in A. Mülleri. Basale: The backward pointing process las four distal bristles, form triaena bristles and one dwarf bristle. On the triaena bristles from three to five pairs of spines were observed under the distal pair of spmes. The glands of this process emerge on a peg which is almost as large as in fig. ! of A. spinifere. The dorsal side of this joint is either smonth or is furnished with a few groups of short, fine, stiff hairs. Endopodite: The second joint has one proximal bristle, which is about a thire of the length of the main bristle a. The medial

Waning bristles ame bairly comstant six histles in a dist the lower row and two dhere bistles dowe the matn histh h were observed, they are sometimes different even on the right and lefo mamblates of the same individual.

Ilaxilla (bire b): - Protopodite: The distal endite is armed with there bristles, Which are efther subegual or ase the midtle one is somewhat shorter that the othere two. The efors-pmatmat bistle is moderate lomge in most cases somewhat lomger than the ventral bristle on the basale. Tho basale has the shome ventero-distal bristhe developed and a single musually long dorso-distal bristle (it is pactically the same length as the bristle of the end joint), a character

Fiy. XC. - Isterope Mulleri var. longesta n. sp. el. var. - 1. Shell seen from the side, of $38 \times$. 2. Shell seen from
 Q: 212 . 5. Fndite on the coxale of the mandille, of $480 \times$. 6. Lufl maxila, seen from inside. of $160 \times$. -. Sixth limb: the posterior ventral bristles are broken, $\circ: 120 \times .8$. I part of an emd comb of the seventh limb, of: $1120 \times$. 9. whell seen from the side. j. siage I: $32 \times$. 10. Endopodite of the second antrona of his larva: 22 ' X.
from which the species has its name. Endopodita: The posterior distal hristhe of the first joint is somewhat shonter than the bristle of the and joint.

Sixth limb (fig. 7): - The back edge is faily straight, the postero-ventral corner is, however, broadly romded. It has 19 - 21 posterior and three or four anterior ventral bristles. Two bristles are developed on the anterior orlge of the limb.

Seventh limb: - This is of the sametype as in A. Wülleri. The distal teeth in the end combs are most frequently armed with from one to three pairs of very powerful secondary teeth; cf. fig. s.

The furea, lateral eyes and median eye arr about the same as in A. Mïlleri.

The male is unknown.

Mabitat: - Falkland Islands: S. A. E., Station 5l, Port Wilham (typeIocality); 3. IX. 1902; depth, 22 m.; sand: 4 mature females and 4 larvae; R. M. S. 165 and 166. S. A. E., Station 53, Port William; 3. IX. 1902; depth, 12 m .; sand and gravel: 2 larvae; R. M. S. 167 . S. A. E., Station 55. Port Albemarle, lat. $52^{\circ} 11^{\prime}$ S., long. $60^{\circ} 26^{\prime} \mathrm{W}$.; 8. 1.. 1902 ; depth 40 m .; sand and algae: one mature female: R. M. S., on slides.

Type-specimen on stides in the collections of the R. .I. A.

Asterope Ohlini n. sp.

Description: - Female: -
Shell: - Length, 2,0-2.2 mm. Fangth : beight about $1.4: 1$; length : breadth about $1,95: 1$. As is seen from the acompanying figures 1 and 2 it has practically quite the same type as the shell of A. Mëlleri, both when viewed from the side and from beneath. The posterior part of the shell, seen from the side, is sometimes a little less rounded than in the species mentioned and more shaply cut off than in the accompanying figure. Seen from inside: The medial bristles are also almost similar to those in the species mentioned. The row of bristles between the spine-bearing list and the posterior margin of the shell is, however, rather irregular, often even more irregular than in the aecompanying figure 3. The spinc-bearing list is provided with about $4: 3-52$ hyaline spines varying somewhat in size. There are usually no bristles at all between the most ventrally situated of these spines; between eath of the others there are usually one or two, sometimes even three, short bristles varying somewhat in length. Between the spime-bearing list and the posterior margin of the sholl there are no broad pores such as are found in A. spinifera.

Eirst antenna (fig. 4): — This is very like this Jimh in A. Wialleri. There are however, some differences to bo moted: The third and fourth joints trigether form an atmost quadratic joint, about as long as or rather slightly shorter than the total length of the fith and sixth joints. The distal boundary of the form joint is moderately concave. The longest posterior distal bristle of the fourth joint is shorter than the total length of the fifth and sixth

Digitized by Microsoft ${ }^{\circledR}$

 part of the right valve seen from inside; $120 \times$. ' Left first antenn? scen from outside; $128 \times$. 5. Right mandible seen from in-ile; the cleanine bristles of the second entopoditr joint are not drawn: 140 $\%$. 6. Endite of the coxale of thic limb: :356 x.
Digitized by Microsoft ${ }^{\circledR}$
joints. The a-claw is smootlı. The c-bristle has four or five, usually five filaments, the f-bristle has four or five filaments and the g-bristle has six fitaments.
second antenna: - This is like that of A. Mïlleri. The fourth to the ninth joints on the exopodite lave basal spines. The endopodite is rather distinctly threejointerl: its mel bristle is about as long as or slightly lomger than the stem.

Mandible: - Protopodite: (oxale: The seythe-shaped process (fig. 6) is very like this process in A. Wülleri. It is to be noted: The dorsal semrate teeth, althomgh very small, are perhaps slightly more strongly developed than in the species mentioned. Basale: The backward pointing process has forr distal bristles, four or five triaena bristles and, as in the preceding species, only one dwarf bristle. On the triaena bristles were observed from two to five pairs of spines below the distal pair. The glands emerge on a mather well developed peg, but this is not so large as in fig. 9 of A. spinifera. The dorsal side of this joint is quite smooth, withont either hairs or bristles. The exopodite (fig. 5) is rather powerful; if its end bristles are included. it is about as lomg as or slightly more than three-puarters of the length of the anterior side of the first endopodite joint. Endopodite (figs. 5 and 7): The shortest one of the three ventral bristles of the first joint has short hairs; the two others have a few pairs of short secondary bristles proximally of the long secomdary bristles. This joint is not armed with any chitinous spines antero-distally. The second joint has mly ome proximat bristle, which is somewhat less than a third of the length of the main bristle a. Between the main bristles b and c there is a long. narrow bristle with short hairs. The medial cleaning bristles vary to some extent; they are rather numerons and are arranged in two rows: six specimens that were investigated showed the following conditions:

Type specimen:
Right and left mandible
Specimen mo. :.
Right and left mandible
specimen no. 3. Right mandible $\left\{\begin{array}{l}7 \text { bristles in a distinct luwer row. } \\ 8 \text { upper ", ", ". } \\ 1 \text { bristle close to the main bristle b. }\end{array}\right.$

$$
\begin{aligned}
& \text { inside the main bristle b. } \\
& \text { in : distinct lower row. } \\
& \text { upper .. } \\
& \text { fow insitle the main bristle b. } \\
& \text { bower row. } \\
& \text { "per .. } \\
& \text { above bristles nos. } 1 \text { and } 3 \text { of the latter row. }
\end{aligned}
$$

spmedmen no. \therefore. Riarht mandible

$$
\begin{aligned}
& 7 \text { bristles in a distinct lower row. } \\
& \text { - 11pper .. } \\
& 1 \text { bristle above bristle no. } 3 \text { wi the latter row. } \\
& 1 \text {., close to the main bristle } \mathrm{b} \text {. } \\
& 7 \text { bristles in a distinct lower row. } \\
& \text { (i) " ", ", upper ," } \\
& \text { inside the main bristle b. }
\end{aligned}
$$

The end chaw very powerlul, about as long as the anterior side of the second endopodite joint. fimely pectinated.

Maxilla (fig. 8): - I'rotopodite: The distal endite is amed with three bristles, the middle one of which is somewhat shorter than the other two. The dorso-proximal bristle is moderately long. The basale has one ventral bristle, of about the same length as the dor oproximal bristle and with the short ventero-distal bristle developed. In addition this joint has one relatively long dorso-distal bristle, of about the same length as the postero-distal bristlo of the first condopodite joint. Endopodite: The postero-distal bristle of the first joint is somewhat shorter than the bristle of the end joint.
 coneave; the posterior ventral corner is unusually sharply defined, but is rounded. This limb has $21-24$ posterior and two anterior ventral bristles. Two bristles are developed on the anterior edge.

Serenthlimb (fig. l(1): - This is very like this appendage in the preceding species; on one specimen thirteen cleaning bristles were observed on the liml, of one side. Each end comb has $12-14$ teeth. The teeth have a somewhat varying number of secondary teeth, sometimes as in fig. 8 of A. Mulleri var. Longisete, sometimes as described for the typespecies of this form.

Furea: - This has nine claws: only in one specimen were ten claws observed on one lamella. The six or seven anterior of these claws may be called main claws. The two anterior main claws have no basal ventral teeth. The secondary daws are more or less distinctly ammated.

The lateral eyes and the modian eye are about the same as those of the preceding species.

The male is unknown.

Habitut: - South Georgia: 太. A. E., Station 22, ofl May Bay, lat. $54^{\circ} 17^{\prime} \mathrm{s}$. , long. $36^{\circ} 28^{\prime} \mathrm{W} . ; 14 . \mathrm{V} .1902$; depth, 75 m .; clay with scattered algae; temperature at the bottom $+1,5^{\circ}$ C.: 2 mature females; R. M. A. 168 . S. A. E., Station 25, off Grytviken, lat. $54^{0} 22^{\prime}$ S., long. $36^{0} 27^{\prime}$ W.; 21. V. 1902; depth, $24-52 \mathrm{~m}$.; grey clay with seattered algae: one mature femate; R. M. S., on slides. S. A. E., Station 33, Grytviken, lat. $54^{0} 22^{\prime} \mathrm{S}$., long. $36^{0} 28^{\prime} \mathrm{W} . ; 30 . \mathrm{V} .1902$; depth 22 m .; clay with algae: 20 mature femates and 7 larvae in different stages; R. M. S. 169. S. A. E., Station 34, of the mouth of Cumberland Bay, lat. 540 $11^{\prime} \mathrm{S}$., long. $36^{0} 18^{\prime}$ W., (type-locality); 5. VI. 1902; depth, 252 — 310 m. ; grey clay with scattered stones; temperature at the bottom, $+1,45^{\circ}$ C.: 6 mature females; R. II. S. 170 .

Type-specimen on slides in the collections of the R. M. S.

Fig. XClI. - Asterope Ohlini n. sp. - 7. Anteriur part of the second and third cudopodite joints of the right mandibla seen from inside; the long bristles are broken, f; $180 \times$. S. Left maxilla, seen from inside, q; $136 \times$. 9 . Left sixtli limb seen from inside, $\circ ;$

Asterope curta n. sp.

Hescription: - Female: —

Ahc11: - Lemgth, $1,70-1,80 \mathrm{~mm}$. ; length: height abont 1,32: 1; length: breadth ahome 1.s: 1. Both when lookedat from the side and alsofrombeneath the shell is of about the same type as that of A. Milleri, but is somewhat higher and wider in comparison: ef. the figures 1 and 2 . Sometimes, however, when seen from the side, it is somewhat more sharply cut off at the batk. Soco from inside: Nedial bristles: On the rostrm, in the incisur and at the part just behind the latter there is a moderate number of stiff bristles; most of these are subequal and moderately long, but a few more or less short bristles may be found, especially among those situated farthest in. All these bristles are scattered; sometimes, however, the bristles that are situated on the rostrum just within the anterior margin of the shell may be sail to be arranged in a sparse and not quite distinct row ruming about parallel to the anterior margin of the shell. Along the ventral margin of the shell there are a moderate number of rather short bristles, in most cases arranged in a simple row running about parallel to and somewhat inside the margin of the shell. Along almost the whole of the spine-bearing list and about parallel to and half way between it and the posterior margin of the shell there rons a very close and distinet row of stiff, moderately long, bristles (fig. 5). The spine-bearing list has about $24-25$ hyaline spines and a thin row of short, subequal bristles, usually one or two, sometimes three between each hyaline spine. There are no wide pores on the part between the spinebearing list and the posterior margin of the shell. An edge similar to that on the right shell of A. spinifera is developed in this species as well, but is somewhat weaker.

First antenna (fig. 6): - This is very like that of A. Mïlleri. A few differences may, however, be noted. The third and fourth joints together form an almost quadratic joint and are together about as long as the total length of the fifth and sixth joints. The distal boundary of the fourth joint is rather weakly or moderately strongly concave. The third joint has only five bristles anteriorly; judging from the equipment and situation of the bristles it is bristle no. 2 of those species that have six bristles that is lacking. On bristle no. 1 there are numerous long, stiff secondary bristles ventrally, on bristles nos. 2,3 and 5 there are a few similar secondary bristles, bristle no. 4 has short hairs. The longer of the two posterior distal bristles on the fourth joint is, as a rule, somewhat shorter than the total length of the three distal joints; in one case it was the same length as this.

Second antenna: - Distally on the inside close to the exopodite the protopodite has a very short bristle. Exopodite: The end joint has only three bristles. There is no basal spine except on the ninth joint, on which it is certainly large, but presumably very weak, as it is divided into fine hairs distally. The endopodite is distinctly threejointed; its end bristle is slightly longer than the stem. In two cases out of five a short bristle wats nbserved on the second joint, both on the right and on the left antema (abnormal?; a bristle of this sort was ohserved by me as a rather infrequent abnormality not only in this gemus but in species of the family Cypridinidae); cf. the accompanying figure 8 .

 seen from the side, of $31 \times$. 4 . Shell seen from below, $3 ; 31 \times$. S. Posterior part uf the right valve seen from inside, fo
 podite of the second antema, of (abnomal ?); $320 \times$.

It andibla: - This is very like the corresponding limb in A. Mülleri. We must note: Protopodite: Coxale: The serthe-shapet process (fig. 11): The dersal bristle is often fixed with almost its whole hengh distally of the main spine and extends heyond the distal point of the process to an extent of about half its length. The dorsal serrate teeth are rather weak. The main spine is sometimes rather weak, often moderately strong. There ate four ventral spines, the two proximal of which are rather strong, the two others have from two to four points and are rather weak. Between the latter and the main spine two other very weak rentral spines can sometimes be ohserved. Basale: The backward pointing process has four distal hristles, three or four triaena bristles and two dwarl bristles. The triaena bristles are armed with from two to five pairs of spines under the distal pair. The dorsal side of this joint has only a few groups of short. fine, stiff hairs. The exopodite (fig. 10) is, if its two distal bristles are included, about as long as the anterior side of the first endopodite joint or else it is only slightly shorter. Endopodite (fig. 10): Second joint: The proximal bristle is about half as long as the main bristle a. The medial cleaning bristles are comparatively few, four to six, in a distinct lower row (the number varies from one individual to another and on the right and left mandible of the same individual) and one bristle between the main bristles b and c .

Maxilla (fig, 12): - This is like this limb in A. Mülleri. The dorso-proximal bristle of the protopodite is moderately long, about as long as the dorso-distal bristle. The bristle of the first endopodite joint is rather slightly shorter than the bristle of the end joint.
sixth limb: - The postero-ventral comer is rather broadly rounded. There are $16-20$ postero- and three antero-ventral bristles. On the anterior edge of the limb there are threc bristles, two of which are situated close to cach other somewhat below the third.

Seventhlimb (fig. 13): - This is armed with 16-18, usually 18, cleaning bristles, six of which are, as in A. Mülleri, concentrated at the point of the limb, three on each side. These bristles have from two to four bells. Each end comb has from five to nine teeth; all the tecth are fincly and similarly pectinated; their points are somewhat strengthened, lancet-like, about the same type as shown in fig. 13 of A. quinquesetae.

The furca, lateral eyes and median eye are similar to those of A. Mülleri. Male: -
Shell:- Length, $1,60-1,61 \mathrm{~mm}$. Length : height about $1,42: 1$. Seen from the side (fig. 3) it has its greatest height about the middle and the anterior and posterior parts are of about the same height. The dorsal margin forms a well rounded hump at the middle and slopes from the middle evenly and rather decidedly forwards and backwards, about equally strongly in each direction. The ventral margin is uniformly and slightly curved. The shell is cut off rather abruptly posteriorly. The posterior margin is uniformly and moderately strongly curved with a broadly rounded line passing evenly into the ventral margin; it is bounded from the dorsal margin by a broadly round and rather weakly developed corner. The anterior margin is boldly rounded. The rostrum dominates to some extent over the part beneath the incisur. Seen from beneath (fig. 4) it has its greatest breadth just in front of the middle and the anterior part of the shell somewhat larger than the posterior part. The wreath of hair round the posterior part of the shell is rather sparse. Seen frominside, the rostrum is
somewhat narrower than that of the female. The medial bristles are similar to those of the female; those on the anterior part of the sholl are, perlaps, however, somewhat fewer and longer than those of the female.

First antenna (fig. 7): - This has seven joints. The proportion between the joints is about as follows:

$$
\mathrm{I}_{25}^{30} ; \mathrm{II}_{22}^{35} ; \mathrm{III}_{4}^{17} ; \mathrm{IV}^{\top} \frac{3}{10} ; \mathrm{V}_{1}^{7} ; \mathrm{VI}_{4}^{7} ; \mathrm{VHI}_{10}^{3} .
$$

Of the five anterior bristles on the third joint nos. 2 and 5 especially are very much shortened. Of these bristles no. 1 has rather mumerous long, stiff secondary bristles ventrally, no. 3 is armed with a few similar bristles, bristle no. 2 has moderately long, fine secondary bristles, the others have short hairs. The longer of the two posterior distal bristles on the fourth joint is about as long as the total length of the three following joints. The sensorial bristle of the fifth joint is of quite the same type as in the female, i. e. it has only six sensorial filaments; its stem is about as long as the posterior side of the second joint. The a-elaw is finely pectinated, as in the female. The b-bristle is about as long as the anterior side of the second and third joints and, like that of the female, it has five sensorial filaments. The e-and f-bristles are subequal, about a third longer than the shell (their length was $2,3-2,4 \mathrm{~mm}$.). In one specimen twenty sensorial filaments were observect on the e-bristle of each antenna, eighteen on the f-bristle (both these bristles were defective in the other specimen). The g-bristle is somewhat longer than the whole antenna; it has eight sensorial filaments.

Seeond antenna: - The exopodite is comparatively slightly lengthened. The relation between the joints is shown by the following numbers:
\hat{o} (length of shell, $1,6 \mathrm{~mm}.)=1:$ II $:($ III $-I X)=40: 11: 22$.
For the sake of comparison I give here the corresponding figures for the femate, expressed on the same scale:

우 (length of shell, $1,7 \mathrm{~mm}.)=\mathrm{I}: \mathrm{II}:(\mathrm{III}-\mathrm{IX})=31: 6: 21$.
The second joint is about as long as the following two or three joints together; the third to the ninth joints are of about the same length, as is the case in the female. All the joints, thus even the end joint, are withont basal spines. Endopodite (fig. 9): The three bristles on the sccond joint are well pointed and decrease uniformly in length; the longest is about as long as the width of this joint at the place where the bristle is fixed, the shortest one is about half as long as the longest one or somewhat more. The third joint is rather broad proximally, lancet-like, with rather broad, thin side borders. Its point has six or seven powerful, chitinized cross-ridges on the inside. Its proximal bristle is somewhat shorter than the joint.

Mandible: - Protopodite: Basale: The backward pointing process is as strongly developed as in the female; it has no perceptible reduction of the bristles. At about the middle of the dorsal side of this joint there is a single bristle of about the same length as the dorsal side of the joint. Endopodite: First joint: The shortest of the three ventral bristles is furnished at the middle with fine secondary bristles situated elose together and all round the bristle; these are about as long as the long secondary bristles on the two other bristles; distally it has short hairs. On the two other bristles the short proximal secondary

Digitized by Microsoft ${ }^{\circledR}$

Fig. XCIV. - Asterope curtan. sp. - 9. Endopodite of the second antenna, of $2: 48 \times$. 10. Distal part of the right mandible seen from inside. $q: 172 \times$. 11. Scythe-shaped proress of this limb, ${ }_{q} ;{ }^{\prime} \neq 80 \times$. 12. Left maxilla seen from inside. 우; 224 X. 13. Seventh limb. $\circ ; 26^{\prime} X$. 1'f. Furca. of the serondary spines are not drawn; $212 X$.
bristles seem to be somewhat more numerous than in the female. Second joint: This joint has two proximal bristles, one of which is about as kong as, the other about half the length of, the proximal bristle in the female. The medial cleaning bristles are somewhat more weakly equipped than those of the female. On one specimen their number was the same as in the female, on the other I found, besides the bristles observel in the female, a bristle sitnated somewhat inside and distally of the eleaning bristle between the main bristles band c. The end claw is not duite so long as the anterior side of the second endopodite joint.

Furea (fig. 14): - This has eight claws, of which the five or six anterior ones may be eounted as main claws. The anterior main claw is somewhat more strongly bent than the corresponding claw in the female and a somewhat more decided bend than in the lemale can sometimes also be observed in the claw or claws nearest to this one. The two posterior claws are anmulated.

The lateral eyes are somewhat larger than those of the female.

Remarks: - It seems to me very probable that the male described aloove really belongs to this species, partly because the two specimens that were caught were found together with females of this species at two separate stations, partly, and of course especially, beeanse of the very far-reaching agreement in its morphology that this male shows with the female described above. The eharacters that do not seem to support this affinity are the following: 1) The length of the shell: this male is shorter than the female. In all other species of this genus known so far the opposite condition has been found. 2) The bristle at the middle of the dorsal side of the second protopodite joint of the male mandible. With regard to this character it may, however, be pointed out that there is sexual dimorphism in A. Grimaldi in the bristles on the dorsal side of this joint. 3) The second endopodite joint of the mandible has one proximal bristle in the female, two in the male, but here too an increase in the number of these bristles was observed in the males of A. Grimuldi.

At any rate this seems to be the only one of all the species so far known to which this male can be assigned with any great probability.

This species is certainly very closely related to the species A. ocalis, deseribed by G. W. Méler, 1908, p. 93, from the Antarctic, and later on named A. glacialis by the same author (1912, p. 47). Only the male of this species is known as yet; the original description is rather incomplete. It cannot be decided at present whether there is complete identity. The following statements about A. glacialis are arguments against this identity: Shell : Length $=$ $1,35 \mathrm{~mm}$.; „Die Leiste . . . ist im ganzen Umfang glattrandig" (presumably a mistake). First antenna: The sensorial bristle of the fifth joint has only about four sensorial filaments (five are drawn in the figure, one of these filaments is evidently considered as the distal part of the bristle). The e-filament is shorter than the a-claw. The number of sensorial filaments on the b-and g-bristles. The cleaning limb has only fourteen bristles. The furca has only seven claws.

Habitut: - Sonth (ieorgia: S. A. K., Station 25. offí (irytviken, lat. 54" 220's. long. $36^{0} 27^{\prime} \mathrm{W}$., (type-Iocality);21. V. 1902 ; depth, $24-52 \mathrm{~m}$.; grey clay with scattered Digitized by Microsoft ${ }^{\circledR}$

Does the male de
scribed abose belons to this species?

Relation to
A. glacialis (\%.1F. Müller.
 of the station, (irytuiken: $\because 2.1$. 1902 ; on an old root of Macrocystis: 3 mature femakes; R. M. S.
 depth. $12-15 \mathrm{~m} .:$ samd and algae: 0 mature lemales, 1 mature male and 3 lavace in the last
 30. V. 1902: depth 2.2 112 : chay with algate: one mature female; R. M. S. 176.

Type-specimen on slides in the collertions of the R. M. S.

Asterope aberrata n. sp.

Description: - Fe male: -
애인: - Length, $1,65-1,71 \mathrm{~mm}$. ; length: height about $1,94: 1$; length: breadth about 2,43: 1. Seen from theside (fig. 1) it is of a somewhat irregular elliptical shape; the greatest height is at about the middle; the anterior and posterior ends are both comparatively low, the latter being somewhat, though only rather slightly, higher than the former. The dorsal and rentral margins are rather evenly and moderately curved, with almost the same slape, though the former is somewhat, though only rather slightly, more strongly curved than the latter; both are somewhat flattened anteriorly; they pass evenly into the anterior and posterior margins, without any corners. The anterior end is boldly and evenly rounded, the posterior end is somewhat prolonged and forms a broadly rounded corner at about half way up the shell. S een from beneath (fig. 2) the shell is narrowly oviform with its greatest breadth just behind the middle; its posterior end is somewhat more broadly rounded than the anterior one and it has evenly curved side-contours. Seen from inside: Medial bristles: On the rostrum (fig. 3) there are a moderate number of moderately long or rather short bristles. A number of these are arranged in a more or less distinct and rather close row running about parallel to and somewhat inside the anterior margin of the shell; the others are scattered. In the incisur there are on the posterior edge of the rostrum a moderate number of moderately long, seattered bristles. In addition there is in the incisur a few scattered bristles and a close row of moderately long bristles, running somewhat inside and about parallel to the ventral margin of the rostrum. On the part just behind the incisur there are a moderate number of scattered bristles, most of which are moderately long, some, especially those situated farthest in, more or less short. Along the middle part of the ventral margin of the shell there are a moderate number of rather short bristles, arranged in a distinct row running about parallel to and somewhat inside the margin of the shell. This row of bristles becomes somewhat more dense posteriorly and at the same time the bristles become somewhat longer; it continues along almost the whole of the spinebearing list, running about parallel to and somewhat inside the margin of the shell (fig. 4); in its dorsal part it becomes more sparse than it is ventrally. The spine-bearing list has about 26-28 hyaline spines varying somewhat in size and a very sparse row of short bristles, usually one bristle between each hyaline spine; between a number of the hyaline spines, however, there are sometimes no bristles. About parallel to and half way between the bristle-bearing list and

 3. Anterior part of the right value seen from inside; $10.0 \times$. 4. Posterior part of the right valve seen from inside; $16 i 4$ 人. 5. Left first antenna seenfrom outside; $185 \times$. 6. Endopodite of the second antemna: $312 \times$. ${ }^{2}$ Endite of the coxal of the mandible: iso \times.
the marem of the shell there is a sparse row of homed pores (sis such peowe were observed). Ontside this row a met imemsiderabte momber of time peres are seatered. On the other hand there is no surh rider as is demeribed for A. norregied.
 but yet the uriginal houndiay hetwen these joints can, at least partly, be still traced. 'These two joints are very much shortened: turether they form a joint that is much shorter than its height, only about as long as the original fifth joint. The distal boundary of the original fourth joint is very dededy concave. The anterior bristle of the second joint is somewhat longer than the anterior side of this joint. The original third joint has six anterior bristles: Of these bristles mos. 3 and 4 , like mos. 5 and 6 , are situated at the side of each other: bristles nos. $1,2,3$, f and 6 haw long, stiff secomedry histles rentrally, no. 5 has short hairs. The longer of the two postorion distal bristles on the fourth joint is not guite so long as the total length of the two following joints. The sensorial bristle of the fifth joint is comparatively short; its stem is not quite solong as the two pemultimate joints; it has six sensorial filaments. The end joint has sic bristles, the (l-bristle is redueed. The a-claw is musually long, being almost as long as the total length of the thind to the fifth (definite) joints; dorsally it is weakly pectinated at the middle. The e-bristle has six, the f-bristle four or five and the g-bristle five sensorial filamonts. Pilosity: The first and second joints have only very slight pilosity developed; the first joint is furnished with hairs ventero-medially; the second joint has hairs proximo-anteriorly and disto-posteriorly. especially on the inside of the antema; the latter joint has no hairs on the distal boundary.

Second antenna: - The protopodite has a short bristle disto-medially near the exopodite. The end joint of the exopodite has only three bristles, two long ones and a rather short one. This joint has a redueed basal spine, which is sharply cut off at the point and split into short hairs; apart from this the exoporlite is quite without basal spines. The bristle of the second joint of this branch has unusually long, fine secondary bristles, which are almost as long as the natatory hairs on the following bristles. The endopodite (fig. 6) is only weakly three-jointed; its end bristle is about one and a half times the length of the stem.

Mandible: - This is very like this limb of A. Mülleri. We may note: Prutopodite: Coxale: The scythe-shaped process (fig. 7): The distance from the point of the process to the main spine is not inconsiderably shorter than the distance from the latter to the proximal ventral spine. The dorsal bristle is placed considerably nearer the point of the process than its distance from the main spine and is about as far distally from the latter as its own length. The main spine is, like its ridge of hristles, very weakly developed. There are four ventral spines, the two distal of which are rather weak, and distally of these two or three very weak ones. Basale: The backward pointing process has three or four distal bristles, only one or two triaena bristles and two dwarf bristles. The triaena bristles have from five to deven pars of secondary spines proximally of the pair of strong distal spines. The glands of this process emerge on an almost entirely reduced vermea. At about the middle of the dorsal side of this joint there is a single bristle which is about as long as the dorsal side of the joint (fig. S) (on
one of the two specimens investigated - the type-specimen - it was only developed on the right mandible). In addlition there are dorsally on the outside of this joint a few groups of short, fine, stiff hairs. Of the two dorso-distal bristles on this joint the shorter one is only abont as long as the dorsal side of the joint. The exopodite (fig. 8) is, if its two end bristles are included, about two-thirds of the length of the anterior side of the first endopodite joint. Endopodite (fig. 8): First joint: The two longest of the three ventral bristles have no short secondary bristles proximally of the long secondary bristles. Second joint: The proximal bristle is not quite half as long as the main bristle a. There are five cleaning bristles in a distinct lower row and one cleaning bristle between the main bristles b and c; on the mandible of the right side there was, in addition, on one of the two specimens investigated (not on the type-

-pecimen, the ligure $1 s$ drawn from the former sperimen) a short bristle below and between the two immer bistles in the lower row. The cond elaw is powerfol and about as long as the anterior side of the ewo distal joints: it is mather weakly peetinated.

II axilla (fige ! ! : - Protopodite: The distal monder has three bristles, the midthe one of which is somewhat shomer than the two others. The dorso-proximal bristhe is reery short. The basale has ome ventral hristle of moderate length. On the other hamd this joint has mo shor venterodistal hristle or dorso-distal bristle. Endopodite: The pusterior distal bristhe of the first joint is rather slighty enore than half the length of the bristle of the and joint.
sixthlimb (fig. 10): - This is very broad, with a brotelly roundet postero-ventral comer. It is quite different from all the other species of this genus dealt with in this treatise hecaluse there are no posterior ventral bristles at all. On the other hand there are two anterior rentral bristles and two bristles are developed on the anterior edge of the limb. Along the ventral margin there are only close, fine, stiff, rather short hairs, of which those situated behind the sinnosity denoted by a cross on the accompanying figure are distinetly more sparse, shorter and finer than those in front of this simosity. The part behind the sinmosity seems to be thimer and more hyaline than the anterior part.

Seventhlimb (fig. 11): - This has ten cleaning bristles, of moderate and somewhat different lengths: six of these are situated close together distally, three on each side, and four are seattered somewhat proximally of the former, three on one side, one on the other. Wach deaning bristle is armed with from two to four bells. Each end comb consists of from eight to ten similar, weak, teeth, evenly and finely pectinated and strengthened into a somewhat lancet-like shape distally.

The furca (fig. 12) has ten claws, of which the five anterior ones may be denoted as main claws. The second to the fifth main claws differ somewhat in shape from the type that is usually characteristic of species of this genus, as they are considerably less bent, especially the posterior ones. The two anterior main claws have no ventero-basal spines. The secondary daws are not ammulated.

The lateral eyes are well developed. The median eye (fig. 13) has a few short, fine hairs.

The male is unknown.

Remarks: - In order to verify by investigation the description of A. Mariae (IV. Bardo) I wrote to Professor (i. S. Brady for specimens of this species. A tube containing five specimens, labelled A. Mariae in the writing of Professor Brall, was kindly sent to me in answer to my application. Even a rather hasty investigation of the shape of the sheil was enough to show me that among these individuals there were representatives of two quite distinct species. Four of them, two mature females and two larvae, belonged to the species described by me above, the remaining une was a larva whose shell certainly agreed in shape with that of A. Mariae but which proved, on careful examination, to belong presumably to A. norvegica. (For A. Mariae see the remark under A. Gimaldi var. vicina, pp. 518-522 of this treatise.)
A. aberrata is probably very elosely related to the species that was described by (t .0 . SAR心, 1887, p. 28 , under the name of A. elliptica Pinmill. This species is stated by this writer pardy to have been caught at Messina (this near Palermo, the type locality for this species of Pintirpl's*) and partly at Cape Breton in the Bay of Biseay. There does not seem to be full identity, however, as the species described by (t. O. sars has, according to pl. IV, fig. 1, numerous (23) posterior ventral bristles on the sixth limb and thirteen bristles on the seventh limb. It does not seem impossible, however, that these and some other rather small differences may be due to the somewhat superficial way in which (4. 0. Sans has described and reproduced this form. In order to verify these statements of G. O. Sars's I wrote to this author and asked for the type specimen of his re-description. In answer to my request Professor Saks informed me that all his specimens of this species had unfortunately been lost, apparently without any hope of their ever being found again.

For the possibility of identifying A. Philappl's species A. elliptica see above, p. 468.
G. S. Braby and A. M. NommiN describe, 1896, p. 634. under the name of A. elliptica A. Phllifpl, a form from Valentia, Ireland, i. e. from a locality not far from the type locality for the species deseribed by me above. This form is also certainly very closely related to this species of mine, but differs so essentially from it in the shape of the shell (pl. LII. figs. 16 and 17)

[^74] have perhaps here tow，howerer，mistakes in whervation and drawing on the part of the authors －it is certain that the limbs are exeedingly incomedy drawn－nor does it seem impossible， as 1 puint out in the remark mater A abyssicola，that in p ．II there has been confusion between figures 17 and 19．－This speces described by these writers camot be synomymized with the
 it as a s smomym of A．elliptica．＊

In⿱一𫝀口灬itat：－I reland：Strangford Lough（typolocality）；no information about the depth and the mature of the bottom was to be found on the label： 2 mature females and 2 juvenes；coll．（i．S．Bradr．

Type specimen on slides in the collections of the R．It．S．

Asterope Grimaldi n．sp．

Description：－Female：－
Shell：－Length， $1,53-1,7 \mathrm{~mm}$ ．；length ：height about $2,2: 1$ ；length ：breadth about 2.4 ： 1 ．Seen from the side（fig．1）it is very much elongated with the greatest height at about the middle and with the anterior and posterior parts of about the same height． The dorsal and rentral margins are almost parallel and are very weakly，uniformly and almost symmetrically curved，the ventral margin is，howerer，as a rule，somewhat flattened anteriorly． These margins pass evenly into the anterior and posterior margins without forming any corners． The anterior and posterior margins are boldly rounded，almost into semi－circles，and have about the same shape；the latter is．howerer，somewhat flattened dorsally in most cases．Seen from beneath（fig．2）it is narrow and oviform，with its greatest breadth at about two－ thirds of the distance along the shell；the posterior end is rounded somewhat more broadly than the anterior end and the side contours are evenly curved．Seen from inside： Medial bristles：On the rostrum there is a sparse row of stiff and moderately long bristles，running parallel to and somewhat inside the anterior margin of the shell．Within these there are a moderate number or rather few scattered bristles，most of them short，some about as long as the bristles in the anterior row．In the incisur there are a few stiff and moderately long bristles， a number of which are scattered，and some are often arranged in a sparse row running about paralleł to and somewhat inside the rentral margin of the rostrum．On the part just behind the incisur there are also a moderate number or rather few bristles．Some of these are often placed in a sparse row rumning about parallel to and somewhat inside the ventral margin；these bristles are moderately long．The others that are situated farther in are scattered and more or less short．About parallel to and somewhat within the ventral margin of the shell there is a row of rather short bristles；which is partly very sparse and sometimes not very distinct．

[^75]

Somewhat antoro-ventrally of the spinebearing list this row beomes denser and at the same time its histles heomme somewhat honer; it contimes along the rentral third or half of the spinebeaning list, rmmeng about haffery between and paralled to the spine-heaing list and the margin of the shell. Apart from this there are no modial bristles at all on the part between the spine bearing list and the margin of the shell (fiyg. 1 of A . (frimaldi var. ricima). The spinehearing list has rather few hralime spines - only $18-22$ were observed-and a thin row of short hristles. onte or two bristles to each hyaline spine. Somewhat within and about parallel th the posterior maryin of the shed there roms along the dorsal third or hall of the spinehearing list a sparse row of breat pores: five or six of these were observed. Close to these broad pores there are numeroms time pores, armaded in a chose and very irregnlar row extonding from a point somewhat ventrally of the ventral broad pore up to the dorsal boundary of the spinebearing list. On the part between the spine-bearing list and the posterior margin of the shell there is no ridge such as is deseribed for A. noregica.

First antenna (fig. 10): - This has six joints; the original third and fourth joints are minted, although the boundary between them can still be traced. These two joints form together an almost quadratic joint. which is about as long as the two following joints together and which has a distal boundary that is only slightly concave, ahmost straight. The anterior bristle of the seeond joint is somewhat shorter than the anterior side of this joint. The origimal third joint has six anterior bristles, of which nos. 5 and 6 are attached at the side of each other. Bristles nos. 1, 冗. 4 and 5 are armed with long, stiff secondary bristles, which are placed pretty well on all sides on bristle no. 5 and on the ventral sides of the others. Bristles nos. 3 and 6 have at the middle somewhat shorter and finer secondary bristles than those on the four lastmentioned bristles: they are often pressed close to the bristle, so that it seems to have no long secondary bristles. The longer of the two postero-distal bristles on the original fourth joint is about as long as or somewhat longer than the total length of the three distal joints. The stem of the sensorial bristle of the fifth joint is relatively short, about as long as the total length of the three distal joints; it has seven sensorial filaments. The a-claw is somewhat shorter than the total length of the dorsal sides of the two joints next to the distal one; it is smooth. The d-bristle is reduced. The f-bristle has four or five, usually five, sensorial filaments; the e- and g-bristles sometimes have six filaments each, often (in five out of the eight individuals investigated) five sensorial filaments were observed on the e-bristle and six on the g -bristle. Pilosity: First joint: There is sparse pilosity dorso-distally and ventero-disto-medially. The second joint is sparsely furnished with hairs, especially postero-medially: there are no hairs distally on this joint.

Second antenna (fig. 5): - The protopodite does not possess distomedially near the exopodite the bristle that characterizes this joint in other species of this genus that are dealt with in this work. The end joint of the exopodite has four bristles. The fourth to the ninth joints of this branch have basal spines. The endopodite is weakly three-jointed; its end bristle is about as long as the stem.

II a ndible (fig. 6, 7 and 8): - Protopodite: Coxale: The seythe-shaped process: The part situated distally of the main spine grows rapidly narrower into a fine point; its ventral edge is somewhat concave and has a decided comer near the main spine. The distance from
the point of the process to the main tooth is considerably less than the distance from the latter to the proximal ventral spine. The dorsal bristle is attached at about the sime distance from the point of the process as its distance from the main spine and is almost opposite the latter; it extends somewhat distally of the point of the process. The dorsal serrate teeth are rather weak. The main spine is moderately developed. There are five ventral spines, of which the proximal and the distal ones are rather weak. On the part distally of the main spine there are no transverse rows of hairs at all. The rod-shaped process has three short distal spines. Basale: The backward pointing process has four distal bristles, four or five triaena bristles and two dwarf bristles. The triaena bristles have from two to five pairs of spines proximally of the distal pair of main spines. The ghands of this process emerge on quite a reduced vermea. At about the middle of the dorsal side oll this joint there is on the left mandible one, on the right mandible two, short bristles; two such bristles are seldom found on both the right and the left mandible; in most cases there seem to be no hairs at all on the clorsal side of this joint. Exopodite: This is very small, only about a quarter to a sixth of the length of the anterior side of the first endopodite joint. Endopodite: First joint: The shortest of the three ventral bristles has short hairs, the two longer ones have no short secondary bristles proximally of the long ones. This joint is not armed anteru-distally with chitinous spines. Second joint: This has only one proximal bristle, which is about a third of the length of the main bristle a or somewhat shorter. Close to the proximal bristle there is a cluster of short fine hairs. No long, narrow bristle with short hairs is found between the main bristles band c. The medial cleaning bristles are relatively few and short, and differ somewhat in number both from one individual to another and on the left and right mandibles of the same individual; four to six were observed in a distinct lower row and one close to the main bristle b. The end claw is strong but comparatively short, slightly more than twice as long as the end joint; it is smouth.

Maxilla (fig. 13-15): - Protopodite: The distal endite has three subequal bristles. The dorso-proximal bristle is very short, ahmost entirely reduced. The basale has one ventral bristle and one dorso-listal bristle both relatively short and subequal; the short ventero-distal bristle is developed sometimes, but ottem seems to be laeking. Endopodite: The postero-distal bristle of the first joint is somewhat shorter than the bristle of the end joint.
sixth 1 imb (fig. 16): - This has a rather broadly rounded posterior corner. There are $17-25$ posterior and seven anterior ventral bristles; on the anterior edge of the limb there are two bristles.

Heventh himb: - This has twelve cleming bristles, six of which are situated close tugether distally, three on each side, and six seattered somewhat proxinally of the former ones, three on each side. Each cleaning bristle is amed with from two to five bells. Fach end comb consists of from 14 to 16 teeth, all of which are evenly and finely pectinated and somewhat strengthened distally (abont the same as in fig. 13 of A. quinguesetae).

Furea (fig. 17): - This has ten claws, of which the six or seven anterior ones may be called main claws. (1) the two or three anterior main claws there are some - the number varies to some extent - irregular, rombled small teeth ventero-proximatly. (These do not form a direct eontimation of the rows of fine, sharp ventral teeth that are msally developed in the

Zonlog. bidrag. Uppsala. Sunnt.Pd. I

species of this gemus, as the latter stop a good distanee distally of the modous teeth.) The seconda:y dows never seem to be ammulated.

The lateral eyes are well developed. The modian oy
Hale: -
Shell: - Length. 1,7--1,75 mm.; length : height about $2,27: 1$. Seen from the side (fig. 3) it has the same elongated type as the female, but is somewhat less regnlar. Its greatest height is at about a third of the way along the shell and the anterior part of the shell dominates to some extent over the posterior part. The dorsal and ventral margins converge gently backwards from the point where the shell is highest. The dorsal margin is somewhat irregular, it is somewhat flattened anteriorly and is characterized by a gentle and broad arcuation somewhat in front of the middle of the shell and a similar areuation just in front of the place where it passes into the posterior margin. The ventral margin is slightly and almost eventy arched, somewhat flattened anteriorly. The posterior margin is evenly and rather strongly curved, passing into the ventral margin with a brodly and evenly rounded line; it is bounded from the dorsal margin by a broadly rounded corner, which is only slightly distinct. The anterior margin is boldly rounded and passes evenly into the dorsal and ventral margins. The part situated ventrally of the incisur is about as large as the rostrum. Seen from bebow (fig. 4) it is narrowly neriform with its greatest breadth at about a third of the distance along and the anterior part somewhat larger than the posterior part. The wreath of hairs round the posterior part of the shell is rather dense. Seen from inside: The medial bristles are perhaps somewhat fewer than in the female. Otherwise the shells are alike in both sexes.

First antenna (fig. 11): - This has seven joints. The proportion between the joints are about the same as in A. norregicu; cf. the deseription of the genus. Of the anterior bristles on the third joint nos. 3 and 6 especially are very much shortened: the equipment of these bristles is about the same as in the female, only somewhat weaker. The longer of the two posterior distal bristles on the fourth joint is considerably shorter than the total length of the three distal joints; eren calculated absolutely it is in most cases somewhat shorter than that of the female. The sensory bristle of the fifth joint is sery much more powerfully devoloped than in the female: its stem is thick and about as long as or somewhat longer than the total length of the threr distal joints; it has very numerous sensorial filaments. The a-claw is smonth. The b-bristle is about as long as the anterior side of the second joint or is sommonht shorter; it has six sensorial filaments. The c- and f-bristles are suberfual and are about one and a half times the length of the shell; a length of $2,5-2,7 \mathrm{~mm}$. Was observed; the e-bristle has $2.5-29$, the f-bristle $23-26$ semomial fitaments. The g-heristle is about as long as the anterior side of the second and third joints: it has nine sensorial filaments.

Second antenna: - The exopodite is fery much lengthened relatively; its two proximal joints espectially are considerably longer than the corresponding joints in the female. The relation between the lengths of the juints is shown by the following figures:
 oll the same stalte:

$$
\left(: h_{101} 1.6 ; 3 \mathrm{~mm} . \operatorname{long}\right) \quad 1: 11:(111-1 X) \quad 18.5: 4: 16 .
$$

The seemed joint is about as long as fonm ar five of the following joints: the third to the month joints are as in the female, all of athent the same lengill. The fourth to the ninth joints

Fig. C. - Asternpe firimalde n. "F.. F.- 13. Right maxilla, seen from insidu; 22' X. 1is. bistal part of a bateen lomite of a maxillat: mbly the hairs on the most distal part are drawn; $1520 \times$. 15. The pesterior bisile of the bateen of

have oxceedingly weak basal spines, sometimes scarcely perceptible. Endopodite: The second joint has three finely pointed bristles; these bristles are of moderate and somewhat different lengths; the longest is about as long as or somewhat shorter than the breadth of the joint at the place where this bristle is attached: the shontest is about half as long as this or slightly more. Sonewhat proximo-medially of these bristles there is a low peg. The third joint is rather boad, lancet-shaped, and has rather broad, thin side borders (of about the same type as in A. curta). On the inside at the point this joint has three or four weak transverse chitinous ridges. The proximal bristle on this joint is rather long, in most cases somewhat
more than half as long as this joint; it has a strong bend near the base (as shown in fig. 5.5 , pl. t, A. oblongu. (土. WV. Melere, 1894).

Mandible (fig. 9): - Protopodite: Basale: The backward pointing process has the same number of bristles as in the female, but all of them except the dwarf bristles are much weaker than those of the female and are almost smooth, with only short, fine, scarcely visible hairs. In the middle of the dorsal side of this joint there is only one bristle both on the right and the left mandible: this bristle is in most cases somewhat more than twice the length of the corresponting bristle in the female. En dopodite: First joint: The shortest of the three ventral bristles is furmished at the middle with fine hairs seatterect on all sides; these are not quite so long as the long secondary bristles on the two other of these bristles. Second joint: This has three proximal bristles of somewhat different tengths; the longest is about half as long as the main bristle a, the shortest is in most cases somewhat less than half the length of the longest. The medial cleaning bristles are considerably longer and somewhat more weakly equipperd than those of the female. They are also somewhat more numerous: the following numbers were observed: six bristles in a distinct lower row, three to five bristles in a sparse and sometimes rather irregular upper row. To judge from its position the anterior bristle in the upper raw certainly corresponds to the bristle, ,elose to the main bristle b" of the lemale. The end claw is perhaps slightly shorter than that of the female.

The furea has mine claws, of which the six or seven anterior ones may be termed main claws. The anterior ones are somewhat more decidedly bent than in the female (about the same as in fig. It of A. curta).

The lateral eyes are somewhat larger than those of the femate.

Remarks: - In all the samples in which more than one mature female occurred there were to be found females with as well as without eggs or embryos: the first eategory was. however. always in the majority.

The male and the female juvenes of the first larval stage occurred in about the proportion $3: 1$ in the sample collected on the $1^{\text {st }}$ of March; in the other samples the male and the femate juvenes of this stage were about equal in number or the males were about twice as numorous as the females. In the second larval stage ton the males were stated to be in the majority.

Habitat: - Ilonaco: In the harbour, (type-locality); depth about 10 m . fine clay with detritus: 1. 111. 1916:3 mature males, 5 mature females and 25 juvenes in difierent stages: R. MI, S. 178 and 179. 8. III. 1916: 2 mature females and 20 juvenes in different stages: R. It. S. 180. 5. IV. 1916: 1 mature female and 4 juvenes; R. II. S. 181. 19. IV. 1916: 2 matne females and some juvenes in different stages; R. M. S. 182 and 183. (Auctor coll.)

Type specimen on slides in the collections of the R. M. A.

6ecurrence of mature fomales

Proportion beharern malos and femeales.

Asterope Grimaldi n. sp. var. vicina n. var.

 49-55, ph. 5. fig: 1, 4, 5, 13, 14, 2:3, 33, $11-44, ~ p l .8, f i g .4$.

Discriplion: - Female: -
犬hell: - langth. $1.5-2$ - mm. (the trpespecimen, from Villefranche-sur-mer. measured $1,9: 3$ mom.). It agrees very (losely with the type species except with regard to the fine poose on the part between the spine-bearing list and the posterior margin of the shell; these are consitembly lewer than in the trpe species, about four to six near each broad pore, fig. 1. First antenna: - The f-bristle has five, the e- and $\underline{\circ}$-bristles six sensorial filaments. If a n dible: - The second protopodite joint has dorsally only the two distal bristles that are characteristie of the Asteropidue: no the other hand there are no bristles at all at the middle of the dorsal side. Endopodite: Second joint: The female examined had the following number of cleaning bristles: The right mandible had six bristles in a distinct lower row, one bristle close to the main bristle band one obliquely distally inside the lastmentioned one. The left mandible hat six bristles in a distinct lower row. one between the main bristles band e and one somewhat inside the main bristle b.

The sixth limb has $27-28$ posterior ventral bristles.
In other respects it agrees with the type species.
Il a be: - See (i. WI. MIthaER loc. (it.
Remarks: - In order to make a verificatory examination I applied to Professor (i. W. Muthler for a mature fomale of the species from the Bay of Naples, which he has dealt with on p. 219 of his large ()stracod monograph, 1894, under the name of Cylindroleberis oblonga. Professor MíLLER kindly sent me a Naples specimen of this form. Although unfortunately this specimen was not mature - it was a male in the last larval stage - yet my synonymization given above, the result of a careful cxamination of this specimen, may be considered, if not as absohutcly certain, at least as being fairly certain. The only character in which the Naples specimen differed from the form investigated by me was that its right mandible had three, not two, dwarf bristles on the backward pointing process on the second protopodite joint. As all the other species in this group of forms - A. Crimaldi, norecgica and oculata - have two dwarf bristles on this process it does not seem impossible that we are concerned here with an accidental variation At any rate it dicl not seem to me that this character ought to prevent this synonymization.

It follows from this synonymization that G. W. MULLer's description and figures of this species are in a number of respects - even in the characters of the genus - somewhat incorrect. The mistakes will be seen by a comparison with the information I have given above.
(1. IV. Mellek in his work of 1912, p. to includes a species Asterope Mariae (II. Barr)). The following forms are symonymized with it: Cypridina Mariae, II. BalkI, 1850 c, Cypridinat oblonga, E. Grtbe, 1859, Cylindioleberis Mariue, (土. S. Brinhy, 1868 b, Copechate elongata + ?
 (i. IV. Moluer, 1894. ln his work of 1894, p. 219 this author does not include in his list of synonyms of Cylindroleberis oblonga E. Hesse's two species mentioned above and the synonyms
 with a query as being doubtful.
G. S. BRADY and A. M. Nomma diseuss in their work of 1896 p. (630 a speries Asterope Marate. With it they synonymize all the above-mentioned species inchuded by (x. Wr. MeLLFR, 1912 with the exception of E. Hesee's two C'opcchate species; all the synmymizations are denoted as certain. - Other authors as well who deal with these forms, J. A. Cushmal, 1906, (11. Julnif, 1907 and R. Wr. Sharpe, 1909 make the same symonymization as (G. S. Braby and A. Mr. Nobada.

Fig. Cl. - Asterope Grimald var. sicina n. sp. et var., \&. - I. Left valve sem from insidf: 1sk \% . Distal part of the seventh limb; the leaning hristles are hoken; bish X.

In order to deeide the relation of A. Grimaldi and the rariety described above to the above-mentioned forms and the mutual relations between the latter I shall try to give here a very much concentrated account and diseussion of the descriptions and figures of the latter that are found in the literature.

The original description of W. Banzo's Cypridime Marine is found in this author's work of 1850 c., p. 257 . This description is very short and incomplete and only deals with the appearance and length of the sheff: , Carapare valves elongate oval, of exactly the same size at each extremity; extremities rounded. Dorsal and ventral margins nearly phane or very slightly arehed". The shell is abont $1,5 \mathrm{~mm}$. long. It was found at the 1 she of skere, seotland. Three figures accompany this description, the shell as seen from the side. from above and from in front. The deseription and figures only show that this anthor had a mature female or a darya of a species probably belonging to the cirimatdi gronp of the genus Asterope.
 shape and appearame of the shell, a fact that is cherly shown in this treatise, subsequent

 with this sperien of Butibs. hut atso in symmemizing with it forms deseribed in a more or less matemtitable manmer by other writers and obvomsly not investigated by themselves. This can ombe be explained as being dhe to these writeres deticient kowledge of this gemus.

 but so incompletely that it is impossible to identify it with certainty. but still this form may, althengh hesitatingly, be referred to the same group of the gemas Asterope as the form of BUIAD: has heen with a reservation refered to above. Without going fito details as to the pecoliarities in (ikn bés description and figures that are obvionsly due to mistakes in observation on the part of this witer. the following chamerers that appear to distinguish this species may be mentioned here: The mandible has no bristles at atl at the middle of the donsal side of the basale. The sixth limb has only fifteen posterior ventral bristles. Theseronth lim b has eleven bristles. of which six are situated distally, three on cach side. and five somewhat more proximally. four on one side and only one on the other.
 Chamel. differs exceedingly with regard to its shell from this pecies of B.and's: ,Carapace as seen from the side, oblong-ellijtical, more than twice ds long as high, rather higher in front than behind." The shell is 2.3 mm . long. Briadr's deseription and figures of the limbs and the furca are very incomplete and obvionsly incorrect, so I shall not discuss them at any length here: although they thus do not permit of certain identification they clearly show that the species in question certainly bolongs to the same group of the genus dealt with here as that to which the above forms of BARD's and GRUBE's have been referred. The difference in the shape of the shell from the former species is clearly due to the fact that Brabr has described and drawn a mature male while as has been shown above, Bumb had a mature female or a larva. The rather strongly marked dimorphism in the shape of the shell has not, if we are to judge from the text, been noticed by Brass, a fact that did not, however, prevent this author from identifying the form examined ly him with that of B.ans.
(f. 1). SARS. 1887, states that the species Asterope oblonga (E. GRLBE) was found at four localities in the Mediterranean and in the Bay of Biseay*. Both the male and the female are described. This form certainly belongs to the Cirimaldi group of this genus. The shape of the shell is that which is characteristic of this group. Length, $2,07 \mathrm{~mm}$., of; $1,7 \mathrm{~mm}$. s. secoud antenna: The endopotite has a very short bristle distally on the second joint. If a n dible: At about the middle of the dorsal side of the second protopodite joint there is a simgle bristle, which is about as long as the dorsal side of this joint. The exopodite is very

[^76]small, about in quarter or a fifth of the anterior side of the first endopodite joint. The sixth 1 imb has 24 posterior ventral bristles. The seventhlimb has twelve eleaning bristles, six of which are concentrated distally, three on each side, and six seattered somewhat proximally of the former ones, three on each side.
G. S. Brabl and A. M. Norman's form Asterope Lariae, 1896, p. 6300, is stated to have been taken at a number of places along the eoasts of England and Scotland. The male and the female are described. The male seems undoubtedly to belong to the Grimaldi group. The femate, on the other hand, can only be referred to this group with a certain amount of hesitation. Female: - Shell: Length $2,4 \mathrm{~mm}$. The shape of the shell is the characteristic one for the Grimaldi group. Second antenna: The endopodite has one short bristle distally on the second joint. Mandible: At the middle of the dorsal side of the second protopodite joint there is a single bristle, which is about as long as the dorsal side of this joint. The exopodite is about half as long as the anterior side of the first endopodite joint. The second endoportite joint has a long narrow bristle between the main bristles b and c. II a e : - S hell: Length ? It is of the same type as is characteristic of this group. Mandible: The bristle situated at the middle of the dorsal side of the second protopodite joint is like that of the female. The exopodite is very short, only about a sixth or a seventh of the length of the anterior side of the first endopodite joint. The second endopodite joint has no long narrow bristle between the main bristles b and c. Sixth limb: (With regard to this and the following limb the text does not explain whether the descriptions are based on male or female specimens). This has 25 posterior ventral bristles. Seventh limb (according to the text, not according to the accompanying figure): The cleaning bristles are like those in the above-mentioned form described by G. O. Sars.*

It seems to follow from this review of these forms, which is perhaps too much condensed on account of space: 1) that E. Grube's species Cypridina oblonga cannot be considered as identical with A. Grimaldi and its variety or with any of the uther forms discussed here, 2) that A. Grimaldi and its variety cannot be identified either with G. O. Sars' Asterope oblonga, 1887 or with A. Mariae, G. S. Brady and A. M. Normax, 1896, 3) that the relation between the two latter forms cannot be decided with certainty; at any rate the females of these species cannot be considered as identical; the males, on the other hand, seem to be very closely related. 4) G. S. Brady's species Cylindroleberis Mariae, 1868 b, must be considered unidentifiable.

With regard to G. W. MÜLler's synonymization of Copechaete elongata and C. affinis I need only refer to the historical sketch of the genus, p. 434 .

It is certain, if we are to judge from these authors' figures, that J. A. Curiman's species Cylindroleberis Mariae, 1906, p. 366, Cylindroleberis Mariae, CH. Judsis, 1907, p. 143 and Cylimelroleberis oblonga, R. IV. Silarpe, 1909, p. 423. all American forms, cannot be considered identical with any of the European forms dealt with above. With regard to Cushman's species I may point out: Firstantenna of the female: The sensory bristle of the fifth joint has no sen-

[^77]sontal tilaments. Il a 1 dible: 'The seromb protopentite joint has mo bristles at the midelle
 joint. The second emdopertite joint has two proximat bristless which are almost as hong as the main bristle a and one long. namew briste between the main bristles b and e. 'The end daw

 forms a reference to the figures of the shefl stould be emongh to suppert the contention I have put forward above: further detals would be superfloms.

Is mether deseriptions nor tigures have bern given mothing s:an be sald with certaints: about the relation of the following forms to the forms treated above: ('ylindedeberis Mariar:

 MCiller, 1!ms. p. 94: O. de Bu'E, 1916. p. 365.

In order still further to illustrate the uncertanty that exists with regard to the synonymization of forms belonging to this group the following facts may the added. I applied to Professor (. … Buany for specimens of A. Mariae so as to cary out a verificatory investigation. A tube containing a number of individnals, defined by Professor Braws as A. Nariae, was kindly sent to me by this investigator. As will be scen in the remark under A. aberrata, p. 508 of this treatise, all the specimens except one turned out to bolong to the latter species, which is of course a form that is fairly well differentiated from species of the Grimaldi group with regard to the type of shell, ete. The specimen that did not belong to A. aberrata was a larva, a male in the penultimate larval stage, which thes did not permit of certain identification of the species, but I do not hesitate. however, to state that it is very probable that it belonged to A. nomergica.

Since, as has been shown above, both Cymridina Mariae W. Burn and C. oblonga E. Grthe are too incompletely described to allow of quite certain identification of these species, it seems undoubterlly best, at least for the present, to reject these two names of speries in order to avoid further confusion. Only if it should tum ont that fully identifiable typespecimens are still in existence or if only a single form of this type were to be found at the type localities, the lsle of Skye in the case of C'. Mariae and Cherso Island in the Adriatic Sea in that of C . oblongo, ought these names to be adopted once more.

Habitat: - Mediterranean Sea: Villefranche-sur-mer, France. (type-locality); 19. I. 1916; depth 95 m .; fine elay; temperature at the bottom, $+13.5^{\circ} \mathrm{C}$: one mature female: (auctor coll.): R. M. S., on slides. Naples: one male juvenis (coll. (i. WV. IƯtadil); R. II. S.. on slides.

Distribution: - Naples (G. IV. Méblefr, loc. (it.).

Asterope oculata G. S. Brady.

Asterope weulata (part.), (土. S. Brours, 1902 a a, p. 179, pl. XXI, figs. 6-13.
Description: - Male: -
Shell: - Length, 1,35-1,38 mm.: length: height about 1,78: 1. Seen from the side (fig. 1) it is of about the same type as the shell of the male of A. (irimaldi, althongh, as will be seen from the figures given above, it is not inconsiderably higher relatively. Seen from helow (fig. 2) it is alsoof abont the same type as in the species mentioned. The wreath of hair round the posterior part of the shell is rather dense. Seen from inside: Medial bristles: There are a few bristles in the incisur. all scattered. About parallel to and somewhat inside the posterior margin of the shell there is a rather sparse but distinct row of stiff, moderately long bristles; this row of bristles, which becomes more and mure sparse dorsally, extends all along the spine-bearing list (fig. 3). This list is gently undulated and has about 25-28 hyalin. spines and numerous short bristles of somewhat different lengths, from 0 to about 7 bristles to each hyaline spine, somewhat fewer ventrally than they are dorsally. No broad or fine pores conld be observed on the part between the spine-bearing list and the posterior margin of the shell.

First antenna: - This is very like this limb in A. Girmaldi. We must note: The longer of the two posterior distal bristles on the fourth joint is about as long as or rather slightly shorter than the total length of the three distal joints. The e- and f-bristles are subequal; they measured about $2,2-2,3 \mathrm{~mm}$. in length, i. e. the same relative length as in the species mentioned above; the e-bristle has $25-26$, the f -bristle 24 sensorial filaments.

Second antenna: - This is very like the corresponding limb in A. (irimald A short bristle is developed on the protopodite distally medially close to the exopodite Endopodite: The second joint has no veruciform swelling close to the three bristles. The end joint is undulated on the ontside (the ventral side) just distally of the proximal bristle in about the same way as is shown in (i.S. Brady's drawing. Both the specimens investigated by me had this undulation; G. S. Braby in his original description, f. 180, states, however, that this tharacter is not constant. The proximal bristle on this joint is konger than is shown in (i, S. Brams's drawine; I was unable to decide how long, as it was broken in both the specimens investigated.

Mandible: - Protopodite: Coxale: The seythe-shaped proeess (fier, 4): The part distally of the main spine arows evenly and rapidy narrower to a fine point ; its rentral edge is straight or slightly eoncave with a distinet comer near the main spine; this corner is not always, however. so shap as in the adjoining figure. The distanfe frem the point of the process to the main spine is very much less than the distance from the latter to the proximal ventral spine. The dorsal bristle is fixed somewhat nearer the main spine than the puint of the proepss or is about equidistant from both and is fixed shightly distally of the main spine. The dorsal serrate teeth are rather weak. The main spine is also rather weak and has a weakly developed ridge of hairs. There are four rather powerful rentral spines and in adelition three or fom weaker ones, one between the third and fourth spines and three distally of the fourth. On

Digitized by Microsoft ${ }^{(B)}$

the part datally of the main spine there ate only one or two tratserese rows of hairs. Ther rodShaped process has theer short, powerfal spines distally. Basate: The backward poibting process has four distal bristles. four triama bristles and two dwarf bristles. The anterior of the triamat bristles was short and weak with very weak sucondary teeth, the others were of the same type as in other species in this group, i. e. with relatively fow (from I wo to five pairs?) of secondary spines mater the distal pair of spines. The gtands of the process issue on an ahenst completely

Fig. CH. - Asterope oculata (. S. Bradx, $0 .-1$. Shell seen from the side; $56 \times$. 2. Shelf seell from below; $42 \times$. 3. Posterior part of the right valve seen from inside; $188 \times$. 4. Endite on the coxale of the mandible; $480 \times$.
5. Risht maxilla seen from inside: $256 \times$.
reduced verruca. Somewhat in front of the middle of the dorsal side of this joint there is a single bristle, which is somewhat shorter than the dorsal side of this joint; apart from this there are no hairs or bristles on the middle of the dorsal side of this joint. One of the two dorso-distal bristles on this joint is unnsually short, scarcely half as long as the anterior side of the first endopordite joint. The exopodite is comparatively large; if its end bristles are included, it is about as long as the anterior side of the first endopodite joint. Endopodite: The first joint is not armed anteriorly with chitinous spines. The second joint has at least two proximal bristles: their length I was not able to observe. No long, narrow bristle, with short hairs, between the main bristles b and c . The cleaning bristles are comparatively few in number;

Digitized by Microsoft ${ }^{\circledR}$
five or six were observed in a distinct bower row and one near the main bristle b. The end daw is strong, but rather short; it is about as long as the anterior side of the second endopodite joint to the main bristle e.

Maxilla (fig. 5): - Irotopodite: Contrary to what is the case in all the other known species of this genus, the distal endite, like the proximal one, is armed with four bristles, three rather long, subequal ones and one quite short one. The dorso-proximal bristle is rather short. There is one moderately long ventral bristle ant two subectual dorso-distal bristles, which are about as long as the dorso-proximal bristle; one of these is situated somewhat proximally of the other. (The dorso-distal bristles were found on only one of the two specimens investigated; the other was defective in this character.) The short ventero-distal bristle is developed.

Sixth limb: - This is of the same type as in A. Grimaldi; I was unable to ascertain exactly the number of ventral bristles, but it is probably about the same as in the abovementioned species.

The seventh limb is of the same type as that of A. Cirimaldi.
The furca has eight (nine?) claws, of which the six anterior ones may be denoted as main claws; they are of about the same type as is reproduced for the female of A . Cirimaldi, i. e. with a moderately strong bend on the anterior claws. The two anterior claws have no venteroproximal spines. The two posterior ones, the secondary claws, are ammated. The equipment of all these claws is the typical one for mates of this gemus.

Remarks: - The description given above is based on investigations of two specimens from Trincomalee, Ceylon, which were kindly placed at my disposal by the Zoologieal Musenm of Copenhagen and which were termed type specimens by Professor G. S. Brady. Unfortunately, however, the description is, as is seen, very incomplete; this is due to the exceedingly bad condition of the specimens - mixed with dirt, breaking easily and with many of their bristles broken. Still I hope that this re-description has made the systematic position of this species more certain.

The direct deviations from C. S. Braby's original description that necur are probably due to the exceedingly superficial method of investigation employed by this writer. I may mention here: Shell: , antemal noteh rather wide and shallow", ,posterior extremity bearing two fascicles of hairs, one near the dorsal, the other near the ventral end". Ifandibte: , there is no toothed process on the basal joint". Furca: the absente of ,distinct pectinated armature" on the claws.

As is seen above, I have written A. oculata G. S. Brany (part.) as a synonym of this species. The reason for this is that there did not seem to be sufficient reasons for grouping the femate described by G. S. Brabl 1902 a, p. 180 under this name together with the male discussed above
so far in the literature there is only me statement to the effeet that mature makes of this
 p. 13, about A. oblonge (E. (dat me). Is the male in the last larsal stage is reve like the mature female, there scems to be no doubt that the male larvat with which (i. W. Itiondik experimented

Digitized by Microsoft ${ }^{\circledR}$

reatly behoned to the female mentioned hey this anthor. By means of these experiments it was fond that the mature mates of this speres have alonest the same type of shellas the female; the male shell differs from that of the female amost only being somewhat lower posteriondy. - I have whatned much the same result in the (ast of two other speres belonging the the satme eromp of forms as A. chlongu, namely A. (ermaddiand A. nomegicu. There can seareely be any doubt that the males and females wheh have been gromped together in these two cases really belong to the same species. The great amatomical resemblanes are quite a decided argument for this. In the case of A. firimuld this gromping is confirmed still further be the fact that this make and femate were found tonether at one locality, where I ascertained by a large number of dredenins that there were no other males and females of this gemes present.

With regard to the rype of shell in the males of females that have short, pear-shaped shells we know practically nothing from the literature that has appeared up to now. G. S. Bkabs and A. II. Nomand mention. hewever, 1896. p. 638, that they hat found the mate of A. teres (A. M. Nußhil). No description of this male's shell is given, but the text seems to show that it was of the same short, pear-shaped type as that of the female. These authors write: "We are unable to say in what slight respects the shell of the male differs from that of the female." Believing it was a female, they had dissected the specimen before investigating the shell more closely. - I cannot of course say with absolute certainty whether the male and the female that I have grouped together in this work under the name of A. curta are really the male and lemale of the same species. There are, however, strong arguments in favour of the correctness of this grouping: cf. p. 503. If this grouping is correct, there is thus only rather weak dimorphism with regard to the shell present in this group of forms as well.

As both males and females of both the elongated and the short type exist, it seems as if a grouping of males of the one type with females of the other as males and females of the same species would at any rate necessitate clearer proof than that put forward by (G . S. Bbasy in the case of A. oculate.* The only argument that seems to support this writer's assumption is that the two forms were found in the same sample. : one female only could be found, and this oceured with only one or two males", etc. It was thus not a large number of males and females that were (aught together, butonly one femake and ,one or two" males. This maturally makes this argument of no value. - Unfortunately this female did not exist in the collection that was sent to me from the Copenhagen Zoological Muscum. It is presumably altogether lost. I am thus unable to confirm or reject the assumption put forward by (5 . S. Brabl by making an anatomical investigation.

Is has been shown at another place of this treatise, p. 490. G. WI. MULLen synonymizes A. oculata with A. teres (A. II. NonMA). Whether the female referred by (i. S. Brasy to this species is identical with this species of NOpMAN's camot at present be decided with certainty. lt does not seem probable to me. As is shown above, there seems to be still less reason for assuming that A. oculata, \hat{o} is identical with A. teres.

In spite of the incompleteness and uncertanty of the original description of this species two subsequent authors have succeeded, all the same, in identifying with it forms investigated
 the same speries.
by them. A. Acopt, 1905 , p. 366 , states that this species was foum at a number of stations in Ceylon; a total of ten females and four males is stated to have been canght. No figures are given, so that I did not think it proper to include this form as a synenym. Th. Scorp, 1912 a, p. 586, gives this species as coming from (Gough Island, lat. $40^{\circ} 20^{\prime} \mathrm{S} ., \operatorname{long}$. $9^{0} 56^{\prime} \mathbb{W V}^{\prime}$. Two figmes which are quite useless for eertain identification are given, but no description. This camot possibly be included as a synonym.

Nothing definite can be said as to the relation of my species A. W Helleri, Ohlini and curth to the female referred by (. S. BRaby to A. oculutu.

Distritution: - Ceylon: Trincomalee (G. S. BRADY, 1902 a). Whether it alsonccurs at St. Johns (Cruz Bay), Lesser Antilles, I camnot say; it seems rather probably. howerer, that this identification of C. S. Bradry's is due to a mistake.

Type specimen of the re-description on slides in the collections of the $k . \%$. II.

Asterope norvegica G. O. Sars.

Asterope nomegien, (i. (). Sars, 1869, p. 357.

$$
\begin{aligned}
& \text { " }, \quad \text { G. W. Mciluer, 1912, p. 4t. }
\end{aligned}
$$

Description: - Female: -
内hell: - Length, $2,0-2,26 \mathrm{~mm}$; length: height about $1,9: 1$; length : breadth about 2,2:1. Seen from the side (fig. 1) it is of abont the same type as A. Cirimeldi, but, as is shown by the figures given above, it is somewhat higher relatively. The dorsal and ventral margins are somewhat, though only rather slightly, more decidedly eurved than in the species mentioned above. Seen from below (fig. 2) it also has about the same type as A. Grimaldi; it is only a little broader relatively. Sepn from inside: Medial bristles: On the rostrum there are rather numerous, stiff, moderately long bristles; of these the ones that are situated nearest to the anterior margin of the shell are arranged in a rather dense and distinct row running somewhat inside and about parallel to the margin of the shell; the others are scattered. Nost of these bristles are subequal, those situated along the anterior margin of the shell are perhaps on the average rather shorter than the rest; among the latter, howerer. a few more or less short bristles are interspersed, especially among those situated farthest in. On the anterior wall of the ineisur there are rather numerous scattered mederately long bristles. most of them suberpual. There is in addition in the incisur a very dense row of similar bristles. running about parallel to and somewhat inside the ventral margin of the rostrum. Besides these bristles there are in the incisur only a few moderately long seattered bristles. On the part just behind the incisur there are alse rather numerems seattered bristles; most of these are of ahout the same type and length as the long bristles on the rostrum, a number of those situated farthest in are very short: on the anterior portion of this part there is often unty a very small number of bristles situated farthest in; these are all extremely short. Along the ventral margin of the

Digitized by Microsoft ${ }^{\circledR}$

Shell there is a moderate momber of rather short bristles, amanged in a single distinet row. Paseriorly. somewhat in fromt of the spine-hearing list. this row beromes very dense and at the same time the bristles become fonger and coarser it continues up ahong the ve日tral quarter or haid of the spine bearing list, roming about haff way between the latter and the margin of the shell (fige io). The spme-bearing list has rather few hyatine spines, about $19-20$, of somewhat varying size and has a sparse row of short hristles, abont one or two between each hyaline spine. The demble line drawn in fig. 5 inside the posterior margin of the shetl comesponds to a sharp) ridge; the part of the shell between this ridge and the posteriom margin of the shell is sitmated rather considerably laterally - i. e.. When the shell is looked at from inside, it is considcrable derper - of the part hetween the ridge and the spine-bearing list: a ridge of this sort is characteristio for both the valves. Just inside the dorsal half of this ridge there is a sparse row of broad pores (six such pores were always observed on the specimens investigated); in the surecimens insestigated these pores did not seem to be furnished with low hyaline pegs. In addition a rather dense and irregular row of fine pores issues near this ridge.

First antenna (figs. 6 and 7): - This is very like the corresponding limb in 1. Grimaldi. We may note: It is seven-jointed, the third and fourth joints are not united to each other. Of the six anterior bristles on the third joint no. 5 has short hairs. The a-claw on the end joint is only slightly longer than the anterior side of the fifth and sixth joints; it has only extremely weak peetination dorso-proximally. The f-bristle has five, the e- and g-bristles six or seven seusorial filaments. The first and second joints are rather abundantly furnished with hairs; the second joint, however, as in A. Grmaldi, has no row of hairs along the distal boundary.

Second antenna (fig. 9): - Very like that of A. Gimaldi. The protopodite has a short bristle disto-medially close to the exopodite. Endopodite: On one specimen this was abnormally developed on one side, reminding one very much of this branch in the male in the penultimate larval stage; the second joint had a very small bristle near its distal boundary: the bristle of the end joint was displaced somewhat proximally (fig. 10).

Mandible (fig. 11): - Protopodite: Coxale: The seythe-shaped process (fig. 12): The part situated distally of the main spine grows narrow rather rapidly, but not so rapidly as in A. Grimaldi, into a fine point; its ventral edge is slightly concave distally and slightly conver or almost straight proximally; it forms, just near the main spine, a rather weak spine which points proximally. The distance between the point of the process and the main spine is rather slightly shorter than the distance from the latter to the proximal ventral spine. The dorsal bristle is fixed somewhat nearer the main spine than its distance from the point of the process, and somewhat, though only rather slightly, distally of the main spine; it extends rather slightly beyond the point of the process. The dorsal serrate tecth are rather few in number, but comparatively large. The main spine is rather strong. There are four ventral spines, the two distal ones of which are rather weak, the two proximal ones rather strong. Between the distal ventral spine and the main spine the ventral edge is finely serrated; the serrate teeth point proximally; this serration may sometimes be more or less completely missing - presumably on account of wear. On the part distally of the main spine there are only a few - two or three were observed - transverse rows of hairs. The rod-shaped

 (f. O. surs.)
promess has then short, arong hristles distally. Basale: The backway pointing process has fome distal bristhes, there or four triama bristles and two dwarf bristhes. The triana bristes have from two to tive pairs of secomdary spanes beneath the distal pair of spines. The glames
 there is : single bristle, which is about hath as long as the domsal side of this joint; this hristhe hats shore fine hairs distally. On the outside of this joint there are atso groups of short, stiff hairs dorsatly some of which, at hast, are rather coase. The exopodito is, if its two distal hristles are included, somewhat more than two thirds of the length of the anterion side of the first molopodite joint. Endopodite: First joint: The shortest of the three ventral bristles has omly short secondary bristles. The longest of these briskes is armed with about nine short secondary bristles proximatly of the kong secondiry bristles; the next longest of these bristles has no such short proximal secondary bristles. This joint has no spines menterdistally. The second joint has one proximal bristle. which is about it thited of the length of the main bistle at Proximatly of this proximal bristle there is a group of short, fime hairs. Between the main bristles b and c there is no long, narrow bristle with short hairs. The medial cleaning bristles are rather mumerons. barying somewhat in momber (fig. 13); three specimens that were investigated showed the following conditions:

Left
6 bristles in a distinct lower row.
1 bristle above bristles nos. 5 and 6 in this row.
3 bristles in a distinet upper row.
2 :, near the main bristle b.
1 bristle between the main bristles a and b.

Specimen \simeq Right and left (from Bohuslän). mandibles
$\because \quad$.. near the main bristle b .
1 bristle between the main bristles and b.
Specimen 3 Right and left (from Bohuslän). mandibles 7 bristles in a distinct lower row.

4 .. :. ., .. upper ..
1 bristle near the main bristle b.
1 .. between the main bristles and b.

The end claw is somewhat longer relatively than in A. Grimaldi, about as long as or slightly longer than the anterior side of the first monopoctite joint; it is smooth.

II axilla (fig. 14): - Protopodite: The distal endite is armed with three subequal bristles. The dorso-proximal bristle is relatively short. The basale has one ventral bristle of moderate length and a series of five subequal dorso-distal bristles, which are in most eases somewhat shorter than the ventral bristle. The short ventero-distal bristle is developed.

Foblopodate: The pestarion distal hristhe on the lims joint is somewhat shomer than the hristle on the end joint.

Sixth limb: - The pesterion edge is fally straght on sometimes even stighty
 and serem anterior reentral bristhes. Two bristles are developed on the anterior edge of the limb.
 mases it has muly devell cleaning bristhes.

The forea is armed with ten claws, of which the seven or cight distad omes may be termed main daws. The two anterior main claws are equipped with ventral spines right to their bases, the proximal ones of these spines arro howerer, of the same type as those situated more distally. The (wo posterior seemdary claws are ammated.

The lateral eyes are well developed. The median oye is bate
llale: -
心hell: - Length 2.42 mm: : length : height about $2: 1$: length to breadth about 2.20 : 1. Sernform the side (fig. 3) it is of abont the same type as that of the mate of A. (rrimaldi. but, as is shown by the figures given ahove, it is somewhat higher relatively. The anterior and posterior arcuations of the dorsal margin are somewhat more defined. The part beneath the incisur dominates somewhat over the part above it. The posterior part of the shell is eut off rather abruptly, the posterior margin is rather slightly rounded, the posterior dorsal comer is somewhat more distinct than in A. Grimaldi. Seen from below (fig. 4) it is of the same type as in the species just mentioned. The wreath of hairs round the posterior part of the shell is rather dense. Seen from inside: Nedial bristles: These are mach the same as in the female, but somewhat more sparse; the short bristles that are interspersed among the longer bristles seem to be considerably more mumerous, compared with the latter than in the female. Apart from this the shells of the two sexes are alike.

First antenna (fig. 8): - For the proportions between the joints see the description of the genus. This antenna is very like that of A. Girimeldi; cf. fig. 11 of this species. We may note: Of the six anterior bristles on the third joint no. 5 , like this bristle in the above-mentioned male, but contrary to the female, is armed with long, stiff secondary bristles arranged fairly well on all sides. The a-claw is finely pectinated and is somewhat shorter than the anterior side of the sixth joint. The c- and f-bristles are subequal and about $1 / 3$ times as long as the shell (3,3 to $3,5, \mathrm{~mm}$, was observed) ; $33-34$ sensorial filaments were observed on the c-bristle, 31-32 on the f-bristle.

Second antenna: - The exopodite is considerably longer than in the femate, the two proximal joints aspecially being very much lengthened. The proportion between the joints is shown by the following figures:

$$
j(\text { shell } 2,42 \mathrm{~mm} . \text { long })=1: \text { II }:(\mathrm{III}-\mathrm{IX})=47: 16: 26
$$

For the sake of comparison the corresponding figures (measured on the same seale) for the female second antenna may be given:

$$
千(\text { shell about } 2.2 \mathrm{~mm} . \text { long })=I: 1 I:(H I-I X)-29: 6: 21 .
$$

The second joint is about as tong as the four or five following joints together. The thire to the ninth joints are about the same length, as is the case in the female. The fourth to the ninth joints have extremely weak, scaredy perceptible, basal spines. Endopodite: The three bristles on the second joint have rounded points, furnished with a very short distal sensory hair. The longest of these bristles is somewhat longer than the breadth of the joint at the point where the bristle is attached; the shortest is only about a seventh of the length of this bristle. The end joint is very much flattened and has hyaline side borders. On the inside at its point it is provided with a few weak transverse chitin lists. Its proximal bristle is at least a third of the length of this joint (broken).

Mandible: - Protopodite: Basale: The backward pointing process has the same number of bristles as in the female. Of these bristles the distal end bristle and the dwarf bristles are practically the same size as the corresponding bristles in the female. Thes distal end bristle is, at least towards its point, armed with rather strong secondary spines. The three other end bristles ind the triacna bristles are, it is true, practically the same length as the corresponding bristles in the female, but they are very weak and have very weak armature; the main pair of secondary spines on the triaena bristles can scarcely be distinguished from the proximal secondary spines, which are almost like hairs. The bristle on the middle of the dorsal side of this joint is perhaps somewhat longer tham the corresponding bristle in the female. The dorsal side of this joint is, apart from this, quite smooth without any of the hairs and spines that characterize the female. Endopodite: First joint: Of the three ventral bristles the shortest one is armed at the middle with numerous rather fine, long secondary bristles placed on all sides; distally it has short hairs. The two others have no short secondary bristles proximally of the long ones. Second joint: This has three proximal bristles differing somewhat in length, the longest not half the length of the main bristle a. The medial deaning bristles showed the following numbers and arrangement on the specimen investigated:

Right mandible	```7 bristles in a dlistinct lowrer mow. 4 ., .. ., ," upper .. Z ," near the main bristle h. l bristle between the main bristles a and b```
Left mandible	```7 bristles in a distmat lower row. 5 ,, .. ,. .. rpper .. 3 ," near the main bristle b. l bristle between the main bristles a and b.```

These bristles were somewhat longer than the eorresponding ones in the femate, but, on the other hand. they were somewhat more weakly amed than these. The end claw wats like that of the female.

Seventh limb: - The deaning bristles were arned with from two to four bethe.
The fure a had nine or ten daws, of which the six or seven anterior ones may be termed main claws. The anterior main daws are somewhat more decidedty bent than in the fomak

Digitized by Microsoft ${ }^{\circledR}$
 posterion claws atre ammated.

The laterab eyes ane somewhat larger than thense of the lemale.
 Ithomgh the wigimal deseription is very deficiont and is not illustrated by any figures, it has, all the sames. somed possible to suceeding writers who have dealt with these questions to identify it. Exem (i. IV. MC"LDER inchedes it, 1912, p. 45 as identifiable. This author writes about this spectes (l. ©.): ..Der A. abyssicola sehr ähnlich, wenig gestrecteter. 3. Thoraxbein mit 10 Borsten. Finsal mit. 5 Dornen, denen noch 2 Borsten lolgen. (iröße o mad $71,34 \mathrm{~mm}$."

The comparatively small mumber of cleaning bristles on the seventh limb and of claws on the furea and the small length of the shell made me begin to suspect that (i . O. SARs had hased his description on a specimen that was not yet mature. This suspicion seemed, however, to be directly contradieted by the fact that G. S. Brams and A. M. Norman, who, to judge from the figures of the shell that they add, had mature specimens to investigate - ,specimens for which we are indebted to Professor sams" - gave the same length of shell in their work of 1896 as (6 . O. Sans had given and merely quote Sams's description for other characters. On the other hand this suspieion was confimed still more strongly by a statement of ($\mathbf{(}$. O. Saks himself, as this author writes, 1857. p. 31 (203): , Niervaerende Art" (- A. oblongu, length $\& 1,7 \mathrm{~mm}$., oै $2,07 \mathrm{~mm}$.) „upmar satedes ajememgatende en betydeligere Storedse end foregaacmede, skjondt den i deme Henseende star adskilligt tilbage for den nordiske Art A. norreyica."*

In order to decide this point I wrote to Professor Salzs asking if it was possible to reimvestigate the type specimen of this species. In reply to this question Prof. Suss communicated (1) me that unfortunately it was quite eertan that this specimen was lost, but he sent me at the same time two specimens: a mature female and a mature male, which he had determined as specimens of A. noregica. l could not of course decide witl absolute certainty whether this identifieation of Prof. Sans's was correct; as, however, the original description does not seem directly to contradict it, I have accepted it.

The result of the insestigation of these specimens is given in the re-description of the species given above. As is seen best from a comparison between Shas's origimal description and my new deseription. it fully confirmed my suspicion that the type specimen had not been mature.

It does not seem impossible, however, that the speeimens investigated by me are the same as were previonsly investigated by (i . S. Bransy and A. M. Nonnan, on which they based their information in their work of 1896. In this case it is a good illustration of these investigators' methods of work.

As will be seen from : remark under A. aberrutu I had sent me a specimen canght in Strangford Lough. Ireland, which was defined by Prof. (G. S. Bramy as A. Mariae (IV. Bamb) and which after a careful investigation proved to be a male in the penultinate larval stage,
 are considenably smaller than the Scandinavian speries .I. norsegica."
very probably belonging to A. norregica. - On account, however, of the difficulty in defining with certainty the species of larvae belonging to this gemus, it did not seem convenient to me to include this locality among the new habitats given below, especially as this species is not previously kow from this region. The specimen had a shell $1,72 \mathrm{~mm}$. long.

Habitat: - West coast of Sweden: Bohuslän: E. N. E. of Stora Snehohmen. Koster; 18. V. 1897; depth down to 160 m .; clay:one juvenis; (coll. J. (i. Avuerssov); R. M. s. 184. N. E. of this ishand; 26. V. 1897; depth 160 m . clay: one juvenis: (coll. .J. (r. Avuerssox): R. II. S. 185. Väderöarna; depth $70-100 \mathrm{~m}$. ; coral bottom: one juvenis; (coll. v. (GOËS): R. M. S. 186. (Gullmar Fjord, no definite locality, probably at Nkår; depth $90-110 \mathrm{~m}$. ; clay: th mature females and 4 jurenes; (coll. S. LOVÉN); R. M. S. 187. Gullmar Fjord, Fiskebäckskil; 16. VII. 1894; clay: 3 mature females; (coll. J. (f. AN1)ERsson); R. M1. S. 188.

On the label of the two specimens that I got from (G. O. StRs, no locality was to be found: the specimens in question were, however, certainly from the coast of Norway.

Distribution: - Christiania Fjord. Holmestrand, type-locality. depth $90-110 \mathrm{~m}$.

Asterope abyssicola G. 0. Sars.

Asterope abyssicole. (G. O. SARS. 1870. p. 170.

$$
\begin{aligned}
& \text { :, ., ., ., ,, 1886. p. 74. } \\
& \text {,. (G. S. Brady and A. M. Norman, 1896, p. 636, pl. LII. figs. 18, 1!9. } \\
& \text {.. .. (. IV. Meller, 1912, p. 45. }
\end{aligned}
$$

Description: - Female: -
Shell: - Length $1,63 \mathrm{~mm}$.; length : height about $1.92: 1$: length : breatth abont 2,17 : 1. Seen from the side (fig. 1) it is elongated, with its greatest height at about the middle and the anterior part somewhat, though only very slightly, larger than the posterior part. The dorsal and ventral margins are almost parallel to each other and are rather weakly. uniformly and almost equally curved; anteriorly they are somewhat flattened; they pass evenly into the anterior and posterior margins. The anterior and posterior margins are evenly and boldly rounded, the former being almost semi-circular, the latter somewhat more weakly curved ventrally than it is dorsally. Seen from beneath (fig. 2) it has its greatest breadth at about the middle and grows narrow rather rapidly towards the ends, somewhat more rapidly forward. The anterior end is rounded, the posterior end somewhat heart-shaped; the side contours are even. Seen from inside: Mectial bristles: (0 n afoount of the condition of the specimen investigated the information given about these bristles is perhaps not quite so certain as might be desired.) On the rostrum there is a rather distinct, matively sparse row of moderately long bristhes which runs about parallel to and somewhat insife the anterior margin of the shell. Inside this row of bristles there is only a rather small number of bristles scattered on the rostrum, some moderately long and some very short. On the anterior wall

Digitized by Microsoft ${ }^{\circledR}$

of the meisur there is a moderate momber of seatherd and moderately bogr herstes. Besides

 inside and athont paralled the thental matrin of the rostrum. On the pard just behind the
 of the shell ate moderately bone and are arranged in a sparse row ruming about parallel to and smewhat inside the margin of the shells those sithated fathere in are short and seattered. Along the middte of the sentral margin of the shell there is a mot inconsiderable number of rather shom bristles. amanged in a mather distenct row moning about parallel to and somewhat inside the margin of the shell. Dong the posterior part of the ventrat margin there are only single Short hristles. It about half way between and ruming parallel to the ventral quarter or third uf the spine-hearing list and the margin of the shell there is a sparse row of moderately long bristles. The spine-hearing list has $21-22$ hyaline spines; in addition there are a moderate number of short bristles. in most ases two or three hetween the dorsal spines, one or two between the ventral ones. Betwem the spine-bearing list and the posterior margin of the shell there is a ridge similar to that in A. moregice and close to this ridge there are also broad and fine pores such as are to be found in this species.

First antenna (fig. 3): - This is very like that of A. Gimaldi. It is to be noted: The original third and fourth joints form together a joint that is somewhat, though only slightly, shorter than it is high and also somewhat shorter than the total length of the original fifth and sixth joints. The anterior bristle of the second joint is about as long as or rather slightly longer than the anterior side of this joint. In the specimen investigated the original third joint had on the anterior side fise bristles on the right. four bristles on the left antema (one or two bristles respectively broken off?). Of these bristles nos. 2 and 4 were unusually short, only about half as long as no. 1. The stem of the sensory bristle of the fifth joint relatively short, only about as long as the total length of the two penultimate joints; with seven sensorial filaments. The number of sensorial filaments on the c-, f- and g-bristles could not be decided on account of the defective condition of these bristles. Pilosity: The first and second joints have abundant groups of short, fine. stiff hairs (only indicated in the accompanying figure), but there are no hairs along the distal boundary of the sacond joint. There is a series of short hairs anteriorly on the distal boundary of the (original) fifth joint.
seeond antenna: - Distally-medially close to the exopodite there is a short bristle on the protopodite. The exopodite has no basal spines at all. The endopodite is weakly three-jointed; its end bristhe is almost twice as long as the stem (about $14: 7,5$).

Mandible (fig. 4): —Protopodite: Coxale: The scythe-shaped process (fig. 5): The part distally of the main spine narrows evenly and gently into a finc point; its ventral edge is uniformly and weakiy convex, almost straight. The distance from the point of the process to the main spine is somewhat greater than the distance from the latter to the proximal ventral spine. The dorsal bristle is attached somewhat nearer the point of the process than its distance fromi the main spine and considerably more distally than the latter: it extends a not inconsiderable
distance distally of the point of the process. The rlorsal serrate teeth are rather few, but large. The main spine is moderately developed. Four ventral spines are developed, of which the two distal ones are very weak, scarcely perceptible. On the part distally of the main spine four or five transverse rows of hairs were observed. The rod-shaped process seems to be armed distally with three short, coarse spines. Basale: The backward pointing process has four distal bristles, three or four triaena bristles and two dwarf bristles; on the specimen investigated the left mandible was armed with fon triaena bristles, the right one with only three; it looked, however, as if the latter limb too had originally had four of these bristles. On both limbs the anterior triaena bristle was rather decidedly reduced; it was only about half the length of the others. The triaena bristles are armed with from two to five pairs of spines proximally of the main pair of spines. The glands of this process emerge on an almost entirely reduced peg. At about the middle of the dorsal side of this joint there is a single bristle, which is about hall as long as the dorsal side of this joint and has short, fine hairs distally. In addition this joint has a few groups of short fine, stiff hairs dorsally on the outside. The exopodite is, if its two distal bristles are incheled, about two-thirds of the length of the anterior side of the first endopodite joint. Endopodite: Of the three ventral bristles on the first joint the shortest one has, somewhat proximally of the middle, about ten to fifteen long secondary bristles arranged on all sides; distally of these there are short hairs. The two other of these bristles have no short secondary bristles proximally of the long ones. This joint is not armed antero-distally with spines. Second joint: this has two proximal bristles (length?). There is no long, narrow, shorthaired bristle between the main bristles b and e. The medial cleaning bristles were alike on the right and left mandibles of the specimens investigated: there were five bristles in a distinct lower row, two bristles below the main bristle b and one between the main bristles a and b. The end claw is powerful and about as long as the anterior side of the first endopodite joint; it is smooth. Maxilla (fig. 6): - Protopodite: The distal enditr is armed with three subequal bristles. The dorso-proximal bristle is short. The basale has one moderately long ventral bristle and one dorso-distal bristle which is somewhat shorter than the former bristle. This joint has a short ventero-distal bristle developed, though it is extremely short and weak. Endopodite: The postero-distal bristle of the first joint is about as long as or only slightly shorter than the bristle of the end joint.

Sixth limb: - This seems to have six anterior ventral bristles; the number of posterior ventral bristles could not be determined with certainty. (on the anterior edge of this limb there are, besides the two bristles that are usually fom in species of this gemos, five additional rather short bristles (these were found only on the limb of one side; that of the other side was defective at this place).

Seventh 1 imb: - This is armed with fifteen or sixteen cleaning bristles of moderate and somewhat different lengths; of these bristles six are situated distally on the limb, three on each sitle, the others are seattered somewhat proximally of the former ones; there are about the same number on each side. Each eleaning bristle is armed with only from one to three bells. Each end comb consists of about eight teeth, whith are finely, evenly and similarly pectinated (about the same as is shown in fig. 13 of A. quinquesetue).

 selltral tonth.
 floc malo is monewno.

 \therefore. Jight first antonna sonfifrom outside; most of the loristles are loroken: $188 \times$. i. Distal part of the right mandible

Remarks: - The re-description of A. abyssicola given above is based on an investigation of a single specimen, a female with targe eggs in the brood chamber, which was kindly placed at my disposal by Professor (t . O. SuRs and which was denoted by this writer as the type specimen of this species. It is certain, however, that this statement of (i. O. Sars"s was not quite eorrect. This is shown by the fact that the specimen sent to me was not dissected, while the original description was obviously made from a dissected specimen. The specimen investigated by me is probably, however, one of the two specimens that G. O. Saps mentions 1870, p. 171: .Kun 2 Exemplarer af deme lille Cypridinide toges ved Guldbrandsoeme paa 120 Favnes Dŷb."* This is supported by the habitat, among other things: ,Lofoten 120 F." The preparations of the dissected type specimen have, according to what Prof. sass replied to an enquiry of mine, been certainly irrecoverably lost. It seems, however, to be beyond all doubt true that the specimen re-examined by me belongs to this species.

As the specimen in question was somewhat defective I was unfortunately not able to give such a complete description of the species as is desirable, but I hope that in spite of the incompleteness the description will permit of a certain identification of the species. The characters that could only be described incompletely or to which a certain amount of uncertainty is attached are as follows: The medial bristles of the shell; the number of bristles on the anterior side of the original third joint and the equipment of the bristles of the end joint of the first antenna; the number of bristles on the end joint of the expodite of the second antenna; the bristles on the sixth limb and the number of furcal claws. With regard to the number of bristles on the end joint of the exopodite of the second anten a it may be pointed out that on this antemna of one side - on the other side the two distal joints on the natatory branch were missing - three bristles were observed on this joint, one long one and two short ones, the two latter of about the same relative length as the two shont ones in figure 5 of A, Grmuldi. I did not sneceed in deciding with certainty whether an additional $(l o n g)$ bristle had existed originally, in other words if this joint is characterized by four bristles, the nsual number in species of this genus. It seems, however, very probable to me that this was the ease. The sixth 1 imb is certainly of the same type as is usual for this genus, with a large number of ventral bristles. Both the furcal lamellae were armed with eight daws. But this organ secmed to be somewhat damaged behind the posterior claws, so that I am not quite certain whether one or more additional claws may not have existed originally.

As will be seen from a comparison there is a close resemblance between (i. (). Nwis's original description and the re-destription of this species given by me above. Thore are, however, a number of differences. Thus (C .0 . Sirss states that the shell is only $1,32 \mathrm{~mm}$. Fong, while, as is secm above, I found it to be 1.63 mm . At present of course I camoot express any certain opinion as to whether this difference in length is due to the fact that the specimen measured by (. O. Sins was a larva or if the speeies is subject to such great variations in length at the same locality. But the fact that, if we assume the specimen measural by (i. (). Sils to be a larva in the first stage. we obtain a coefficient of growth of 1.23 ($1.63: 1.32$ - 1.23), i. e. about the same coefficient as I fommel for other elosely-related forms (A. Grimaldi, ('ypridine (I)oloria)

[^78]
 t give for what it is worth (i, O) Sbsts information as to the shell : , attitudime maxima . . . ante modium sita" and the statements that ..antemane pedes mandibulares et maxillae structura fere
 is only a transtation of 心.bss's original description into linglish. 'Two figures of the shelt, we representing the site view, the other the shell as seen from below, are added by these athors, pl. LII, figs. 1s. 19. The figures were drawn from a specimen of which it is stated that it was ..kindly given to the the deseriber", i. e. presumably the same specimen as is re-described and repentuced by me above. Of these two figures mo. 18, that of the shell seen from the side, shons a faitly etose resemblance to fig. 1 given by me above, the other figure, the shell seen from helow, differs, on the other hand, very considerably from the corresponding figure given by me. This is perhaps due to the superficial way in which these writers have proceeded. It does not seem impossible. however, that there has been a confusion between the figures and that pl. LII, fig. 17. A. elliptiea, the shell seen from below, represents A. abyssicola, while fig. 19 belongs to A. elliptica. It any rate, if this change were carried out, there would be considerably eloser agreement between the figures given by Brany and Nomman and the forms that are actually found in mature.

Distribution: - Lofoten, Norway; depth, 220 m. (Sars 1870). Between Finmark and Beeren Island (Station 290 of the Norwegian North-Atlantic Expedition 1876-1878); depth, 345 m . (SARS 1886).

Type specimen of the re-description on slides in the Chr. Z. II.

Genus Cyclasterope G. S. Brady.

C'yclasterope, G. S. Brady; 1897. Asterope, (.) IV. MÚller, 1890 and 1912. Cylindroleberis. (8. W. MÜileer, 1906 b.

Diagnosis: - Shell: - This varies very much in type. In most cases, but not always, however, it has a well-marked posterior corner. The rostral incisur is comparatively deep and narrow. The surface of the shell has no sharply projecting seulpture; it is almost smooth. It is strungly calcifurous. The forms are relatively large.

First antenna: - Disto-posteriorly on the fourth joint there are more than two bristles. some of which are rather long. The sensory bristle of the fifth joint is very powerful in the male and has a very large number of accessory sensorial filaments on the medial side of the bristle arranged in numerous nore or less distinct stages. This antenna has seven bristles distally: both the d-and e-bristles are developed; the a-bristle is claw-shaped; the c - and f -bristles are much lengthened in the male.

Second antanna: - The protopodite has a short bristle disto-medially close to the exopodite. Exopodite: The first joint has no bristles. Endopodite: The first joint has a number of short or moterately long bristles.

Mindible: - This is very powerfully built, rather elongated and las its joint decidedly flattened at the sides. Protopodite: Coxale: This las no bristles. The seytheshaped process has comparatively numerous and large ventral spines. Basale: The backward pointing process is well developed and is armed with rather numerons bristles. Dorso-distally this joint has two bristles and in addition to these it has a relatively large number of bristles dorsally and ventrally. The exopodite iscomparatively welldeveloped. Endopodite: The first joint has a rather large number of bristles ventrally at the middle; apart from these it has no bristles. Second joint: Along the whole of the anterior edge there is a forest of exceedingly numerous bristles situated close together. The medial cleaning bristles are also very numerous and are arranged in transverse rows anteriorly on the joint. Postero-distally on this joint there is a group of a rather great number of bristles. The anterior bristle of the end joint is not elaw-shaped.

Maxilla: - The protopolite has a large lamelliform epipolial appendage, which is about half as long as the basale. The latter joint has dorso-proximally very numerons bristles arranged in a row. There are no endites distinctly developed. The baleen bristles are of the same type as in the genus Asterope; the proximal bristle in the baleen is also of about the same type as in this genus. Endopodite: The end joint has a number of bristles.

Fifth limb: - The comb is relatively high and has along its ventral edge abundant bristles of somewhat different lengths and with fine hairs.

Sixth limb: - Seen from the side this is shaped like a broad-axe; the posterior and anterior margins are rather strongly concave, the ventral margin is weakly convex; it has well pointed comers, both anteriorly and posteriorly. Seen from beneath it is somewhat soleshaped anteriorly, flattened and with its anterior edge rounded; posteriorly it is narrow, lamelliform. Along the anterior elge and the larger part of the ventral edge it has aboudant bristles.

Seventh limb: - This is moderately long; its distal part is considerably widened. It has a comparatively large number of cleaning bristles, two or three of which are often situated near one another on the same side of the same ring. Distally it has four end combs, arranged in pairs, of which the two that belong to the one pair are situated dorsally and ventrally respectively of the other pair.

Furea: - The lamellace are short; their breadth is somewhat greater than their longth. Each lamella is armed with about eight to ten slender claws, finely curved ventrally. (If theses the anterior ones are relatively long, the others either decrease uniformly in length posteriorly, so that there is no distinct division into main claws and secondary chaws to be observed, or else a few of the posterior claws are typical secondary claws. At the base of some of the middle claws there issues a rather powerful and moderately long bristle. Behind the claws there we abundant moderately long, stifi hairs.

Remarks: - The species of this genus that have been dealt with so far in the literature are unfortunately very incompletely described. It was therefore impossible to carry out a
 What at mather of the chataters that are indeded in the deseription of the specins givern below are characters of the gentus as well.
 ahom it see atheses. 1 . $1+1$ under the remark on the family Asteropidae.

Cyclasterope fascigera G. S. Brady.

('yclesterope fuscigera, (i. S. Brabr, 1902in. p. 181, pl. XX1, figs. 20-31. Anterope .. (i. II. MCLLRR. 1912,]. 44.

Description: - Cf. (i, S. Brimbs, loc. cit.
Ilale: -
shell:-1, $1.5: 1$. Seen from the side (fig. 1) it is rather clongated, sub-ovate, with the posterior part somewhat larger than the anterior part and the greatest height just behind the middle. The dorsal and ventral margins have about the same shape; they are moderately and somewhat irregularly curved and somewhat flattened anteriorly. They pass without any comers into the boldly and uniformly rounded anterior margin. The latter has about the same shape on both the valves and is not unsymmetrical, as G. G. BRany has represented it in pl. XXI, fig. 20. The rostral incisur is situated at about half the height of the shell; the ventral corner of the rostrum is almust rectangukar, not at all or very slightly rounded. The posterior margin of the shell forms somewhat dorsally of half the height of the shell, a rather sharply marked corner, which forms an obtuse angle and is only weakly rounded; it is uncertain whether this is found on both valves, as this part of the right valve was somewhat damaged in the only speeimen that was at my disposal. Both dorsally and ventrally of this corner the posterior margin of the shell is almost straight; it is bounded from the ventral margin by a weak, broadly rounded, searcely perceptible corner or it passes evenly into it; its passage into the dorsal margin is marked by a slight sinmation. „Seen from above the outline is elliptical, with broad, slightly rounded or subtruncate extremities; lateral margins gently and evenly arcuate, greatest width situated in the middle: (6 . S. Bradry. p. 181, pl. XXI, fig. 2l). The surface of the shell is almost quite smooth, with only small, rounded. shallow foveolae, chiefly situated on the anterior part of the shell. There are searely any bistles. The wreath of hair round the posterior part of the shell is dense; these hairs are comparatively long and coarse. Seen from within (fig. '2): Right valve: The ventral lip of the incisur forms a heel-shaped part, which projects rather decidedly and is cut off obliquely dorsally. The antero-ventral part of the rostrum also projects like a heel. Somewhat inside and running about parallel to the anterior part of the dorsal and the dorsal part of the anterior margin of the shell there is a dense series of very small, rounded and strongly refractive formations resembling a string of pearls.

 first antema seen from inside; all thr lome brislles are loroken; 分
 Ementioned sting of peats a distinet and dense row of fine, comparatively short bristles rans bheng the anterior part of the dorsal margin of the sholl. Somewhat inside and about parallel (1) this row of hrisths amother rew of hristhes rums comtiming down towards the point of the
 this row of hristles is partly mather sparse and also tess distinct ventrally; its dorsal bristles are rather shon and the its vental bristhes somewhat longer and more powerlat. Basally on the muside of the solvage a sertes of comparatively long and powerful bristles issues along the anterion and bentral margins of the rostrm: this row of bistles is rather dense, even very dense along the bentral margin of the rustmm. Besides the bristles so far mentioned there are seattered on the rostmm abmant more or less long and powerful bristles. Basally on the outside of the -dxage a maticely dense series of comparatively fong and powerful bristles issues along the whole rentral margin of the shell from the incisur to a short distance behind the wreath of hairs ronnd the posterior part of the shell; this row of hairs continues on the ventral lip of the incisur (i) the outside of the , hect". From the incisur to about a third or a hatl of the distance along the shell the part between the bistles in this series bends outwards into a semi-cirele; posteriorly, on the other hand. there is no such undulation. (on the list there is a rather dense series of bristles varying in length along the whole ventral margin of the shell; akong the posterior margin of the shell the list is armed not only with bustlos but also with a mumber of hyaline spines (this part of the list was rery defective in the specimen I investigated). On the part between the list and the margin of the shell there seems to be a scries of comparatively short bristles inside the rentral part of the posterior margin of the shell. Apart from this there seem to be scarcely any bristles here at all. The selvage is well developed along the whole of the anterior and ventral margins of the shell; it is moderately wide, has a smooth margin and is partly finely striated. The list is narrow along the ventral margin of the shell, somewhat wideralong the posterior margin. For the fixing spots of the shell muscle sce fig. 3. The left valve differs from the right in the following respects: The ,string of pearls" inside the anterior part of the dorsal and the dorsal part of the anterior margin of the shell is absent. The semi-circular convexities between the anterior bristles in the series withim the ventral margin of the shell are absent or are very weakly developed. On the part between the list and the margin of the shell there are a moderate number of fine bristles, varying in length, scattered along the ventral side of the shell. Inside the anterior part of the dorsal margin of the shell the selvage is split up into fine hairs at the margin.

First antenna: - This is rather long and slender, but powerful. It has six joints, the thirl and the fourth joints are free the original sixth. seventh and eighth joints, (on the other hand, are united, although the original boundaries between them can still be partly traced and on the lateral side the boundary between the sixth and seventh joints is even partly fairly well developet. The three muscles that move the seventh joint in the gemus Asterope are well developed in this form as well and are attached posterionly about half way along the definitive sixth joint on a common thickening of the chitinous wall. The relative length of the joints is shown by the following figures:

$$
\mathrm{I}_{31}^{32} ; \mathrm{IH}_{20}^{30} ; \mathrm{III}_{3}^{11} ; \mathrm{I}_{8}^{8} ; \mathrm{V}_{4}^{7} ; \mathrm{II}^{(\text {(orig.) }}{ }_{6}^{4}: \text { VII (orig.) }{ }_{3}^{2} .
$$

Hong the distal half of the anterior edge of the second joint there is a series of seven moderately long bristles of somewhat different lengths, the proximal one rather short, all fumished ventrally with rather long, stiff secondary bristles arranged in two rows and with short hairs distally. Laterally this joint has three rather short, short-haired bristles near the distal boundary. 'Third joint: Along the anterior edge there are twelve bristles, five of which are attached along the boundary of the fourth joint. Of the five distal of these bristles the one situated most medially is relatively short, only about as long as the anterior edge of the fourth joint; the one situated most laterally is very long, about as long as or somewhat longer than the total length of the four (definitive) distal joints; the other three are rather considerably shorter than the last-mentioned one and decrease somewhat in length the more medially they are situated. The bristles situated proximally of these five are of moderate and somewhat different lengths. The two medial of the five distal of these bristles are furmished with comparatively short hairs, all the others are provided with a larger or smaller number of more or less powerful secondary bristles, in most cases arranged in two rows on the ventral side of the bristles; these bristles have most frequently fine, short hairs distally. Posteriorly this joint has a single moderately long bristle with short, fine hairs. Fourth joint: This has a single bristle antero-distally which is somewhat shorter than the total leng th of the two (definitive) distal joints and is provided with long, suft secondary bristles arranged on all sides, and is furnished with short hairs distally. Posteriorly this joint has five bristles distally, which increase somewhat in length the more laterally they are placed; the medial one is relatively short, not quite so long as the back edge of this joint, the lateral one is somewhat longer than the total length of the four (definitive) distal joints. The medial one of these bristles has short hairs, the others are rather abundantly supplied with soft, rather long secondary bristles along the greater part of their length. Sensory bristle of the fifth joint: This has a very powerfully developed stem, which is about as long as the posterior edge of the third to the sixth (definitive) joints. Distally it is rounded and has there about fifteen (the number was not quite certain, as the specimen was defective) sensorial filaments of about the same type; these are about half the length of the stem and are rounded distally and there provided with a short, fine sensorial hair. The accessory sensorial filaments are exceedingly mumerous, somewhat narmwer than the distal ones but of about the same length as these, and are arranged in abont sixty more or less distinct transverse rows. The bristle of the original sixth joint is about as long as the posterior edge of the sixth definitive joint, with long, soft secondary bristles; it has short hairs distally. Original seventh and eighth joints: The a-claw is about as long as or somewhat shorter than the anterior side of the fifth and sixth (definitive) joints, is relatively narrow, and of almost uniform thickness along the greater part of its length, straight, directed ventrally and pointed distally; it is bare and only slightly annulated. The b-bristle is rather long, but considerably shorter than the e- and f-bristles (broken on both antemae); it has very numerous sensorial filaments. The c- and f-filaments are subequal, somewhat longer than the length of the sholl, the lengths measured being $6,8-7 \mathrm{~mm}$; they have numerous semsorial filaments, $48-49$ being observed on the c-bristle, $55-56$ on the f-bristle. The cl- and e-bristles issue, as in the males of Asterope, on a verruciform protuberance (ef. fig. 8 of A. noreegica), penetrate between the e- and g-bristles and are held medially; they are not quite as long as
the four (deftimixe) distal joints, the d-bristhe is semmewht theler and slighty longer that the e-bristle: proximally they, like the other distal bristles, are mother strongly ammated, distally they are dinely and chasely ammated, almest hyatine. The gr-bristle is not guite solong as the anterior sides of the seoond and thirl joints: it is furnished with twenty sensorial filaments. The semsorial filaments on the b-a co. f- and g-hristles are ammated proximally and almest healine distally: they are bate and end distally in a short, fine semsorial hair; on the b-, c - and Er-bristles they are situated on the anturior side of the bristle, on the f-hristle on the posterior side, i. ․ in the same way as in Asterope. D'ilosity: The first joint is almost bare the second joint has very abmedant short. fine hairs on the medial side; otherwise it is bare.
seeond antenna: - The exopodite (fig. S) is somewhat, shorter than the protopoclite. The proportion between the joints is about as follows:

$$
1: 11: 111: 1 \^{\top}: \Upsilon: 11: \ 11: \backslash 111: 1 \Lambda=39: 7: 3: 2: 2: 2: 2: 2: 2 .
$$

In wher words the first joint is considerably longer than the total length of all the following joints: the second joint is about as long as the two or three following joints. The second to the eighth joints have subequal and powerful natatory bristles, which are about as long as the exopodite or somewhat longer and are furnished along their whole length with comparatively long and broad natatory hairs situated very close together but have no spines at all. Distally these bristles are lyaline and end in a short, fine sensorial hair. The ninth joint has four such natatory bristles. of which the three situated ventrally are about as long as the natatory bristles on the preceding joints, the dorsal one is considerably shorter, being about as long as the total length of the eight distal joints. In addition this joint has medially a relatively short bristle which is only as long as the total length of the four or five distal joints; it too is provided along its whole length with long, powerful natatory hairs situated close together. The second to the ninth joints have basal spines; these are comparatively narrow, the one on the eighth joint being the longest, somewhat longer than the end joint; the rest decrease somewhat in length and strength the more proximally they are attached, the one on the second joint being very small and weak; the basal spine of the end joint is somewhat shorter and weaker than that of the eighth joint. The second to the ejghth joints have medio-dorsally a mass of long, soft hairs distally; these are about as long as or somewhat longer than the joint that follows the one to which they are attached (only indicated in the figure). Latero-distally these joints have, in addition, a series of short, fine hairs. The first joint has also some groups of hairs distally. Endopodite: The three joints are all elongated and powerful, the distal one being rather slightly shorter than the second joint (fig. 9). Tentrally on the first joint there are a moderate number of moderately long or rather short bristles, which are finely annulated, rounded distally and end in a short, fine sensorial hair; on the second antenna of the right side there were five such bristles proximally and a series of four along the middle of the joint, on the left antenna the corresponding numbers were six and five (the number was, however, somewhat uneertain, one or more being possibly broken off). The second joint has a rather deep furrow ventrally, against which the end joint is folded back. At about two-thirds of the way along this joint there is ventrally a group of eleven or twelve moderately long bristles varying somewhat in length (the longest in the

 hristles on the auterion edge of the senond embondite juint arm drawn: all the cleaning liristles of this joint are omitterl: if $2 \times$. 6. Endite on the basale of this limb: $256 \times$. 7 . The two dictal embundite juints of this limbsen from insile: all tlu long lnisthes nre lmokn! : 200 X.
atjoinmy figure are brokent: these bristles ate of the same type as these on the first joint. 'The rad joint is rather broad proximally and grows miformly and gently narrower distally. Along the distal half on the inner side (the dorsal side) it is ,.more or less distinctly cross-furmwed". Its proximal basal briste is abont half as long as the joint or somewhat longer. This bristle is of about miform thickness, distally romeded: its proximal part is fimely ammated, its distal part hyaline. II andihla (figs. $5-7$): - The proportion between the joints is about as follows:

$$
\text { | Pr. }{ }_{21}^{23} ; \text { II Pr. }{ }_{25}^{20} \text {; I End. }{ }_{15}^{15} \text {; } 11 \text { End. } \frac{13}{110} \text {; III End. } \frac{2}{2} \text {. }
$$

Protopodite: Basale: Along the dorsal side of the backward pointing process there are about $20-30$ bristles (the exact number could not be ascertained with certainty because the bristles on the proximal part of the process were defective). Most of these bristles are sub)rqual and of moderate length and strength; one of those situated distally is about twiee as long as the others and is considerably stronger than these; they are all bare or only rather weakly peetinated. Along the ventral side of this joint there are a rather large number of bristles: At about two thirds of the way along the joint there is a group of three rather long bristles, the longest of which is about as long as the height of this joint. Behind this group there is a serics of about seven to ten subequal bristles, which are somewhat weaker than the three former ones and only about as long as half the height of the joint. Of these latter the anterior ones, like the three former ones, have long, stiff secondary bristles at the middle and have short hairs or are almost bare distally; the posterior ones have short hairs. In addition to these bristles there are ventrally a number of more or less short, bare or almost bare bristles; the number of these is not known on account of the defeetiveness of the specimen investigated (a number are dram in the adjoining figure, some are only indicated by marking the places where they are attached). Dorsally this joint has at the middle a series of ten bristles of different lengths, some of them long, about as long as the dorsal side of this joint or even somewhat longer, the shortest only about a fifth or a sixth of this length. The shorter ones of these bristles have short hairs, the long ones have long, stiff secondary bristles at the middle and lave exceedingly fine short hairs or are bare distally. This joint has also two dorso-distal bristles of somewhat different lengths; they are of about the same type as the long dorsal bristles, but somewhat longer. Exopodite: This is about as long as the first endopodite joint. Its two bristles differ somewhat in length, the longest is only about half the length of the exopodite; they are short, have fine hairs or are almost bare. En do podite: First joint: Ventrally this has a group of three bristles of about the same length and type as the dorso-distal bristles on the serond protopodite joint (corresponding to the three similarly placed bristles in the genus Asterope?). Close to and in front of this group there is a row of nine considerably weaker and shorter bristles; these are of different lengths, the longest being about as long as or somewhat longer than this joint, the shortest only about half as long; all these bristles have short hairs except one or a few of the posterior ones, which have long, stiff secondarybristles at the middle. Second joint: On the anterior edge there are exceedingly numerous powerful bristles of different lengths; it is impossible to establish the exact number of these because it is so large and because they are situated so densely. The proximal of these bristles are on the average rather considerably
shorter than the distal ones; the shorter ones among the former are only about half as long as this joint, the longest among the latter being almost as long as the total length of the first and second endopodite joints. The proximal ones have short hairs or are almost bare, the distal ones have moderately long, stiff secondary bristles. The numerons medial cleaning bristles are moderately long, subequal, finely pectinated or almost bare, arranged in about cleven or twelve transversal rows. Postero-distally on this joint there are eight bristles, two of which are situated somewhat distally of the other six; they differ somewhat in length, the longest are somewhat longer than the first endopodite joint; they all have short hairs. (Are the two distal ones of these bristles homologous with the two distal ones in the genus Asterope?) The end joint has five bristles. Three of these are subequal and comparatively powerful and long, about as long as the total length of the first and second endopodite joints, almost bare, with only sparse short hairs. One, situated between the two anterior of three former ones, is only slightly shorter than these, but considerably weaker; it has short hairs. The remaining one, situated behind the others, is of the same type as the last-mentioned one, but somewhat shorter. Pilosity: Basale: On the medial side there are rather abundant groups of moderately long, stiff hairs.

Maxilla (fig. 10): - Protopodite: Basale: Dorso-distally, a short distance from the boundary of the endopolite, this joint has a group of three long, powerful, bare bristles differing somewhat in length; the longest is almost twice as long as the endopodite. Proximally, close to these bristles, there is a very short and weak bristle and a short distance proximally of this another similar one. Distally of the three long bristles and on the inside of the joint, along the boundary of the endopodite, there is a series of cight more or less short, weak bristles. Ventero-distally there is a group of three relatively weak bristles on this joint, one of which is about as long as the height of this joint, the two others about half as long (= exopodite \%). Endopodite: First joint: Along the anterior side there is a series of four short bristles; the distal one is longest, the others shorter the more proximally they are placed. These bristles, like the short bristles of the basale, are bare or furnished with exceedingly fine, short hairs ant end distally in a short, fine hair. Postero-distally this joint has a single bristle, which is about as long as the endopodite. The end joint has six rather long bristles fliffering somewhat in length; the longest is about the same length as the postero-distal bristle of the first endopodit: joint. These bristles, like the postero-distal bristle of the first endopodite joint, have shat hairs. Pilosity: The basale and the first endopodite joint are furnished on the inside with abuutant groups of moderately long, stiff hairs.

Fifth limb: - Comb (fig. L1): The dorsal edge forms, somewhat in fromt of the middle, a process that points somewhat forward and is remuded distally. On this process and along the proxinal half of the dorsal efge of the comb there is a series of shert, finely amulated bristles ending distally in a short, fine hair; seven of these bristles were observed on the right fifth limb, nine on the left. Of the bristles along the ventral eflge of the comb those that are situated near the anterior point of the comb are on an average somewhat shorter than the rest. The remains of the distal exopodite joints are not distinctly define as a verruca. They have two rather long, subequal bristles, the points of whith do not reach the distal

Digitized by Microsoft (®)
ender of the eomb; one of these bristles, sitmated somewhat distally of the other, has abong its whole length long hairs situated elose together and arranged in the shape of a feather, the other is also provided with similar hairs, but theso are somewhat more sparse. Ventrally near these two brishes there are four short, weak, bare or abost bare bristles arranged in pairs and ventrally of these near the ventral edge of the comb, there are two groups of weak, moderately

Fig. CIIII. - Cyclasterope fascigera G. S. Brads. j - - W. Wistal part of the exoputite pof the left second antenna seen frum outside; all the long hristles are toroken; lof y. 9. Endopodite of the lelt second antenna seen from inside: $-6 \times$. 10. Hight maxilla seen from insile; $96 \times$. 11 . The comb of the right ilifth limb seen from outside; $122 \times$.
long or short, bare or phmous bristles; in one of these groups, the proximal one, three bristles were observed and four in the other. A weak chitinons list runs from the posterior dorsal comer of the comb to these groups of bristles. The epipodial appendage is somewhat earshaped, but perhaps not quite so marked as in the genus Asterope; its marginal bristles are of the same type as in this genus.

Sixth limb (fig. 12): - The bristles along the dorsal two-thirds of the anterior edge of this limb are arranged in three rather distinct rows, which are about parallel to each other; the following numbers were observed in the specimen that was investigated: 33 bristles in the outer

row both on the right and left limb, 25-27 in the middle row and $27-30$ bristles in the inner row; in addition there were two or three bristles dorsally inside the inner row. Nost of these bristles are moderately long, some rather short; all or at least the great majority of them are finely plumous. Along the ventral third of the anterior edge of this limb there is only one row of such bristles; this row continues ventrally out on the lateral side of the anterior sole-shaped part of the limb; 25-30 bristles were observed in this row; its dorsal bristles are somewhat shorter than the ventral ones. Along the anterior three quarters of the ventral edge of this limb there are about $80-90$ bristles situated irregutarly close together; of these those situated laterally are comparatively long, the medial ones more or less short. Some of the long ones have long, stiff secondary bristles at the middle and short hairs distatly; others, like the shorter

Digitized by Microsoft ${ }^{(B)}$

Wristes，have short hairs，Jong the posterior quater of the ventral edge of this limb there are mon hristles at all．Ahog the ventral thiral of the pesterior edge of the limb there is a sories of five rather long bristles with kong，soft hairs．At the middle of the posterion edge of this limb there is a gromp of nine shome bate or atmest bare bristles（ - the ＂pipodial plat a？）．Pilosity：This limb is partly demsely fumished with hairs both （on the mediat and the lateral side．

Aどく口th limb（fig．13）：－Amost every ring on the distal part of the limb has deaning bristles both dorsally and rentrally．The speemen investigated by me had on this limh of one side 60 bristles on one edge and 63 on the other．Proximally there was in most eases colly one cleaning bristle on the same side of the same ring，distally two or three in most eases． The chaming bristles are moderately long or rather short；when two or thee are fond chose to each other on the same ring，one is often moderately long and one or two relatively short． tach eleaning bristle has from one to eight bells which are eut off transversally distally；the longer cleaning bristles usually have more than the shorter ones；the tonge of the distal bell is moderately long and is cut off rather transversally distally．Proximally of the bells the eleaning bristles are bare．Each comb of the outer pair consists of about $10--14$ teeth，all of the same type． These are armed at the middle with rather short secondary spines arranged in two rows；they are somewhat spade－shaped distally，with rounded point and even edye，ef．fig．14．The number of teeth in the inner pair of combs could not be ascertained with certainty（it is presumably about the same as is shown in the adjoining figure），nor their type（as this organ was very dirty in the specimen that was investigated）．

Furea（fig．15）：－This has ten claws．On the lamella of the right side these decreased fairly uniformly in length the more posteriorly they were placed；no distinct division into main chaws and secondary claws could be observed；on the other lamella the four posterior claws were to be denoted as secondary claws．The anterior claws are armed ventrally along the greater part of their length with rather powerful，simple，pointed secondary teeth arranged in two rows； some of these spines are ，arranged in sequences，one large one and one small one alternately＂ （（i．S．Brady， $1902 \mathrm{a}, \mathrm{p} .182$ ），but the difference in size is，however，rather slight，and others are of the same strength and size．On the claws situated farther back there is the same armature，but the teeth become weaker and weaker the farther back the claws are situated，those situated farthest back having only a fine pectination．Most of the more powerful claws have， in addition，more or less short，stiff hairs dorsally．At the base of the first and second claws there is a group of short，stiff hairs on the inside．Proximally anteriorly－laterally at the fourth to the seventh claws there is a powerful short－haired bristle，which is about a third or a half of the length of the claw．
lledian eye and rod－shapedorgan（fig．16）：－These are well developed．The former is bare．The rod－shaped organ is rather long and points upwards．It has two joints， the boundary of the joints being somewhat proximal of half the length；the distal joint is bottle－ shaped，its proximal part being somewhat swollen，its distal part narrowing rather decidedly and its point rounded．

The lateral eyes are well developed．

Fig. (id. - Cychasterape fascigere (i. S. Braby, 3 . - 13. soventh limh; so \times. 1i. Tooth of ont of the two outer
 rot-stated organ: sh \because.
 "hode lemgth: they are somewhat rommed distally:

Remark: -- The re-deseription of this species given abowe is hased on a single epectimen Which was kimdly paced at my disposal for reeximmation by the C'operhagen \%oolo-

 meneret, the the specimen was met dissected, and the original deseription was made from a dissented specmon. On the other hand there seems to be no doubt that the specimen really behongs to the species to which it has been ascribed.

In seberal respects the specimen was not in a very good condition for the description
Ine mpleteness of the above deseriptun. of details: in addition some parts of it happened to be destroyed by an aecident when it was dissected. Because of this the description given above had to br left ineomplete in several points. ln spite of this I hope it is complete enongh to permit of certainty in identifying the species.
fome divergencies from G. S. Bandy's original description may be noted, but for these it is only neeessary to compare the two descriptions. These differences are probably to be explained ats due entirely to the superficial method of investigation used in the original deseription.
(i. S. Brady states that this species was caught at two localities in Java ,,Sourabaya, several specimens, 0^{*}; Cheribon, $4 \frac{1}{2}$ fathoms, one specimen, $0^{* 6}$. In addition one specimen, a male. is said to have been caught at Madeira. This last statement as to locality is certainly a mistake. It undoubtedly refers to the specimen described by me above. On the original label attached to this we read: "Madoura, oens ostente, Andrea, 1870". In other words the specimen comes from the east end of the island of Madoera (Madura) on the north side of Java. near Sumbaya, i. c. from a locality in the neighbourhond of the two other localities.

Distribution:- J a v a.
Type specimen of the re-deseription on slides in the collections of the K. \%. II.

Sub-Order II. Halocypriformes.

Gen. Conchoecia, J. D. DANA, 1849, p. 51.
Sub-Fam. Halocyprinae, J. J). Dand, 1852, p. 1281.
Fam. Conchoeciadae, (ł. O. Sars, 1865, p. 114.
., ,der Conehoeeiaden oder Haloeypriden", ('. C'lats, 1874 b, p. 7.
.. Conchoeciidae, (.. O. Sı上s, 1887, p. 64 (236).
.. Hulocypridae, C. ('Lats, 1888, p. 152.
.. ., G. IV. Méleek, 1894, p. 221.
. \quad (G. S. Bridy and A. M. Nomman, 1896, p. 689.
., .. (\%. W. Meller, 1912, p. 53.

Diagnosis: - This sub-order comprises only a single family, the family Hulocypridue. For the diagnosis of the sub-order I refer the reader to the diagnosis of this family given below.

Family Halocypridae.

Symonyms: - Fore sub-order Halorypriformes.
Iiagnosis: - Shell: - There is in most cases a distinetly developed rostral incisur on the anterior edge. The dorsal margin is more or less straight, the ventral margin is in most eases more or less convex or straight, less often slightly concave. The posterior part of the shell is not siphon-shaped, the posterior margins of the two valves are, on the contrary, here sitmated close to or almost close to each other when the shell is closed. The valves are joined along less than half the periphery; the joined edges of the hinge never have any teeth. Within the free margin there is in most cases a very small number (sometimes peen none of alnost none) of medial bristles. There is only slight calcification (the preserved material is most Prequently soft because of the more or less complete solution of the lime). Moderately large or rather small forms.
 daan six dearly distime juints. In wher resperes its type varies considerably.
 of the upper lip, issues from a rather mame hase and is very moveably joined to the borly. It is large relatively high, pear-shaped. in most eases somewhat more chomated than in the ('ypridiniformess, somewhat thatened at the sides, with very powerful musculature, minointed, whont any evident these of the bomdary between the original joints and always without bristles*. Ex "podita: This is very moseably joined to the protopotite, with which, when at rest, it forms a distinct rentrally open linee. It is developed into a powerful, elongated, (alway:?) nine-jointed locomotory organ, used in swimming. (All the species of this gronp that were insestigated by me had comstantly nime joints, but, according to (i. W. Metable, this branch has only cight joints in the genus Thammatocypris; cf. the remark on this sub-family (on p . 5 st below.) Its first joint is always elongated and in most eases of about equal thickness along its whole lengti: most frequently it does not form disto-laterally a ratchet of the type characteristic for the C'ypridiniformes. This joint is never armed with long natatory bristles. The eight following joints, of which the seven distal ones at least are short, become more and more narrow the more distally they are situated; the one next to the distal one is sometimes very small, even rather difficult to observe. Wach of these eight joints are furnished disto-ventrally, somewhat medially, witl a long and powerful natatory bristle. These bristles are annulated along the greater part of their length and are armed - also along the greater part of their length - with moderately broad natatory hairs, arranged in the shape of a feather. The end joint has a somewhat larger mmber (two or three were observed) of bristles; the ventral one of these is always a long natatory bristle, but usually somewhat shorter and weaker than those on the preceding joints; the other (or the others) are somewhat (more or less) shorter and weaker than the rentral one. All the bristles on this branch are without spines. Along the distal edge of a larger or smaller number of the second to the eight joints there is often a series of more or less weak spines; as I fonnd this character varying rather considerably, I thought it best not to include it in the following descriptions. Basal spines in the sense in which this term is 11sed by me in the group ('ypridiniformes always seem to be absent in the Halocypriformes. The endopodite is always shorter than the exoporlite, but is always well developed. It has newer more than three joints; otherwise it varies in type. It is used only in exceptional cases as a locomotory (natatory) organ.

Mandible: - This is always powerful and clongated, and is chiefly used for holding the food fast and for mastication (also a climbing organ?). Protopodite: This is always two-jointed. The coxale, which is fixed obliquely forwards and downwards on the side of the body just behind the second antenna, is very powerful, strongly chitinized and very short and high; it consists of a rather narrow wedge-shaped dorsal insertion part, which forms the place of attachment for a number of very powerful muscles, and a particularly powerful ventral
 of Conchoecia and Halocypris. In addition (f. S. Braty (1880 , pl. XL, fig. J) draws two long bristles at about the
 due 10 mistakes on the part of theo writers.

Digitized by Microsoft ${ }^{\circledR}$

masticatory process, the pars incisiva. The latter part, which is in most cases bounded off from the dorsal insertion part by a slight contraction, is bent somewhat inwards, so that these processes on the right and the left mandibles are sitnated about opposite and rather near to each other, close to the mouth when these limbs are in a position of rest. The basale. which is rather moveably united to the coxale, is always large and powerful, rather elongated and, like the fothowing joints, strongly compressed from the sides. Proximo-ventrally it is drawn out into a very powerful, broad, flattened masticatory process, which is cut off transversally distally and which covers the pars incisiva on the coxale from ontside almost like a shovel. The distal edge of this masticatory process, which extends in most cases a short distance beyond the pars incisiva on the coxale, is armed with a row of teeth. (As ($. ~ O . ~ S A R S ~ p o i n t e d ~ o u t ~ i n ~ h i s ~ w o r k ~ o f ~ 1887, ~$ p. 74 , the masticatory process on the basale seems to have the same function as the cutting part on the mandible in many other C'rustacen, while the pars incisiva on the coxale serves as a sort of tuberculum molare to break up the food more finely. The latter process seems, however, also to serve partly as a cutting organ.) For the relation of the position of the masticatory processes on the coxale and basate to the atrimm see (4 . W. MULLER, 1894, p. 48. pl. 1, fig. 19, pl. 40. fig. 66. An epipodial appendage is developed fairly often; it is moderately large or else small. with only one or two bristles (it never functions as a vibratory plate?); it is always situated on the medial side of the basale, more or less proximally on the joint. The exopodite is sometimes represented by a small, verrnciform, unjointed process with or without a single plumous bristle or else only by a single plumous bristle. It is situated dorso-distally on the basale, most frequently somewhat medially and somewhat proximally of the distal boundary of this joint. It never seems to be quite absent. It does not contain the exits of any glands (as in the Cypridiniformes) and nover seems to serve as a vibratory plate. The endopodite is always powerful and three-jointed, and forms a distinct, ventrally upen knee together with the protopodite.

Ilaxilla: - This varies rather slightly in this group. It is developed as a masticatory organ, comparatively short and powerful and with a powerfnl musculature. It consists of a three-jointed protopodite and a two-jointed andopodite; the exopodite and the epipodial appendage are always quite absent. Wheu in a position of rest this limb is situated as follows: The protopodite points forward and somewhat outward, the first joint of the endopodite points rather decidedly downward. there is a bend chiefty between the coxale and the basale; the first endopodite joint is twisted so that its greatest breadth almost concides with the longitutinal axis of the body; the end joint points backward and downward or ahmost straight batkward. Protopodite: This is comparatively short and thick. Its three joints are always well defined and are movably joined to on another; the basale is moveably joined to the endopodite (both the coxale and the basale as well as the first endopodite joint are moved by special muscles). The procoxale and the coxale are comparatively large and powerfut, the former being in most cases somewhat larger and stronger than the latter; the basale is rather considerably smaller than the procoxate and is moderately strong. The procoxale and the coxale are each armed with an entite. These endites are rather large and powerful, immoveably joined to these joints, flattened and armed

Digitized by Microsoft ${ }^{\circledR}$

distally with stmog hristles: hay are sitmated almost at right angles to each other, the first
 forward and emward, baclwated and inward: thir melate positions and orientation in relation 10 the emdopedito will be best send from the adjoining diagram, fig. ('XI, representing a horizontal se ep ion thromgh the left maxila. The endite on the coxale is met ineonsiderably largen than the one on the prowexale and is weakly bifureated distally. (This

J゙ig. Ci.l. - Horizuntal sertion through a mavillat of a form brlouging in the fanily Ialocypridae: "lisgrammatio. bifureation has heen taken by several ol the preceding writers as as sign that this endite has arisen from the junction of two. It is difficult to docidn how far this assmontion is justified: there are mo transitional forms; the assumption, which is obvionsly based on the fact that in the C'ypridiniformes this limb has in most cases three endites on these two joints, seems to me, however, not improbable.)* The basale has no trace of any endite. Endopodite: The first joint is comparatively large and powerful, moderately long but broad and rather considerably compressed at the sides. The end joint is rather small, moderately strong and varies somewhat in shape.

For the differences between preceding writers' ideas about the various parts of this limb and that given above see p. 34 above.
Fifth limb: - This varies rather slightly within this group. It seems to serve chiefly as an organ for holding the food fast during mastication and for carrying the food to the mouth, and perhaps as a masticatory organ, too; in addition it also seems to serve as a climbing organ. It is situated on the side of the body just behind the maxilla, at the boundary between the hypostome and the anterior part of the body. It is always rather large and has comparatively powerful mosculature. It consists of a ventrally pointing protopodite, which is rather voluminous. comparatively elongated, unjointed or in exceptional cases more or less indistinctly two-jointed. and which is not or only rather slightly larger than the exopodite, a moderately large epipodial appendage developed as a vibratory plate, a very short, but rather powerful, unjointed** endopodite, pointing forward and inward and developed anteriorly as a powerful endite and a rather large and elongated backward pointing exopodite with three or four joints.*** Protopodite: In those cases in which this has two joints the boundary between the two joints is often rather weakly developed and diffieult to distinguish with certainty; the proximal joint seems to correspond to the coxale or possibly the procoxale + the coxale, the distal joint to the basale. The proximal part, the coxale in the forms that have a two-jointed protopodite, is rather closely joined medially to the body and has no bristles at all. The distal part, the basale

[^79]in the forms with two protopodite joints, is usually somewhat smallor than the part that corresponds to the coxale and has disto-anteriorly remains of endites, whech are armed with a few bristles. Apart from these this joint is duite without bristles. The epipodial plate is elliptically oblong, situated vertically on the part of the protopodite that has been assumed above to be homologous with the coxale, and is joined to this throughout its length; along the posterior edge it has a moderate number of marginal bristles, arranged in three groups which are in most cases clearly distinct. These bristles are furnished along the greater part of their length with moderately long, fine, stiff hairs, placed close together and arranget in the form of a feather. The endopodite, which is moved by special muscles and projects rather far in between the protopodite and the exopodite, is armed with a rather large number of bristles. The a xopodite is rather thick proximally and grows rather rapidly and miformly thimer distally: Its end joint, armed with three bristles, is always very small.

See p. 46 above for the difference between the ideas of previous writers as to the morphological value of the various parts of this limb and the ideas about this problem that are expressed in the description given above.

Sixth limb: - This limb, ton, is subject only to rather slight variation within this group. In the females it seems to serve chicfly as a climbing organ, in the males often as an auxiliary organ in swimming, but in some cases. in the males of the genera Archiconchoeciu and Halocypris, genera which show only rather slight or no dimorphism in this limb, it is, as in the females, chiefly a climbing organ; on the other hand it never seems, either in males or females, to be used in mastication or taking up food. It is situated on the side of the body, just behind the fifth limb. It is always rather large and has well-developed musculature; it is always stronger and larger in the male than in the female. It is constructed according to the same type as the fifth limb, consisting of a voluminous, rather elongated, ventrally pointing protopodite, which is sometimes more or less distinctly two-jointed, but in most cases unjointed, and which is always somewhat shorter than the exopodite, a moderately large epipodial appendage that is developed as a vibratory plate, a very short, unjointed endopodite (sometimes not bounded off from the protopodite and then not possible to establish) and a four-jointed, backward or backward-upward pointing exopodite, which is in most cases somewhat more elongated in the males than in the females. Protopodita: This is of quite the same type as the one on the fifth limb; like the latter, it is closely joined to the body proximomedially, but it is quite without any trace of endites. The epipodial appendage has about the same size, type and position as this organ on the fifth limb; it differs from this chiefly by the number of the bristles. The endopodite projects somewhat farther in between the protopodite and the exopodite than on the fifth limb; its muscles are very much retheed or are even quite absent; it has only a very small number of bristles. As in the ease of the preceding limb the exopodite is rather thick proximally, and grows rather raphlly and miformly thinner distally. Its end joint, amed with three bristles, is always small.

For the differences in the ideas about the different parts of this limb hold by previous writers and those put forward in the present work sece p. 5 a above. the chapter on the general morphelogy of the limbs.

 organ. like the chaning limh in the Cypridemformes it is placed farly high up on the side wifle bedy, sumewhat behind the sinh limb. When in a pesition of rest it peints in most cases whiguely uphateds and hatkwards. It is very small and consists of guite a short, two-jointed (1) unjointed stom. Which grows somewhat natower distally and is fumished with simple, moderately strons musculature. (The guestion of the morphological value of this stem seems al present impossible to decide with certanty: does it correspond to the protopodite the exopertite or only to the exopodite? Sere p . 50 above. The latter altemative seems most probable to me.) The epipodial appendage and the endopodite are quite absent. The proximal joint, which is somewhat elongated, is quite without bristles. The end joint is short and has two well-developed distal* bristles.

The brush-shaped organ is quite absent.
F If rea:- This is always well developed, rather large and powerfil with short, broad lamelliform rami, armed with a varying number of elaws: from two to eight were observed.

The heart is always developed?
Sensoryorgans - Quiteblind forms**; no traces of either lateral eyes or a Naplius eye, have hitherto been found. (G. O. S.me pointed ont in his work of 1865, pp. 116-117, the following facts: ..In basi vero antennarum superiorum corpusenla adsunt pluria lentiformia, irregulariter acervatis sed semper in stratu distincte nervoso collocata pigmento vero mullo circumdata, guat organa 'quamquam imperfecta visus esse videntur." In this writer's work of 1887 , p. 70 , ton. the vecurrence of similar bodies is pointed out ,en Del eiendommelige lindseagtige Legemer, der maaske tor ansees for et Shags ufuldiomme Synsapparater"*** in the proximal part of the first antenna in a comple of the Seandinavian species of the genus Conchoccio. This observation is repeated by (i.s. BRaDs and A. M. Nomman, 1896, p. 685; they point ont that the first joint of the first antenna in Conehoeciu elegons G. (). SARS ,shows, irregularly seattered near its surface, a number of lenticular bodies overlaying patehes of red pigment, perhaps rudimentary visual organs". I have found similar patches in the first antennae not only of C. elegans and C. borealis, the species referred to by (C . O. Suks, but of a great number of species of this genus; in exceptional cases these are also found in other places, e. g. on the protopodite of the second antenna in, for instance, C. hettacra G. II. Mtusel. It seems very uncertain whether these bodies are visual organs but it seems best not to make any statement as to their morphological value before any experiments at all have been carried out. In any case such statements could only be very uncertain.)

A rod-shaped organ \dagger is developed in most cases.

[^80]Some limbs are equipped with sperific sonsory bristlos.
There are never any traces of gills.
The mother does not take care of the egge after these are late. The only exeption to this rule so far known is the species Euconchoecia Chierchiae, dealt with by me in this work, in which the eggs are kept for a time between the back of the body and the shell of the female, as in the sub-order Cypridiniformes. I have not been able to observe any development of organs in the eggs that oecur in the brood chamber of the species mentionet.

Habitut: - The lorms are marine, all, as lar as is known, holoplanktonice.

Historical: - While a rather large number of investigators, both early and modem. have contributed to the study of the morphology and classification of the Cypridimiformes, the Halocyprids, on the other hand, have been dealt with in detail by only a few writers. Because of this the history of the investigation of the latter group is considerably simpler than that of the former.

Abstract

I should like to bing forwand the lollowing arguments against this explanation: 1) The organ has no pigment or ofter characteristics that ar" found in organs which are explained as visual organs. 2) it is imposible to establish any relation between the devopment of this orqun and the strength of the light. The Halocyprids comprise forms that live near the surface of the sea as well as those that lise at very great dppths (G. W. Nturer states. for instancr, 1906 a, that a number of specimens were aught ly the ..V aldi vi a" with a dosing net at depths of from $3300-2700$ metres), and yet there is not the slightest indication that the great variation in this organ is in any way influenced by the strength of the light. 3) Nur relation seems to exist betwen the development of the rom shaped organ and that of the median and lateral eyes, as is shown by the following examples. The 11 alneyprids, which have, as we know, in mest cases an excedingly wedl-developed rod-shaped organ, are quite withomb median and lateral eyes. ln the sub-gemus loargula (I assumb here that the rod-shaped organ has the same function in Halocyproformes and Cypridmiformes, an assumption which is mate, howerer, with the greatest reservation: il. P. 96 abover). whose rol-shaped organ is short and thick and comparatively well developed, the lateral eyes are gempatly large lo such forms as have of this are shown in the closely related speepes Cypridina (I°.) antarctica and (. (I^{\top}.) morsegicu. lol the Varrocypridinu the lateral eyes are large, the rod-shaped organ is smatl. In Crossophorus africanus both the latoral eyes and the rod-shaped organ are reduced: cI. G. W. Müler, 1906: p. 135. Philomedes perhaps affords the hest example. Fn this gronus the rod-shaped organ is particularly well developed ant has alout the same type and relative size both in mature males and femates and in larean (it is probably developed even in the earliest postembryonal stages). The lateral eves are. on the other hand, as we know, subject to wery great variations in these forms. The fomatos are guitn wrachally quite without lateral eves both as larvar and mature specmens. The mate larvae have laterst eyes, although these are rather smatl and comparatively slighty pigmented. The mature males of this gemus ares outhe wher hand. as we know, furnished with lage, well pigmented lateral rese. Other cexampes from this sub-malem comblduatly well have bend chosen, the result woud have ben the same, quite negative. i) Another argument against G. W. Nobares in Cypridinifurmes.

 Monaco and 1 hope to present the results of these in a later publication.
10.d. .eriril

1 , Irm.
1 lar jumbl , . . le lar + 11 \& Iferir ristans.

 *pixalam": on the other hand mothing was stated as to the nature of this orgat. But this writur
 It is trate that the maxilla was explathed eorreetly, ., the first pair of maxillare fort its dearopuion is rather defocient. This anthor denoted the endite on the procoxale of the maxilla - the rpipotial appentage of the lifth limb + the seveath limb as the , second pair of maxillare": the sixtle limh was taken as the .first pair of peet" and the fifth limb without the "phonelial appendage as . .the second pair of feet". The description of these organs is alse rather wherient. An additional mistake was committed beve this writer; he thought that he had fomme in ome species otwo simple eres near the medial line, just posterior to the base ol the tentares".
(i. O). Surs's work of 1865 indicates a great advance, thongh monfonately it is not illustrated. It may be sad that the gemeral mopphology ol the genus ('onchocein became liairly well known foom this work. All the limhs were eorrectly explaned and wore desceped in a way that was on the whole very satisfactory; the sexmal dimorphism of the lirst and second antemate and the sixth limb was pointed ont; the upper lip and the male eopulatory organ were described. Though only in very gencral tems; the absence of eves was established for the occurrence of these organs in the first antenat see p. 560 above). This writer even perhaps observed the heart, but he only spealis indistinctly on this point (it is not quite clear if he means that the whole group Myodocope is chamaterized by this organ or if it is only found in amber of representatives of this groltp: (ol. p. (6).*

Ifter this work our knowledge ol the morphology ol the Il a lory y i ids has been increased still furthre. The most important works are the following: (($1,11.5,187+$ b and
 works is perlape the last-mentioner of ('. ('Lats's, which is equally distinguished by its emm-
 known group among the marine Ostracods and one ol the best known among all Crustacea. (\%. IV. Hélek's Naples monograph is the last work in which the morphology of the Halo. (ryprids is dealt with in detail.

In a preliminary work (1849) J. D). IMN collecterl all the speries of this gronp investigater] by him into a single genus. ('onchoecia, and in 1852 he divided them into two genera, Conchoceia and Halocypres. From these genera this writer formed the sulb-family Halocyminae, which was grouped together with the sub-family ('ypridiminae to form the lamily Inalocypridap. cf. 1' 10 ab aboe. - The descriptions of the genera C'onchoecia and Halocypres were, howevor, exceedingly incomplete and partly incorrect as well. Gme result of this was that the suceerding authors formed a more or less completely aroneous ided of these genera; they were quite confused

 in this genus not only the species placed in it by J. I). Dicl but also ('onchopein

 sulficient, in my opinion, to form grounds of generic "listimetion". 'Ti, SCot', 1894, used the generic name Italocypris for all the species of this group that were investigated by him. The differene between these two gemera had. howerer, atready beon pretty well settled in ('. ('Lisls's worls, 187 ta and b.
(i. (I. SNA, 1865. empheyed the same massification as J. D). DA NA, but with the differenee that the latter investigators lamily Ifalorypridee was denoted as the sub-order Myodocopue

 most of them nse the name Helocypritue: af. p. 55t above.
 Eucomehoecia, but apart from this these writers did not undertake any further division of this uroup in the works mentionerl.

In C. ('L. 11 s's work of 1 s90 we find the following far-reaching classification of this group:

sub-family ('onchocrinte'	(tonchoeciut J. 1). I)IVI. P'eraconchorcía 11. ... ronchuecetta n. . . ('omehoecilla 11. .g. ('onchereeissat 11. ... Psemdoromblucriue n. g. Mihroconchoecia n. ..
sub-famils Halocyprinae	Halocypris. J. D. 1) Malocyprite ('. ('L.A1s.

This anthor uses the same dassification in his following works (1891 a and 18!4). Ifis example was followed by several investigators: (i. H. BRAD) and A. M. Nommil. 1896, (i. S.
 1905. (The last-mentioned writer onty partly, as he denotes Mifroconchoecio as ('onchoeciu).
(8. W. Móluen in his great Naples monograph. 1894, established a new gemus of this group, Archicmehoeciu. This writer strongly upposed ('. 'ILAL's dassification just montioned. On p. 2.23 of the work just referred to he pointed out, first, that of the seven genera into which C. Chats divided the gemus Conchoecion no less than five were represented only by a single spectes and, secondly. that the differences that exist between these genera are rather slight. With regard to the classification of the sub-families ('onchopenne and Helocyprine this author writes: .. Da beide Formen" (Halocypris and Halocypriu), , näher mit einander verwandt simd als mit

Mfistellen mukne Man sioht, wir nähern ms dem lateak mancher Systematiker, die ans jeder det vime besumbere fimilie machen möntem." He then suggests that the

 taken in this work.
 the most important work on the Helocypriformes after 1894 , described a new and very different Haloceprid enems. Thematocypris, and put it as the sole representatise ol a new sub-family, Thummencyprinere, opposed to all the other Haboeyprids, which were gromped into one sub-family. ('oncherinue. This last sub-family was divided by this writer into the same four whera as in his Naples monograph, namely Archiconchoccia. Halocypris, Conchocciu and Euconchopcice. The two first and the last of these four genera, which comprised a rather smatl number wi speries. Were not divided any further. A splitting-up of the multiform gemus Conchoeciu (no less than 75 species of this gems are included in the work mentioned) was, on the other hand, desirable even for practical reasons. (i. W. Molden writes on this in the work in question (p, 52): , Auch getingt es ja kicht, natimbehe Gruppen abzugrenzen und wenigstens einige dieser (iruppen scharf zu charakterisieren (Gruppe curla, ootundata, bispinosa), bei anderen Gruppen gelingt entweder die seharfe Abgrenzung oder die Charakterisierung der Gruppe nicht (spinifera. mayna, mollis). Gewöhlich greift man in ähliehen Faillen die leicht charakterisierbaren (iruppen heraus, stellt sie als gleichwertige Gattungen der älteren, alle umfassenden Gattung geqenüber, in der man den undefinierbaren Rest beläbt, dessen Auflösung nicht gelingen will, und der dam keine natioliche (irmpe mehr darstellt, auch keine seharfe Charakteristik zuläblt. Man vergleiche z. B. das Schicksal der Gattungen C'ypris, ('ythere und Cypridina. Auch der Versuch bon ('Lut's, die (battung (onchnecia aufzulösen, gehört bedingt hierher. Seine nenen. moist nur durch eine Art vertretene Gattungen repraisentieren natiorliche Gruppen, die Gattmy ('onchoecim umfalt Vertreter verschiedener Gruppen; doeh wird hier wenigstens der Versucd gemacht, auch diese (Gattmog seharf \quad un charakterisieren. Ith halte ein sokches Verfahren micht fïr streng wissenschaftlich, habe deshalb von einer Auflösung in Gattungen abgesehen." In other words this author protests against a division into new genera of the genus Conchnecia, but puts forward the possibility of distinguishing natural groups; no less than sixteen such groups were established in this work. But he pointed out at the same time that it was perhaps possible that a careful study of the limbs to which no attention had been paid ..schafft die Möglichkeit einer vollständigen Auflösung in Gattungen".

This writer uses the same classification in his later works (1912), but does not divide the genus C'onchoecia into groups. He was followed by some other writers, e. g. Ch. Juday. 1906 and T. R. R. Stebelici, 1910. speries.

I'stembryonal develropment.

Nost of the works dealing with this group of animals are purely faunistic and deseriptive of the species. The most important works on this subject are those of C. Clats, 1891 a and (i. II. Möller, $1906 \mathrm{a}, \mathrm{b}$, c and 1908.

The main features of the postembryonal development of the Haloeyprids have become rather well known by ('. CLats's works of 1893 and 1894 and (I. IV. Mulder's works
of 1893 and 1894. (. H. Fowler's studies of the larval stages ol the H aloeyprids from the Bay of Biseay (1909) are interesting, especially because of the applieation of Brooks's law.

The above work by (B . H. Fowlek is also of interest beeanse in it the working supposition was put forward that all the species of the genus Conchoccia (and other Haloeyprids) ., exhibit two stages with secondary sexual characters in the male".

The oecology of the Haloeyprids is almost completely unknown. (i. Wr. Milidela, 1894, put forward the assumption that these forms belong to the faum of the bottom and that it was only in more or less exceptional cases that they travelled up among the plankton. But even in a treatise published the same year (. Clut's put forward strong arguments in favour of these forms being holoplanktonic organisms. G. H. FOWLER, 1909, dealt with the vertical wanderings of the Haloeyprids, the proportion between males and females and ,ther Death-rate".

Remarks: - Which of the classifications of the Halocypritormes described above is to be preferred, the one worked out by C. ('LaUS in 1890 or that of G. W. MÜLLER, 1906 a?

As will be seen from what follows, I have in the present work followed the latter entirely. When I began my investigations of this group I considered - like (\%. W. Mciller, 1906 a that it was not impossible that a careful investigation of all the organs would make possible and even necessitate a sphitting-up of the genus Conchocia - sensu (x. W. Mellaera - into a larger or smaller number of genera. But the results of my investigations quite refuted this supposition. The organs to which G. W. Millere had paid no attention in his work of 1906 a. i. e. the mandible, the maxilla, the fifth, sixth and seventh limbs, the penis, the furea. the lips and the internal organs are subject to exceedingly slight variation within this genus. A division of C'omchoecia into a number of genera, i. e. into units placed paralled systematically to Archicomehoecia, Halocypris and Euconchoceit, thus seems impossible to me too. On the other hand we can - as (G. W. MULLER pointed ont - distinguish more or less distinct and presmmably natural groups within the first-mentioned genus. A number of these groups are rather striking! characterized, e. g. the Rotundata group by the position of the unsymmetrical glands, the Curta group by the ramosity of one or more of the bristles on the first antenna. These groups, which are easily defined and characterized, can, of course, be distinguished as special sub-genera. But the method employed by G. W. Mutleer seems to me preferable on account of its uniformity and consistency. A number, or, more correctly, most of the groups established by (i. W. Miduat are very difficult to define: they are so interwoven in each other - often presumably by convergenee - that the natural position of a good many of their species is and will presumably always be exceedingly problematical.

As has been pointed out above on this page (i. H. Fowl, ER, in his work on the planktonie Ostracods of the Bay of Biscay (1909), put forward the interesting and if correct, exeed ingly important working supposition that all the species of the gems Conchoccia , exhibit two stages with secondary sexual characters in the male" (p.258) . i. e. these species have to undergo a further moult after they have attained maturity. Aecording to this author a mumber of characters are altered during the last moult. On aceoment of this two forms were in sereral

Gecolugy.

10thich of the for abowe-mentioned relassifications of this group is lo lu proferred?
G.II. Pentores suppustlion of t moflere stages in thi Malocyprids.

 this ynestion mant breanswerl in the negative.
 It a plate so ribl in whely-relaterl speries as the Bay of Biscaly. An assmption of such a mature

If womld, of eomse be desimble to prose on dispere this assmotion dienety bey experi-
 of kopping these loms in full vigene for a long period of the in antaria.

Another methed of setting to work at this problem would be to investigate closely the planktum material from distriets wheh have fens speceses of the gemus (toncherein and where these sperios ate romparatively distantly related to madh other. Nkiger Rak is a distriet of this kind. It is certain that there are omly theereperies of this gemes found here - at least regulaty and to any large extent this is shown with all the certainty that combl be desimed by the carofal incostigations carred ont by the .. Conseil permanent international pour l'exploration de la mer".
 mpresent theer types of this gems that differ comparatively widely from cach other. I have had material fom this region at my disposal. This material comprised (1) mmerons mature individuals and (2) larvar (of two or thee different stages) of all these three species. On accombt of the charactoristic shape of the shell in these species the larval forms are very easy to distinguish from each other with certaintr: The fact that both larvae and mature individuals were fomd of all these there species shows, of course with complete certainty that we are concerned with there different speries and that nome of them cam be a ..stages of the other. It is erertain that the mature speedmens all bolonged to the same stage. The valations in size were strikingly

 were practically yuite constant in these specimens. The same result was obtained bey the investigation of the material collected in February and that of August, a fact that is comeceded with the phenomenon that the development of the Halocyprids (like that of the Cypridinids) takes place continnonsly dumg the whole year. (Among the mature females that were investigated there were both odd and young specimens: some of them had rery small. others more or less large. egge.)

I arrived at the same result after investigating the H alocyprids from the Aretice and the Antarctic "ceans.

It seems to be impossible to retain (i. H. Polller's view under these circumstances. Nur does it seem to me necessary to criticize in detail the exposition put forward by this writer: I refrain from doing so all the more as such a criticism would necessarily be very lengthy, without the result being of any great value. Only a few striking facts need be pointed ont.

In spite of obrious efforts (G. H. Fowleld conld not find two mature stages for more than eight of the species investigatef hy him: only one mature stage was found of the other
twelve. Among these twelor speces there are seceral of wheh a fanty abomdant material was at the dispesal of the investigator, e. 员. ('. spinifere and ('. oleguns. This fact alone should have aroused the author's suspicion.

With regard to the eight former speries I maty point out the bollowing facts:
 (i. H. Fowlak himself established in the work in question, were found in the material investigated by this writer and only females were found of both. The same stages were also fount by me in material brought home by the , Mjchacl Aars" from the derp sea expedition of 1910 . Both males and females were found. As l hope to be able to show in a subsequent work on the Ostiacods of this expedition, these two stages represent in all probability

 also collapses.
('. rotumiluta: - Is is pointed out below (in a note on f^{\prime}. rotumelutu). it seems to me extremely probable that this species, as it is at present taken in the literature, is not a mit; it probably consists of two forms very dosely related to each other, one of which has a somewhat more elongated shell than the other. This view is supported by the fact, among others that the geographical distribution of these two forms does not seen to be the same; while buth forms are found, for instance, in the Bay of Biscay and in the greater part of the Atlantic, only the more elongated form seems, on the other hand, to oceur in the Antaretie. Aecording to (i. Il. Fowler's presentation the larvae of this speries always belong to the short and high type. According to what I have observed myself the larvan of the elongated Antaretic form have about the same clongated type as the mature imdividuals. Elongated larvae are thus fomm. It does not seem to me impersible that these also oecorred in the material investigated by (i . H. Fowler but were overtooked on acoount of their small number; one orght to note the great difference in mamber between dongated and shom mature specimens in this material the latter were very mumerons. the lormer, un the wther hand, very sparse. Finally it is to be moted that (6. H. Follabli did not sucered in ..hringimg out dearly the sucecssive stagese in the measurements taken by him to prove Bronks's law in this speries. This fact tow serms to indicale that the material was not pure from a systematie pent of view.
('. spiniorstris: - l_{n} the case of this speries too it seems to me probable that a comfusion has taken place betwen two very dosely related forms. For the reasons ins support of this view of mine 1 shall in this connection only refer to what I have written below, remarks on (. spimionstris.
(C. Hoddemi: - In the material investigated by (8 . H. Fowldit only two mature mates of this species were fomen, both with shells 2,1 mon. long, and three male larvae, ath with shells

[^81]
 belong to ..stage $I^{\prime \prime}$ was obviously the relatively weat differener with regard to the length of the shells between these specimens and ...tage 111": these two stages were really presumably separated by an intermediate stage. The question then becomes: did the three larvae really belong to the last larval stage? Unfortunately the statements given are too incomplete for me (o) venture los say anthing guite defmite in this matter. It seems to me, however, from pl. XLX, fig. 76 . very probable that these three specimens belonged to the next to the last larval stage. If this is the ease, then the reason for assuming a mature stage between the stages found by G. H. Fowlek also disappears. On the other hand (i. H. Fowlek found in this material two stages of mature females. .Stage I" being represented by seventeen specimens, „Stage II" by only three. Were both these stages mature? For the same reasons as in the ease of the males it is bery difficult for me to make any statement on this point, but it seems to me practically quite certain that the three specimens of .,Stage 11" were not mature; pl. XIX, fig. 80 definitely shows this. They were probably larvae in the last stage. If this is the ease, there was in this sex too only one mature stage.

What has been said above will be sufficient to show clearly how mucertain is the basis on which (i. H. Fowlerk has constructed his important hypothesis. family.

As is seen above. p. 564 , this group was divided by G. W. Motldek, 1906 a, into two subfamilies: Thaumatocyprinae and Conchoccinae. The same elassification is also used in the present treatise. Of these two sub-families Thaumatocyprinue, which is so interesting from a systematic point of view; was unfortunately, however, quite unrepresented in the collections investigated by me.

Sub-Family Conchoecinae.

Sub-Fam. Conchnecinae, (i. W. MǐLLF:R, 1906 a, p. 43.
Description: - She 11: - This is dimorphous, but in a number of cases only rather slightly so. - The rostral incisur is shallow in all species, but it never seems to be quite absent. An apparent keepening of the incisur occurs, however, in all the forms so far known. This deepening hasarisen because the outer lamella of the shell eurved out like a poeket just above the incisur, lorming a rostrum which is in most eases rather extensive (this rostrum is thus not homologous with the part with the same name in the Cypridiniformes); the original anterior margin of the shell continues (as G. W. Milluer pointed out as early as 1894, p. 101) in the shape of a more or less S-shaped curved line (., Buchtlinie": according to (. Chas's terminology) proximally on the inside, or perhaps more correctly speaking, on the ventral side of the rostrum. The rostral incisur is always situated above half the height of the shell, in most cases quite near its dorsal margin

The upper incisur lip never grows over the lower one. The seulpture of the surface is in most cases weak. The selvage is always Lamelliform, in most cases well developed* both on the rostrum and along the anterior and ventral margins of the shell. It rans somewhat within and practically parallel with the ventral and posterior margins of the shell, being only slightly more distant from the margin posteriorly than it is anteriorly. It approaches more and more closely to the margin of the shell just beneath the rostral incisur and in the incisur it runs on the margin of the shell itself. On the rostrum the selvage runs on the „Buchtlimie", i. e. on the original margin of the shell. The list runs from a point somewhat behind the rostral incisur in a unform arcuation along and practically parallel to the ventral margin of the shell, somewhat inside the selvage; it has a whole margin and is in most cases very narrow, sometimes even difficult to establish with certainty. The imer line is in most cases very difficult to follow with certainty; it runs about parallel to the free margin of the shell somewhat inside the list. Close to the margin of the shell there always emerge very numerous glandular cells, which, as G. W. MƯLLER pointed out, 1906 a, may be conveniently divided into medial and lateral glands according to whether they emerge medially or laterally of the margin of the shell. A number of these glandular cells are concentrated in more or less large groups, which emerge with common pores or on a glandular field. Each shell has at least two such groups, one on each valve, each group with a single opening. As these two compound glands almost always have different positions on the two valves they were described by G. IV. Mưlder, 1906 a, as ,,die unsymmetrischen 1)rüsen". In a number of forms (genus Conchoecia) there are, in addition to ,,die unsymmetrischen Drïsen", two other compound glinds developed; these are ., die lateralen Eckdruisen" and ,die dorsalen medialen Drïsen", the former emerging with a single pore, the latter on a glandular field. „Die lateralen Eckdrüsen" emerge on the right valve laterally of or close to and dorsally of the (right) "unsymmetrische Druise" and on the left valve about opposite to this place. "Die dorsalen medialen Eckdriisen" are two in number, one on each valve, and emerge symmetrically just ventrally of the postero-dorsal comer of the shell. There are very few glands on the surface of the shell. The joined part of the lamellae is in most cases narrow along the whole of the free margin of the shell. At or just in front of the postero-dorsal corner of the shelf; just behind the joined edges of the hinge, there is often on the left valve a more or less powerful, oblong, hinge-tooth, and on the right valve a corresponding hinge-socket.

First antenna: - This has no or has more or less marked dimorphism. - It is moderately long or relatively short and varies in strength; the number of joints varies, but there are never more than five. Its (original) first joint is always without bristles. It is alwars furnished distally with a number of sensory bristles which are developed as thin-walled, hyaline, bare filaments, in most cases somewhat rounded distally. This limb is chie fly a sensory organ; it seems never to be used as a locomotory organ; in the case of the males it is often used for scizing the female.

Second antenna: - This ahways shows strong dimorphim: it is, as a rule, developed somewhat morr powerfully in the male than in the femate. - Exopodite: This is about the same in both sexes. The first joint has disto-ventrally a rather short and weak

[^82]hristle. All the night distal joints are short and differ rather slighty in length. Endopodite: This is redatively short ; it has threw joints in the mate, and often two in the femate, ming to the joining of the second and third joints. The end joint of this branch in the mate is always stuated at the side of (i. e. not distally on) the second joint and is in most cases bent like a hook (in exeptional cases, viz. in the gems Euconchoccio, this joint is straight on the left second antenna): (on it one (an often distinguish a proximal and a distal shank, which form a decided angle with each other: sometimes the distal shank is more or less distinctly bent at an angle. In the female this joint is exceedingly small, sometimes not perceptible, and, as has been pointed ont abore, often quite joined to the original second joint: the bristles that belong to it searely ever issue distally on the second joint but in most cases somewhat proximally of the bristles belonging to the original second joint (i. e. they have a position similar to that of the end joint on the male endopodite). The first joint has two short, pointed bristles of the ordinary type in buth sexes. The bristles on the second joint vary somewhat in number, but there always seem to be two long bristles developed distally on the joint both in the male and the female. The third joint in the male always has three bristles. The same number is usually. found in the female, only in exceptional cases (some species of the genus Euconchoceia) is there a smaller number in this sex. One or more of the bristles of the (origimal) second and third joints are developed. both in males and females, as sensory bristles. This branch is never used as a locomotory organ: the end joint is used in the males for seizing and holding fast the females.

Il andible: - This has mather weak dimorphism, sometimes even none at all. Protopodite: Coxale: The pars incisiva is always furnished on the anterior side with a rery powerful, more or less broadly triangular process, against which the endite on the following joint ręsts with an antero-inner edge ($=$, ,Zahnhöcker", according to C. Claus's terminology, $1891 \mathrm{a}:$ see, for instance, p. 24). The pars incisiva is flattened distally and is cut off somewhat obliquely; its distal edge is armed with a number of teeth situated in a row (- ,ZZahnrand", according to C. CLaUS's terminology. 1891 a). Inside (or, more correctly speaking, dorsally of, when the limb is in a position of rest), about parallel to and somewhat proximally of this margin there are two tooth-lists joined fast to each other ($=$ "Proxinale und distale Zahnleiste". (. CLALs. 1891 a) attached by a ginglymus joint; these tooth-lists are as a rule not quite as broad as the distal edge of the endite. Proximally of these tooth-lists the pars incisiva is furnished with a somewhat cushion-like masticatory process which varies very much in its development, sometimes heing very small, but apparently never quite absent (=, Zahnplatte" or ,,Zahnwulst", (. Chus, 1891 a). In other respects the pars incisiva differs rather much in structure in different genera. This joint is quite without bristles except close to the masticatory cushion just mentioned on the pars incisiva. Basale: In most cases this is about as long as or rather slightly shorter or longer than the two following joints and somewhat higher posteriorly than it is anteriorly. The distal edge of the endite always has a row of six moderately large and in most cases powerful teeth, armed with secondary tecth; sometimes the number of these teeth is apparently increased because the main tooth is only slightly greater than its secondary teeth (cf. fig. 10 of Conehoecia Gaussi below). Behind these teeth there are two rather short, moderately strong processes, one situated somewhat behind the other; the anterior one of these is always of the tube-bristle

Digitized by Microsoft ${ }^{\circledR}$

type (ef. the special terminology below), the posterior one is almost always more or less dagger-shaped, only in exeptional cases of the tube-bristle type. On the outside of this endite, somewhat proximally of nos. $1-3$ of the teeth on the distal edge (comnting from front to back) there is a solitary more or less well developed tooth. On the insite of this joint, somewhat proximally of the middle and about half way up the joint there is a powerfully chitinized, in most cases broadly triangular edge, against which the coxale rests. The number and positions of the bristles on this, as on the following joints, are subject to rather slight variation. The following number and positions were found on the basale on the species investigated by me. On the endite there were always four bristles; one of these was situated on the anterior edge of the process, abont half way up the process or in most cases somewhat distally of this point, the three others on the outside of the process. In addition there was in most cases on the inside, near the distal boundary of this joint, a solitary bristle. The epipodial ${ }^{a}$ ppendage is, if it is developed, always small, verrueiform, furnished with a single lristle and situated on the above-mentioned broadly triangular edge on the inside of the basale. against which the coxale rests. The exopodite has always one bristle (in most cases phmons). Endopodite: The proportion between the joints, which seems to be subject to rather slight variation, is shown by the following figures (taken from measurements of ('onchoecia symmetrica G. W. MÜLLER, ô):

$$
1: I I: 11 J=\text { about } \frac{12}{7}: \frac{8}{4}: \frac{7}{5} .
$$

Thus the seeond joint is relatively short, compared with this joint in the sub-order Cypridiniformes, the end joint, on the other hand, is comparatively large. The first joint is somewhat narrower proximally than it is distally, the end joint is often only rather slightly narrower than the first and second joints. The first joint has a single bristle antero-distally and a somewhat varying number of bristles posteriorly (from one to four were observed on the species of this sub-family that were investigated by me). The second joint has always three bristles antrro-distally and two or one, in most cases two, only exceptionally (Euconchoecia) one, posteriorly. The end joint is always furnished with seven* distal bristles. All the bristles on the basale (except the two short processes belind the teeth of the distal edge on the endite) and the endopodite are of the ordinary type, not tube-bristles. On the inside of the end joint there emerges a more or less powerful gland. The exit of this gland is surrounded by momerous rathor short and exceedingly fine hairs. Pilosity: On the basale there are a mmber, in nust cases three or four, of transverse rows of rather short, stifi hairs josterionly on the endite.

Ilaxilla: - This has no dimorphism or at any rate it is only scarcely perceptible. Protopodite: The species of this sub-family investigated by me had the following numbers of bristles on the endites: The endite on the procosale had from six to ten distal bristles, the endite on the coxale had from twelve to sixteen distal bristles. These bristles are subject to rather slight variation; about the same types are found at the corresponding places in all species: there is great constancy within the species. One or a few of the bristles on the endite of the procoxale are furnished with long, stiff seeondary bristles; on the other hand there seem to be

[^83] coxale. Apat from these berstes the procesate and the eoxale are quite without bristles. The basale forms on the inside a somewhat bobe-tike peojecting part, furnished in most (alses what a single hristle: apart from this the joint hats mo bristles at all. Endopodite: The tirst joint had in the speces investigated by me from four to six bristhes on the anterior mge and from two to four histles at about the midtle or somewhat distatly of the middle of the posterior doge: in addition there is a single bristle on the inside of this joint somewhat distally of the middle or mother near the distal boundary. The end joint is amed with five or six distal bristles.

Fifth limb: - This has no dimorphism or at any rate it is scarcely perceptible. Protopodite: The basale is furnished with traces of two condites Epipodial plate: The number of the marginal bristles is almost quite constant within this whole group; the following mumbers were observed on all the species investigated by me: five bristles in the proximal. five (four in only one species) in the middle and four in the distal group; in exeeptional cases, however, an increase or a decrease of one bristle may be olserved in one or more specimens in one or two of these groups. All these bristles are comparatively long, with long secondary hairs right out to their points, except the proximal one in the proximal group, which is only about as long as or somewhat shorter than half the length of the others, and has short, fine hairs. Exopodite: This has always three joints. Its first and second joints are rather elongated and of about the same length. First joint: This has a moderate nomber of bristles rentrally; there is only one bristle dorsally on the joint and it is in most cases very long; in addition there are laterally, at about or somewhat in front of the middle of the joint, in most cases one, sometimes two, bristles. Second joint: This has only three bristles, one of which is situated dorsally, at or somewhat in front of half the length of the joint. the two others close to each other at the corresponding place on the ventral side of the joint.

Sixth limb: - This is with or without dimorphism. - Epipodialplate: The number of marginal bristles seems to be almost quite constant within the whole of this sub-family. The following numbers were observed by me on all the species of this group that were investigated for this treatise: seven bristles in the proximal group, five in the middle one and five in the distal one. Just as in the case of this appendage on the preceding limb an increase or decrease of one bristle in one or two of these three groups may, however, be observed on single specimens. These bristles are of the same type and about the same length as those on the epipodial plate on the fifth limb; I ought perhaps to point out especially that, just as in the case of this plate, so, too, on the sixth limb the proximal bristle in the proximal group has short hairs and is relatively short, about as long or not quite as long as half the length of the other bristles. Endopodite: This has mly one or two bristles. Exopodite: The three proximal joints are rather elongated and often of about the same length. The first joint has a moderate number of bristles ventrally, and in most cases one bristle dorso-distally. The second joint has only one, rarely two bristles, situated ventrally, in most cases at about half way along the joint. The third joint has in most cases two bristles, one of which is sitnated dorsally,
one ventrally, * at or somewhat distally of half the length of the joint; these two bristlen are sometimes very much reduced in the male, sometimes one at least may even be quite absent.

Seventh limb: - This shows no dimorphism. - It varies so little in type that it did not seem to be necessary to reproduce it for more than one species, Conchoccia symmetrice Q. II. Nulder. One oll the two end bristles is rather long, the other is about half or not quite lalf the length of the former. Both are of the same type: flattened proximally, narrowing distally to a fine point; very flexible, but with a strengthening list along one side, on the proximal half of the bristle. This list is furnished with close, short, stiff hairs, arranged in two rows; these hairs are so fine that they are almost impossible to establish with certainty. These bristles are quite bare distally. The end joint is in most cases armed with fine hairs or spines, which are often difficult to obscrve with certainty. Apart from these this limb is bare.

Copulatory organ: - Unpaired. It issues on the left side** of the body just in front of the furca, but is bent so that its point is situated in most cases in or even somewhat to the right of the middle line of the body. It points obliquely forward and downward. It is very powerful and large, more or less oblong and fattened at the sides. Near its posterior edge runs the vas deferens, which emerges distally in a forward bending and in most cases strongly chitinized point near the distal point of the copulatory organ or a short distance proximally of it. A rod-shaped body penetrates into the vas deferens from the back. By means of special muscles at the base of the copulatory organ this body can be pressed forwards and backwards like the piston of a pump. In the middle part of the organ or in its distal half there is a rather powerful musculature developed; most of these muscles rin obliquely across the organ.

Furca: - This has no dimorphism. - The lamellae are not sharply marked off from the body proximally, nor is there any furcal field developed. The somewhat arched posterior margin of the lamellae has a number of moderately strong or rather weak claws, in most cases weakly bent or almost straight; the anterior ones are moderately long, the others decrease rather uniformly and strongly in length the more posteriorly they are sitnated; there is mo division into main claws and secondary claws. The number of claws seems to vary very slightly: seven or eight were observed on the species of this stub-family investigated by me. All the claws are well marked off proximally. The most anterior claw (called by a special name ,Hakenhorste" by C. (Lats) is situated a little way up on the anterior edge of thr lamella and is in most cases separated from the next anterior one by a somewhat greater distance than the distance between the other claws. The armature of the claws in the species of this sub-family investigated by me was as follows: The proximal part was often bare or only furnishod posteriorly with a rather small number of weak spines; sometimes, however, like the distal part, it is closely and finely pectinated; this character is most frequently a variable one. Distally of this part each claw is armed posteriorly with two rows of close, conical, smooth, pointod spines, which are directed obliquely disto-posteriorly. These rows, one of which rins somewhat laterally and the other

[^84] buged her preximally in mose cases in the way shown in fig. 34 of C'mehoecian symmetrien. The froximal wes of thesp secontary epines are moderately strong or rather weak, the others diminish gradually in size and strength the more distally they are situated. The lamedae are when furnished with gromps of rather short, mother soft or stifl haiss; on the other hand there
 mathem weak, moderately long bristle.

A I imuntary organs:* - These are subject to only rather slight variation in thin group. Contrary to the Cypridiniformes there is always a very well defined atrinm, which is fatly well chosed below, in front and at the back. This atrimm is bounded at the back exclusively by the semewhat romuded (when seen from below wedge-shaped; cf. fig. 35 of Conchoecin symmetrica in the present work) pariggates, which are always well developed. These have on the ventral side some, in most cases fonr, rows of fine hairs rmming almost parallel to each wher and along the inner margin a row of hairs that are in most eases stiff and powerful. The paragnates are attached on each side of the weakly arched under lip. The upper lip is large and helmet-shaped and is attached to the under lip by means of chitinous lists. Between the upper lip and the paragnates there is on each side of the mouth a rather depp indentation; see fig. 36 of Conchoecia symmetrica below; the pars incisiva of the coxale of the mandible penctrates into this intentation: (f. (i. W. Milleri, 1894, pl. 1, figs. 18 and 19. The posterorentral part of the upper lip is somewhat lamellifom; of. G. II. MULLER, 1894, pl. 37, fig. 28: the rather strongly chitinized back edge of this part varies rather considerably in type in the different genera, but is alwars furnished on both sides on the middle part with a row of more or less powerful hairs. The inside of this part has at about the middle two transverse rows of stiff and rather powerful hairs and groups of short and exceedingly fine hairs. On the ventral side of the upper lip numerous unicelhur glands emerge, the glands of the upper lip; ef. G. W. MíLler, 1894, pl. 37, fig. 28; in addition there is a gland, in most cases extensive, with its exit in the atrium: cf. the figure just mentioned. The oesophagus is rather long, with strong muscles. and is bent evenly and moderately strongly backwards; see G. W. MULLEER, 1894, pl. 35, fig. 16. The stomach is large, oval and is furnished on each side of the aperture of the vesophagus with a rounded or rather clongated hepatic appendage, the lumen of which opens into the stomach with a rather namow canal. The rectum is very short and emerges in front of the furca. No parts of the digestive organs ever penctrate between the lamellae of the shell.
sexualorgans: - Maln: - The testes are paired, consisting of two bagshaped oral bodies. From each of these there issues a rather short canal, the vas deferens, Which is very much widened in mature specimens and which is often even more voluminous than the testes; (f. (r. W. MƯLLER, 189t, "pl. 38, fig. 19. The vasa deferentia are joined inside the penis to an unpaired passage, which continues into the penis and emerges at its point. Female: - The ovaries, like the testes, are paired and are situated posteriorly in the body;

[^85]in young individuals they are bag-shaped, in mature ones they are shaped like a bunch of grapes: of. G. W. MidLese, 1894, pl. 40, fig. 14; they pass gradually into the oviducts. These soon join to an umpaired passage, which is in most cases furmished distally with an extension and has its exit on the left side of the body just in front of the furea. This exit, a narrow fissure, always seems to be without chitinous thickenings and is very difficult to observe with certainty except in series of sections. Only one receptaculum seminis is developed. This, whoseonter exit is to be found at about the place corresponding to that of the right receptaculum in Cypridiniformes, extends transversely across the back of the body and has its exit in the oviduct on the left side of the body; df. (i. W. MOLLER, 1894, pl. 38, fig. 58. No parts of the sexnal organs ever penetrate between the lamellae of the shell.

The heart is always developed.
Rod-shaped organ:* - This is sometmes with, sometimes withont dimorphism. --. It is always developed, in most cases comparatively long and rod-shaped. (0) ${ }^{\text {onty }}$ in a single one of the species so far known, Euconchoecia lacunosa (r. W. MÜLLER, is it possibly very short; it is not improbable, however, that this is a mistake; ,Frontalorgan des of auf einen kurzen Kapfen rechuziert (? ? $)^{\text {. }}$ ((. IV. MULLER, 1908, p. 80.) It is attached high up on the forehearl and in most cases points directly forward. It varies rather considerably in type.

Special terminology: - S he 11: - With regard to the glands I have used the teminology worked out by C. W. MÜLLER (1906 a). Thus ,,die unsymmetrischen D)rïsen" ($=$, Riückendriise $+^{"}$,,untere Hinterrandshlriise", according to ('. CLAEs's terminology, 1891 a) are called „the unsymmetrical glands"; ,die lateralen Eckdrïsen" are called ,,the lateral corner glands" and ,die dorsalen medialen Drïsen" ($=$ „oberen Hinterrandsdrüsen", according to C. Cususs", terminology, 1891 a) are called ,,the dorso-medial glands".

Second antenna: - In the case of the bristles on the endopodite the following alphabetical notation has been used in the descriptions of the species: The two bristles on the first joint $=$ the a- and the b-bristle, the proximal one being the a-bristle. Second joint: The two long distal bristles $=$ the f - and the g-bristle; the little bristle just near the base of these in a number of species (of Conchoecia) - the e-bristle, the two bristles, in most cases short - also occurring only in a number of forms, e.g. males of Conchoecia - somewhat proximally of these $=$ the $\mathrm{c}-$ and d-bristles, the c-bristle being the more proximal one. The three bristles of the end joint are called the h-, i - and j-bristles.

Mandible: - With regard to this limb l have used, on the whole, the terminology introduced by C. CuAcs: Coxale: The „Hahnhöcker", according to C. CLats's terminology; on the anterior side of the pars incisiva is called ,the thump". The "Zahmand" on this process

[^86] and distal tomth-lists". The ..Zahmplate" or .,Zahnwalst" is ealled in the present wotk , the masticatory pad".

This teminology difters in an number of respeets from that used by (i. Wr. Meradar. Thus this investigator walls (1890 a) ,the toothed edge" and the two tooth-lists sometimes the first. second and third, sometimes the third, second and first „Zahonleiste"; el. pl. XXVIII, ligs. 18 and 20 . In this invertigator's work of 1894 these pats are similarly called ,'hahmeiste", hat they are mot enumerated. In the genus Conchoceio , the masticatory pad" is divided into two more or less well differentiated parts; the distal one of these is called by G. Wr. Mutada "Zahn". the proximal one "Wialst", both in his work of 1890 a and in his large monograph.

In the present work the term tabe beristle is given to a distally bhut (somewhat romeded) bristle with - in eomparison to the side-walls - an cxecedingly thin-walled distal paint: on account of this structural peculiarity bristles of this type have a somewhat tube-like appearance, whence the name tube-bristle. The point of a bristle of this sort is, when seen from the side, almost always furnished with two exceedingly short and fine points. (Only apparently? 1)o these two spines correspond to a elosed ring? On account of the smallness of these forms I have not been able to deeide this question with certainty. It does not, however, seem absulutely impossible.) No terminns tecnicus has so far been found for this type of bristle, ats this peculiarity of structure has not been observed by previons writers.

Upper lip: - The two comb-like parts of the postero-ventral edge of the upper lip, which are furnished with a row of more or less powerful hairs, are called below simply the combs of the upper lip.

Whuch genus of thes suh-famtly 心sthemust primitice?

Transtuonal forms hetween the genera.

Number of juints of the jirst antenna in Conchuecia and IIalorypris.

Remarks: - Which of the four genera belonging to this smb-family is to be considered as the most primitive? It must be admitted that this question is exceedingly difficult, not to say impossible, to answer at present. They are all variations of the same theme and the variations are not profound. In this matter I have nothing to add to what has been said by G. W. Mituder. 1894. pp. 223 and 224.

No transitional forms between these genera are known. It is true that there are statements about such forms, but these are only due to lack of knowledge about the forms in this group; as an example I may mention J. LußBOCk's statement (1856, p. 34) that Conchoecia atlantica (Lubb.) is an intermediate form between the genera Conchocia and Halocypris.

There has been a certain amount of difference of opinion as to the explanation of the joints of the first autema in the genera Conchoecia and Halocypris.

With regard to the first antenna of the males of the genus Conchoecia we find the following statements in the literature: G. O. SARs writes 1865, p. 116: ,,antennac superiores in mare distincte 4 articulatae". In this writer's work of 1887 it is pointed out (p. 71) that this antenna is composed of "5 tydeligt begraendsede Led". i. e. of five distinetly defined joints. - In C. Claus's work of 1871 b, we find (p. 10): ,der Endabsehnitt besteht aueh nur aus zwei (iliedern, neben denen freilich der obere ringförmig abgesetzte Theil des zweiten Schaftglieden den Eindruck eines dritten Cliedes macht"; thus according to this view this antema
has four joints. According to this writer's work of 1891 a, p. 21 , on the other hand, this antemma has five joints: it consists of ,einen zweigliedrigen, stielförmigen sehalt und eine dreighedrige GeiBel". - ln G. W. MC'LLER's work of 1890 a this antenna is stated (p. 258) to have five joints; according to the same investigator's work of $1894, \mathrm{p} .25$, on the other hand, it has only four joints, but it was pointed out that sometimes ..noch ein 3. kleines Glied am Ende des Stammes mehr orler weniger deutlich abgegrenzt ist"; in his work of 1912 G. W. Me'Ller gives four as the number of joints in this antenna.

We find the same differences with regard to this antenna in the genus Helocypris.
All these authors have obviously fluctuated between two alternatives: a four-jointed or a five-jointed first antenna; by the two former authors the latter alternative was adopted; in (f. II. Múleler's later works, on the other hand, the former alternative prevailed.

The question at issue is clearly whether the little collar-like part distally of the second joint ought to be counted as a special joint or if it ought to be taken as a part of the second joint. Which explanation is correct? It seems to me that it is almost a matter of taste. In all the species of the above-mentioned two genera that I investigated this part had no special museles at all, no muscles are limited to it and none are attached on its proximal boundary. I have nevertheless taken it as a special joint in this work. This is due to the fact that in a number of forms it is exceedingly well marked off; cf., for instance, fig. 8 of Halucypris brevirostris. I could not find any guidance towards the solution of this problem from the third genus of this family Euconchoecia that I had an opportunity of investigating.

Is it possible to carry out a quite certain homologization of the joints of the first antenna in the genera belonging to the Conchocinae?

In the case of the genera Halocypris and Conchoecia these joints may with great certainty be homologized. - The highest number of joints on the first antenna in the latter genus is five, and there does not seem to be the least doulbt that these joints are homologous to the five joints that characterize in most cases this antenna in Halocypris. This assumption is supported both by the bristles and the musculature of this limb.

The number of bristles is, as we know, quite the same in these two genera: the first and third joints have no bristles at all, the second joint has a single bristle dorsatly and the fourth* and fifth bristles have two and three bristles respectively. In addition these bristles are of about the same type in the genus IIalocypris as in the females of Conchoccia.

All the species of Conchoccia investigated and described by me below have a practically identical muscular system in this antenna. It is true that slight exceptions from the type described below can be observed, but these are of no importance for this question, so that they are not mentioned here. In the males of this genus we find the following moscles in this antemat (type: U. symmetrica (G. W. MUlLER; cf. fig. 7 of this species): The first joint contains two muscles. One of these, the extensor of the second joint, is very strong, simple. and has the nature of almost a pure extensor; proximally it is attached dorso-proximatly on the first joint, distally on the second joint dorso-proximally, somewhat laterally. The other of these two muscles is also strong, in most cases divided into two (only exceptionally into more) well defmed parts,

[^87]IIomolngization of the joints of the first antennt.

Which are attached chose to ach other both preximally and distally: ome part is sitnated somewhat dorsally of the other on the medial side of the limb: this musche is attached proximally somewhat in front of the rentral half of the proximal bomdary of the first joint, distatly on the proximal bommdary of the secomd joint, at about hall the height of this joint. (This muscle seems to move the second joint staight inwird.) la passing I wish to mention that the distal attachments of two muscles are to be found proximally on the first joint. - The second joint has the following four mascles: 'The thexor of the fourth joint, a very powerful muscle, and, as far as I could ascertain. purely of a Hexor nature; it is in most cases divided into two parts; the more powerful part, the central une, is proximatly attached ventero-proximatly on the second joint, the weaker part has its proximal attachment proximo-medially on this joint about half way up it. Dorsally in this joint there is a very powerful musele with its proximal attachment dorso-proximally on the joint and attached distally on the proximo-medial boundary of and at about or somewhat above half the height of the fourth joint. A smaller part of this musele is often proximally attached abont half way along the second joint, dorsally. (This mosele seems to move the fourth joint inward and somewhat dorsally.) A rather short and moderately strong muscle runs on the medial side of the second joint, with its distal attachment dorso-proximally on the fourth joint and its proximal attachment a rather short distance proximally of the distal boundary of the second joint, at or somewhat ventrally of half the height of this joint. Finally we find on this joint the flexor of the fifth joint, a moderately strong muscle, presumably of a purely Hexor nature, perhaps moving the fifth joint a little inward too; its proximal attachment is proximo-medially on the second joint, at about half the height of this joint, its distal attachment ventrally (perhaps somewhat medially) on the proximal boundary of the fifth joint. - There is no special muscle in the third joint. - In the fonrtly joint there is a single muscle; it is very short, but rather powerful; its proximal attachment is about at or somewhat proximally of the middle of the dorsal side of this joint, its distal attachment on the proximal boundary of the fifth joint, ventrally and somewhat laterally of the former flexor of this joint. - We find the same muscles in this antenna of the females of this genus, but the flexor of the fourth joint is divided in the second joint into two parts, one of which is proximally attached ventrally on the second joint at about or somewhat proximally of half the length of this joint. The musele of the fourth joint that has its proximal attachment proximo-dorsally on the second joint is simple. (All the muscles are weaker than those of the male.)

In the genus Halocypris we find all these muscles in the first antenna, with only small divergencies. It is to be noted, however, that the muscle of the fourth joint that is characterized in C'onchoecia by being very short, with its proximal attachment a rather short distance proximally of the distal boundary of the second joint, runs near the lateral side of the limb in the genus Halocypris. For other details the reader may compare fig. 7 of Conchoecia symmetrica with fig. S of Halncypris brevirostris.

The state of affairs in the first antemna of the genus Euconchoeciu is considerably more complicated. In this genus too the highest number of joints found in this limb is five; ef. this genus below. Yet it seems impossible - at least at present - to say that these joints are homologous with the five joints on this antenna in the genera Halocypris and Conchoecia. In
the former gemms this antema does not bear any dose resemblance to the two latter genera either in its bristles or its museulature.

The first, second and third joints of both the male and female first antennae in the genus Euconchoecia are quite without bristles. The fourth joint of this antenna has ventrally in both sexes a large number (about twenty or more) of sensory filaments of the same type as the two sensory filaments on the next to the distal joint of the first antenna in the genus Halocypris. The end joint has four or five bristles on the male first antenna, and a somewhat smaller number in the female (in most cases one bristle less than in the male?). It seems at present to be quite impossible to carry out a homologization between the bristles on the two distal joints in the genus Euconchoccia on the one hand and those of Halocypris-Conchoccia on the other.

In the genns Euconchoeciu this antenna is characterized by the following museles: Male (type E. Chierchiae; ef. the accompanying fig. 12 of this species): First joint: Three museles penetrate from the body into this antenna; two of these run ventrally and one dorsally in the first joint; they are all moderately strong. The dorsal one of these three museles is attached distally dorsomedially on the proximal boundary of the second joint $=$ the extensor of the second joint. Of the two ventral ones one has its distal attachment proximo-ventrally on the second joint, the other at the corresponding place on the third joint $=$ the flexors of the second and third joints. Besides these three there are two more muscles in the first joint, an extensor for the second joint and a flexor for the fourth joint. The former of these two muscles is moderately strong and has its proximal attachment proximo-dorsally in the first joint and its distal attachment on the proximal boundary of the second joint, dorso-laterally. The latter of these two muscles is very strong and has its proximal attachment on the medial side of the first joint at about half the height of this joint, somewhat proximally of the middle; distally it is attaehed at the proximo-ventral corner of the fourth joint. - The second joint has two muscles, both of which are powerful. One of these has its proximal attachment proximo-dorsally and laterally in this joint, and its distal attachment on the proximal boundary of the third joint, dorso-laterally. The other is proximally attached on the proximal boundary of the second joint, medially, at about half the height of the joint; its distal attaclument is on on the proximal boundary of the third joint, medially somewhat ventrally of half the height of the joint. (The former of these two museles seems to move the third joint outward and upward, the other moves the same joint downward and inward.) - Third joint: Ventrally in this joint there is a moderately strong muscle, proximally attached proximo-ventrally in this joint, distally at the proximo-ventral corner of the fourth joint $=$ the Hexor of the fourth joint. Dorso-proximally in the third joint there is attached the extensor of the fifth joint, a powerful muscle with its distal attachment at the dorso-proximal corner of the fifth joint. In addition there are in the third joint two rather strong muscles, one medial, the other lateral, with their proximal attachments near the proximal attachment of the extensor of the fifth joint and their distal attachments medially and laterally respectively on the proximal boundary of the fourth joint at or somewhat dorsally of half the height of this joint. (These two museles, which are, for practical reasons, only indicated in the accompanying figure 12 of E. Chierchiae, seem to move the fourth joint inward and ontward respectively and somewhat upward.) - The fourth joint has only one muscle, the

Hexor of the fifth joint. This is bery pewerful, and has its proximal attachment dorso-proximaly, somewhat laterallys in the fometh joint and its distal attachment at the ventral comer of the fifth joint. - The femalk tirst antema in this genus hats a musular systrom of about the same type as that deseribed for the male, but all the muscles are very weak, and some of them are ewen puite absent.

The descriptions given above will show that it is impossible to find between the muscular system of the first antema in the gemus Euconchecim on the one hand and the gencra HalocyprisComehocia on the other agrements of such a mature as to permit of a quite certain homologization being carried out between the joints of this antenna in these two groups.

I camont state anything very certain about the homologization of the joints of the first antenna in the gemus Archicomehocico. - With regard to the mumbers and positions of the bristles this antemal shows a considerably greater resemblance to Halocypris and Conchoecia than the corresponding limb in the gemus Euconchociu does. Thus the second joint has a single bristle dorsally and the next to the distal joint has two bristles of about the same type as the bristles on the corresponding joints in the genus Halocymis. The end joint has five bristles, i. e. the same number as in the genus Euconchoecia. Does this fact indicate that the bristles of this joint (and the end joint itself?) are homologous in the genera Archiconchoecia and Euconchoecia, and that the two sensorial filaments on the next to the distal joint on this limb in the former genus (and in the gencra Halocypris and Conchoccia?) correspond to the great mumber of similar sensorial filaments on the next to the distal joint of the first antenna in the gemus Euconchoecia? This does not seem to me impossible. The museular system in this antenna in the genus Archiconchoecia is unknown; I eannot describe it myself owing to lack of material. It camot therefore be produced here to help solve this problem.

It is, of course, impossible at present to homologize the joints of the first antenna in this sub-family with the joints on the corresponding limb in the other sub-orders. Neither the bristles nor the museular systems in any of the forms so far known in detail seem to afford any support for a solution of this problem. A closer investigation of this antenna in the genus Thaumatocypris would. however, be interesting as throwing light on this question.

Vumber of joints on the exuporite of the sreond amenna.

The foints on the endopodite of the serond antenna.

As is seen above, I have established the presence of nine joints on the exopodite of this limb. This number was ahready given by C. Claus, e. g. 1891 a, p. 22. G. W. MƯLAER, on the other hand, always gives only eight joints for this branch (ef. this writer, 1894, p. 37, $1906 \mathrm{a}, \mathrm{f} .30$).

With regard to the appendage on the endopodite of this limb for seizing and holding fast the female I have followed G. W. MC'LLER: in other words this appendage has been explained in the present work as the distal joint of the endopodite. - C. CLAUS took another view of this problem. According to him the distal part of the second joint (according to G. W'. Múllete's explanation), i. e. the part that has the f-and g-bristles, corresponds to the end joint of the endopodite, and the elasping organ is an accessory appendage on the original second joint. Other writers do not express any quite distinct opinion in this question, but they seem, as a rule, to have inclined to C. Clals's view. - Both G. IV. Muther and C. Claus take up a very decided position in this question. The problem seems to me, however, exceedingly diffieult to decide
at present. C. Clats's view seems to be supported by the fact that the part on which the f and g-bristles are attached almost always composes the distal part of the second joint; thms in the make the clasping organ issues on the side of and not distally on this joint and in the female these two bristles issue in most cases distally of the h-, i - and j-bristles. In addition in the mate this part on which the f - and g -bristles are attached is often somewhat contracted proximally, so that it gets a somewhat joint-like appearance (cf. fig. 13 of (onchoecia symmetrica below). G. W. MitlisR's view seems to me to be supported by the following facts. The part on which the f-and g-bristles are attached is never, either in males or females, marked off proximally and is never moved by special museles; on the contrary it is quite immoveably joined to the second joint. This is, of course, not a conchusive proof. Complete union between originally well divided joints is, of course, far from being rare in the Ostracod group. (But it seemed to be conchasive for G. \mathbb{H}. MÜLler, as this investigator writes, 1894 , p. 38: ,EEinschnürungen sind noch keine Grenzen. So deutlieh die Ansieht von Clats aus den Figuren ersichtlich sein mag, so kann ich doch auf eine Disenssion dieser Figuren erst eingehen, wenn die Grenzen der Clieder scharf gezeichnet sind".) Besides, the appendage explained by G. W. Muller as an end joint is well marked off proximally in the males and is moved by a special muscle. This is not conchusive evidence, either; accessory appendages that are well defined proximally and furnished with special muscles are found, of course, pretty often, e. g. the epipodial appendage, ete. (In [all?] males of the genus Euconchoecia the part explained by G. W. MULIER as the end joint has the form of a simple cylindrical joint with bristles distally on the left second antenna. Is this primitive or secondary? The latter alternative seems to me the more probable.) The fact which seems to me to afford perhaps the most deeisive proof in favour of G. W. NULLLER's view is that in the females of the genus Halocypris (the genus put forward by C. Claus in support of his view!) and in a number of females in the genus Conchoecia the part on which the h_{1-}, iand j-bristles are attached is always distinetly defined proximatly and that it is moved by a special musele; see fig. 12 of Halocypris brevirostris below (even in forms of the genus Conchoecia in which this part is quite joined to the seeond joint this musele is more or less developed).

Genus Halocypris J. D. Dana.

For synonymy see (1. W. Mćller, 1912 , p. 57.
Description: - She 11: - Always very short, its height being at least two-thirds of its length. The rostrum is short, sometimes it is even scarcely developed at all. Of the two unsymmetrical glands the left one opens out just in front of the postero-dorsal corner of the shell, the right one at about the boundary between the ventral and posterior margins of the shell; sometimes, however, the latter gland is somewhat displaced dorsally: Apart from these there are no great aceumulations of glands at all. The pores of the surface are moderately large and easy to observe. The part of the selvage that runs within the rostrum has no spine.

Digitized by Microsoft © ${ }^{\circledR}$

First antonna: - This shows no or only rather slight dimorphism. - It is rather shore and monderately strong, growing gradually marower distally. 'The two distal joints are in most cases mather strongly bent downwats and in most wases too the second joint forms, with the first, a rather distinct and ventrally open kere. 'The second joint has dorsally a single pointed bristle of the ordinary trpe. The next distal joint has two, the end joint three, long bristles: apart from these this antema is quite without bristles. Of the five bristles on the two distal joints the distal (anterior) ome on the end joint is longer and has, at least proximally, somewhat thicker walls than the others. In the male this bristle does not or at any rate not to any extent co-operate in seizing the female; it has both in the male and the female the same armature as in most cases characterizes this bristle in the females of the genus Conchoecia, i. e. it has a greater or less number of short hairs along the posterior side at or in most cases somewhat distally of the middle. The four remaining bristles on the two distal joints are most frequently subequal ind are differentiated as thin-walled, bare, rather narrow sensory filaments, of about equal thickness throughout their whole length.
second antenua: -
Male: - The protopodite has a veruciform appendage distally-laterally. (It is to be noted, however, that this character is not known in most of the species of this genus.) Exopodite: The first joint is of about the same thickness thronghout its whole length. Endopodite: The first joint is moderately large, more or less square with rounded corners, without the processus mammillaris. The second joint is rather short, but powerful. It is always armed with four bristles, namely the c-: $\mathrm{d}-\mathrm{f}$ - and g -bristles; the e-bristle always seems to be absent. Of these bristles the e-and d-bristles are rather short and weak, pointed and of the ordinary type. The f-and g-bristles, on the other hand, are comparatively long, the g-bristle is always longer than the f-bristle; they are both rather powerful proximally, hyaline distally and obviously function as sensory organs. The proximal shank of the clasping arm of the end joint is short, especially on the left second antenna, the distal one, on the other hand, is rather long. The three bristles on this joint, the $h-, j$ - and j-bristles, are subequal, always shorter than the f and g -bristles; they are developed as hyaline, thin-walled, uniformly thick filaments and are attached at or somewhat proximally of the boundary between the proximal and distal shanks of the clasping arm.

Female: - The protopodite is similar to that of the male. Endopodite: This has three joints (always?). The first joint is about the same as that of the male, only slightly weaker. The second also is similar to that of the male, but it has only two bristles; the e- and (d-bristles are absent; the f- and g-bristles are (always?) the same as in the male. The end joint is very short, but (at least in some cases) is distinctly marked off from the second joint*; it is fixed a rather long distance proximally on the latter joint; it has three bristles, which are (always?) quite or almost quite identical with those of the male. There is a low peg between two of these three bristles (for the morphological value of this process see the remark below under this genus). The mandible, maxilla, fifth, sixth and seventh limbs, penis, furca and lips are so incompletely known in most of the species of this genus that have so far been

[^88]deseribed that it did not seem to me convenient to include them in the diagnosis of the gemis． In any case the result would be too uncertain to have any value．For these organs I refer to the deseription of H ．brevirostris given below．I need only state here that（as C．CLaLs has pointed out）the basale on the mandible is relatively short，somewhat shorter than the total length of the first and second endopodite joints，and is armed with a very powerful endite which occupies al－ most the whole ventral side of this joint．In addition the sixth limb is characterized by its com－ plete or almost complete reseniblance in males and females．

The rod－shapedorgan is similar or almost similar in both sexes．－It is moderately long，in most cases bent in a distinct angle；the part situated distally of the knee is longer than the proximal part．Otherwise it varies in type．

Special terminology：－First antenna：－The proximal one of the two bristles on the next to the distal joint is called in the present work the a－bristle and the distal one the b－bristle．Of the three bristles on the end joint the proximal one is called the c－bristle，the middle one the $d-$ and the distal one the e－bristle．（The e－bristle is the one previously termed by C．（LaUs „Hauptborste＂or＂Terminalborste＂，by（．W．W．MC＂Ller „Hauptborste＂．）

Mandible：－The bristles on the pars incisiva of the first protopodite joint of this limb，which were called ，Stachelzähne＂by C．Clal＇s and G．W．Hélefer，have been called ，，lancet－bristles＂in the present work．

Remarks：－Five species of this genus have been described（apart from the great Number of spectes． number of synonyms）．These are：

Halvegpris globosa（C．（LALS， 1874 a，p．178），C．（LAUs， 1891 a，p．79；ph．AXH， figs．13－18．

It is unfortunately impossible to give any detailed account of the relative positions of these forms，as the descriptions of the species so far worked out are too incomplete to permit of a detailed comparison between the forms．The best known are H ．globosa and H ．brevirostris． These species were given by C．Claus， 1874 a，as representatives of the genera Halocypria and Halocypris respectively．This classification is retained by this writer in all his following works； his example was also followed by a number of other writers，e．g．（i．W．MCLLER， 1890 a， G．S．Brady and A．MI．Normay，1896，G．S．Brady，1897．V．Váres，1906，is inconsistent in this matter；on p． 62 he accepts this classification，but alterwards he only uses the genus name Halocypris．The only writer who has definitely rejected this classification is（4． 11 ．Mllufer；in his works of 1894， 1906 a， 1908 and 1912 he groups these two species together into one genus，Halocypris．

It is certainly very futile，as（i．W．Momber pointed out in this connection（1894，p．223）， to diseluss whether we are justified or not in establishing a gemus，as this question is，of course， quite a matter of taste，but all the same it seems to me beyond doubt that this method of pro－

Digitized by Microsoft ${ }^{\circledR}$

Relatoons of these forms．
 based the gemus Inalocyprice, the difterent devedepment of the rostrum of the shell and of the mastieatory pad and the laneet bristles on the eoxale of the mandible, seem to me to be of so slight a mature that they constitute quite insulficient grounds for this classification.

As is seen from the deseription given above there is on the end joint of the endopedte of the female second antemal a perg-like little process between two of the bristles on this joint (more exattly betwern the h-and j-bristles). This process, which certainly coresponds the the similarly situated peg- or bristle-like appendage on the femate second antenna in a number of spectes of the genns ('onchoeciu (see, for instance, my fig. S of C . clegans) is noteworthy becanse it has no homologon in the mature males. On the other ham it is often found in mate larvae of Stage 1. The size and shape of this process makes one inclince, of course, to homologize it with the e-bristles (cf. the gemus Conchoeciu); a choser investigation shows, however, that these appendages have quite different positions. The first is, as is mentioned above, situated between the he and i-bristles, i. e. on the original thirel joint, the e-bristle is sitnated basally-anteriorly of the f-bristle, i. e. on the original second joint. I wish to point out in this connection the little process situated proximo-anteriorly of the f-bristle in my figure 9 of C. clegans, of juvenis in stage 1: this proess certamly corresponds to the e-bristle in the mature males. In this species there is also at this stage a little process between the h-and i-bristles, which is of about the same type as in the mature lemales. The same figure also shows that this process camot be homologous to the c- or d-bristles. which would, of course, be exceedingly improbable, because these two bristles, like the e-bristle, belong to the original second joint.

Halocypris brevirostris (J. D. Dana).

\because Conchoccia bretirostris + C. inflata, J. D. DINA, 1849, p. 52.
?Halocypris inflata + H. brecirostris, J. D. DANA, 1852, p1. 1301 and 1303; pl. XCI, figs. 8 and !?.
brexirostris + H. Toymbeeana, J. Lebbock, 1860, p. 16 (188) and 17 (189); pl. XXIX, figs. 35--39.
concha, ('. Clatis, 1874 a, p. 177.
$\because \quad . \quad$.. 1874 b, p. 7 ; pl. II, figs. $20-25$, pl. III, figs. $26-35$. brevirostris, (i. S. Brady; 1880, p. 166; pl. XXXIX, figs. 1-11. concha $+H$. pelagica $+H$. distincta, C. CLaus, 1890, pp. 24 and 25. dubia + var. major, G. IV. MÜller, 1890 a. p. 269; pI. XXVIII, figs. 19, 23, $24,30,35$.
concha $+H$. pelagica, C. ClaUs, 1891 a, pp. 77 and 78 ; pl. VIII, fig. 12; pl. X1, figs. 6, 7; pl. XXI, figs. 1-11; pl. XXII, figs. 1-12; pl. XXIV, figs. 6-20 and pl. XXY', fig. 1^{*}.

* In the explanalion of pl. XXYl this species is named Halocypris atlantica.
 p. LXII. figs. 14-19.
(\%. A. BR.心令, 1897, p. 77.
\because conche, A. Ncott, 1905, p. 370.
" pelagica, P. T. ('leete, 1905, p. 131.
:, inflate, G. IV. MétLe:k, 1906 a, p. 50; pl. Y'll. figs. 19—2s.
$1906 \mathrm{~h}, \mathrm{p} .2$.
 ", ", " CII. JUDAS, 1906, p. 27; pl. Vll, figs, 4—7. infleter, (i. IV. MC'luser, 1908, p. 65.

(i. W. HICLLER, 1912, P, 58.

Supplementary description: - II a 1 e: -
Shell: - The length varies according to (4. W. Mitadia, 1906 at between 1, 15 and $1,75 \mathrm{~mm}$. Of the mature mates investigated by me $2!9$ (from ten different stations) had shells from $1,4-1.6 \mathrm{~mm}$. long; thus in these speemens this character was subject to rather slight variation; one specimen. from S.A. E. station 116, only attamed, however, a length of 0.9 mm.; with regard to the latter specimen see p. 598 below. Length : height about 1. t5: 1; length: breadth, about $1,65: 1$. Seen from the site (see the acompanying fig. 1), it has generally the same type as observed by (6. IV. Mitarer; cf. this writer, 1906 a, ph. WII. fig. olo. The little male from station 116 was as is shown in fig. 2 , of a somewhat different type. Transitional forms between these types were fomd. Saen from beneat the shell is very brad and lentil-shaped, with its greatest breadth somewhat in fromt of the midtle: the side contomers are well and miformly rounded and the rather well rounded anterion and postorion onds are of about the same size. Seen frombehind (fig. $5, \vec{b}=\boldsymbol{z}$) it is somewhat heart-shaped, as the dorsal margin is slighty eoneave. The sculpture of the surface of the shell is as deseribed by (: W. Mölusir; rather sparse short hars wero wherved on the surface of the shell. Seen from inside: The hinge was of about the same type as is reprotheed in pl. XXIl, figs. 1, 2 and 3, (. CLALS, 1891 a. The selvage is rather broat atong the anterior and ventral margins of the shell (ventrally of the incisur and along the anterior and middle part of the ventral margin of the shell the sehage is so broald that when the shell is pressed beneath the eowerglass, it extends sommewhat beyond the margin of the shell), it beromes more and more narow posteriorly until it ceases altogether at about the boundary betwen the ventral and posterior margins of the shell or somewhat more dorsally, sometimes it continnes up atong the posterior margin of the shell to about half the hoight of the shell. Wh the anterior half of the shell - and on the rostrum ton - the selvage has a smonth odge; from a point at or sommwhat behind the middle of the shell it is finely and fairly uniformly sorrated (sere fig. bij. The solvage is finely cross-striated along the greater part of its length. Along the free margin of the shell. about half way between the selvage and the margin of the shell, there are the openings of a lare

 mans fiom station $1: 3$ b. fig. 8 from a spewimen lrom shation 53 and lig. efrom a specimen from station 116 .)
number of solitary glands, most of which are arranged in a rather distinct row ($\cdot f$. fig. 6) and a number situated irregularly; in the specimens investigated by me from 105 to 148 of these glands were found on each valve; in most cases they were quite absent inside the rostrum and along the dorsal third or half of the posterior margin of the shell. In preserved material one often sees hyaline fibres attached to these glandular exits; these are certainly solidified secretions. Outside these glands there are a small mumber of solitary glands, some opening inside and others outside the margin of the shell. The joined part of the lamellae is narrow. The outer lamella is not specially thin and is moderately strongly calcified; this lamella was brittle in a number of the specimens investigated by me.

First antenna: - This has five joints*. Between the first and second joint there is in most rases a rather distinct ventrally open knee. The proportion between the lengths of the joints seems fairly constant and is about as follows:

$$
\text { I }: \text { II }: \text { III }: I V: V=\frac{10}{10}: \frac{7}{6}: \frac{3}{1}: \frac{4}{2}: \frac{1}{1} \text {. }
$$

The first joint has not disto-ventrally any verruciform process as in (all?) the males of the genus Euconchoeciu (this is presumably a genus character). The dorsal bristle of the second joint is situated at about the middle of the joint; it is powerful, has short hairs and is comparatively long, being in most cases equal to the total length of the four distal joints of this antenna. The bristles of the two distal joints vary somewhat in length. The e-bristle of the end joint is about two or three times as long as this limb and is sometimes about as long as, sometimes a little longer than, sometimes considerably shorter than twice the length of the a-d-bristles; the e-bristle is only slightly or sometimes not at all widened along its distal half, and is furnisheel with only a few hairs. All the joints are quite bare.

Seeond antenna: - Protopodite: This is of moderate size; in specimens with shells about $1,4-1,5 \mathrm{~mm}$. long it attained a length of about $0,6-0,7 \mathrm{~mm}$. Its distallateral verruciform process varies somewhat in shape; it is often of the type reprotuced in fig. 9. Exopodite: This is rather slightly shorter than the protoporlite. The proportion between the lengths of the exopodite and the protopodite is about $6: 7$. The first joint is relatively long; the relation between its length and the total length of the right distal joints is about $4: 2$ or even 5:2. The eighth joint is rather well developed and aluost as long as the immediately preceding joints. The first joint is bare; its ventero-distal bristle is fairly straight and is about as long as or somewhat longer than the second joint, annulated, bare or sparsely furnished with exceedingly short hairs. The natatory bristles on the second to the eight joints are all of about the same length - the distal ones are only slightly shorter than the proximal ones and about one and a third or one and a half times as long as the exopodite; their distal parts, about a fifth or a sixth of the length of the bristles, are bare, hyalime, but very slightly or not at all widmed in the shape of a lancet (sensory organs); they are furnished with relatively long natanory hairs almost down to the base. The end joint has three bristles: One of those is sparsely furnished with short, fine hairs or is bare, and is about as long as the total length of the four distal joints, the second is of the same type, but is, in most cases, somewhat longer than the eight distal
 Whal joint see p. 577 atoere.

 as the beadely of this joint the former is only half the hogeth of the h-bristle or still shortere: both are bate or almost bare. Sowend joint: The ce and d-hristles are somewhat shorter and

 podite: it varies somewhat in width. The fe and g-hristles are furnished with sparse and very shom hatis, the h- i- and j-hristles are bare. Proximally on the end joint (proximally of the h-hristle) there is a low perg. Whel is sometimes rather diflicult to verify with eertainty. 'The dasping appondign of this juint is subject to only rather slight variation: it is always (mon in the small apecimen) of the types reproduced in the acompanting figs. 10 and 11 . It has abmut six to ten transuerse fokls distally, and sometimes there is a small process distally, as
 with short hairs.

Mandible (tig. (N゙ハ): - Protopodite: Coxale: The toothed edge of the pars inofisa has, apparently comstantly, cight simple, smooth, trianglar teeth, the most posterior one of wheh is rather large and powerful; the others are of moderate size, either subegual or dse decreasing somewhat in size the more posteriorly they are situated (almost constantly of about the tepe reproduced in fig. 19). The distal tooth-list, which is not inconsiderably narrower than the toothed edge of the pars incisiva, is furnished posteriorly with a large and powerful, smonth, tusk-like tonth and in front of this a row of about 15 - 19 smooth triangular, rather smath, often subequal teeth. The proximal tooth-list is rather marrow, in most cases only about a third of the width of the toothed edge of the pars incisiva, and is fixed at about the middle of the distal woth-list: it consists of about five to ten triangular, smooth teeth, varying somewhat in size and type. The masticatorypad is very small, almost completely reduced and of a somewhat irregular type, warying in shape in different individuals. Close to (behind) the masticatory pad there is one (rarely two) somewhat lancet-like or leaf-like chitions appendage of moderate size, which was homologized by C. CLAt , probably correctly, with a , Stathelzahn". Proximatly of these appendages there is a group of moderately long, rather narrow, stiff hairs; cf. the accompanying fig. 18. Basale: Of the six teeth on the distal edge of the endite the five anterior ones are nisually subequal and of moderate size; they are triangular and have rather strong secondary teeth proximally the posterior one is in most cases somewhat smaller than the former ones, but approaches their trye. The two posterior processes on this edge are subequal and moderately strong: both have short hairs; the distal one is of the tube-bristle type, the proximal one, which is rather considerably displaced proximally, (see the accompanying fig. 22) is pointed. The solitary tooth on the outside of this endite is situated proximally of the first and second distal teeth (comnting from in front): in most cases it is somewhat smaller than these, triangular and smooth. Of the four bristles on this endite three are situated, as mentioned above, on the ourside of the process, the fourth on the anterior edge of the process, in most cases somewhat distally

Digitized by Microsoft ${ }^{\circledR}$

 athore distame proximally of the two posterior meme or hess bristhe-like apmodages of this process, the the is situsted near the anterior edge of the process, a short distance proximally of the bristhe on the anterior edge. The two forme of these bristles are most freguently subergat and about as long as the beadth of the endite distally: the two anterior omes rary somewhat in lemeth, and are nimally two wh thee times as long ats the two posterior ones. Distally on the inside un this jeint there is a simgle bristle, about as long as or somewhat shorter than the first codopentite joint. All these five bristles have short, fine hairs. There is mep epodial appendage. The exopodite is represented only by one bristle, sitnated sommehat laturally. This bristle, which is most frequenty about as long as or somewhat longer than the anterion side of the first endopodite joint, is contrary to the rule in this sub-family, sometimes furnished with short, fine hairs or quite bare. Endopodite (fig. 17): The anterodistal bristhe of the tirst joint is about as long as or somewhat longer than the anterior side of the following joint. (In the posterior side the furst joint has four bristles; of these the lateral whe is rather powerful and long, almost as long as the endopodite; of the three others two are about as long as the height of this joint, the third is about twice or not quite twice as long. Second joint: The three antero-distal bristles are of somewhat different lengths, the longest being about as long as or somewhat shorter than twice the length of the third endopodite joint, the shortest about as long as this joint. The two posterior bristles of this joint are most frequently subequal and are almost as long as the longest posterior bristle on the preceding joint. End joint: Of the seven bristles four are in most eases sulbequal, being most frequently somewhat longer than the anterior side of the two distal joints; one, the most anterior, is of about the same strength as the four former ones, but in most cases it is about a third shorter than these; the two remaining ones, situated postero-medially on the joint, are considerably weaker than the former bristles and about as long as or only rather slightly longer than the end joint. All the bristles on the endopotite have short, fine hairs. Pilosity: Besides the groups of hairs posteriorly on the endite the basale often seems to be also hairy distally on the inside, sometimes even on the anterior side of the endite. The first and second endopodite joints are bare.

Maxilla: - Protopodite: The endite on the procoxale (fig. $13, \hat{o}=0$) , is iurnished with only six bristles. Two of these, the antero-inner and the postero-outer ones, are of the tube-bristle type. The former of these is moderately long, rather powerful and provided distally of the middle with an oblique wreath of long, stiff secondary bristles. The other, which is attached somewhat proximally of the rest, is rather considerably shorter and weaker than the antero-imer one and has short, fine hairs or is ahmost bare. The four remaining bristles on this endite are rather powerful, finely pectinated or ahmost bare and of moderate and somewhat different lengths. (The proportions of these bristles are often the same as in the accompanying figure.) The endite on the coxale (fig. $14, \hat{\delta}=$)) has twelve bristles, seven of which are situated on the posterior and five on the anterior process. Of the seven former ones the postero-inner one, which is situated a short distance proximally of the others, is rather powerful, moderately long, pointed and moderately strongly pectinated. The most anterior one is in most cases of about the same length, strength and type as the former one, but its pectination varies. Of the
remaining bristles on this endite two are of the tube-bristle type and three are pointed. The tube-bristles are rather weak, with short, fine hairs or bare and are of moderate and somewhat different lengths, the shortest often being not quite half as long as the postero-inuer bristle of this endite. Of the three pointed ones, all of which are bare or armed only with a rather slight number of weak secondary teeth, two are often subequal ant about as strong as the postero-inner bristle, but in most cases about a third shorter than this; the third is most frequently short and rather weak. (The proportions of these bristles are in most cases the same is in the accompanying figure.) Of the five bristles on the anterior process of this endite the antero-onter one is of about the same type as the postero-imer bristle on the posterior process of this endite, but is considerably weaker and somewhat shorter than this; its length varies, however, to some extent. The bristle situated next to this is of the same type and of about the same length and strength as the longest tube-bristle on the posterior process. The three remaining ones are pointed and bare or armed only with a small number of rather weak secondary teeth; one of them is of about the same strength and length as the shortest pointed bristle om the posterior process, one is in most eases about as long as or somewhat shorter than the posteroinner bristle of the posterior process, but is somewhat more powerful than this; the remaining one is also rather powerful, but is somewhat, sometimes considerably, shorter than the latter bristle (on the anterior process). The bisale has a single short-haired or almost bare tube-bristle, the point of which reaches or goes a short distance past the distal boundary of the first endopodite joint. Endopodite (fig. $15, \hat{j}=\rho$): First joint: This has along the anterior edge four to six rather long bristles, often differing somewhat in length; the longest is about as long as or somewhat shorter than the length of this joint, the shortest is about as long as the distal breadth of this joint; sometimes they are subequat; their position varies somewhat; they are all furnished with short, fine hairs; the distal one is sometimes of the tube-bristle type, the others are pointed. On the posterior edge of this joint there are three bristles, situated rather near each other somewhat distally of the middle of this joint; they are of somewhat different lengths, varying within about the same extremes as the bristles on the anterior edge of this joint; they have short, fine hairs and are of the tube-bristle type or pointed. The imner bristle on this joint is in most cases situated somewhat distally of the middle of this joint; it is often about half as long as this joint, has short, fine hairs and is usuatly of the tube-bristle type. The end joint is rather short and thick, only about half as long as the breadth of the first endoporlite joint at the middle. It has five distal bristles. Of these the anterior and the posterior ones are rather strong, the others are noderately strong or rather weak. The anterior one is often about as long as the anterior side of this joint, the posterior one is in most cases not quite twice as long. The three others are of somewhat different length, the longest being in most cases abont as long as or somewhat shorter than the posterion one, the shortest often only half this length. All these five bristles have short, fine hairs or are almost bare; some of them are (at least sometimes) of the tube-bristle type. Pitosity: Nost frequently completely bare; the second endopodite joint is. however, sometimes furnished with short, fine hairs. It is to be motred that the first endopoolite joint is quite without spines distally on the inside.

 most frempontly tuhe-hristles with short hats: they are rather short, the smather ome being about as long as the bristle on the first endite. The epipodial plato has five bristles in the middle uroup. Eifl oppodite: This has almost comstantly wigh bristles; only on one tifth limb of one specimen were nime fomed. Two of these, situated on the antero-ventrab eomer of the process, are rather powerful and bare or almost bate; the others are moderately strong or mather wak, whth short hairs or almost bare. They are all of moderate and somewhat different lengths, the longest being abont as long as the longest bristle on the second endite of the protopodite. the shortest about half this length; a number of them are of the tube-bristle type. Lisupodite: First joint: This has five short-haired ventral bristles, subequal or differing rather slightly in length. the longest being usnally as long as the height of this joint proximally; some of them are of the tube-bristle type; one of these five bristles is sitwated near the distal homblary of this joint. the rest are scattered somewhat more proximally. The bristle sitnated durso-distally on this joint is very long, being about the total length of the first and second exoporlite joints; it has short, fine hairs and is pointed. Laterally, in most cases somewhat donso-distally of the middle of this joint there is a short-haired, pointed bristle, which is about ass long as the second exopodite joint. The three bristles of the second joint are often subequal and about as long as this joint; they have shont hairs; the two ventral ones are usually of the tube-hristle type, the dorsal one sometimes of this type, sometimes pointed. End joint: Its three bristles are about as long as the scond exopodite joint; the dorsal one is usually only slightly longer than the middle one, the latter is most freguently slightly longer than the ventral ane: the lengths of these three bristles are however, subject to some variation. The midda. , me of them, which is in most eases somewhat more powerful than the others, has a point of about the same type as is reprotuced below in fig. 28 of Conchneciu symmetrica; the two others are of the tube-bristle type; they are all furnished with tine, short hairs or are almost bare. This limb is practically abrays quite bare.

Sixth limb (fig. 24 , of almost = q):- This is of moderate size and strength and has moderately strong musculature: presumably it is not used as an auxiliary organ in swimming. The protopodite is in most eases rather distinctly two-jointed. The endopodite is only partly joined to the protopodite; a remnant of its musculature can be observed. It has two bristles, one of which is in most cases about as long as the first exopodite joint, the other somewhat longer: the shorter one has short hairs or is almost bare, the longer one is most frequently plumous at the middle; both are pointed. Exopodite: First joint: Ventrally this has three bristles, subequal, or differing only rather slightly in length and about as long as the longer of the two bristles on the endopodite: one of these three bristles is situated about half-way along the joint, the two others more or less distally; they are all of the same type, pointed, and in most cases phumous at the middle. The dorsn-distal bristle on this joint is of the same type and of about the same length as the three ventral ones; it is often of the tube-

Fig. CXIV. - Malocypris brevirostris (J. D. Dana). - Mandible. 16. 1dett mandible seen from inside, for $225 \times$. 17. Endopodite of the left mandible seen from inside, $0^{2}: 225 \times$. 18. Pars indisiva of the right coxal seen from inside; $0^{2} ; 636 \times$. 19. Left toothed efge of the coxate sern from inside. दq: $1050 \times$. 20. Left distal tooth-list sen from
 seen from inside, the anterior bristle is broken, of $636 \times$. (Figs. 16, 18, 20 and 21 ant drawn fron suewimens fom station 8 b , the whers liom specimens from slation 12 h .)
bristle type. Soend joint: Vent ailly at wemewhat distatly of the middle of the joint there is a single shorthaired loristle. either pointed or of the tube-bristle type, abont as long as this joint or somewhat longer. Third joint: The two hristles are suberpual, oftem about as long as the Lristle on the preceding joint, and have shom hairs: they are pointed of of the tube-bristle type. Fourth joint: Of the there bristles on this joint the two dorsal ones are often subequal and about as long as the total hength of the seeond and third exopoclite joints, the vent ral one is somewhat shorter. hut their longths vary to some extent: they correspond in type to the three bristles on the end joint of the preceding limb. Pilosity: The first exppodite joint is partly furnished with short, fine hairs. Apart from these this limb is usually bare.

Seventhlimb: - The longest bristle is about a third of the length of the shell (for instance in a specimen with a shell about $1,5 \mathrm{~mm}$. long it measured $0,45 \mathrm{~mm}$.). The end joint alwilys seems to be smooth.

The fenis is of the type described by C. Cladus; see this writer, 1891a, pl. XXH, fig. 11. There is no copulatory appendage; see the accompanying fig. 25.

The furea (fig. 26, $\mathbf{o n}^{-}$-) has seven claws. The armature of the elaws is morlerately strong. There is no verruciform process between the first and second claw. Behind the (laws there is (always?) an umpaired short-haired bristle of varying length, sometimes about as long is the second or third claw, sometimes only about as long as the seventh claw. The lamellae are often furnished with groups of short, stiff hairs on the inside.

The rod-shaped organ (figs. 7 and $8, \hat{o}=$)) of about the same type as is described by G. W. MLLLER, 1906 a; it is loosely joined to the first antema by the dorsal bristle on the second joint of this limb.

Upper lip: - This projects rather slightly; it is rounded anteriorly and has no verruciform swellings (see fig. $\bar{\gamma}, \hat{\delta}=f$). The exits of the glands of the upper lip are scattered on the antero-ventral side of the lip, but are, however, arranged to some extent in two longitudinal bands, each ruming on one side of and at some distance from the middle line. The posterior ventral margin of the upper lip is cut off transversally (see fig. $27,0 \hat{=}=$). Its combs project rather slightly and are furnished with rather numerous and moderately fine hairs. In the inner corner of each of these combs there issue, as in the genus Conchoecia, one or two glands. The part between these combs is in most cases rather narrow. sometimes only slightly more than half the width of the combs, sometimes, however, as broad as them; it is rather deeply coneave in the middle; this concavity is sometimes rather broad and rounded as in the accompanying figure, sometimes rather narrow.

The paragnates areoval; the hairs on the margin are also fine. The chitinous lists behind the under lip are of the type reproduced by C. CLales, 1874 b, pl. III, fig. 26, i. e. they differ from the types developed in both the genera Euconchoecia and Conchoecia because the \perp-shaped posterior part in the latter genera has in Halocypris a backward pointing process at the middle, by which it becomes + -shaped.

Female: -
Shell: - Length: According to G. W. NÜLLER, 1906 a, „bis 1,85 mm."; according to the same author. 1912, the maximum length for this species is $1,8 \mathrm{~mm}$. The mature females

of this spertes investigated hy me, $2 s$ individuats frem five localities, had shells from 1,6 to 1.8 mm . long. The proportion betwen the length and the height varies somewhat; it is about $1,1-1,20 \cdot 5: 1$ length : breadth about $1,25: 1$. Seen from the side the sperimens investigated by me were of about the typer reproduced in pl. VII, fig. 19, G. W. Mollder, 1906 a, or dse they were not quite so ventricose at the back; see the accompanying fig. 3. S e en from beneat he the shell is of the same type as that of the male, but, as is seen from the figures given above, not inconsiderably wider; its greatest breadth is at about the middle (fig. 4). S e en from behind (fig. a) it is also of about the same type as that of the male, apart, of course, from the fact that it is wider. ln other respects it resembles that of the male.

Second antenna: - The protopodite (fig. 9) is rather slightly smallor than in the male; in females with shells $1,6-1,7 \mathrm{~mm}$. long this part was about $0,6 \mathrm{~mm}$. in length. (By way of comparison it may be mentioned that in females of Conchoecia elegans of about $1,6 \mathrm{~mm}$. in length the protopodite attained a length of about $0,7 \mathrm{~mm}$.) Endopodite: This has three joints; the small end joint is always distinctly marked oft proximally; see the accompanying fig. 12. The a-, b-, f-, g-, h-, i- and j-bristles are quite or almost quite similar to those of the male. A peg-like process of the end joint is fixed between the h-and i-bristles. On the other hand this joint is without the proximal peg-like process that is found on this joint in the male.

Mandible (fig. 16): - This differs from that of the male in the following respects: Endopodite: The first joint has only two bristles ventrally, which, to judge from their position, are homologous with the lateral and the distal of the medial ones in the male; in most cases they are somewhat shorter, relatively, in the female than in the male. Second joint: Of the two postero-distal bristles one is about as long as in the male, the other is about a third shorter. End joint: The third bristle, counting from in front, is decidedly more powerful than the others and is usually about as long as the endopodite. The two bristles in front of and the nearest bristle behind this bristle are in most cases subequal and about a third shorter than the latter. Of the three others, the posterior ones, the two medial ones are about as long and as strong is in the male, the third is most frequently somewhat longer than the two anterior bristles on this joint, but not quite so long as the long bristle situated in the middle. The pilosity is considerably less developed than in the male; the second protopodite joint is almost quite smooth; there never suem to be any hairs distally on the inside of this joint. In other respects this limb agrees with that of the male.

Sixth limb: - This is of the same type as in the male, but some bristles, especially the dorso-distal and ventero-distal ones on the first exopodite joint, are somewhat longer (see the accompanying fig. 24).

The rod-shaped organ is of the same type as in the male.

Remarks: - As is shown above, I have accepted -- on the whole without alteration the list of synonyms worked out by G. W. Muller for the species described above. My reason for doing this was that, like this writer, I was convinced that all the forms of this genus whose shells are characterized by rostra of the type reproduced above, belong to one and the same species.

I have decided, though only after much hesitation, to follow the example of this writer (1906 a) in identifying J. D. Dana's two species Haloeypris brevirostris and H. inflata, first with each other, and sccondly with the form described above. This writer does not give any arguments in favour of this procedure of his, and yet it seems to need to be particularly well supported by reasons; it is certain, however, that he does not base these identifications on a re-examination of J. D. DANA's original material. - J. D. DaNA's descriptions and figures of the forms in question are unfortunately too incomplete and uncertain to permit of a quite certain identification of the species. The only thing there really is for one's guidance is the shape of the shells; the limbs are too incompletely discussed in the original descriptions of these forms and are too uniform in this genus to be used as material for proof in this question. With regard to the shape of the shells there is, however, a by no means complete agreement between the figures given by J. D. DANA and those given by me above (or with those worked out by G. W. Müller, 1906 a); on the contrary, apart from the figures of the shells as seen from below, there are not inconsidcrable differences to be observed. The greatest resemblance is to be found between J. D. DANA's figure of the shell of H. brevirostris as seen from the side (1852, pl. XCI, fig. 9 b) and the figure given by me above of the small male from Station 116 of the S wedish Antarctie Expedition. The resemblance between these figures is, as a matter of fact, so great that it forms a very strong argument in favour of identity. There is less resemblance between J. I). DANA's profile figure of H. inflata ($1852, \mathrm{pl}$. XCI, fig. 8 b$)$ and the specimens investigated by me. This figure resembles most closely - by its great height - the type of shell in the females investigated by me. It is possible that J. D. Dana's species H. brevirostris corresponds to the male and H. inflata to the female of the forms re-described by me above. This assumption is supported by the length of the shells as well as their shape; J. D. Dana gives a length of $1,6 \mathrm{~mm}$. (one sixteenth of an inch) for H. brevirostris and $1,7 \mathrm{~mm}$. (one fifteenth of an inch) for H. inflata. It is impossible, however, to be quite certain in this matter before the specimens investigated by J. D. DANA have been re-examined.

On the other hand I was unable to accept G. IV'. MOtLIER's choice of the name for this form (H. inflata). In J. D. DANA's main work, 1852, H. inflata is certainly placed before H. brevirostris, but in ,Couspectus Crustaceorum", 1849, the preliminary treatise of this work, II. brevirostris is, on the contrary, placed before H. inflata. According to Art. 260 of the international rules for nomenclature* H. brevirostris should thus be used as the name of this species.

There are no figures of H. brevirostris, J. LUBBOCh, 1860; the statement: ,, the anterior notch is single in one valve and double in the other" is, however, a strong argunent in favour of the identification made above. It is fairly certain that the same author's species H. Toynbeeuna is identical with the male of the species dealt with me above; the agreement in the shape of the shell is striking.
C. Claus, in his little essay on "Die Gattungen und Arten der Halocypriden**, 1874 a. describes (p .177) a new species of this genus, H. concha. (This is described in more detail in

[^89]
 only H. concher ame H. pelagiea in his large monugraph on this fanily, 1891 as H. distincta,
 im Centrum von jo einem Porns durehbochenen Gruben" (presmably, as G. IV. Mobdan poimed om, $190(\mathrm{in}, \mathrm{P}$. E, b, mit cavities, but calcareons concretions of an artificial mature), is mot memtoned at all: ('. 'Iats presmably diseovered that it did not deserve the term , distincta'.

Different upinions have prevailed with regack to H. comeha and H. pelagica. Many invertigaters have taken them to be well differentiated species, c. g. (i. S. Braby and A. M. Summa, 1896. (i. S. BRams, 1897 and V. VAbRa, 1906. G. W. MOLLAER, on the other hand, grouped them together as une speries in his work, 1906 a, and retained this view in his following works. The ouly author who has elearly followed G. W. MOLAER in this question is 'TH. SCOM'r, 1912a: the other authors, A. scotr, 1905, P. T. CLeve, 1905 and Ch. Jubar, 1906, bave not expressed any opmion in this matter; they apparently share, however, C. CLAUS's view.

Which of these riews is correct? As will be seen from the preceding I have followed that of (i. II. Mitlalk. The reasons for this are as follows. Aceording to C. Claus, one of the most important differences between H. concha and H. pelagica is in the size of the shell. For the former form this author gives a length of ,eirea $1,8 \mathrm{~mm}$." ($1891 \mathrm{a}, \mathrm{p} .77$), for the latter $1,1-1,4 \mathrm{~mm}$. (loc. cit. p. 78). The comparatively great constancy - pointed out above - in the lengths of the shells in the great majority of the specimens of the form dealt with by me above $\left(\delta^{\circ}=1,4-1,6 \mathrm{~mm} ., f=1,6-1,8 \mathrm{~mm}.\right)$ made me first inclined to think that this was really a case of two separate forms, a larger and a smaller one. This view of mine was quite disturbed, however, by my investigation of the small male caught at Station 116 of the S wedish Antaretic Expedition. Although this specimen had a shell of only 0.95 mm . long, it showed, curiously enough, on a particularly thorough and careful examination of all the organs, a very far-reaching agreement in all respeets with the other males investigated by me. It seemed to be quite impossible to differentiate it as another species or varicty. We are thus probably concerned with a speeies with a very great amplitude of variation as to length of shell. G. W. Muller, 1906 a, has brought forward a fact that supports this view: this investigator points out in this work, p. 50 , that at the same station he found numerous (28) males, which showed, with regard to the lengths of their shells, all intermediate stages between 1,2 and $1,75 \mathrm{~mm}$.

The other differences adduced by C. Claus must also be said to be of very little value. They are partly characters which show a more or less continual variation. To this is added the not ineonsiderable uncertainty of C. Claus's descriptions. This is probably illustrated best by the lack of agreement between the text and figures in this author's work - a contrast that was already pointed out previously by G. W. MÜLLER, 1906 a, p. 50 . As an example of this G. II. ML゙Ller puints to the three end bristles on the sixth limb of H. pelagica in the work mentioned. Other examples of this might also be given; I need only mention here the proportion between the f - and g-bristles (β - and α-bristles according to C. ('LaUs's terminology) on the endopodite of the second anterma in H. concha and the number of the furcal claws in the males
of II. pelagica. (With regard to C. Clatis's description of the bristles on the endopodite of the second antenna G. IV. Múller writes, 1906 a, p. 51: , Bei der Länge der Borsten des Nebenastes der 2. Antn. werden seknudäre Geschlechtsmerkmale und Artminterschiede mit Charakteren, die von einer ganz anderen Art genommen sind, durcheinander geworfen." It seems to me very doubtful whether this statement is correct.) Among the characters adduced by C. CLALs the following are variable: First antenna: The proportion between the lengths of the e-bristle and the a--d-bristles. Second antenna: The proportion between the length of the first exopodite joint and the total length of the eight distal joints of this branch. The shape of the elasping organ on the endopodite of the males (ef. (G. W. MÜLLER, $1906 \mathrm{a}, \mathrm{p} .50$) and the breadth of the g-bristle on this branch. With regard to the last character it is, however, to be noted that I have never found so narrow a g-bristle as in pl. XXII, fig. 5. C. Claus, 1891 a . The length of the end claws of the fifth and sixth limbs. The type of the frontal organ varied only rather slightly in the specimens investigated by me; there was not, however, full constancy. Variation in this organ was also observed by G. W. MÜLler, 1906 a, p. 51.

The only one of the differences brought forward by C. Clauds that really remains after this thinning is the number of the furcal claws. C. Claus gives eight fureal elaws for H. concha, five for the males of H. pelagica and six for the females of the same speeies. The uncertainty as to the statement for the males of H. pelagica has been pointed out above; in pl. XXI, figs. 7 and 11 the furcae of both the male and the female have six claws (or five claws posteriorly of the ,,Hakenborste "). Curiously enough, I found seven claws constantly on the specimens investigated by me, i. e. anumber between those given for H. concha and H. pclagica. G. W. MÜller writes, 1906 a , p. 51, as follows with regard to this character:doch kann ein Schwanken in der Zahl bei einer Art, die so stark in der Größe variiert, kaum überraschen. Auch dieser Unterschied scheint mir zur Spaltung der Art ungeeignet." Nor do I think it possible to ascribe any decisive significance to this difference.

It seems to me beyond all doubt that $I I$. brevirostris, G. S. Brasis, 1880 and H. concha, G. S. Brady and A. M. Norman, 1896 are identieal with the form described above, in spite of a number of differences that are to be noted; see, for instance, the rostrum in pl. XXXIX, fig. 1, G. S. BRats 1880 and the sixth limb in fig. 10 of the same plate. These differences are presumably due to lack of precision on the part of this author*.

[^90]In the catse of $I I$. dubia (i . 11 . Mullder and its var. mafor the syonymization is based (in G. W. Mtalek's own statements.

I was somewhat donbt ful whether to ilentify H. polagica, Cn. Junsr, 1906, with the sfectes discussed by me above, beamse this form comes from the west coast of America. The figures given by this writer decidedly support this procedure, lowever; fig. 5 in plate VII, according to which the first antema has six joints - the first joint is divided into two joints. of equal length in this figure - is certainly incorrectly drawn.

The figures of $I 1$. inflata and H. globosa given by Th. SCOTT', 1912 a, are exceedingly defieient and mencertain, but they indicate with a fair amount of certainty that the former species is identical with the male, and the latter species with the female, of the form dealt with by me abowe. It is to be noted that this writer calls the male reproduced on pl. XIII, figs. 29-31, : female!

The following synonyms among those included above have no verificatory deseriptions and figures. but, in spite of this, they seemed to me certain for one reason or other: H. concha + 11. pelagica, G. S. Bhadr, 1897, H. concha, A. SCOtt, 1905, H. pelagica, P. T. C'ueve, 1905, II. inflata, G. IV. Müller, $1906 \mathrm{~b}, 1908$, H. concha + II. pelagica, V. VAvira, 1906.

On the other hand it did not seem right to include H. brcvirostris, Th. Scotrs, 1894, p. 141, a form that is also without any identifying figures or deseription. The uncertainty in this investigator's work of 1912 a , which is pointed out above, seems to be sufficient reason for this.

The larvae of this species found by me in the material of the "Antaretie" Expedition all clearly belonged to the last larval stage. Both males and females were found. In both sexes the shells were of about the same type as that which is characteristic of the mature female and showed very slight variation with regard to length; $1.0-1,1 \mathrm{~mm}$. was observed. The number of fureal claws on these specimens varied from six to seven. Several of the females among these larvae had eggs in the ovary in a rather advanced state of development, so that these larvae were rather difficult to distinguish from the mature females, whose eggs are often no farther developed; the same observation was previously made by G. W. MULLER, 1906 a, with regard to the material of the „V aldivia" expedition. This fact, like the length of the larvae, seem to make it probable that the species H. pelagica of several of the preceding authors represent larval specimens of the species dealt with above.

Habitat: - Atlantic Ocean:
S. A. E., Pl. station 30, lat. $29^{\circ} 52^{\prime}$ N., long. $20^{\circ} 14^{\prime} \mathrm{W}$. ; at the surface; 7. XI. 1901; temperature, $21,1^{\circ} \mathrm{C} .: 1$ mature male; R. M. S. 199. S. A. E., Pl. station 4 b, lat. $25^{\circ} 51^{\prime}$ N., long. $21^{0} 29^{\prime} \mathrm{W}$.; at the surface; 9 . XI. 1901; temperature, $22,5^{\circ} \mathrm{C} .: 3$ mature males and 7 larvae; R. II. S. 189. S. A. E., Pl. station 38, lat. $25^{\circ} 46^{\prime}$ N., long. $21^{\circ} 31^{\prime}$ W.; at the surface; 9. XI. 1901; temperature, 22,5 C.: 1 mature male; R. M. S. 200. S. A. E., Pl. station 6 b, lat. $23^{\circ} 35^{\prime} \mathrm{N}$. , long. $22^{\circ} 19^{\prime} \mathrm{W}$.; at the surface; 10. XI. 1901; temperature, 23° C.: 1 mature male; R. M. S. 190. S. A. E., Pl. station 7 b, lat. $22^{\circ} 26^{\prime}$ N., long. $22^{\circ} 45^{\prime} \mathbb{W}$.; at the surface; 11. XI. 1901; temperature, $23,6^{\circ}$ C.: 1 mature male; R. M. S. 191. S. A. E., Pl. station 45, lat. $22^{\circ} 8^{\prime}$ N., long. $22^{0} 52^{\prime} \mathbb{W}$; at the surface; 11. XI. 1901 ; temperature, $23.3^{\circ} \mathrm{C}$. : 1 mature
mate; R. M. S. 201. S. A. E., Pl. station 8 b, lat. $21^{\circ} 51^{\prime}$ N., long. $23^{\circ} 0^{\prime} \mathrm{W}^{\prime}$; at the surface; 11. XI. 1901 ; temperature, $23,20^{\circ}$ (.: 2 mature males, 4 mature females and 2 larvale; R. M. S. 192 and 193. S. A. E., Pl. station 46, lat. $21^{0} 51^{\prime}$ N., long. $23^{\circ} 0^{\prime} \mathbb{I V}$.; at the surface; 11 . N1. 1901; temperature $23,2^{\circ} \mathrm{C} .: 1$ mature female and 1 juvenis; R. M. S. 202. S. A. E., Pl. station
 fomale and 1 juvenis; R. M. S. 203. S. A. E., Pl. station 12 b, lat. $14^{0} 28^{\prime}$ N., long. $26^{p 1} 1^{\prime} W^{\prime}$.; at the surface; 15. X1. 1901; temperature, $25,50^{\circ} \mathrm{C}^{\prime} .: 14$ mature males, 16 mature females and 2 juvenes; R. M. S. 194. S. A. E., Pl. station 14 b, lat. $12^{2} 21^{\prime}$ N.. long. $26^{0} 49^{\prime}$ W.; at the surfate; 16. XI. 1901 ; temperature, $26,0^{\circ} \mathrm{C} .: 3$ mature males, 6 mature females and 2 juvenes; R. M. S. 195 and 196. S. A. E., Pl. station 18 b, lat. $1^{\prime \prime} 31^{\prime}$ N., long. $299^{\circ} 7^{\prime}$. ; at the surface; $\because 2$. XI. 1901; temperature, $26,8^{\circ}$ C.: 2 mature males; R. 11. S. 197. S. A. E., Pl. station 116 , lat. $15^{\circ} 46^{\prime} \mathrm{S}$., long. $34^{\prime \prime} 8^{\prime} \mathrm{W}^{\prime}$; at the surface; 1. XII. 1901; temperature, $2^{2} 62^{\prime \prime} \mathrm{C} .: 1$ mature male; R. M. S., on slides. S. A. E., Pl. station 23 b, lat. $19^{\circ} 19^{\prime}$ S., long. $36^{\circ} 9^{\prime}$ W. ; at the surface; 3. XII. 1901: temperature, $25,2^{\circ}$ ($:=3$ juvenes; R. II. S. 198.

Distribution: - Atlantic Ocean from lat. $60^{\circ} \mathrm{N} .\left(\mathrm{V} . \mathrm{VA}^{\prime} \mathrm{LRA}, 1906\right.$) to lat. $400^{\circ} \mathrm{S}$.
 (G. S. Braty y, 1880). Indian Ocean.

The stations of the Swedish, Antaretic" expedition at, which this species was found are all within these limits.

Genus Conchoecia J. D. Dana.

For synonymy see (i. W. MOLler, 1912, p. 59.
Description: - Shell: - This varies in shape. The rostrum is ahwas well developed and is in most cases somewhat more bent ventrally in the fomales than in the males. The surface of the shell is furnished with only quite a few bristles or has nome at all. The pores of the surface always seem to be moderately large and in most cases not difficult to establish. The selvage was almost always developed in the following way in the species of this genus that were investigated by me: On the rostrum it is rather broad, growing rapidly narrow dorsally and ventrally; it is narrow along the incisur; ventrally of the incisur it increases evenly in hreadth and is rather broad along the anterior margin of the shell and the anterior part of the ventral margin of the shell; posteriorly it decreases again rather evenly in breadth and is alworys very narrow inside the ventral part of the posterior margin of the shell; at about half the height of the shell or somewhat dorsally or ventrally of this, inside the posterior margin of the shell, the selvage practically ceases altogether, although it can, at least sometimes, be traced still more dorsally in the shape of an axceedingly fine line. (If mothing special is said about it in the following descriptions of species, it is to he taken as meaning that the selvage agrees with
 no spme-like promeses. 'The selvage is fimely rexs-striated abong a greater or hess part of its

 sentral amd posterion mavens of the shell ($=$, an gewöhmicher stede", acemeling to G. II.
 they never emerer howeror. quite symmerieally. Lateral comer glands are sometimes devel"perd. sometimes they are quite absent: in the former case it happens exceptionally that only that on one ralve is developed. The dorsen-medial olands are abost abwas developed in the males and in exepetional cases in the females ton. (Only the exceptions are mentioned in the following description of species.) lnside the rostral incisur, according to G. W. Metabir, 1894, the joined part of the two lamellae of the shefl is more or less deep (see loce eit. pl, 36, fig. (i, pl. 37. ligs. 10 and 11): the boundary of this joined part is exceedingly difficult to establish with certainte: the part sems to me to be wim rather marrow; ef. the deseription of ('. olusutu below. The outer lamella is not specially thin.

First antonna: This always shows deeided dimorphism.
If al e: - This is moderately long and rather powerful, growing gradnally narrower distally. The two proximal joints. When in a position of rest. always point more or less straight forwart. the two distal joints point in most cases rather decidedly ventrally. It has five joints, but the boundary between the second and third joints is rather oftell more or less difficult to ('stablish with certainty (sometimes. e. g. C. curta, quite impossible). (It is to be noted that I am here counting as a special joint the little collar-like part proximally of the next to the distal joint: (6 . $\mathbb{I V}$. Mthler, who coments this part as a part of the second joint, conseruently gives fonm as the number of joints in this limb: (f. p. 576 above.) The proportions between the juints seem to be subject only to rather slight variation in this genus. The two proximal joints are comparatively long and powerful, in most cases subequal, the three distal joints are always very short and rather weak: they are of about the same type as is shown in the aceompanying fig. 7 of ('. symmetrica. (If nothing special is said in the following descriptions, the species in question has about the same proportions between the joints as in the figure just mentioned.) The first joint has in most eases* no verruciform process ventero-listally as in the case of this juint in (all?) the males of the genus Euconchoecin. The second joint has dorsally, at or just behind a point half way along it, a rather short and powerful bristle (retinaculum), with short, fime hairs or in most cases quite bare: which fastens like a claw (,,ringförmig*) round the rod-shaped organ and fixes it to this limb. (This joining is often so firm that the rod-shaped organ cannot be detached without this bristle being broken off from the antenna.) The next distal joint has two **, the end joint three bristles varying in length; apart from these this limb

[^91]has no bristles at all. Whe of the bristles on the next distal joint and two of these on the cand joint, among them the one situated most distally, are comparatively long and stiff, of a more or less ordinary type, annulated proximally more or less hyaline distally, all presumably playing a certain part in seizing and holding the female fast. The most distal of these bristles is, in most species of this genus, armed on the posterior side at about or somewhat distally of half its length with a smaller or greater momber of spines, which in most cases point proximally; in a number of eases the armature of this bristle is of other types. The other two of these three bristlos are usnally somewhat shorter than the most distal one and are either quite bare or only slightly armed. On the proximal one of them there is rather often a more or less long pad-like appendage (,,Schwiele", according to (. W. Mübles's terminology) at about the place corresponding to the distal bristle's rows of spines. (G. W. MÜluth describes this appendage ($1906 \mathrm{a}, \mathrm{p} .39$) as ,,eine zartwandige emseitige Verdickung der Borste". This anthor then writes: , Wie das Bild $z 1$ stande kommt, ob es sich wirklich um eine Erweiterung der Borste oder nur um einen häutigen Anhang (resp. zwei) handelt, weib ich nicht." According to what I established with certainty in a number of species, we are not concerned with a lamelliform, but with what I may perhaps call a pad-like appendage (cf. (. H. Fowleri, 1909, p. 230) that is situated along one side of the bristle. In all the species investigated by nee this pad had transverse folds (somewhat like the bellows of a camera) ; f. my fig. 3 of (. bispinosa and fig. 7 of (. borcalis. (6 . W. MÜLLEL states that two such appendages are sometimes found on the same bristle, one sitnated opposite the other. This statement is presumably always due to a mistake; in a number of eases, e. g. in C'. antipota, G. IV. Míslese, $1906 \mathrm{a}, \mathrm{pl}$. XXVI, fig. 9 , I have verified the fact that it is a mistake. An apparently double-sided pad of this sort, as shown in the figure just mentionerd, originates from the fact that a comparatively high pad. placed on one side becomes visible on both sides of the bristle under the pressure of the coverglass. (ne of the next distal joint's bristles and one of the end joint's proximal bristles are developed as thin-walled, bare sensorial filaments, in most cases somewhat rounded distally (as in. for instance. fig. 7 of (. symmetricu); they are (leveloped in somewhat different ways in different species.

Female: - This is of about the same type as that of the male. but is rather considmably shorter and weaker. It has rather weakly developed musculature and often a rather indistinet division into joints; the number of joints is sometimes the same as in the male, sometimes it is more or less reduced by complete junction of two or more joints. The proportions. between the (original) joints are about the same as in the male. (If nothing special is mentioned in the following descriptions of species, the proportions between the joints are about the same as are shown in the adjoining figure 10 of ('. symmetrice.) The number of the bristles is either the same as in the male or else the dorsal bristle of the seconel joint is absent. The latter bristle is, if developed at all, pointed, w the ordinary type and does not grasp the rod-shaped organ. (The latter is consequently free from this antema.) of the five bristles on the two (original) distal joints the distal one on the end joint is, as is the case in the male, leng and of the ordinary type, anmulated proximally and more or less hyaline distally: along its posterior side at or in most cases somewhat distally of the middle it has a greater or less mumber of short hairs; in some cases it has, in addition, along the proximal part of the anterior side a number of more

Digitized by Microsoft ${ }^{\circledR}$

 -uberpalal and differentiated as thin-walled, rather marow or moderately wide hare sensorial filaments, mome or less rommded distally. (About the same as in fig. to of ('. symmetrica. If mothing sperial is memtened in the following deseriptions of spectes, these histlos are of the type reproduced for the sperios just montioned.)

II a be: - Protopodite: - This seems to be sulpect to very slight variation on this gemas. In all the species imvestigated by mo it was characterized by two processes, lumh sitnated near the exopodite, one laterally, the other medially. The lateral one of these processes is suall, wembiform, and in most rases of about the same type and position an the the adjoining fige 11 wi (. symmetrica. The merlial one is considerably larger, in most cases more or lese irregularty globular. It is most frequently of the same type and pesition as in the adjoining fig. 1:3 of C. symmetrica: mbly in exceptional cases has this process another type. (1 only in the latter case is this character specially mentioned in the following deseriptions of species.) Rexopodite: The first joint is in most eases of about equal thickness throughout its whole length, only in execptional eases - and then this is specially mentioned in the following desoriptions of species - of another type. The eighth joint is most freguently very short, sometimes "ren diffieult to distinguish. The ventero-distal bristle of the first joint is hyaline, bare, in most cases bent vermiformly, narrow, of about the same width throughout its length, and ahout as long as the total length of the three following joints. The natatory bristles on the second to the eighth joints are all about the same length - the distal ones are only slightly shorter than the proximal ones. The distal part of these bristles - about a fifth to a seventh of the whole - is bare. hyaline and extended like a lancet fabout the same as in pl. 5, fig. 9, (G. W. MíLLER, 1894). The proximal part of these bristles has rather long natatory hairs almost down to the base. The end joint has three bristles. The relative lengths of these are subject tor rather slight variation in the species of this genus that are described below. The ventral one is usually about as long as the exopodite and of about the same type as the natatory bristles on the preceding joints, but is furnished with somewhat fewer natatory hairs and is not lancet-shaped distally, though it is hyaline and bare. The two dorsal ones are rather narrow, of about equal thickness throughout their length and in most cases hyaline and bare: only in exceptional cases do these two bristles have short hairs. One of them is about as long as the total length of the five or six distal joints, the other is about twice as long; cf. the acempanying fig. 12 of C. symmetrice. Endopodite: First joint: This is moderately large and somewhat irregular in slape. It is about as long as it is broad; it is somewhat irregularly rounded posteriorly, its anterior side has two processes; one of these, the processus mammillaris, situated at about the middle of the anterior side, is moderately large or rather small, more (or less conical, the other, situated somewhat distally of the former one, is somewhat larger, and is rerruciformly rounded. This joint was of about the type reproduced in the adjoining figs. 13 and 14 of C. symmetrica in almost all the species of this genus described by me below; onlr in those cases where it is specially mentioned below was there any deviation from this type; it is, however. to be noted that the little verruciform appendage situated distally on the processus
mammillaris that is drawn in these figures is only seldom developed. Of the two bristles on this joint, both of which are attached distally on the antero-distal process of the joint, the distal one. the b-bristle, is in most cases of about the same length as the proximal breadth of this process, the proximal one somewhat shorter; def. figs. 13 and 14 of (6 symmetrict; only in exceptional cases - which are specially mentioned in the deseriptions of species - are there deviations from this rule. The second joint is rather short, but rather powerful; it is most often of about the same shape as in my figs. 13 and 14 of C. symmetrict (only exceptions are noted in the descriptions of species). It is most frequently armed with five bristles. Of these the c-and d-bristles are rather short and weak, pointed and of the ordinary type, the f-and g-bristles. on the other hand, are comparatively long, the g-bristle is in most cases longer than the 1 -bristle: they are rather powerful proximally, hyaline distally and obviously function as sensory organs. Besides these four bristles there is, as has been mentioned, an additional bristle, the e-bristle; this, which is situated somewhat distally of the c-and d-bristles at the base of the f-bristle is always more or less short, pointed and of the ordinary type. The end joint varies very much in type. The three bristles on this joint, the $h-, i$ - and j-bristles, are subequal, always shorter than the f - and g-bristles and developed as hyaline, thin-walled (only exceptionally, as in the case of C. Giesbrechti, partly thick-walled) sensorial filaments, attached a short distance distally of the proximal boundary of this joint. The first endopodite joint always seems in this genus to be furnished with exceedingly close short, fine spines on a rather large part of its surface.

Female: - The protopodite is like that of the male excepe for the fact that it has no disto-medial verruciform process. The endopodite has two or three joints. The first joint is about the same as that of the male. The original spoond joint is weaker than that of the male and more or less cylindrical. The third joint is extremely small in those cases when it is developed at all.* The bristles of the first joint are about the same as in the male. Of the bristles on the original seeond joint only two are developed in most cases. namely the f - and g-bristles; the c -, d- and e-bristles are almost always quite absent (only when one or more of these bristles are developed is it stated in the following descriptions of species); the f - and g-bristles are developed in about the same way as in the male. On the little end joint the h-, i - and j-bristles are always developed and in most cases they are of about the same type as in the male. Between the h - and i - bristles there is also in a number of species a short, peg-like process or a short bristle. (For the morphological value of this bristle see p. 58t above, the remark on the genus Halocypris.) The first endopotito joint is, as in the case of the male, furnished with short and fine spines.

Il andible: - This limb seems to be subject to rather slight variation in this gemus. In most of the species investigated by me I found - apart, of course, from small individual ariations - quite the same type as far as most characters were concerned. In some species, however. more or less deviating types were observed; in this case it was not always the sime charmeter that varied, but sometimes one, sometimes another. Under these cireumstances it seemed to

[^92] here what me might call the mormal type of this limh in this gemus. When a chatacter of this limb is mot spertially mentioned in the following deseriphines of species, it thes means that in the spectes in frestion this chameter agreses with what is demeted her as the most usual stath uf alfairs. - This limb shows no, or at any rate scaredy pereeptible dimorphism. - Protopodite: Cuxale: The tomthed edge of the pars incisisa is in most cetses of about the same type as that reproduced hedow in lig. 16 of C . symmetrica. i. e. the most antertor tooth is very fowertul, smoth. low, bond, bather transersally and menly cout off distally; the others are also amonth and decrease, thongh somewhat irregularly, in size and strength the more posteriorly they are situad; the anterior ones are moderately large and somewhat iregulaty triangular, the postorior ones are very small; the posterior part of this edge can conveniently be deseribed in this trpe as being irregukaly undulated. The number of these teeth is rather diffienlt to wablish with certainty on areont of the small size of the posterion tereth and it varies somewhat even within the species. The touthed edge seldom varies from this type. In some species, however, variations were observed with regard to the teeth situated behind the large anterior twoth. These are sometimes subequal - or else the most posterior one is even somewhat more powerful than its neighbonts - and are all relatively smaller than the anterior ones of these teeth in the type deseribed above, irregularly triangnlar and smooth (ef. my figure 9 of C '. rotundata (i. W. Mitheli). In one species (ef. my figure 6 of C. (icuussi) this toothed edge ends posteriorly with a low, broad. irregularly rounded tooth; the teeth nearest to the large anterior one are of about the same type as in the , normal type" described above, but somewhat less relatively; the other teeth decrease in size and strength the more posteriorly they are situated; the part just in front of the broad rounded posterior tooth is finely serubated. The two tooth-lists and the masticatory pad show such great variability that it did not seem to me convenient to deseribe then in this connection. I need only point out here that the tooth-lists often exhibit a certain variability even within the species and that the masticatory pad is always well developect. Along the posterior edge of the pad-like part of the pars incisiva there are four more or less broad lancet-bristlen and also a large number of rather short or moderately long bristles, situated close together and simple or somewhat bifurcated distally. Basale: This is in most cases of about the trpe reproduced by me in fig. 22 of C'. symmetrica; its retative length is in exceptional cases somewhat less and it has sometimes a relatively stronger endite. The six teeth on the distal edge of the endite are in most cases all of about the same size and type. These teeth have most frequently the following type: They are moderately large and almost equilaterally triangular: about the proximal halves of the anterior and posterior edges are exceedingly finely serrulated; in a number of cases this serrulation is rather strong. In exceptional cases (cf. my fig. 10 of (${ }^{\prime}$. Guussi) these tecth are relatively low, the proximal serrate teeth on one or both of the edges are, on the other hand, very powerful, i. e. the difference between the main points of these teeth and the serrate teeth has almost disappeared in this type. The two posterior processes on this edge are subequal, moderately strong bare or furnished with a few secondary spines; the distal one of them is of the tube-bristle type, the proximal one, which is situated rather slightly proximally of the former
one, is in most cases dagger-shaped; in exceptional cases it, tho, is of the tube-bristlo type. The single tooth on the ontside of this process is situated a short distance proximally of distal teeth nos. 1-3 (counting from the front); it is more of less broadly triangular and is in most cases somewhat larger than the distal teeth. My fig. 19 of (". symmetrica agrees very closely with the normal type described above. This endite always has, as is pointed out above, four bristles: one of which is situated on the anterior edge of the process, in most cases somewhat distally of half the height of the proeess the three others on the outside of the process. Two of the three latter bristles are most frequently situated in this gems at or somewhat behind the middle of the process, the third is rather near the anterior edge of the process, a short distance proximally of the first-mentioned bristle situated on the anterior edge. The two posterior of the bristles situated on the ontside are most frequently subequal or differ rather slightly in length; they are about as long as the width of the endite. The anterior one of the bristles situated on the outside of the process is comparatively long, about as long as or somewhat shorter than the dorsal side of this joint. The bristle on the anterior edge of this process is about as long as or somewhat longer than the width of the process. All these four bristles have short hairs. Hectially near the distal boundary of this joint there is a solitary bristle, in most cases about as long as the distal height of this joint and shorthaired. The epipodial append age is sometines developed, but sometimes it is quite absent. The exopodite is represented by a small verruciform process, in most cases of about the same type as is reproduced in the accompanying fig. 2.2 of $(C$. symmetrica. It is furnished with a plumors bristle, which is most frequently about as long as or somewhat shorter than the anterior side of the first endopodite joint. Endopodite: The antern-tistal bristle of the first joint is about as long as or somewhat shorter or longer than the anterior side of the second endopodite joint; this bristle is sometimes plumous, sometimes short-haired; this character varies, at least in a number of cases, within the species. The posterior bristles of this joint vary in number and development. Second joint: One of the three anteco-distal bristles of this joint is rather powerful and about as long as or somewhat longer than the anterior sides of the second and third andopodite joints. The two others are somewhat weaker. subequal or of somewhat different lengths; they are about as lomg as or somewhat longer than the anterior of the end joint. One of the two posterior bristles of this joint is rather powerful and about as long as or somewhat shorter than the endepodite, the other is about half as long. Eind joint: Of the seven bristles on this joint the thired (counting from the front) is rather powerful and is in most cases about as long as or somewhat shorter than the endopodite. The most anterior one is also rather powerful but about a thind or a quarter shorter than the former. The bristle that is situated between -- and somewhat medially of these two bristles is rather weak and is only about it third to a filth of the length of the longest one. One of the four posterior bristles on this joint is rather powerful. about as long as or somewhat shorter than the most anterior bristle; the three whers are somewhat weaker and rather short, subequal or of somewhat different tengths; the longest of them is in most cases about as long as or slightly longer than half the length of the most anterior bristle on this joint. The shorter bristles on the second and third modopodite jomts are olten furnished with rather short. fine hairs; the longer and more powerful ones are menst frequently rather powerfully peetinated.

The ligure ?2: of ('. symmetrica given by me agres faity well with the type described here. Phesity: "This dum not seren th be quite constant within the species; the second protopodite

II a x i 11: : - This limhton is subjeet to rather slight variation in this groms. In most of the spectes investigated be me I fomal atmost exatly the same type. la some species, hemever. it diftered from that of the former ones in one or more respects. Just as in the case of the mamble it was mot alwas the same characters that differed in this way, but sometimes onn and sometimes anuther. For this rason it secmed to me most eonveniont - in ordar to anoll (10n) muth repotition in the following deseriptions of species - to give in the ease of this limh ton an deseription of what I may eall the , mormal type" fonnd by me. Consuguently the characters in this limb that are not mentioned in the following deseriptions of species are w be taken as agreong with this normal trpe. - Protopodite: The endite on the procoxale seems in the species investigated by me almost eonstantly to be armed with nine bristles (el. (C. I"dluciae below). These bristles vary very little in size and type. In most eases the fohlowing conditions are present: The antero-inner bristle is moderately long, rather powerful, of che tubebristle type and armed with two somewhat irregular wraths of rather long and stiff scomdary bristles, placed obliquely. The bristle situated nearest to the former one is somewhat shorter. rather powerful, well pointed and most frequently armed with one or two irregular. ubliquely situated weaths of rather long, stiff secondary oristles and has distally of these a somewhat varying number of more or less powerful secondary spines. The whaths of secondary bristles may be absent in this bristle. The three bristles situated just outside this bristle are of the same type as the latter, but as a rule they are somewhat longer and have no wreaths of secondary bristles; only in exeeptional cases may the imer one of them be furnished with one of these wreaths. Outside these three there is a bristle of about the same type, but usually somewhat shorter and weaker. The three remaining (postero-outer) bristhes are about as long as the last-mentioned one, rather weak, of the tube-bristle type and either bare or furnished with some secondary bistles or more or less weak spines. My fig. 23 of C . symmetrica agrees fairly well with the normal type deseribed above. Endite on the cosale: On the posterior process of this endite there are usually ten (in exceptional cases nine or eleven) bristles. It is true that there is not complete constancy as to the type and size of these bristles - not even within the species - but in most eases the following conditions were observed by me. The two inner-posterior bristles, which are situated somewhat proximally of the others. - one somewhat proximally of the other - are subequal, moderately long, rather powerful, well pointed and rather weakly peetinated in the middle. Four (in exceptional eases three or five), situated in the midst of the remaining ones, are of the tube-bristle type, of somewhat different lengths, moderately long or rather short, rather weak and quite or almost bare. The four remaining ones are comparatively powerful, of moderate and somewhat different lengths, more or less well pointed and almost bare or armed with a more or less large number of secondary spines. The anterior process on this endite always seems to be armed with five bristles. The antero-outer one of these bristles is in most cases of about the same length and strength as the two inner-posterior bristles of the posterior process, but differs sometimes by
having its armature somewhat more powerful (this armature is, however, subject to variation even within the species). The next outer one is a tube-bristle of about the same type, size and strength as the tube-bristles on the posterior process of this endite. The three remaining ones are comparatively powerful, of moderate and in most cases somewhat different lengths, rather well pointed, almost hare or armed with rather few secondary spines. My fig. 24 of C. symmetrica agrees rather well with the normal type destribed above. The basale is in most cases furnished with a single short-faired or almost bare tube-bristle of about the same length as or somewhat longer or shorter than the first endopodite joint. This bristle has in most cases no long hair distally (cf. below); in exceptional cases it may have long secondary bristles at the middle; sometimes it may be quite absent. Entlopodite: First joint: Along the anterior edge this joint usually has six (in exceptional cases only four) long bristles, the longest ones of which are in most cases somewhat longer than the anterior side of this joint, the shortest ones about hall as long as the former ones. All these bristles are well pointed except one of those situated most distally, which is most frequently of the tube-bristle type; the latter bristle is in most cases furnished distally with a rather long hair; cf. my fig. 26 of C. symmetrica. In most cases these bristles have short hairs, only in exceptional cases they have rather long secondary bristles at the middle. At or somewhat distally of the middle of the posterior edge of this joint there are almost always three (in exceptional cases two or four) rather long bristles of somewhat different lengths, about as long as or somewhat longer or shorter than this joint. In most cases these bristles have short hairs and are of the tubebristle type; one or two of them have most frequently a rather long hair distally. The bristle on the inside of this joint, situated somewhat distally of the middle or rather near the distal boundary of this joint, is in most cases about as long as the width of this joint or somewhat shorter; it has short hairs, has long secondary bristles only exceptionally and is of the tube-bristle type; this bristle always seems to be without a long end hair. Near the distal boundary of this joint there is a somewhat varying number of - in most cases - rather weak spines along the anterior half of the inside. The end joint varies in length and is always armed with five distal bristles. The most anterior and the most posterior of these bristles are most frequently rather strong, slightly bent, pointed, bare or more or less finely pectinated claws the points of these bristles are of about the type reproduced by me in fig. 28 of C. symmetrica). The three remaining bristles on this joint are in most cases of the tube-bristle type, with short, fine lairs or almost bare and with no long end hair. Of these bristles the most anterior claw-shaped one is usually the longest, about as long as or somewhat longer than the breadth of the first endopodite joint (counting from front to back). The most posterior claw-like one is somewhat shorter than the former one, in most cases being at least somewhat more than half its length. The three remaining ones are either subequal or somewhat different in length; the longest of them is usually somewhat shorter than the most anterior claw-shaped one, the shortest one is usually about half this length. The length of these bristles varies somewhat even within the species. Pilosity: Both the endite on the procoxale and that on the coxale are furnished with a moderate nomber of moderately long, stiff hairs both on the anterior and the posterior side. Apart from these this limb seems in most cases to be quite bare.

Fifilh 1 imb : fror the same reasons as in the case of the two preceding limbs it seemed to the most combenient to deseribe in this generie description the ..normal type" of this limh as found be me. 'The characters on this limb that are mot mentioned the following dearipetions of spectes are thus to be considered as agrecing with this type - Protopodite: This is in most eases unjointed, but has sometimes a faint indication of two joints. The first endite has two bristles, one situated somewhat distally of the other. The proximal one of these bristles is short, has short hairs and is of the tube-bristle type. The distal one is rather long, in most cases about as long as the breadth of the protopodite (calculating from front to back), of the ordinary type, furmished along its proximal half with rather long, stiff secontary bristles, and with short hairs distally. The second endite is armed with three bristles. One of these bristles is of about the same type and length as the long bristle on the preceding endite. The two others are of the tube-bristle type: one of them has short hairs and is about as long as or somewhat longer or shorter than the short tube-bristle on the preceding endite, the other is somewhat longer. often about half the length of the long ordinary bristle, either with short hairs or with rather long, stiff secondary bristles at the middle (the latter character may sometimes vary even within the species). Epipodial appendage: The middle one of the three groups of bristles always seems to comprise five bristles. The endopodite is armed with eight, in exceptional eases nine, bristles; one of these is situated ventrally* rather far back, the others anteriorly on this branch. The latter (seven or eight) bristles are usually developed as follows: Two of them are rather powerful, moderately strongly or rather weakly pectinated claws, one of them, the ventral one, is about as long as the proximal height of the first exopodite joint, the other is somewhat shorter. One bristle, in most cases attached somewhat more dorsally than the short claw, is about as long as or most frequently somewhat shorter than the latter, has short hairs and is of the tube-bristle type. One (or in the case of nine bristles two) bristle, situated close to (in most cases somewhat dorsally of) the long claw, is also furnished with short hairs and is of the tube-bristle type, about as long as or somewhat shorter or longer than the latter. In exceptional cases the tube-bristles of this branch are very short. The three remaining (ventral ones) of the anterior bristles of this branch are in most eases rather long, of somewhat different lengths, the longest of them often being about as long as or somewhat shorter or longer than the long bristle on the first endite of the protopodite, the shortest about a quarter or a half shorter. These three bristles are in most cases of the ordinary type, either all with short hairs or clse one or two of them are furnished with rather long secondary bristles at the middle (this last character sometimes varies within the species). The anterior ventral bristle on this branch is in most cases of about the same type and length as the long bristle on the first endite of the protopodite, but has most frequently softer secondary bristles; in exceptional eases this bristle is more or less short. In a number of species this branch is furnished anteriorly on the outside with a number of short spines. Exopodite: First joint: The dorso-distal bristle of this joint is in most cases about as long as or somewhat longer than the two following joints; it has

* Really faterally. The naturat position of the endopolite is altered under the coverglass. Whereas the anterior bristle-hearing edge of this lnath points in its natural position of rest more or less horizontally-outward, it usually points ventrally under the coverglass. It seemed to me most convenient in describing these bristles to take their bearings as they are umber the coverglass. .. Ventrally" is thus really laterally, ..dorsally" corresponds to medially.
short hairs, is of the tube-bristle type or is well pointed distally (the latter chararter valies even within the species). At or most frequently somewhat distally of the middle of this joint, laterally, there is a single bristle, in most cases about as long as or somewhat shorter than the former one, sometimes with short hairs, sometimes with rather long hairs at the middle, in most cases well pointed distally. One or two of the other bristles of this joint are situated venteromedially at or somewhat proximally of half the length of the joint: a group (three to five) are situated ventrally often somewhat proximally of half the length of the joint; a group (two to four) are situated ventrally near the distal boundary of the joint. These bristles vary to a rather great extent both in number, length and type, not only from one species to another but also often within the same species; a larger or smaller number of them are always of the tube-bristle type; sometimes they all have short hairs, sometimes one or more of them have rather long hairs at the middle. Second joint: The three bristles on this joint are either subequal or else the dorsal one is slightly shorter or longer than the two ventral ones; they are in most cases about as long as or somewhat shorter than this joint, always with short hairs and are most frequently of the tube-bristle type. Of the three bristles on the end joint the middle one is rather powerful, in most cases about as long as or somewhat longer than the second exopodite joint, finely pectinated. (Its point - like the points of the two claws on the endopodite - is of about the same type as is reproduced in my fig. 28 of C. symmetrica.) The two other bristles on the end joint have short hairs and are tube-bristles; the dorsal one is in most cases about as long as or rather slightly shorter than the middle claw, the ventral one is most frequently about as long as or somewhat longer or shorter than half the length of the middle claw. The normal type of this limb described above agrees fairly closely with my fig. 27 of C. symmetrica. The pilosity varies on this limb, sometimes even within the species.

Sixth limb: - For the same reasons as in the case of the mandible, maxilla and fifth limb it seemed to me most convenient to give here in the genus deseription an account of the ,normal type" of this limb found by me; consequently in the following descriptions of species only such characters are included as differ more or less essentially from this type.

Contrary to the immediately preceding limbs this one shows rather great dimorphism.
Male: - This is large and powerful with very powerfully developed musculature and is used as an auxiliary organ in swimming. The protopodite is in most cases unjointed, sometimes it shows a more or less distinct division into two joints. The endopodite is only partly joined to the protopodite; remains of its musculature can be observed. In most cases it has two (in exceptional cases one) bristles, which are most frequently suberual and about as long as the proximal height of the first exopodite joint, in most cases well pointed and with rather long hairs at the middle, short hairs distally. Exopodite: First joint: This joint usually has dorso-distally a short tube-bristle with short hairs. In exeeptional cases this bristle is not found. Laterally, somewhat disto-dorsally of the middle of this joint, there is usually a single bristle, in most cases somewhat shorter than the distal height of this joint and in most cases furnished at the middle with rather long hairs and with short hairs distally; it has a fine point. This bristle may in rare cases also be missing. More or less scattered along the distal part of the ventral side, partly somewhat medially and partly somewhat
laterally, there are usually five (in exerptional cases fone or six) hristhes, of somewhat difterent hengethe the longest being in most fases as long as ar somewh longer or shorter than the proximal height of this joint. the shortest in most eases about half as long. These bristles are most. frepuenty well peinted and cither have short hairs or else a larger of smaller momberof them are furnished with rather lom hairs at the middle: the later chametor varies a good deal, often exen with the species. In exceptional eases this joint may have no bristles at all. The seeond joint hats rentrally, at or somewhat distally of the middle, a single short-haired bristle, in most cases of the tuhe-bristle type and most frequently about half as long as the height of this joint or still shorter. In exceptional eases it may be almost entirely reduced. The two bristles of the third joint are in most eases of about the same length and type as that of the preceding joint. In exceptional cases the rentral one of them may be almost completely reduced or even quite absent. The three bristles of the end joint are usually subequal and about as long as the exopodite. All of them are nsually furnished with rather long and powerful natatory hairs along the distal two-thirds of their length; in exceptional eases the ventral one has short hairs. It ought perhaps to be specially pointed out that these bristles are not modified distally as sensory organs. This limh is in most cases quite bare. The fig. 29 of (\% symmetrica given by me below agrees fairly well with the ,normal type" described here.

Female: - This is rather considerably smaller and weaker than that of the male; the musculature especially is considerably less strongly developed. In order to show the relative sizes it may be pointed out here as an example that whereas the exopodite of this limb (excluding, of course, the end bristles) is about $1,5 \mathrm{~mm}$. long in males of C. symmetrica $4,0-4,1 \mathrm{~mm}$. long, this branch measures only $1,0-1,1 \mathrm{~mm}$. in females of the same species whose shells are 4,3 to 4.5 mm . long. Apart from this fact this limb differs from that of the male chiefly in the bristles of the exopodite. 'These are developed in the following way: First joint: The dorso-distal bristle has as in the male, short hairs, and is in most eases about as long as or somewhat shorter than half the length of this joint. There are five bristles ventrally on this joint; two of these are situated at or somewhat proximally of half the length of this joint, one somewhat medially, the other somewhat laterally, the three remaining ones are near the distal boundary of this joint. These five bristles, like the single bristle situated laterally, somewhat dorso-distally of the middle of this joint, are better developed than in the male, in most cases subequal, about as long as or somewhat shorter than this joint and are all often furnished with rather long hairs at the middle and short lairs distally: Both the two bristles of the endopodite and these last-mentioned six bristles are most frequently well pointed, the short dorso-distal bristle is in most eases of the tube-bristle type, the latter sometimes with a rather long end hair (as in my fig. 26 of C. symmetrica). The bristles of the second and third joints are most frequently subequal and somewhat shorter than the second joint; they have short hairs and are in most eases of the tube-bristle type. The three bristles of the end joint are in most eases of about the same type and length as the corresponding bristles on the fifth limb but they are all in most eases somewhat longer comparatively. The middle one is most frequently about one and a half times as long as the second exopodite joint or somewhat longer. The fig. 30 of C. symmetrica given by me below agrees fairly well with the ,,normal type" deseribed here.

Seventh limb:-- The longest bristle is about a third or a quarter of the length of the shell, but varies to some extent even within the species. This limb is in most cases smooth; in exceptional cases the end joint is furnished with spines.

The penis varies rather considerably in type. Disto-laterally on the penis, somewhat ventrally of half the height of the organ and just proximally of the distal, forward bending part of the vas deferens, there is in most cases a lamelliform copulatory appendage, which is differently developed in different species.

Furea: - This has eight claws. The armature of the claws is in most cases moderately strong. Between the first and second claw there is no verruciform process. Behind the claws there is sometimes an unpaired bristle which varies somewhat in length. The lamellae are in most eases furnished with groups of short and stiff hairs on the inside.

Rod-shaped organ: - This shows more or less marked dimorphism.
Male: - This is always large, in most cases longer than the first antenna (the latter, of course, measured without its bristles). It consists of three parts which are moveably joined to each other. The middle one of these is rather firmly joined to the first antenna by means of the dorsal bristle on the second joint of this limb (retinaculum). The two proximal joints, between which the boundary runs at about the boundary between the two proximal joints of the first antenna, point forward, and are of about the same thickness throughout their length. The distal part, which is always somewhat thicker than the two proximal parts, points in most cases more or less ventrally; in addition it is in most eases armed with spines, prineipally along the ventral (posterior) side.

Female: - This organ is developed very differently in the female; in most cases it is somewhat shorter than in the male. Division into joints is most frequently less distinct than in the male. The boundary between the first and second joints is sometimes indicated, hut in most cases it is quite absent. The distal part is most frequently somewhat thicker than the proximal part and in most cases, as in the male, it is armed with spines. The organ is not joined to the first antenna by a retinacuhm, but is quite free.

Upper lip: - This projects strongly; when seen from the side it forms in most eases a rather pointed angle anteriorly (see my fig. 36 of C. symmetrica); its anterior side has no verruciform swellings. The glands of the upper lip have their exits scattered on the ventral side of the upper lip, arranged on the whole, however, in two longitudinal rows running on each side of and at some distance from the middle line. The postero-ventral margin of this lip varies somewhat in shape, but it is as a rule somewhat more rounded than in the genus Halocypris; its combs project moderately and are furnished with rather mumerous and rather powerfuk hairs. In the inner corner of each of these combs one or two glands have their exits. The part between these combs is most frequently somewhat narrower than each of the combs, but otherwise it varies in shape, being sometimes more or less straight and sometimes having a more or less deep notch at the middle.

The paragnates are in most cases more or less oval (cl. my fig. 38 of C. symmetrica) or else somewhat more triangular (cf. my fig. 14 of C. rotundata); they often vary, howe ver, even within the species. The chitinous lists belind the under lip are of the type reproduced hy G. W. MUllekt, 1894 , pl. 35, fig. 15 ; ch. my fig. 35 of C. symmetrica.
special lermimology: - First antrona: - For the five bristles on the two distat joints I hatre used the same abphatiabl notation in this gemus as I did for the gemes Matocypris above. Thas the two bristles of the next to the distal joint are demoted by a and b; here in the male the hyatime semorial filament is denoted as the a-bristhe, the long, ordinary bristle as the b-hristle. The disto-interion of the three bristles on the ent joint is denoted as the e-bristhe. the two others as the e-and d-bristles, the long ordinary bristle in the male being demoted as

It a melible: - As in the case of the gemus Halocypris so in this gemes the bristlen demoted by (". ('alts as ..Ntachelzailme" are temmed lancet-bristles.

Fifth iimb: - Those of the bristles on the first exopodite joint that are situated medio-ventrally, in most cases somewhat proximally of half the length of the joint, are called .the medio-ventral bristles", the ventral group of bristles at or somewhat proximally of hati the length of the joint are called ,ethe proximo-ventral" bristes and the ventral group near the distal boundary of this joint are termed .,the disto-ventral" bristles.

Rod-shaped organ: - The distal part of this organ, which is, at least in the mates, in most cases well marked off, and which is called by (. W. Morter , Endstück", is called in the present work ..capitulum", after the example of G. S. Brady and A. M. Norman. The part situated proximally of the capitulum is called the shaft.

Spinifera group G. W. Müller

(=Paraconchoecia [part.] C. Claus).
C. Chals, 1891 a, included in the genus Paraconchoecia, besides the species Conchoecia oblonga dealt with below, the following species:

Conchoecia spinifera, (C. Clats), $1891 \mathrm{a}, \mathrm{p} .64 ; \mathrm{pl}$. X.
inermis, 1891 a, p. 65; pl. XI.
gracilis, .. ., 1891 a. p. $66 ;$ pl. XIL.
All these species, except C. gracilis, which appeared to be a synonym of C. elegans (f. O. SARs, are included by G. W. MClller, 1906 a, in the Spinifera group established by him. In addition this writer adds the following species to this group in the work just mentioned:

Conchoecia allotherium, G. W. MƯLLER, 1906 a, p. 59; pl. XI, figs. 15-19.
aequiseta. $1906 \mathrm{a}, \mathrm{p} .59 ; \mathrm{pl}$. XI, figs.1-6, and $11-14$. hirsuta, $1906 \mathrm{a}, \mathrm{p} .60$; pl. XI, figs. $1-3$ and 6-10. mamillata. 1906 a, p. 60 ; pl. XVI, figs. $1-9$; pl. XXXV, fig. 8.
echinata. dorsotuberculata,. ., $\quad 1906$ a, p. 63; pl. X, figs. 1-3 and 8-13. reticulata,, 1906 a, p. 64; pl. XII. figs. $10-17$.

Conchoceia caudata, (i. II. Mlellerk, 1906 a, p. 65; pl. XI, fig. 24 and pl. XIl, figs. 1-9.
". dasyophthatma. .. ., ," 1906 a, p. 66 ; pl. XI, figs. $20-23$ and $26-30$.
Is this group a natural one:
As I was only able to investigate closely one of the above-mentioned species it is exceedingly difficult for me to decide this question on account of the incompleteness in the deseriptions of these forms. It seems to me, however, fairly certain that it must be answered in the negative.

Both (i. W. MƯller's characterization of this group and C. Clats's diagnosis of the genus Paraconchoecia are exceedingly incomplete and leave the reader anything but eonvinced as to the justification of inchding the species in question in one group. (i. W. Milumer himself states (1906 a, p. 52) that it is not possible to define precisely and characterize this group. In order still further to explain this fact I shall give here a critieal exposition of the characters put forward by these writers.

Shell: - According to C. CLaUs this is „sehr zart und stark comprimiert, meist mit einem Stachelfortsatz am Hinterende der rechten Klappe". G. Wr. Müler only adopts the last of these characters; according to the latter writer the shell is characterized, in addition, by the fact that the unsymmetrical glands emerge for the most part ,at the usual place" and by the absence of lateral groups of glands.

With regard to these characters the following facts may be stated: The species of this group that I investigated, namely C. oblonga, is not characterized by a more thin-walled shell than many other speeies belonging to other groups of this genus. - The shells of species in this group are not, or at least not essentially, narrower than in most other species of this genus. These two characters were, as has been pointed out above, not included by G. W. Mülelr. The posterior dorsal corner of the right valve is armed with a more or less well developed spine not only in a rather large number (nineteen) of species belonging to several other groups of this genus but also in representatives of two of the three other genera of this family, namely Archiconchoecia and Euconchoecia. In addition, an armature of this kind is, as both C. Cbaus and G. W. MUleLer have pointed out, not characteristie of all the species in the group under consideration here; both C. inermis and C'. dorsotuberculata have no spines at all either on the left or the right valve. It is also to be noted that we are here concerned with a character that sometimes varies even within the species, a fact that G. W. Muller himself has observed; ef. this writer's work 1906 a, p. 53. - The fact that the unsymmetrical glands have their exits, ,an der gewölmichen Stelle" is, of course, a character of little value. This character, which is found in most species of the genus Conchoecia, is presumably an original one in this genus, as is shown with a fairly great degree of certainty by the fact that these glands also have this position in the genus Halocypris. Moreover these glands have, as G. W. Muller himself has pointed out, been rather considerably displaced in not less than four species of this group, namely C. aequiseta, C. hirsuta, (.) dorsotuberculata and C. mamillute. - The absence of lateral groups of glands in these species is certainly also primitive. Such groups of glands are only found in the genus C'onchoecia; in all other genera of this sub)-family theyare alyays absent. In the genus Conchoecia there are

1 crtictsm of this group.
no lateral eomer glands, wot onty in the species of this gromp, hat in wo hess than 23 species betonging to several different gromps.
 gronping together of the speeces mentioned above. . Characteristiseh liir die Gruppe ist die Bewafinung der Hauptborste in beiden Geschlechtern" (1906 is, p. 56). In the females of these spectes the e-bristle on this antemat is lurnished with ,"hnger, dioner, stark abstehender Beharmeng am Vorderrand". There are no such hairs in C. dasyophthetma; this species is comsequently inchuded here only with hesitation.

It is probably best, however, not to attach too moch importance to this character, as I have observed that similar hairs are characteristic of the female of C. spinirostris as well, i. e. a species that (i. \mathbb{I}. Müllaz referred, though with hesitation, to quite another group of this gems, namely the Magna group, ant they are also found in C. obtusata*. Does C. spinirostris belong to the Magna group or is this doubt of (i. W. Munildir's justified? It seems to me, unfortmately, impossible to answer this question on account of the comparatively slight knowledge I possess of the majority of the species belonging to the Magna group. On the other hand it seems to me beyond all doubt that C. spinirostris is not more closely related to C. oblonga than many other species belonging to other groups of this genus. Anyone who knows C. obtusata and C. oblongo will understand that there is no specially close relation between these two species.

In the males of the Spinifera group the e-bristle is furnished with ,,langen, borstenartigen Spitzen; dieselben stehen meist sehr dicht, rücken mur ausnahmsweise (echinata) etwas weiter auseinander; distal von den basalwärts gerichteten Borsten findet sich meisc (Ausnahme dorsotuberculata, allotherium, mamillata) eine kleine Gruppe distalwärts gerichteter Börstchen" (G. WV. MƯLLER, 1906 a, p. 56).

With regard to these characters it may be pointed out, first, that long, bristle-kike, close spines are not characteristic only of species of this group, but of a very large number of species belonging to several other groups of this genus; we are presumably concerned here, too, with a comparatively primitive character; cf. also this character in C. dasyophthalma, pl. XI, fig. 30. Nor is the character of a small group of distally pointing spines situated distally of the rows of spines confined to this group; similar spines are found in several other species of this genus belonging to different groups; the exceptions within the groups are also, of course, considerably numerous. Nor ean the armature of the b- and d-bristles as put forward by G. W. Muller be conveniently used; there are exceptions within the group and we find a similar character in a very large number of species in many other groups of this genus.

II andible: - , Kauwulst der Mandibellade in Form einer quergestellten dreiseitigen Lahnplatte über die ganze Breite der Kaufläche ausgezogen, die vier Hakenzähne zur Seite gedrängt, in dem dichten Borstensaum mehr oder minder versteckt." (C. CLAUS, 1891 a.) This character is not included at all by G. W. Muller. With regard to the value of this character, which applies, of course, only to the three first-mentioned species, it is difficult to make any definite statement, but it is presumably rather slight, as the differences we are concerned with

* In a large number of species there are exceedingly short, distally pointing hairs at this place. Such species are C. elegans, C. rotundata, C. Iaddoni, C. bispinosa, C. Gaussi, C. serrulata and C. Chuni.
here are too small to chable us to ascribe any great importance to them. In this eomnertion I will
 satzes der Mandibel ciner weiteren Einteilung zu Grunde zu legen, scheint mir nicht durchführbar."

These writers have not taken other organs into consideration in making this classification. Purely from the point of view of habitus this group includes rather heterogeneous elements; cl., for instanee. C. caudata. C. dasyophthalma and C. oblonga.

Is not C. decipiens, for instance, which belongs to the Procere group, considerably more closely related to C. oblonga than the latter is to, for instance. C. dasyophthalma or C. caudatu:

As has been pointed out above, no answer as to the naturalness of this group can yet be given. For this a new and comprehensive investigation of the species in it is necessary.

Conchoecia oblonga (C. Claus).

> P'aracomehoecia oblonga, C. CLAAUs, 1890, p. 13.
> Conchoecia veriabilis (part.), G. WT. MULLER, 18!0 a, p. e73; ph. XXVIII, figs. 27 and 3s. Paraconchoecia oblomga, C. Clats, 1891 a, p. 63; pl. VIII, figs. 10 and 11; pl. IX.
> Conchoecia oblonga, G. IV. MÜLLER, 1906 a. p. 58; pl. IX. figs. 11-13, 16-:25. ", $\because \quad ., \quad . \quad . \quad 1906 \mathrm{~b}, \mathrm{p} .3$. .. \quad, \quad T. VÁVR, 1906, p. 38; pl. II, fiss. 2l-28.
> .,,\quad (r. IV. MULLER, 190S, p. 66.
> ., 1912. P . 69.
 and Conchoecia oblonga, G. W. Millak, 1890 a, p. 272.)

Supplementary description: - Male: -
 according to V. VAVRA, $1906,1,2-1.3 \mathrm{~mm}$. The lengths of the specimens investigated by me varied between $1,40 \mathrm{~mm}$. and 1.6 mm . Length : height about $2.3: 1$: length : breadth about $2,3: 1$. Scen from the side it has about the same type as is reproduced in the acompanying figure 1, i. e. the posterior part of the shell is not larger than the anterior part. With regard to this characteristic the specimens investigated by me differed from the type reproduced by G. W. MỨlere, 1906 a, in pl. IX, fig. 11. (This figure certainly represents a female, but G. IV. Mither does not mention the existence of any difference between the sexes in this respect; ef. under the description of the femate shell below.) (on the other hand the figure of the male shell in this species given by (. (1atcs, $1891 \mathrm{a} . \mathrm{pl}$. IX, fig. 9 agrees in this respect with the type fond by me. Seanfrom below. fig. 2 , it has its greatest bramth at or just in front of the middle, its side contours are umiformly curved, it is broadly roundeal anteriorly with a rostrum that is amost symmetrical. and is pointed posteriorly. The shoulder vault is always powerful. but was never hacpedged in the specimens investigated by me. The

Zoolog bideag, Ejpsala, Suppl. Fre. I.
 gated be me it was bounded off he a decided anghe from the posterion matgin of the shedf; el fige 3. When the shell is sem from the side the margin of the shell has, just ventrally al the mostral incisur, a som of spine-like process. This process is, as (C Casts has arready pointed out, formed he the selvane. Which is rather broadly comvex at this peint; when this part of the sedvage
 in this speries is charaterized by the lact that it is smoth-edged or only exceedingly finely semulated along the anterior marginof the shelland the anterior halfof the vent mal margin the shell; it is timely servilated along the posterion hall of the ventral margin of the shell and a short distance of the most ventral part of the posterior margin of the shell; inside the remaining part of the rentral half of the posterion margin of the shell the marginal spines of the selvage are somewhat larger. but they never seem to be developed quite in the same way as in the acompanying lig. 4 of (\quad. symmetrice. The selvage has no large spine-like processes on the rostrum. There are a few rather long, solt hairs scattered on the s or fate of the shell. With regard to the position wi the g lands the apecimensinvestigated by me belonged to the type denoted by (i. W. MOALAR, 19n6 a, as , Form a". The medial glands along the posterior margin of the shell are moderately large; their exits are always simple, arranged in a distinct row rmming about half way between the selvage and the edge of the shell or clse somewhat nearer the latter, but not joined by any distinct list. There is no distinetly developed hinge-socket or hinge-tooth at the posterior dorsal comer of the shell.

First antenna: - E-hristle: The proportion between the length of this bristle and the length of the whole limb is about $4: 3$, somewhat distally of the middle this bristle has two rows of proximally pointing spines along about a quarter of its length. The number of spines in these rows seems to be subject to rather slight variation: about thirty or slightly tewer were found in each row. (V. VAvias, 1906, p. 38, gives the number as only 26 ; there are $2 s$ in the fignre given by this writer.) As G. W. Müldar has pointed ont, all these spines, even thuse situated most proximally, are close together. In most cases the spines in the two rows are situated about opposite to each other, at any rate they do not distinctly alternate. All these spines seem to be narrow and well pointed; those situated distally are rather short, about as long as the thickness of the bristle at the place where they are attached, the others increase fairly uniformly in length the more proximatly they are situated, the most proximal ones being rather long, from about three to five times as long as the distal ones. Just distally of these rows of spines this bristle is furnished with a few short spines, which in most cases point somewhat distally. (Host frequently they are of about the same type as the spines distally of the sutorial plate on the e-bristle of C.elegans; (f. the accompanying fig. 15 of the latter species.) Just distally of these spines this bristle is bent at a decided angle. The part of the bristle situated distally of this knee is bare and, as has been pointed out by (. W. W. Mulder, not widened. The anterior side of this bristle is quite bare. The b-and d-bristles are subequal, somewhat shorter than or about as long as the e-bristle, often bent at a rather decided angle at about the corresponding place to that in the last-mentioned bristle; they are not widened distally. As G. W. Musber has pointed out. the b-bristle is furnished with a dense row of (about ten to twenty) rather short,
and fine distally pointing spines, abont the same as are shown in pl. 1 X , fig. 7 in (l. W. Mimber's work, 1906 a; this row of spines is sometimes divided into two. The d-bristle has at the corre sponding place a sparse row of similar spines. None of these three bristles have pad-like fomations. The a-bristle is about as long as or somewhat longer than the total length of the four distal joints: it has no aceessory sacenle. The e-bristle is quite short, only about as long as the distal height of the second joint. The e-bristle is more or less straight, the d-bristle is in most calses not decidedly rolled mp. All the joints are quite bare.

Second antenna: - Protopodite: In specimens with shells $1,4-1,5 \mathrm{~mm}$. long this attained a length of about $0,75 \mathrm{~mm}$. Ex xopodite: The proportion between the length of this branch and that of the protopodite is about $14: 30$. The proportion between the length of the first joint and the trital length of the eight following jeints is about 2: 1. The

Digitized by Microsoft (a)
propertion hetwem the hength wif the lomest matary bristles and that of the exopodite is abomt. t : 3 . The tirst joint is furnished proximodistally with a demse longitudinat row of short, fine
 smaller mamber of seatered spimes of the same tepe (abont the same ats in tigs 12 and 13 al ('. symmetrica). E bdopodite: First joint: The processus mammillaris has no distal vervuca. Ther and b-hristles hase mo long hairs in most cases they are quite bare. Second joint: The (- and d-bristles are most wfen somewhat shorter than this joint and have short fine hairs or are almest puite hare. The e-bristle is exeedingly short. The g-bristle is about as long as or slighty shmer than the protoperdite; it grows gradually narew distally and is lumished with mather sparse shore tine hats. The f-bristle is about a guarter or a third shorter than the g-hrist and. like it. is not widened distally and is bare. Thirel joint: The clasping orgims are of abont
 aldoning fige (i). The h- i- and j-bristhes ant subequal, in most eases semewhat less tham hali the length of the g-hristle along the greater part of their length they are about as wide as the proximal part of the f-bristle: they are only slightly widened proximally and have only indicatioms of shatts: they are hare.

I andible: - Protopodite: Coxale: The number of teeth on the toothed elge of the pars ineisiva varied between seven and ten in the specomens investigated by me. Distal tooth-list: This is rather slighty narrower than the toothed edge of the pars incisiva and is wf about the type reproduced by me in fig. 17 of C. symmetrica, but somewhat variable. It is amed with a simple row of about $14-18$ teeth. The two posterior ones of these teetly are rather high and powerful, the posterior one of them is in most cases smooth, the other is most frequmtly furnished with a few small secondary teeth. The others, $12-16$, are somewhat lower than the former ones and are smonth; they are either subegual and somewhat rounded distally (about the same as the middle teeth in the figure just mentioned) or else the anterior ones are stmewhat larger and wider than the others (about the same as in the figure just mentioned). Proximal tooth-list: This is rather slightly narower than the distal one and is armed with a somewhat varying number (about $14-20$) of teeth, arranged in a simple row. As in the case of the distal tooth-list. the two posterior of these are rather high and powerful, like tusks the others vary rather as to their development, being sometmes of about the same type as the corresponding teeth on the distal tooth-list, sometimes of other types, as, for instance, those shown in the adjoining fig. 7. This tooth-list is furnished on the inside with numerous fine, short spines. situated close together. The masticatory pad is simple or at any rate without any distinct division into lobes: it is comparatively wide, about as wide as the toath-lists; it is square distally and is armed with exceedingly mmerous rather small spines. The lancet-bristles are, as C. Chats pointed out, 1891 a, p. 63 , in dem dichten Borstensaum mehr oder minder versteckt". Basale: The six teeth on the distal edge of the endite are furnished with exceedingly fine serrulation. The single tooth on the outside of this process is of about the same size and type as in my fig. 19 of C. symmetrica, finely serrated only along the distal half of the anterior edge. The epipodial appendage is represented only by an exceedingly small (scarcely obserwable with REICIERT"s ocular t, LEITh's immersion $1 / 12$) vermeiform process.

Digitized by Microsoft ${ }^{\circledR}$

Endopodite: 'The first joint has three posterior hristles, all with short hairs. The lateral one of these bristles is about as long as or somewhat longer or shorter than the two distal endopodite joints, the two others are somewhat slowter.

Maxilla: - Protopodite: The bristle on the basale is relatively short, only ahout half as long as the first endopodite joint: in exceptional cases it las at the midde a ferw rather long secondary bristles. Endopodite: A couple of the six bristles on the anterion elge of the first joint are usually furnished with rather long, stiff necondary bristles at the middle. On the posterior edge of this joint there are two or three bristles, in most cases three. The rental side of the end joint is about as long as the breadth of the first enefopodite joint distally (calculated from front to back), its dorsal side is about half as long.

Fifth limb: - Protopodite: The longer of the two tube-hristles on the second endite is always fumished at the middle with rather long, stiff secondary bristles. Endopodite: One of the three ventero-anterion bristles is of about the same length and type as the long bristles on the endites of the protopodite, the two others are somewhat shorter and weaker (about the same proportions as in my fig, 27 of ((. symmetrica) and have short hairs. This branch has no spine armature. Exopodite: First joint: This las two medio-ventral bristles, often subequal and abont as long as the proximal height of this joint, and with short hairs. There are three or fonr bristles in the proximo-vential gromp; these are somewhat different in length, the longest being in most eases about as long as or somewhat lenger than the two medio-ventral bristles, the shontest about half as long; the longest of these bristles has in most cases rather long hairs at the middle, the others most frequently have short hairs. The distoventral group of bristles eonsists of two or three short-haired bristles of somewhat different lengtlos; their lengths vary in most cases within the same limits as in the case of the hristles $j n$ the proximo-ventral group. The dorso-lateral bristle is furnished with long hairs. Pilosity: The protopodite and the first expoodite joint have sparse hairs medially, but apart from these this limb always seems to be bare.

Sixth limb: - Exopodite: The ventral bristles on the first joint are perhaps on the average somewhat shorter than in my fig. 29 of C. symmetrica; they all have rather long hairs at the middle as is the ease with the dorso-lateral bristles on this joint. The ventral bristle on the end joint has short hairs.

Pebis: - This is comparatively narrow and has about the same height throughout its length; it is obliquely rounded oft distally; cf. pl. 1X. fig. 13. C. (1.ats. 1891a. At about the middle there is a series of about five or six oblique transverse museles; there are mo musctes distally of these. It has a rather large, distally rounded, eopulatory appendage: of. the adjoining fig. 8 .

Furea: - The fifth claw is umusually decidedly bent: see pl. IX, fig. 2, C. Clats, 1891 a and my fig. 9. There is no unpaired bristle behind the claws.

Rod-shaped organ: - The shaft reaches to about the proximal boundary of the third joint of the first antenna or to the point of this limb. The capitulum is about as long as the second joint of the first antenna; in the speeimens investigated by me this part was of about the type reproduced in the aceompanying fig. 10, i. e. of about the same type as was fomed by (\%. (1atis.

L'ppar lip: - The part betwem the combs on the postero-ventral edge of this lip
 are ahout the same as in the latere speedes.

Fermale: 一
 1s91 a, gives a length of $1.4-1.5 \mathrm{~mm}$. but makes no distinction between males and lemales in this respect.) The longths of the specimens investigated by me varied between 1,5 and $1,8 \mathrm{~mm}$. Longth : height ahout $2,5: 1$: length : beadth about $3: 1$. In other respects we find about the same type as in the male, both when seen from the side and from beneath; it is, however, (1) be moted that the shoulder vault is not quite so powerlin and the shell, when seen from the side is somewhat higher than in the mate; among the specimens investigated by me, however. there was nome that was so high posteriorly as the type reproduced by G. W. Milatar, Igotia The spine on the postero-donsab comer of the right value is not bounded off from the posterior margin of the shell by a distin't angle; see fig. 5 . In other respeets it resembles the male.

First antenna: - This is of the type deseribed by (i . W. Muthem. The bristle of the seeond joint has exeeding!y fine. short hairs, almost bare. All the joints are hare. In the first joint there are alage mumber of yellowish-brown corpuselos (explained by some previous whiters as redured eyses).
second antenna: - The protopodite is only slighty relatively shorter than that of the male. The proportion between the length of the protopodite and that of the exopodite is about the same as in the male. Endopodite: This has three joints; the little rad joint is clearly defined. The g-bristle is slightly relatively shorter than in the male. The f-. h-, i- and j-bristles are subequal or differ only slightly in length; they are somewhat more that half the length of the g-bristle. These fom bristles are of about the same type as in the male. Between the hand i-bristles there is an exceedingly short bristle, which is only perceptible with bery great magnification (Rememeat's neular 4. WETM's immersion $1 / 12$). Pilosity: 'The second endopodite joint is bare.

The rod-shaped organ is quite of the type fommbly C. Cbaus and G. Wr. Mobder; see the accompanying fiy. 11.

Remarks: - It seems to me beyond all doubt that the form Paraconchocin oblonga deseribed by (. . CLAt'r, 1890 and 1891 a is identical with the species dealt with by me above. Almost entire agreement was observable between the specimens investigated by me and the fairly full description given by this writer. It is true that a number of differences can be observed, e. g. with regard to the e-bristle of the female first antema and the fifth and sixth limbs, but these differences seem certainly to be due to the somewhat superficial nature of this author's description.

Nor does there seem to be the least doubt that Conchoecia oblonga, V. VAvRa, 1906, is identical with this species. An almost detailed agreement is found between this anthor's description and the information given by me above. V. VAVRA's statement that the capitulum of the male rod-shaped organ is bare (..ganz kahl") is contradicted by this writer's pl. II, fig. 23.

The great resembtance between V. VAnsis's and my figures of the make shell and the rod-shaped organ ought specially to be pointed out.

It also seems to me quite certain that (. W. MÜLdelz's species C. oblonga, 1906 a comprises the species dealt with here. On the other hand it seems less certain that the material investigated by G. W. Muller for this work was pure from a systematic point of view. With regard to the shell this writer distinguished two forms, which he termed a and b, and the rodshaped organ in the males investigated by him was subject to rather far-reaching variation. This is particularly noteworthy because neither C. CLALs nor V. VAVRA mention any variation although they had abundant material at their disposal; C. Claus writes, for instance, with regard to this species . . ., die in zahlreichen Exemplaren untersucht werden konnte und zu den am besten charakterisirten Formen gehört", 1891 a, p. 64, and V. VAVRa found and investigated this species from no less than 39 different stations.

Nor have I observed any variation in this species myself; on the contrary the specimens investigated by me agreed well with the types described by C. Cladis and V. VAVRa, as I have pointed out above; we must note, however, in this connection that the material investigated by me contained only a small number of specimens of this species. I have nevertheless accepted the definitions made by (. W. MÜLLER, because this writer put forward reasons (1906 a, p. 58) that seem to support fairly decidedly the idea that we are concerned with a species with a rather great amplitude of variation.
C. Chaus in his work of 1891 a, p. 64 identified the species Conchoecit rariabilis describet by (. W. MOLLER, 1890 a with this species; as C. CLAl's himself pointed out, however, this identification was very uncertain because of the incompleteness of G. W". Mteler's description. In a later work. 1906 a , G. W. Müller himself accepted this identification, but with the reservation that only a number of the specimens investigated by him (1890 a) were identical with this form.

It is impossible to decide whether Paraconchoecia oblongu, (. S. Braby, 1897, p. 95 is identical with the species dealt with above. It is true that this writer gives a couple of figures, pl. XVII, figs. 20 and 21, but they are so incomplete that no conclusions in this direction can be drawn from them.

This species is also mentioned in (G. S. Bramy and A. N. Nomma's work of 1896 , but we only find here a translation of the information previously given by C. CLats.

That Paraconchoecia oblongu, ('. ('LALs, 1894 is not identical with the species dealt with above is shown guite clearly both by this writer's description and his figures. 'This form is, as G. II. Midleer has already previnusly pointed out, presmably identical with Conchoecia procera (t. W. Moller. For P. oblonga P'. T. Cleve see the remark under Euconchoecin ('herchiae below; for Conchoecia oblonga, (i. W. MÜllerr, 1890 a, see this writer 1906 a.

The name Conchoecia (or Paraconchoccia) oblonga ((C. (1,.A:) is also mentioned in the following places in the literature: (. CLats, 1893, p. 286, (i. S. Brams, 1902: : p. 199 (-1903 , p. 337 and A. M. Normis, 1905, p. 155), (i. 11. Fowler, 1903, p. 121 and P. T. Cldede, 1904, p. 370 and 1905, p. 132 . As no deseriptions or verificatory figures accompany these statements it did not seen to be convenient to-include them-in the list ofsmoryms given above.

 1 mature fematr：R．．I．N．．．on stides．S．A．E．，Pl．station 6 b，lat． $23^{\circ} 35^{\prime}$ N．，long． $22^{\circ} 199^{\prime}$ W．； at the surface；10．N1．1901；temperature，2：30（．： 1 mature mate；R．M．S．：206．S．A．E．，P＇l．
 1 mature female：R．M．․ 207．S．A．F．，IPl．station 20 b ，lat． $11^{\circ} 9^{\prime} \mathrm{S}$ ．，long． $322^{\circ} 55^{\prime} \mathrm{W}$ ．；at the surlite：29．．N1．1901：temperature， $26,4^{\circ} \mathrm{C}^{1} .: 2$ mature males and 3 mature females；R．M．S． 208.

Distribution：－Itlantic Ocean from lat． $37^{\circ} \mathrm{N} .\left(\mathrm{C} . \mathrm{Clads}^{2} 1891\right.$ at，V．VArRa，1906）to lat． $37^{\circ} \mathrm{S}$ ．（G．W．Nülder， 1906 a ）．Indian Ocean to lat． $32^{n} \mathrm{~S}$ ．（G．W．MÜıLer， 1906 a）．

The finds of the swedish ．．Antaretic＂expedition are consequently within the limits wil this species as stated by previons anthors．

Elegans group G．W．Müller．

This group is certainly quite a matural one．It comprises only two species，the one de－ scribed below and C＇．discophore，which are very closely related to each other．

Conchoecia elegans G．O．SARS．

C＇onchoecin elegans．（i．O）．S．1Rs：1865，p． 117.
1869 ，p． 360.
Paraconchecia gracilis，（C．（Lats，1890，p． 15.
1891 a，p． 66 ；pl．Xll．
Conchoecio plegans，（G．S．Brady and A．M．Nomman，1896，p．684；ph．LA，fig．23；
pl．LXV，figs．11－22．
民．VANHÖffeヘ̃，1897，p． 285.
（）．Nordgampt， 1898 ，p． 17.
and C．quadrangularis，（．W．S．Aurisillits，1898，PP．16，42， $218,224,230,398,400$.
（）．Nohlgadrle，1899，p． 26.
（．W゙．S．Aurivillits．1899，pp．37，58，62， 66.
P．T．C＇leve，1900，p． 39.
（i．W．MÜLLER，1901，p．3．figs．1－3．
H．H．（1RAN，1902，pp．83， 210.

Conchoeciu elegans，Tın．S＇COTT， 1902 a，p． 476 ；pl．XXV，fige， 33.
1902 b，pp．514， 517.

Conchoecia elegans, P.'T. Cleves, 1903, pp. 19, 23.
1'. T. Clewe and O. Pettersisun, 1903, pp. 2, 7.
Th. SCott, 1905 , p. 2es.
(). Nordgankd, 1905 , p. 41 .
(. H. Ostenfell), 1906, p. 96.
(. W. MƯLLER, 1906 a, p. 69; pl. XIIl, figs. 10, 11, 19 -26.
V. YÁVRA. 1906, p. 41 ; pl. II. figs. 37-40; pl. III; figs. 41-43.
G. W. MUllere, 1906 b, p. 4.
A. K. LINKO, $1907 . \mathrm{p} .194$.

Paraconchoecia grucilis, G. S. Brady , 1907, p. ¿2.
Conchoecia elegans, E. Koefoed, 1907, pp. 150, 151, 156, 157, 160, 161, 163, 164, 170, $175,183,187,188,189,192,193,196,204,209,210$, $214,215,226,232,235,2+9,252,258,259,269$.
(*. W. MÜller, 1908 , p. 67.
C. H. Ostenfelf and C. Wesenherg-Lund, 1909, p. 113.
(i. H. Fowler, 1909, pp. 233, 263, 286.
C. APSTEIN, 1911 , p. 164; pl. XXILl.
, ,. TH. SCOTT, 1912 a, p. 588.
", \quad E. Jörgensen, 1912, pp. 14, 16.
," ," (\%. W. MƯLLER, 1912, p. 72.
., " K. Stephensen, 1913, p. 354.
Description: - See C. Claus, 1891 a, p. 66 and G. W. MUller, 1901, p. 3; 1906 a, p. 69.
Supplementary description: - Male:-
Shell: - Length: C. (laus (1891 a) gives this as $1,2 — 1,3 \mathrm{~mm}$. (the same for of and 9); G. S. Brady and A. M. Norman, 1896: 1,4 mm. ; V. Vavra, 1906: 1,5-2 mm.; G. W. Müller, 1906 a and 1912: $1,0-2,0 \mathrm{~mm}$., , die großen Individuen uiber . . $1,8 \mathrm{~mm}$. stammen aus del Arktis". The male specimens investigated by me had the following lengths: Skager Rak and Cattegat: 2,05-2,25 mm., Lofoten: 2,1—2,25 mm., Arctic Ocean, 2,05-2,2 mm., Atlantic Ocean (S. A. E., Pl. Station 134): $1,2 \mathrm{~mm}$., Antarctic Ocean: $1,45-2 \mathrm{~mm}$.; specimens from $1,85-2 \mathrm{~mm}$. long were found only at the most southerly station (S. A. E., Pl. station 59 b). Length : height about 2,6:1; length: breadth about 2,9:1. Seen from the side it is of about the same type as is reproduced in the adjoining fig. 1, i. e. perhaps somewhat more elongated and with a posterior part that dominates somewhat less than would appear from the descriptions mentioned above. The spines just in front of the posterior dorsal corner of the right valve vary somewhat in number, from one to three were found. In the Scandinavian specimens the right valve always had at the postero-dorsal corner a process of about the type reproduced in the accompanying fig. 3 ; in the male specimens from the Antaretie Ocean investig. ated by me there was never any such process; see the accompanying fig. 4. Seen from below (fig. 2), it has its greatest breadth at about the middle and has side contours that are somewhat irregularly and weakly modulating posteriorly anteriony it is broadly rounded with

Fig. CKVII. - Conchoecia elegans G. O. Sars. - 1. Shell seen from the side, ô; $40 \times$. 2. shell seen from below, $0^{+} ; 33 \times$. 3. and 4. Postero-dorsal corner of the shell seen from inside, $\overline{0} ; 400 \times$. 5. Shell seen from the side, 0 juv., stage $I ; 40 \times$. 6. Endopodite of the right second antenna seen from inside, the long distal bristles are broken, of; $353 \times$. 7. Clasping appendage of the endopodite of the left second antonna, $\overrightarrow{0} ; 353 \times$. 8. Endopodite of the left second antenna seen from inside, the distal bristles are broken, $; 4 ; 400 \times$. 9 . Endopodite (distal joint) of the right second antenna seen from outside, the end bristles are broken, $\hat{0}$ juv., stage $1 . ; 400 \times$. 10 . Proximal tooth-list of the right mandible seen from inside, 0 ; $1033 \times$. 11. Distal part of the sixth limb, $8 ; 187 \times$. 12. Penis seen from outside; $260 \times$. 13. Distal part of the rod-shaped organ. $9 ; 450 \times$. (Figs. $1-3,6-8,11,12$ are drawn from specimens from Lofoten; figs. 5, 9. 10, 13 from specimens from Koster and fig. \& from a specimen from station 64 1.)

Digitized by Microsoft ${ }^{(8)}$
an almost symmetrical rostrum, posteriorly it is somewhat pointed. The shoulder vault is well developed, but is always rounded. To judge from the literature the surface seulpture varies: G. O. SARs writes, 1865, p. 117: ,striis numerosis densissimis et decussatis reticnlatae"; G. W. Müller, 1901: ,,Bisweilen zeigt die Schale eine deutliche Streifung. Meist erkennt man als Rest ciner Streifung nur eine Zähnclung resp. Feldernng an der vorderen Hälfte des Ventralrandes, und auch diese kann fehlen". Cf. also V. VAVRA, 1906, p. 42. The specimens investigated by me showed an agreement with G. O. SARs's original description with regard to this character, but the reticulation was sometimes rather difficult to verify. The variation is perhaps only apparent; cf. G. W. MUller, $1906 \mathrm{a}, \mathrm{P} .33$. The surface of the shell is without or practically without hairs. Seen from inside: Selvage: This is in most cases smooth-edged on the rostrum and has no spine-like process. It is quite smooth-edged or sometimes exccedingly finely serrulated along the anterior margin of the shell and the anterior half of the ventral margin of the shell; it is finely serrulated along the posterior half of the ventral margin of the shell and along the ventral half of the posterior margin of the shell. There are compound glands as described by G. W. Muller, 1906 a. The glands along the posterior margin of the shell are moderately large and have their exits on the margin of the shell itself; only one or a few emerge (with a simple exit) between the list and the margin of the shell. There is no hinge-socket or hinge-tooth at the postero-dorsal corner of the shell.

First antenna: - The first joint is comparatively long and has in most cases a rather distinct contraction near the base; cf. the accompanying fig. 14; the proportion between the lengths of the first and second joints is about $8: 5$. The b-, d- and e-bristles are in most cases subequal and somewhat shorter than this limb. E-bristle: This bristle has at about twothirds of the way along it an oval plate like a suctorial organ of about the type reproduced in fig. 15; the edge of this plate is - at least as far as I could observe - smooth. Just distally of this plate there is a somewhat varying number of short and rather powerful spines, arranged in two groups situated near each other; the number of spines is most frequently about the same as in the accompanying fig. 15. Just distally of these spines this bristle is in most cases bent at a distinct angle. The part of the bristle distally of these spines is closely and finely annulated or partly hyaline, bare, and is not at all or only slightly widened. (Note that the proportion between the sucker-like plate and the part of this bristle situated distally of this is quite incorrect in G. W. MUlLer's work of 1901.) The part of this bristle situated proximally of the sucker-like plate is furnished on its anterior side with sparse and exceedingly short bristles (scarcely perceptible with Reichert's ocul. 4, Leitz's immersion $1 / 12$). B- and d-bristles: These seem sometimes to be quite bare, sometimes one or both of them has a rather small number of short, moderately strong or rather weak spines about opposite the sucker-like appendage of the e-bristle. The distal part of these bristles is of about the same type as that of the e-bristle; the bending into an angle is about the same as in the latter bristle or in most cases somewhat weaker. None of these three bristles has distinct pad-like formations; it is to be noted, however, that their distal parts have in certain positions a structure that reminds one rather strongly of such formations. The a-bristle is very long, in most cases about as long as or somewhat shorter than, sometimes even somewhat longer than the b=, d- and e-bristles; in most cases it is more or less straight,
pointing hackward when in a position of rest; it is without any accessory saceules. The c-hristle is straight and mother short, about as long as the proximal height of the second joint. Ath the joints are quite hate. In the first joint there are often some yellowish-hrown corpuseles.

心beロnd antenna: - Protopodite: In specimens whose shells were abont Q.2 $\mathbf{m m}$. long this measured about $1.0-1,1 \mathrm{~mm}$. Exopodite: The proportion between the longth of this hranch and that of the protoportite is about $1: 2$. The proportion between the length of the first joint and the total length of the eight following joints is about $2: 1$. The proportion between the length of the longest natatory bristles and that of the exopodite is about $7: 4$. The first joint, at least as far as 1 could observe with Reaciabert's ocular 4 and LETTK's immersion ${ }_{1 / 12}$. is quite smooth. Endopodite (figs. 6 and 7): First joint: The processus mammillaris has in most cases a small verruciform distal process. The a- and b-bristles most frequently have short hairs at the middle and are bare distally. Second joint: The c- and d-bristles are in most cases somewhat shorter than this joint and have short, fine hairs or are almost quite bare. The e-bristle is extremely short. The f-bristle is about one and a half times the length of the protopodite, sometimes even somewhat longer; it grows gradually narrower distally and is bare. The g-bristle is, contrary to what is the case in most of the other species of this genus, shorter than the f-bristle; it attains only about a half or two-thirds of the latter's longth; it is not at all or only slightly widened distally and is furnished in most cases with short hairs. The f- and g-bristles have no proximal swellings. Third joint: The clasping organs are of about the types reproduced by G. W. MULLER, 1906 a, pl. XIII, figs. 21 and 22. The h-, i- and j-bristles are subequal, about a third or a quarter of the length of the f-bristle; along the greater part of their length they are about as broad as the proximal part of the g-bristle; they are not widened proximally and have only rather slightly developed shafts; they are bare. There are sometimes some small yellow corpuscles in the protopodite and the endopodite.

Mandible: - Protopodite: Coxale: The toothed edge on the pars incisiva has from about ten to twelve teeth. The distal tooth-list is of about the same relative size and type as has been described for C. oblonga above; the number of teeth varies somewhat, from about twenty to thirty were observed. The proximal tooth-list is rather slightly narrower than the distal one; there are a somewhat varying number (about fourteen to twenty) of teeth, in most cases smooth and conical, arranged more or less distinctly in a simple row; the posterior ones of these are rather large and powerful, the others decrease either (as in the accompanying fig. 10) rather uniformly in size and strength the more anteriorly they are situated, the anterior ones heing rather small and weak, or else this decrease in length and strength is rather irregular. This tooth-list is furnished on the inside with numerons short, fine spines, situated close together. The masticatory pad is of about the same relative size and type as has been described above for C. oblonga. The part of the pars incisiva that is surrounded by the row of bristles also shows signs of being developed as a masticatory pad. The lancet-bristles are, as C. Claus pointed out, 1891 a, p. 63 ,,zur Seite gedrängt, in dem dichten Borstensaum mehr oder minder versteckt". Basale: The six tecth on the distal edge of the endite are furnished with rather fine serrate teeth. The single tooth on the outside of this process is of about the same type and size as in my fig. 19 of C. symmetrica; in niost cases it is moderately strongly serrulated along the greater
part of both its anterior and posterior edges; its point is always smooth. The epipodial appendage consists of a small verruciform process. Endopodite: The first joint has only two posterior bristles, both with short hairs; one of these, situated somewhat laterally, is rather long, in most cases about as long as the anterior sides of the first and second endopodite joints, the other, situated somewhat medially, is most frequently about a third shorter. The three anterior bristles of the second joint are comparatively long; the longest of them is about as long as the longest bristle on the end joint; their relative proportions are, however, about the usual ones in this genus.

Fig. CXVlll. - Conchnecia elegans C.O.Sars, ó- 14. Right first antenna + the rod shaped nrgan; 150 X. 15. Suctorial uggan of the e-hristle of this antenna: $938 \times$.
-
Maxilla: - Endopodite: In the specimens investigated by me (both from the Arctic and the Antaretic) one of the three bristles on the posterior side of the first joint was always furnished at the middle with rather long, stiff secondary bristles. In one specimen I observed (as an abnormality) on the maxilla of one side two bristles situated close together (instead of one, as is otherwise the rule in this genus) somewhat distally of the middle on the inside of this joint. The rentral side of the end joint is about as long as the distal width of the preceding joint (calculating from front to back); its dorsal side is somewhat more than half this length. The end joint is often partly furnished with hairs.

Digitized by Microsoft ${ }^{\circledR}$

Fifth limb: - Protopodita: The longer of the two tubebristles on the second endite always seems to be furnished with rather long and stiff secondary bristles at the middle. Endopodite: Very like that of (. oblongu. In exceptional cases there were in the specimens investigated by me two, not one as is nomal in this genus, tube-bristles dorsally of the short, dorsal claw; one of these two tube-hristles was rather short. Exopodite: First joint: This has two medio-ventral bristles, which are in most cases subequal and about as long as the proximal height of this joint, both with short hairs. The proximo-ventral group of bristles has three or four bristles in it; these vary somewhat in length, the longest often being about as long as the medio-ventral ones, the shortest about half as long; one of the longest of these bristles usually has long secondary bristles, the others usually have short hairs. The distoventral group of bristles usually contains two or three bristles, all usually with short hairs, the longest in most eases about as long as the medio-ventral bristles, the two others usually considcrably shorter and weaker. The dorso-lateral bristle is most frequently somewhat shorter than in my fig. 27 of C. symmetrica and is furnished with long hairs; in one specimen I observed on one fifth limb two such bristles situated close together. End joint: The middle claw is in most eases somewhat longer relatively than in my fig. 27 of C. symmetrica; the dorsal bristle is about a third or a quarter shorter than the middle claw. Pilosity: The protopodite and the first exopodite joint are often furnished with sparse hairs.

Sixth limb: - The two bristles of the endopodite most frequently have short hairs. Exopodite: First joint: The ventral bristles are in most cases relatively shorter than in my fig. 29 of C. symmetrica; most or all of them have short hairs. One of the most distal of these bristles is often absent. The dorso-lateral bristle of this joint usually has long secondary bristles.

Penis (fig. 12): - This is somewhat S-shaped; its distal part is bent ventrally. Somewhat distally of the middle it has from about four to six oblique transverse museles, distally of which there are no muscles. It has a moderately large and distally rounded copulatory appendage.

Furea: - There is no unpaired bristle behind the claws.
Rod-shaped organ: - The capituhm, which points forward, reaches with its point to about the point of the first antenna and is about as long as the height of the second joint of this limb; its shape is about the same as in pl. XIII, fig. 20, G. W. MUller, 1906 a; cf. the adjoining fig. 14.

Upper lip: - The part between the combs on the postero-ventral edge of this lip is in most cases of about the type reproduced in my fig. 37 of C. symmetrica, but slight variation was found. The paragnates are of about the same type as in the species just mentioned.

Female: -
Shell: - Length: G. W. Muller gives this (1906 a) as: 1,1-2,1 mm. , die großen Individuen über $1,9 \ldots$. . stammen aus der Arktis" (the same author, 1912). The specimens !nvestigated by me had the following lengths: Skager Rak and Cattegat: 2,0-2,15 mm.; Lofoten, $1,95-2,25 \mathrm{~mm} . ;$ Aretic Ocean: $1,8-2,2 \mathrm{~mm}$; Atlantic Ocean: $1,15-1,6 \mathrm{~mm}$.; Antarctic Ocean: $1,5-1,85 \mathrm{~mm}$. The females from both the Arctic (with Skager Rak and Catte-
gat) and the Antarctic were on an average somewhat smaller than the males. The shape differs from that of the male especially by the posterior part of the shell being somewhat larger than the anterior part. The spine on the postero-dorsal corner of the right valve is more powerfully developed than in the male, about the same as in pl. XIII, fig. 19, G. W. MULLER, 1906 a ; in the Antaretic females this process was as well developed as in the Arctic ones. In other respects the shell resembles that of the male.

First antenna: - The boundary between the first and second joints is weakly developed. On the anterior side of the proximal third of the e-bristle there are rather sparse short hairs. All the joints are bare. In the proximal part of this limb there are in most cases rather abundant small yellowish-brown corpuscles (explained as eyes by some previous writers; cl. p. 560 above).

Second antenna: - The protopodite is only slightly smaller than in the male. The proportion between the length of the protopodite and that of the exopodite is about the same as in the male. Endopodite: This has two joints, the original second and third joints being quite united. One of the c - and d-bristles is sometimes developed and is in most cases somewhat shorter than the width of the second joint; it is bare or almost bare; ef. my fig. 8; in most cases, however, both these bristles are absent. The g-bristle is about a quarter or a third shorter than the protopodite, sometimes even still shorter; it is only slightly sword-shaped distally and is furnished with sparse and extremely short and fine hairs. The f-, h-, i- and j-bristles are of somewhat different lengths, about a quarter or a third shorter than the g-bristle; they are bare. It is to be noted that in this sex the g-bristle is thus longer than the f-bristle, contrary to what is the case in the males. The h-, i- and j-bristles have no distinct shafts. Between the h- and i-bristles there is a short peg-like process. Pilosity: The second endopodite joint is bare.

Sixth limb: - The long-haired bristles of the endopodite and the first exopodite joint are often somewhat shorter in comparison and more weakly developed than in my fig. 30 of C. symmetrica. The dorsal one of the three bristles on the end joint is about a third shorter than the middle one; sometimes it is even still shorter; cf. the adjoining fig. 11.

Rod-shaped organ: - This varies somewhat in type; in most cases it is about the same as in the adjoining fig. 13 ; ef. also G. W. MULLER, 1906 a, pl. XIII, fig. 23. The shaft reaches to about the boundary between the second and third joints of the first antemna. The eapitulum, which points straight forward, is somewhat longer than in the male.

Remurks: - It seems to be quite certain that the form dealt with by me above is identical with C. elegans, (i. O. SaRS, 1865. The original description of this species is certainly very incomplete and, if the material were eaught in a region so rich in similar forms as, for instance, the middle Atlantic, it would not have been adequate for a quite certain identification of the species. The region in which G. O. SARs caught the species in question - the coast of Norway is, however, very poor in Halocyprid spectes. Athongh the plankton fama of this region has been subjected to a rather intensive study, it has so far been found to comprise only three species of this group, namely Conchoecia elegans, C^{\prime}. obtusata and ('. borealis, which were all established
at the same time he the anthor just mentioned: as far as I can see these three are alse the onty species of this group that are fond in this region (at least regularly and in any great mumber
 cophesissime vero ad insulas lofotenses"). These three species are of such well differentiated tyes that the deseriptions workedout by the author mentioned are quite sufficient to distinguish them. It is also to be noted that the deseription and figures given above are based partly on material from one of the origimal localities - Lofoten - which was determined by G. O. SaRs himself for C. eleguns, and partly on material from Koster, a locality situated rather near Drobak, one of the two other original localities.

It is true that another species of the genns Conchoecia has been described from about the same region, namely C. quadrangularis C. W. S. AURINLLAIts (from the west coast of čweden), but this species is, as (3. W. MčLesk has already pointed out, 1901, p. 3, certainly a syonym of C. elegans. It is true that I have not been able to verify the correctness of this identification by a re-examination of the original material, as this, as far as I could discover, has been lost, but owing to the poverty of this region in Halocyprid species. a fact that has already been pointed out above, it is nevertheless very easy to decide this problem with full certainty. An investigation of samples of plankton from the same localities and taken at the same time of the year as ArRIDLAL's's original material was eaptured showed that C. quadrangularis certainly corresponds to larvae of ('. elegams. It seems difficult to decide which larval stage or stages the author in question was dealing with; presumably it was Stages I and II, but this question is, of course, of minor importance. A detailed discussion as to which characters in C. quadrangularis show the larval type and which characters decidedly indicate identity with C. elegans would be super fluous.

The identification of Paraconchoecia gracilis, C. C1aus, 1890 and 1891 a with C. elegans also seems to be quite certain. This identification was first made by G. S. Brady and A. M. Normax, 1896. Curionsly enough, in spite of this, G. S. Brabs adopts the name Paraconchoeciu gracilis in his later works, 1902 a and 1907.

Most of the names taken up in the list of synonyms given above lave no verifying statements and drawings; these names are: Conchoecia elegans, G. O. Sars, 1869; E. Vanhöffen 1897; O. Nordgatad, 1898, 1899 and 1905; C. W. S. Aurivillius, 1898 and 1899; P. T. Cleve, 1900 and 1903; H. H. Gran, 1902; Til. Scoit, 1902 b, 1905 and 1912 a; P. T. Cleve and O Peitersson, 1903; C. H. Ostevfeld, 1906; G. W. MÜller, 1906 b and 1908; A. K. Linko, 1907 ; E. Koefoed, 1907: C. H. Ostenfeld and C. Weshenberg-Lund, 1909; C. Apstein, 1911; E. Jörgesses, 1912; K. Stephenses, 1913 and Paraconchoecia grucilis, G. S. Brabr, 1902 a and 1907.

All these statements, except those of G. W. MCLller, G. S. Brady', 1907 and Tir. Scott, 1912 a refer to finds from our Scandinavian and Aretie waters. Their inclusion in the list of synonyms is due to the fact that in these regions - at least as far as we know - there is no species found with which confusion seems probable. I have been able myself to verify a couple of these statements by a re-examination of the original material; these were: C. W. S. Aurivillies, 1899 ($=$ P. T. Clefye, 1900 ; cf. p. 635 below) and P. T. Chèe, 1903
(= P. T. Clete and (). Petterscon, 1!03; cf. p. 634 below). It seems to me exceedingly probable that G. II. Mi'ller's identifications are correct. On the other hand it is only with a certain amount of hesitation that (i.S. Brabry, 1907 and Th. SCOTT, 1912 a, are inchedet in this list

All the other names included in the list of synonyms given above are acompanied by descriptions or verificatory figures. Most of these descriptions and figures are not, however, sodetailed and certain that they exclude the possibility of a confusion having taken place between this species and ('. discophora C. W. Mulvir; a confusion of this kind even seems not improbable in the case of V. VAVRA, 1906. All the same it seemed to me as a preliminary best to inchude all these names as synonyms; nome of the names about which it may turn out that the doubts were justified refer to finds from regions from which C. elcgans is not known with full certainty; this of course makes a possible mistake comparatively insignificant.

The only difference that I suceeeded in finding between Scandinavian and Antaretic specimens of this species after a very careful comparative examination was that which is pointed out on p. 625 above with regard to the posterior dorsal corner of the right valve in male specimens. The difference seems to me too slight to justify us in establishing an Antaretie variety (as was previonsly done hy (t. W. Moller for the two other Scandinavian Halooyprids, Conchoecia obtusatu and ('. borealis).

The following facts may be pointed out with regard to the proportions between males and females: G. H. Fowler, 190:, observed the foltowing proportions:

Mature specimens	Larvae in Stage I	Larvae in Stage II	
$\hat{0}$	61	94	84
\hat{q}	123	88	106

G. (). SAR points out (1865, p. 118) that he found a far greater number of females than males. ..Af de talrige Exmplarer af naervaerende Art, som jeg har indsamlet, var den langt overveiende Del Humer." (Of the numerous specimens of the present species eollected by me the vast majority were females.)

An investigation that made of the swedish Hydrographio. Biological Commission's material from skager Rak showed the following results: 12th August, 1901: Mature sperimens Larvate in stage I Larvae in stage II
j

1st--7th February, 1911:

We thas see that the proportions between males and females in the samples investigated by we were very varied. In the first larval stage mates and femadey were found in about the zooloz, lidray. Uppsala. sunn-Bd. 1 Digitized By Microsoft ©

Propurtum behreen the sexes.
same mamber buth in the Augnst sample and the February one. 'Thus in the August sample there were $1: 3 j^{j}$ and 14 \%. in the behmary sample 1080° and 96 of This observation agrees bery well with (3. H. Fowletrs result. On the other hand there were in my samples a far greater mmber of males than females in the second larval stage. The explanation of this phenomemen certainfy seems to be that the lemales of this stage, on aceonnt of their small size, passed throngh the meshes of the plankton net in far greater mumbers than the males; it is to be noted that the still smaller larval stages were ahmost entirely absent in these samples; cf. G. H. Fowlar's resula abowe. Males and females presumably eceur during the larval period in about a proportion of 1:1. The proportion between the mature males and females seems to be subject to rather considerable variation. In the August sample the males predominate, in sample I even ahmost in the proportion of $\because, \bar{a}: 1$ and similarly in sample 11 of February; in sample I of the latier month hoth sexes are almost equally represented and in samples III and IV of this month the females are very strongly predominant. See also below.

What is tho callse of this variation? Do the males die comparatively soon after attaining maturity? The fact that the February samples are taken at about the same time and the same locality (cf. below) does not seem to indicate this. But no definite answer can be given to this question before renewed investigations have been carried out with more abundant material.

Habitat: - Skager Rak and Cattegat:
North Koster: 2. $11 .:$ Depth, 30 m .: very rare (only one specimen). Depth, 65 m. : very common: R. M. S. 3:31. Fouth Koster; I. II.: Depth, 0 m.: very rare (only one specimen); R. M. ㄷ. 332. Depth, 30 m.: very rare; R. M. S. 333 . Depth, 65 m.: neither common nor rare: li. M. s. 334 . Depth, 125 m .: very common. Depth, $140 \mathrm{~m} .:$ very common (= 316 specimens); R. II. S. 335. Väderöarna (off Fjällbacka); 6. II.: Depth, 0 m.: very rare: R. M. S. 336 . Depth, 30 m .: very rare (only one specimen); R. M. S. 337. Depth, (65) m.: very common; R. M. S. 338. Hållö (N. of J.ysekil); 7. H.: Depth, $30 \mathrm{~m} .:$ common; R. MI. S. 339. Depth, $65 \mathrm{~m} .:$ rare; R. M. S. 340. Måseskär (S. of Ly̌sekil); 8. MI.: Depth, 30 m.: very rare; R. M. S. 341. Pater Noster (Marstrand); 8. Il.: Depth. 0 m.: very rare (omly one specimen); R. M. S. 342 ; Depth, 30 m.: very rare; R. M. S. 343 . Vinga (Göteborg); 9. Il.: Depth, $30 \mathrm{m.:} \mathrm{very} \mathrm{rare;} \mathrm{R}. \mathrm{M}. \mathrm{S} 344.$. - All these samples were taken by the Swedish Hydrographical Biological Commissionduring a cruise in 1911.

Nouth Koster; 12. VIII.; depth, $150-0 \mathrm{~m} .: 1$ female; R. M. S. 369 . Lat. 58° N., long 9° E. (-s. VIII): 9. VII.: At the surface: 9 mature males, 6 mature females and 11 juvenes; R. M. S. 378. Depth. 300 - 0 m.: 24 mature males, 10 mature females and 16 juvenes; R.
 4 mature males and 24 juvenes in different stages; R. M. S. 370 . Lat. $58^{\circ} 46^{\prime}$ N., long. $10^{\circ} 25^{\prime}$ E. ($=\mathrm{S} . \mathrm{S}$.) ; depth, $40 \mathrm{~m} . ; 9$. VIII.: 3 mature males, 8 mature females and 6 juvenes; R. M. S. 380. (Partly $=$ the material of P. T. Cleve, 1903.)

Coast of Norway:
Lofoten Islands; coll. et determ. G. O. SARs: 17 mature males and 102 mature females.

Arctic Ocean:
Lat. $79^{\circ} 58^{\prime}$ N., long. $9^{\circ} 35^{\prime}$ W.; depth, $400-0 \mathrm{~m}$. ${ }^{2}$ 27. VHII. 1898: 1 mature male and 6 mature females; R. M. S. 371. Lat. $75^{0} 13^{\prime}$ N.. long. $2^{n} 58^{\prime} \mathrm{W}^{\top}$. depth, $2600-1 \mathrm{~m}$.; 29. 30. VII. 1898: 1 mature female; R. M. S. 374 . Lat. $77^{0} 52^{\prime}$ N., long. $3^{0} 5^{\prime} W^{\prime}$; depth, $500-0 \mathrm{~m} . ; 29$. VII. 1898: 1 mature male and 4 mature females; R. M. S. 373. Lat. $76^{\circ} 36^{\prime} \mathrm{N}$. long. $12^{0} 13^{\prime}$ E.; depth, $500-0 \mathrm{~m}$. ; l. VIII. 1898: l mature female; R. M. S. 375. Lat. $74^{0} 15^{\prime} \mathrm{N}$., long. $18^{0} 15^{\prime} \mathrm{W}$.; depth, $280-0 \mathrm{~m} . ; 5$. VII. 1899: 1 mature male and 3 mature females; R. M. S. 377. Lat. $66^{\circ} 53^{\prime}$ N.. long. $2^{0} 52^{\prime} \mathrm{V}^{\prime}$.; depth, $500-0 \mathrm{~m} . ; 5$. MI. 1899: 3 mature females and 2 juvenes; R. M. S. 372. Lat. $66^{n} 52^{\prime}$ N., long. $2^{0} 55^{\prime} \mathbb{W} .:$ depth, 500-0 m.; 4. IX. 1899: l mature male and 1 mature female; R. M. S. 376. - All these samples were taken during a Swedish Arctic Expedition 1898-1899 (= (. W. S. Arrivilidis, 1899, pp. 37, 58, 62, 66 and P. T. (leve, 1900, p. 39).

Atlantic Ocean:
S. A. E., Pl. station 26, lat. $32^{0} 21^{\prime}$ N., long. $19^{\circ} 8^{\prime}$ W.; at the surface; 6. XI. 1901; temperature, $20^{\circ}, 5$ C.: 1 mature female; R. M.S. 210 . S. A. E., Pl. station 34 , lat. $27^{\circ} 49^{\prime}$ N., long $20^{\circ} 51^{\prime} \mathrm{W}$.; at the surface; 8 XI. 1901; temperature, $21,{ }^{0} 4 \mathrm{C} .: 1$ mature female; R. H . S. 211. S. A. E., Pl. station 45, lat. $22^{\circ} 8^{\prime}$ N., long. $22^{\circ} 52^{\prime}$ W.; at the surface: 11. XI. 1901; temperature $23,{ }^{0} 3$ C.: 1 mature female: R. M. S. 213. S. A. E., Pl. station 134, lat. $24^{\prime} 21^{\prime}$ S., long. $41^{0} 23^{\prime} \mathbb{W}$.; at the surface; 6. XII. 1901 ; temperature, $23,{ }^{002}$ ($(.: 1$ mature male, 1 mature female and 2 juvenes; R. M. S. 219.

Antaretic Oeean:
S. A. E., Pl. station 34 b , lat. $46^{0} 45^{\prime} \mathrm{S} .$, long. $58^{\circ} \underline{Z}^{\prime} \mathrm{II}$.; depth, $700-500 \mathrm{~m}$.; 28. XII. 1901; temperature unknown: 2 mature males. 4 mature females and 2 juvenes; R. M. S. 212. S. A. E., Pl. station 64 b , lat. $48^{0} 27^{\prime}$ S., long. $42^{\circ} 36^{\prime} \mathrm{W}$. ; depth, $2500-0 \mathrm{~m}$; 23. VI. 1902; temperature at the surface, $7,00 \mathrm{C} .: 20$ mature males, 35 mature females and 8 jurenes; R. M. S. 217. S. A. E., Pl. station 66 b , at the same locality; depth, $200-0 \mathrm{~m}$. ; temperature at $200 \mathrm{~m} .5 .25^{\circ} \mathrm{C} .: 2$ mature males and 2 juvenes; R. M. S. 218. S. A. E.. Pl. station 347, lat. $49^{\circ} 3^{\prime} \mathrm{S}$., long. $46^{\circ} 54^{\prime} \mathrm{W}$.; at the surface; 25. VI, 1902; temperature $4,5^{\circ} \mathrm{C}^{\prime}$: 1 mature female. S. A. E., Pl. station 70 b , lat. $49^{\circ} 56^{\prime} \mathrm{S}$., long. $49^{\circ} 56^{\prime} \mathrm{W}$. . depth 2700 to $0 \mathrm{~m} . ; 27$. VI. 1902; temperature at 2700 m . and at the surface, $+1,67^{\circ} \mathrm{C}$. and $3,40^{\prime \prime}\left(\mathrm{C}^{\prime}\right.$: 7 mature males, 6 mature females and 8 juvenes; R. M. S. 216 . At the same station; depth, $500-0 \mathrm{~m} .: 1$ mature female and 14 juvenes in different stages; R. N. S. $215 . \mathrm{S} . \mathrm{A}$. E., Pl. station 59 b (and 318), lat. $53^{\circ} 0^{\prime} \mathrm{S} .$, long. $48^{0} 27^{\prime} \mathrm{W} . ;$ depth, $500-0 \mathrm{~m} . ; 17$. IV. 1902; temperature at 500 m . and at the surface, $+1^{0} 50 \mathrm{C}$. and $3,40^{\circ} \mathrm{C}$. resp.: 3 mature males, 4 mature females and 2 juvenes; R. II. S. 214 and 221. S. A. E.. Pl. statimn 317, at the same locality; depth $250-0 \mathrm{~m} . ; 17$. IN .1902 ; temperature at $250 \mathrm{~m} .,+1.30^{\circ} \mathrm{C} .: 1$ jurenis; R. M. S. 220 .
 $55^{\circ} \mathrm{S}$. (G. W. Méleler, 1906 a) and the Indian Ocean. On the other hand I know of no information about this species occurring, in the Pacific (cf. G. II MIM, (BRR, 1912).

The new lueatites mentemed be me above are consegnently with the region of distri-

 south of lat. 43^{n} S. is noteworlhẹ (.anch der loage moner $43^{\prime \prime}$ steht vereinzalt da"). This writer
 ganz vereinzolt dasteht, un versehlagene lndividuen zu handeln". The localities south of lat. $43^{\prime \prime}$ s. given by mbere seems to show with all eertainty that this assumption cannot be conrect: di. also the size of the specimens lound by me in Antarctic waters with that of the dilantic sperimens.

Daphnoides group G. W. Müller

(Conchocrilla (. ('laus.)
This group, comprising, in addition to the species dealt, with lelow, only two other species, is eertainly quite a natural one.

Conchoecia Chuni G. W. Müller.

('onchoccia ('hmi, (i. IV. Mîllek, 1906 a, p. 124; p]. XXXI, figs. 16-28.

$$
\begin{array}{llllll}
\therefore & . . & . & . . & . & 1908, \text { p. } 79 . \\
. & . . & . . & . . & . . & 1912, ~ p . ~
\end{array} 93 .
$$

Hescription: - See G. II. MLleer, 1906 a, p. 124.
supplementary description: - II ale: -
Shell: - Length: Aecording to G. W. Mưlular, $1,4-1,55 \mathrm{~mm}$. The specimen investigated by me was $1,5 \mathrm{~mm}$. long. Seen from the side it is of the type deseribed and reproduced by (4. IV. MCLLER. The posterior dorsal corner differs only very slightly in the right and left valves; in the right one it is furnished with an exceedingly small point; just in front of this corner the right valve is amed with one or two more or less powerful spines; see the accompanying fig. 1. The rostrum is symmetrical and of about the same type as is shown
 well runded. The surface of the shell is bare. The seulpture and glands have been describel by G. II. Meller. Seen from inside: The selvage is smooth-edged except along the posterior part of the ventral margin of the shell, where it is exceedingly finely serrulated. There is no hinge-socket or hinge-tooth at the posterior dorsal corner.

First antenna: - This is of the type described and reproduced by G. W. Millder. E-bristle: Proximally on the anterior side this is bare or almost bare (a few exceedingly short and fine hairs may perhaps be discovered with very great magnification); it is

Digitized by Microsoft ${ }^{(B)}$

not widened distally of the rows of spines. The b- and d-bristles are aksonarrow distally, are only fumished with a few short and fine secondary bristles at three-quarters of the way along them and have no pad-like appendages. All the joints are bare.

Second antenna: - Protopodite: The length in the specimen investigated by me was $0,7 \mathrm{~mm}$. Exopodite: The proportion between the length of this branch and that of the protopodite was about $10: 6$. The proportion between the first joint and the total length of the eight following joints was about $10: 4$. The proportion between the length of the longest natatory bristles and that of the exopodite was about $22-25: 15$. The first joint is almost bare Endopodite: First joint: The processus mammillaris is rather low and has no distal papilla. The a- and b-bristles have some few short secondary bristles, they are almost bare. Second

Fig. CA1X. - Conchopcia Chum G. W. Meleer. - 1. Poburior part of tho sholl seen from inside, j: 400 - 2. Shedl
 $233 \times$. 5. Distal part of the red-shaped organ and the boft first antenna, the distal bristles are hroken, \mathcal{F} : $260 \times$. 6. The torth-lists on the right mandible seen from ontsidr, of $1200 \times$. 2 . End joint of thr maxilla, f: is $\%$. 8. Ppois seen from oniside: $260 \times$. (Fig. ' is drawn from a specimen from station fis bo all the others are from pratmens from station 5 A b.)
jeint: The ce amd d-bristles are rather slighty shorter than this joint: they hase short hairs or are almost bare. 'Ther e-bristhe is shert. The g-bristle is somowhat shorter than the protopretite. the f-bristle is about a glarter or a fifth shorter than the g-bristle; both these bristles are narrow distally and have sparse, short hairs. Third joint: The dasping organs are of the types reproduced by (i. IV. Itomblas. wostriated distally (in the specimen investigated by me. howerer, they hat no distal papilla as in the fignres given by this writer). The h-, i- and j-bristles are subequal, somewhat less than haff the length of the g-bristle and somewhat narrower than the f-bristle; they all have faint indications of shafts and are almost quite bare.

II a mible: - Protopodite: Coxate: The toothed edge on the pars incisiva has about ten to twelve teeth, the posterior ones are, however, so small that their number is difficult to decich. Distal tooth-list (fig. 6): This is of about the same relative size and type as has been deseribed above for ('. oblonga; sometimes, however, it has only one large posterior tooth: the number of teeth varies from fourteen to twenty. Proximal tooth-list: This is about as wide as the distal one. It has three or four powerful, conical, smooth posterior teeth and in front of these a dense row of rather fine serrate teeth; see the accompanying fig. 6 . In other respects this joint is of about the same type as has been deseribed below for C. symmetrica. Basale: The six teeth on the distal edge of the endite are finely servulated. The sing' : tooth (1) the outside of this endite is of about the same relative size and type as in O. elegans. The epipodial appendage consists of a small verruca and a very short bristle. Endopodite: The first joint has fomr posterior bristles, which have about the same positions and lengths as in C'. symmetrica and have short hairs.

II axilla: - The bristle on the basale, like most bristles on the anterior and postcrior edges of the first endopodite joint, has a larger or smaller number of rather long secondary bristles. The end joint is relatively short; see the accompanying fig. 7 .

Fifthlimb: - This is of about the same type as in C. symmetriea, but the longer of the two tube-bristles on the second endite of the protopodite has short hairs and the endopodite has no spines. The two shorter of the three antero-ventral bristles on the endopodite are sometimes furnished with short hairs or sometimes one or both of them have rather long secondary bristles. First exopodite joint: From one to three of the four or five proximo-ventral bristles are sometimes furnished with rather long secondary bristles; sometimes they all have short hairs. One of the three or four ventero-distal bristles is sometimes furnished with rather long secondary bristles, sometimes they all have short hairs. The protopodite and the first exopodite joint are partly furnished with rather long hairs.

Sixth limb: - The bristles of the endopodite have short hairs. Exopodite: First joint: One of the anterior ones of the five ventral bristles is of about the same type and relative length as the corresponding bristle in my fig. 29 of C. symmetrica, the others are relatively short and have short hairs.

Penis: - This is of about the same type as is reproduced by G. W. MÜller; see the accompanying fig. 8. It has four oblique transverse museles at the middle. Distally of these there is a collection of powerful muscles which have one end attached to the base of the copulatory appendage, from which point they radiate out like a fan towards the antero-dorsal side of the organ.

Furea: - This seems to have no unpaired bristle behind the elaws.
Rod-shaped organ: - The shaft reaches to about the distal boundary of the second joint of the first antenna. The capitulnm is somewhat shorter than the joint just mentioned; its type in the specimen investigated by me was about intermediate between pl. NXXI, figs. 24 and 25, G. W. Mollerr, 1906 a .

The upper lip and paragnates are about the same as in ('. symmetrica. Female: -
Shell: - Length: According to (r. W. Muller, 2,0-2,4 mm. The specimens investigated by me measured $2,0-2,45 \mathrm{~mm}$. Length : height is about $3: 1$; length : breadth about 3,4:1. Seen from the side (sce the accompanying fig. 2) it is of about the type described and reproduced by G. W. MULLER. Seen frombeneath it has its greatest width at about the middle and the anterior part not at all or only slightly larger than the posterior part; the side contours are rather evenly curved, the anterior and posterior ends are pointed, the rostrum is unsymmetrical and not inconsiderably larger on the left valve than on the right; cf. the accompanying fig. 3. Both the right and the left valve are drawn out posteriorly into a not inconsiderable point, the one on the right valve being in most cases considerably more powerful than the one on the left (G. W. Mélere states the contrary). Just in front of this point there are sometimes on the right valve (as in the male) one or two more or less powerfully developed spines; see the accompanying fig. 4; sometimes there are no such spines at all. (G. W. Mülefr does not mention these spines.) The glands are the same as are described by ($\mathbf{3}$. IV°. Mu'ller. In other respects this organ is like that of the male.

First antenna: - The first joint is about one and a half times the length of the second joint and shows signs of being divided into two joints. The joint division is otherwise very slight. The bristle on the second joint has short hairs and is somewhat longer than the capitulum of the rod-shaped organ (see fig. 5). E-bristle: This is about one and a half times as long as this limb or somewhat shorter; proximally on its anterior side it is furnished with sparse short secondary bristles. The a-, b-, e- and d-bristles are snbecqual, not ineonsiderably less than half the length of the e-bristle. All the joints are bare. There are small yellowishbrown corpuseles in the second joint.

Second antenna: - Protopodite: In specimens $2,3 \mathrm{~mm}$. long this measured $0,8 \mathrm{~mm}$. The exopodite is about the same as in the male. Endopodite: This has three joints; the third joint is more or less well defined. The a- and b-bristles are like those of the male. There are no ce, d - and e-bristles. The f-bristle is somewhat shorter relatively than in the male, but in other respects the end-bristles on this branch agree fairly well in both sexes. There is a small papilla between the h - and i-bristles. The second endopodite joint is bare.

Sixth limb: - First exopodite joint: The dorso-distal bristle is very short. The dorso-lateral bristle on this joint is also somewhat shorter relatively than in my fig. 30 of C. symmetrica. The dorsal bristle of the ead joint is sometimes even somewhat longer than the middle claw.

Rod-shaped ergan: - The shaft is about the same as in the malr. The capitulam is of about the same trpe as in C Clegans of see the aceompanying fig. of for this chanacter compare however. (i. IV. Mrallat as well.

Mabitut: - Intarctic Ocean

 at the surface, $+1.30^{\circ}\left(^{\prime}\right.$. and $3.40^{\circ}\left(^{(}\right.$. resp.: 1 matme male and 4 mature females; R. M. S. 324.
 temperature at 200 m . and at the surface $3,50^{\circ}$ C. and $5,48^{\circ}$ (. resp.: 1 mature female; R. II. S. 327 .

Distribution: - Sonth Atlantic Ocean between lat. $26^{\circ} \mathrm{S}$. and lat. 43° S. Indian Ocean as far north as lat. 2^{0} :

All the finds of the ,,Antarctic" expedition were conseguently made sonth of the area of distribution stated by (6. Wr. Müller.

Obtusata group G. W. Müller.

(i. W. M"blek puts only two species in this group, namely the species dealt with below, after which the gronp was called, and ('. parthenoda (r. W. M'luser. The latter species, of which only females are known, is included in this group only with the greatest hesitation. It is quite impossible to decide whether these two species are connected on account of the incomplete description of C'. parthenoda.

Conchoecia obtusata G. O. SARS.

('onchoecin olusatn, (i. (). SHRs, 1865, p. 118.
Halocypris .. ., 1890, pp. 15, 53.
C'onchoeciu ., (4.s.Bhady and A. M. NormaN, 1896, p. 693; pl. LXill, figs. 1, 2.
E. VANHÖFFEN, 1897, p. 285.
1). Nordgiard, 1899, p. 26.
G. IV. Mćller. 1901, p. 5; figs. 8--10.
P. T. (Leve, 1903, pp. 19, 24.
P. T. (heve and 0. Petplesson, 1903, pp. 2, 7.

Tif. SCOTt. $1905, \mathrm{p} .228$.

Conchoecia obtusata, C. H. Ustenfild, 1906, p. 96.
V. VÁvra, 1906, p. 36; pl. 1, figs. 13-19.
E. Koefoev, 1907, pp. 150, 151, 156, 202.
C. H. Os'tenfeld and C. Wesenberk-Lund, 1909, p. 113.
C. Apsteln, 1911, p. 166 ; pl. XXill.
E. Jörgensen, 1912, pp. 14. 16.
G. W. MUller, 1912, p. 74.
K. Stephensen, 1913, 1. 354.

Description: - Sce (r. IV. Mưller, 1901, p. 5, figs. 8-10 and V. VÁlr.A, 1906, p. 36; pl. 1, figs. 13-19.

Supplementary description. - Male:-
Shell: - Length: According to G. W. MƯLlere, 1901 and 1912, 1,1-1,2 mm.; according to V . VÁtra, $1,2 \mathrm{~mm}$. The specimens investigated by me measured $1,15-1,35 \mathrm{~mm}$. Length : height about 2: 1; length : breadth abont 2,5:1. Seen from the side it is of about the type reproduced by $\mathfrak{G} . W^{\top}$. Müller, 1901, fig. 8 ; in most eases, however, it has a straighter dorsal margin and the anterior part of the shell dominates somewhat less over the posterior part; cf. the accompanying fig. L. Seen from below (fig. 3) it has its greatest width at or in most cases somewhat behind the middle. Its side contours are either rather evenly curved or else they are somewhat flattened at the middle. The posterior part of the shell, which sometimes dominates at least to some extent, though only rather slightly. over the anterior part, is somewhat pointed, the anterior part is somewhat more rowded ant has an almost symmetrical rostrum. The shoulder vault is moderately well developed and well rounded. The surface of the shell is almost or quite bare. Aculpture: There is a weak concentric striation, in most cases rather diffieult to ubserve. Seenfrominside: Selvage: (On the rostrum it either has an even edge or else it is irregularly serrulated. Along the anterior margin of the shell and the anterior part of the ventral margin it has in most cases an exceedingly fine serrulation; along the posterior part of the ventral maryin it has a fine serculation; the serrulation within the posterior margin of the shell is most frequently rather sparse. The part on the rostrum has no long bristle-like process. The unsymmetrical glands have their exits at the usual place. There are no lateral corner glands. Ventrally of the incisur there emerge some glands, which are small or large according to the physiological condition; cf. I. V'AhkA, $1906, \mathrm{pl}$. 1. fig. l上. The medial glands along the posterior margin of the shell are moderately large; their exits are always simple, arranged in a rather distinet row running a short distance inside the margin of the shell and not joined by any distinct list. The junction between the lamellae is rather wide at the rostral incisur; dorsally of the incisur the lamellae are joined at a rather large rounded part; ef. the accompanying fig. 1. At the posterior dorsal comer of the shell there is a rather well developed linge-soeket and hinge-tooth of an oblong oval shape.

First antenna: - The b-, d- and e-bristles are cither subequal or else the e-bristle is somewhat longer than the two others, they are about one and a third or one ant a hatf times

Fist. CAX. - Conchoecia wblusata G. O. Sars. - 1. Shell seen from the side, of; $20 \times$. . Shell seen from the sidr. $=: 5 \underline{2} \times$. 3. Shell seen from helow, ${ }^{3}$; $55 \times$. A. The selvage on the rostrum, $8 ; 833 \times$. 5. Equipment of the mbristle of the first antema. 0 ; $513 \times$. 6. Distal part of the left first antema and the rod-shaped organ; the 1 -. 1) and e-hristles of the antenna are hroken, of $353 \times$. 2 . Distal part of the rod-shaped organ and the first antenna. $3 ;$ ion \times. 8. Distal part of the right first antemat and the rod-shaped organ, f: $35.3 \times$. 9. Endopodile of the right second antenna seen from inside. the distal hristles are broken, o: $353 \times$. 10. Distal part of the mapodite of the left second antenna seen from insife, the distal bristles are broken, of $353 \times$. (All these figures are drawn from sperimens from Skager Rak.)
as long as this limb. E-bristle: Somewhat distally of the middle this bristle has, along about a quarter of its length, two rows of moderately strong spines pointing proximally, about fifteen to twenty in each row. All the spines are pointed and rather narrow, moderately long, the distal ones are somewhat shorter than the proximal ones; of. the accompanying fig. 5. The distal spines in the two rows are arranged in pairs, hat even at the fourth or sixth spine, counting distally-proximally, a tendency to alternation ean be observed; from about the ninth or tenth spine all the spines are situated alternately. The two rows are well separated distally and approach each other more and more proximally untit they form almost a single row. Distally of these rows of spines this bristle is quite bare, i. e. it has no more or less distally pointing spines such as we find, for instance, in my fig. 15 of C. clegons; cf. V. YÁsRA, 1906 , pl. I, fig. 17. Just distally of these rows of spines this bristle is bent into a distinct angle; the part distally of this knee is not sword-shaped, but narrow. On the part proximally of the rows of spines there are on the anterior side of this bristle sparse short secondary bristles. The b- and d-bristles are not or are only slightly bent at an angle and are not widened distally. The b-bristle is furnished with a slight pad about opposite the spines of the e-bristle; distally of this pad there are in most cases some short, distally pointing, fine secondary bristles. The d-bristle has no pad but is furnished at about the corresponding place with secondary bristles that are about similar to those on the b-bristle. The a- and c-bristles are most frequently subequal or else the former is rather slightly longer than the latter; they are about as long as or somewhat shorter than the second joint. Neither of them has accessory saccules. The c-bristle is in most cases straight, the a-bristle more or less bent, but not rolled up like a spiral; of. the accompanying fig. 6. All the joints are quite bare.

Second antenna: - Protopodite: In specimens with shells abont l, 2 mm . long this was about $0,5 \mathrm{~mm}$. long. The distal medial verruca is in most eases irregularly lobate in shape. Exopodite: The proportion between the length of this branch and the length of the protopodite is about $10: 16$ or $10: 17$. The proportion between the length of the first joint and the total length of the eight following joints is about $8: 3$, $19: 4$. The proportion between the length of the longest natatory bristles and the length of this branch is about $5: 3$ or 4:3. As far as I could discover with Reichert's ocular 4, Leitz's immersion $1 / 12$, the first joint is quite bare. Endopodite (see the accompanying figs. 9 and 10): First juint: The processus mammiltaris is comparatively small and has no distal verruca. The a-bristle is furnished with short, fine hairs. The b-bristle, which also has short, fine hairs along the greater part of its length, has some (from about five to twelve) moderately long, stiff secondary bristles proximally of the middle. Second joint: The c-and d-bristles are of somewhat different lengths: the longest is not quite as long as this joint; they both have short, fine hairs or are almost bare. The e-bristle is exceedingly short. The g - and f-bristles are comparatively short and narrow; the proportion between the length of the g-bristle and that of the protopodite is about $4: 5$ or $3,5: 5$. The f-bristle is about a fifth or a quarter shorter than the g-bristle. The g-bristle has short, fine hairs, the f-bristle is bare. On the right antenna these two bristles are furmished with shafts of the type described by (G. W. Motlefe, 1901: on the left antema there are only

 ridgee distally; the right clasping organ maty or may mot have a lew small chitimons vemucan om its proximal shank. Tha h- i- and j-histless are subergal and in mest cases somewhat, thengh only slighty, shorter than the f-bristle: they are of about the same width as the $[$ - and $]$ Er-histles distally of their shafts and are bare: nome of them has any traces of a shaft.

Ilandible: - P'rotopodite: Lixate: The toothed edge on the pars incisiva has from about nine to cheven terth, of which the posterior ones are in a number of cases somewhat more developed tham in my. fig. 16 of ('. symmetrica. The distal tooth-list is of about the same relative size and type as has heem deseribed for ('. oblonge above. The proximal tooth-list is of about the same relative size and type as is described below for C spinirostris, hut the teeth seem to be on an average somewhat, though only rather slightly, fewer. The part situated proximally of this tooth-list is also of about the same type as in the last-mentioned species. Basale: The six teeth on the distal edge of the endite are furnished with rather fine serrate teeth. The single tooth on the outside of this endite is of about the same type and size as in my fig. 19 of C. symmetrica; in most cases it is finely serrulated along the greater of both the posterior and the auterior edge; its point seems, however, to he smooth in most cases. The distomedial bristle of this joint is in most eases somewhat longer than in most species of this genus. There is no epipodial appendage. Kndopodite: The first joint has only two posterior bristles, which have about the same position and relative length as in C. spinirostris.

Maxilla: - This is of the same type as is described below for C. spinirostris.
Fifth limb: - This is of about the type described on p. 630 above for C. eleyans, but in the specimens investigated by me there was never more than one tube-bristle dorsally of the short dorsal claw on the endopodite; in addition the shorter bristles in the ventero-distal group on the first exopodite joint were usually somewhat longer relatively than in the species just mentioned.

Penis (see fig. 11): - This is very powerful, relatively high and distally romded. It has from about eight to thirteen transverse museles in the distal half; distally of these there

Digitized by Microsoft ${ }^{\circledR}$

are no museles. The point has a complicated chitinous skeleton, but has no eopulatory appentage; ef. the accompanying fig. $1 \geqslant$.

Firea: - Behind the claws there is an umpared short-haired bristle of about the same relative length as in fig. 33 of (1 symmetrica.

Rod-shaped organ: - The shaft reaches to about the distal boundary of the second joint of the first antenna or somewhat farther. The eapitulum is somewhat longer than the proximal height of the second joint of the first antemna and varies somewhat in type; sometimes it is of about the type shown in pl. I, fig. 15, V. VAvias, 1906 , sometimes somewhat more bent upward; cf. the accompanying figs. 6 and 7.

Upper lip: - The part between the combs on the posterior ventral edge of the lip is of about the type reproduced in my fig. 37 ol ('. symmetrica or else the metian notch is somewhat deeper. The paragnatos are of about the same type as in the species just mentioned.

Female: -
Shell: - Length: According to (G. O. SARs, 1865, , cireiter 2 mm.": (i. W. MÖLLEA. 1901: 1,55-2 mm.; the same writer, 1912: 1,55-1,8 mm. V. VÁtRA, 1906; , durehweg 1,9 mm.". The specimens investigated by me measured $1,6-1,85 \mathrm{~mm}$. Seen from the side (cf. the accompanying fig. 2) it is of about the same type as the male shell, but the posterior part of the shell is somewhat more developed. Seen from below, too, the shell agrees fairly well in both sexes; the same variation with regard to the side contours is to be noted; we musi note, however, that the posterior part of the shell in most eases dominates somewhat more over the anterior part in the female than in the male. Seen from inside: The selvage has a rather large spine-like process on the rostrum; see the aceompanying fig. 4. In other respects the shell resembles that of the make.

First antenna: (fig. 8): - The dorsal bristle on the secomd joint is almost as lone as the distal sensorial filaments and has short, fine hairs. The e-bristle is about twiee the lengtl of this antenna or somewhat longer and on the anterior side of its proximal quarter w thirt has sparse moderately long hairs. This bristle is not widened and sword-shapeel distally. There are no pigment corpuscles in this limb, All the joints are bare.

Second antenna: - The protopodite is almost as woll develonod an in the male. The proportion between the length of the protoporlite and that of the exopodito is also about the same as in the male. Endopodjte: This has two joints: I was mable to discover any boundary between the original second and third joints. First joint: Buth the a- and b-bristles have short hairs. Sceourl joint: The h-, i- and j-bristles are usually somewhat shorter than the f-bristle. The g - and f -bristles have no shalts. In other resperets these five bristles are about the same as in the male. Between the h - and i-bristles there is an extremely small process. Pilosity: The second entopodite joint is bare.

Sixth limb: - The dorsal bristle on the end joint is in most cases about a third shorter than the middle one, sometimes even somewhat shorter.

Therod-shaped organ is of abont the typeremedued by V. VAlki: cl. the acemmpanying fig. 8.

 presumably made under the influme of astatement in the same direction by (. ('1.als. 1874 a,
 differenes betwen these two genera, has quite comed bee bet aside by other writers.

The following names ineluded in the list of symoms given above are without deseriptions

 E. Jörgexsex, 1912 and k. Stephensta, 1913. They are included in the list in chestion in spite of this, because they all refer to finds from regions in which this species is known for certain to cxist. I was able to verify one of these statements myself by a re-examimation of the original material: this was that of P. T. Cleve, 1903 (1'. T. ('1REP and O. PE'TERSSON, 1903).
(\%. A. Brabl and A. M. Normas's description, 1896, is based on some specimens from the coast of Norway, determined by (i. O. SARs.
G. II. MULER's deseription, 1901, which is apparently based on the same specimens as formed the basis of E. VANHOFFEN's infurmation, 1897, may be said to be sufficient for certainty of identification.

It may also be considered as quite eertain that this was the form dealt with by V. VAvRA, 1906. Are we to refer the most southerly finds in this author's work to this species as well?

On the other hand it did not seem to me proper to include in the above list of synonyms Conchocia obtusata, (. S. BRADI, 1868 b, p. 470 ($=$ the same writer, 1868 a, p. 128). The figure. pl. XLI, fig. 9, with whieh this anthor illustrates this find shows an organism of so peeuliar a type that it seems to me quite impossible to identify it ($=$ Ostracod?). This uncertainty on the part of this writer has also prevented me from including C. obtusata, (B . S. Brans and 1). Robertaon, 1si2. p. 70 as a synonym either. Nor has C. obtusata. A. M. Norman, 1869, 11p. $256,257,260$ and 295 been included; with regard to this find, which is presumably the same as was the basis of (G. B. Bp.un's information, 1868 a and b, the first-mentioned writer says (p . 295): ,,A single imperfeet Conchoecia, believed to belong to this species . . ." authors.

It is trne that there arr a number of small differences to be noted between the deseriptions of this species worked out by preceling writers and the information given by me above, but it dues not seem to me necessary to disenss these in any detail. Host of them are presumably due to lack of accuraey on the part of the previous writers.

There is so far no information in the literature as to the proportion between males and females in this species. In the material from Skager Rak investigated by me the males were in most cases rather considerably fewer than the females. Thus in a sample from Koster there
were, as will be seen below, 14 males and 29 females. In another sample 125 intividuals were investigated, of which 39 were males and 86 females. In some cases thr proportion was one to four or even one to five or males were quite absent. The females predominated in number in the larvae as well.

Habitat: — Skager Rak and Uattegat:
North Koster; 2. 11.: Depth, 0 m.: 1 mature male, 5 mature females and 1 juvenis; R. M. s. 345. Depth, 30 m.: 2 mature males and 6 mature females; R. M. S. 346. Depth, 65 m.: 8 mature females and 1 jurenis; R. M. S. 347. South Koster; 1. ll.: Depth, 0 m.: 2 mature males and 2 mature females; R. M. S. 348. Depth, 30 m.: 14 mature males, 29 mature females and 3 larvae; R. M. S. 349. Depth, 65 m . 13 mature females and 2 juvenes; R. MI. S. 350. Depth, $125 \mathrm{~m} .: 1$ mature female; R. M. S. 351 . Depth, 140 m.: 7 mature males, 6 mature females and 4 jurenes; R. M. S. 352. Väderöarna (off Fjällbacka): 6. 11.: depth, $65 \mathrm{~m} .:$ 1 mature male and 3 juvenes; R. M1. S. 353 and 354 . Hållö (N. of Lysekil); 7. I1. : Depth, 30 m . : 1 mature male, 5 mature females and 3 juvenes; R. N. S. 355 . Depth, 65 m .: 2 mature males: R. M. S. 356. - All these samples were taken by the Swedish Hydrographical Biological Commission during a cruse in 1911.

Lat. 58^{n} N., long. 9^{n} E. (-S. VllI.); 9. VIIJ.: Depth, $0 \mathrm{~m} .: 6$ specimens; R. M. N. 364. Depth, $20 \mathrm{~m} .: 8$ specimens; R. M. S. 365 . Depth, $40 \mathrm{~m} .: 4$ specimens; R. M. S. 366. Depth, $300-0 \mathrm{~m} .: 23$ specinens; R. M. S. 367. Lat. $58^{0} 12^{\prime}$ N., long. $10^{\circ} 29^{\prime} \mathrm{N} .(=\mathrm{S} . \mid I l$.$) ;$
 10. VHl.: Depth, 0 m.: 21 specimens; R. M. S. 362 . Depth, $150-0 \mathrm{~m} .: 362$ specimens; R. M. S. 361 and 363 (partly $=$ the material of P. T. (1LELE, 1903).

Distribution: - The northern part of the Atlantic Ocean, chiefly north of lat. 60°, and the Aretic Ocean.

The localities investigated by me were part of the previously known area of distribution.

Conchoecia obtusata G. O. Sars var. antarctica G. W. Müller.

 1908 , 1. 69. 1912, p. 75.

Diagnosis: - Sce (4. IV. Mïllefe, 1906 a, p. 77.

Remarks: - Of the specimens investigated by me the inales measured $1,2-1,37 \mathrm{~mm}$, the females $1,3-1,75 \mathrm{~mm}$. Both among the males and the females there were partly specimens whose shells agreed well in shape with the type drawn by (i. W. Mithera, 1906 and partly those that resembled more or less the tepes reproduced by me aboye for the seandinavian fomm.
sen from leden hoth the males and the femate shells differ from those of the type speceies by hating the posterior part somewhat less dewehoped; in most cases this was mot, even in the females. percepibly larger than the amorior pate

With regard to the mandible. maxilla, fifth, sixth and seventh limbs, furca, upper lip and paragnates the sandinavian and the Antarefie forms of this species agree with each other. The cebristhe on the female first antenna has proximally on the anterior side similar hairs to thene of the type species.

Habitat: - Antarctic Ocean:

S. A. Li., Pl. station 64 b, lat. $45^{0} 2 \sigma^{\prime}$ S., long. $42^{\circ} 36^{\prime}$ IV.; depth $2500 \mathrm{~m} .-0 \mathrm{~m} . ; 23$. V1. 1902: Womperature at the surface $7,90^{\circ} \mathrm{C}: 26$ mature males, 65 mature females and 5 juvenes; R. 11. S. 223 and 224 . S. A. L., Ply station 65 b , at the same locality; depth $400-0 \mathrm{~m}$.; 23. V1. 1902: tomperature at $400 \mathrm{~m} .+3,95^{\circ} \mathrm{C}: 2$ mature males, 4 mature females and 1 juvenis; R. Il. S. 225 . S. A. E., Pl. station 66 b , at the same locality; depth $200-0 \mathrm{~m}$; 23. V1. 1902; temperature at $200 \mathrm{~m}, 5,25^{\circ} \mathrm{C} .: 1$ mature female and 2 juvenes; R. II. S. 226 . S. A. E., Pl. station 345 , lat. $48^{0} 32^{\prime} \mathrm{S} .$, long $44^{0} 28^{\prime} \mathrm{W}$.; at the suface; 24. VI. 1902; temperature 7.9° C.: 1 jurenis: R. M. S. 233. S. A. E. Pl. station 347 , lat. $49^{\circ} 3^{\prime}$ S., long. $46^{\circ} 54^{\prime} \mathrm{VI}^{\prime}$; at the surface: 25. V1. 1902: temperature, $4,5^{\circ}$ (.$: 2$ juvenes; R. M. S. 234. S. A. E., Pl. station 70 b, lat. $49^{\prime \prime} 56^{\prime}$ s.. long. $499^{\circ} 56^{\prime} \mathrm{W}$.; depth, $2700-0 \mathrm{~m}$; 27. V1. 1902; temperature at 2-00 m . and at the surface, $+1,67^{\circ} \mathrm{C}$. and $3,40^{\circ} \mathrm{C}$. resp.: 5 mature females and 1 juvenis; R. M. S. 228. It the same station; depth $500-0$ m. : 2 mature females; R. M. S. 227 . S. A. F.., Pl. station 302, lat. $52^{\circ} 6^{\prime} \mathrm{S}$., long. $555^{\circ} 32^{\prime} \mathrm{W}$.; depth, $500-0 \mathrm{~m}$. ; 12. 1 V . 1902 ; temperature at 500 m . and at the surface, $3,78^{\circ}$ C. and $6,28^{\circ}$ C. resp. : 2 mature males; R. M. S. 229. S. 1. F., Pl. station 316, lat. $53^{\circ} 0^{\prime}$ S., long. $48^{0} 27^{\prime} \mathrm{W}$.; depth, $100-0 \mathrm{~m}$.; 17. 1 Y . 1902; temperature at 100 m . and at the surface, $3,0^{\circ} \mathrm{C}$. and $3,40^{\circ} \mathrm{C}$. resp.: 1 mature female; R. M. S. 231. S. A. E., Pl. station 317, at the same locality; depth 250-0 \mathbf{m}.; 17. IV. 1902; temperature at $250 \mathrm{~m} . .+1,30^{\circ}$ (..: 1 mature female; R. M. S. 232. S. A. E., Pl. station 312, lat. $53^{\circ} \mathrm{l}^{\prime} \mathrm{S}$. , long. $51^{0} 53^{\prime} \mathbb{1 V}$.; depth $200-0 \mathrm{~m} . ; 15.1 \mathrm{~V}$. 1902; temperature at 200 m . and at the surface, $3,51^{\circ}$ C. and $5,48^{\circ} \mathrm{C}$. : 1 mature male, 3 mature females and 2 juvenes; R. II. S. 230.

Distribution: - The Antarctic Ocean between lat. $26^{\circ} \mathrm{S}$. and lat. $43^{\circ} \mathrm{S}$. All the localities referred to above are thus south of the previously known area of distribution.

Rotundata group G. W. Müller.

This group comprises five species (one of which is divided into two sub-species) besides the two dealt with below. As has already been pointed out by G. II. MULLER, it can be distinctly defined from other groups belonging to this genus. It is characterized especially by the position
of the unsymmetrical glands. The careful investigation of the two forms dealt with below that I carried out affords decided evidence that these two at least are very closely related to each other. Presumably the whole group is quite a natural one.

Conchoecia rotundata G. W. Müller.

$$
\begin{aligned}
& \text { ('onchoeciu rohudata*, (i. IV. Müller, } 1890 \text { a, p. 275; pl. NXTIII, figs. 41-4:3; } \\
& \text { pl. XXLX, fig. } 44 . \\
& \because \quad, \quad, \quad . \quad . \quad 1906 \mathrm{a}, 1.83: \text { pl. XVIL, figs. 23-34. } \\
& 1906 \mathrm{~b}, \mathrm{p} .4 . \\
& 1908, \text { p. } 69 . \\
& \text { 1912. p. } 77 . \\
& \because \quad \text {.. (part?), (4. H. Fow El, 1909, pr. } 249,273,293 \text {; pl. XXIII and } \\
& \text { XXIY, figs. 200-2. }
\end{aligned}
$$

Supplementary description: - II ale: -
Shell: - Length: According to (i. W. MÖLLER: 1890a: 1.15 mm . the same author writes on this point (1906 a) :.. + und $30.8-1,75 \mathrm{~mm}$. die der Antarktis durchweg dureh Gröbe $(1,4-1,75 \mathrm{~mm})$ vor denen der gemäßigten und warmen Zonen ($0,8-1,4 \mathrm{~mm}$) ansgezeithnet": (r. H. Fowler, $0,75-1,0 \mathrm{~mm}$. The specimens investigated by me measured $1,45-1,6 \mathrm{~mm}$. Length : height (inmy specimens) abont $2: 1$; length: breadthabout $2,2: 1$. Seen from the side the shells of all the specimens from the Antarctic ()cean investigated by me were of about the type reproduced in the accompanying fig. 1, i. e. they agreed fairly well with pl. XVII. fig. 26, G. II. Muller, 1906 a (-f) and with G. H. Fowler's fig. 205 . For this eharacter see p. 657 below. Seenfrom beneath (see the accompanying fig, ${ }^{2}$) it has its greatest width at or just in front of the middle and the anterior part of the shell is in most cases somewhat larger than the posterior part; it has fairly uniformly curved side contours, is rather broadly rounded anteriorly, has an almost symmetrical rostrum and is somewhat pointed or narrowly rounded posteriorly. The shoulder vault is weakly developed and rounded. The surface of the shell is bare or has only a few very short hairs. Seenfrominside: Selvage: This is comparatively narrow, in most cases it has a whole margin on the rostrmm and along the anterior margin of the shell and the anterior half of the ventral margin of the shell and is excecdingly finely sermlated posteriorly. The selvage has no spine-like process on the rostrum. The glands are as stated by G. W. Méther, 1906 a. The dorso-medial glands are somewhat weakly developed. The glands along the posterior margin of the shell are also rather weakly developed; they have their simple exits near the margin of the shell. There is no distinctly developed hinge-socket or hinge-tooth at the posterior dorsal edge of the shell.

 autenara, $3 ; 833 \%$. Endonodite of the right second antenna seen from inside, $\hat{j}: 367 \times$. 8. Clasping appendagn if the endopodite if the left second antema, 3 ; $35^{\circ} \times$. 9. Toothed edge of the pars incisiva of the left mandible seren from insile, $j: 10: 3 \%$. 10 and 11 . Distal and proximal tooth lists of the right mandible seen from inside, of:

 from clation bis hat

First antenna: - The first joint is about a thim shorter than the semond: of. the accompanying fig. 4. E-bristle: This is about a third longer than this limb and has a distinct knee somewhat distally of the middle. Just proximally of this knee there are two rows of rather narrow, proximally pointing spines, which are in most cases pressed rather chose to the bristle. The distal parts of these spines are hyaline and their shape is exceedingly difficult to ascertain with any certainty; as far as I could discover the distal part is about as wide as the proximal part and is not furnished with any appendage that resembles a suetorial organ. In the specimens investigated by me there were fourteen or fifteen spines in each row, all aranged in pairs; of. the aceompanying fig. (In. (In. IV. Mithene's pl. XVII. fig. 34. 1906 a, there are, howerer, omly eleven spines, and (5. H. Fowler gives the number as from eight to twelve; cf. pp. 655, 656 below.) The distal spines are rather short and are situated rather close together, the other are somewhat longer and more sparse the more proximally they are situated. Except for these rows of spines this bristle has distally no equipment at all (there are consequently no distally pointing spines such as are found distally of the suctorial plate in ('. elegans). The part distally of the knee is narrow. Proximally of the rows of spines there are on the anterior side of this bristle sparse. exceedingly short secondary bristles (searcely perceptible with ReICnERT's ocular 4 . Levth's immersion $1 / 12$). The b- and d-bristles are suberpual and somewhat shorter than the e-bristle; they have no distinct knee and are fromished with rather tew or a moderate number of short, fine, distally pointing spines situated abont opposito the distal pairs of spines of the e-bristle: cf. the accompanying fig. 6. These two bristles are alsu narrow and bare distally. None of these three bristles has pad-like formations. The abristle is very long, wather slightly shorter than this limb, often bent at an angle proximally but otherwise in most cases more or less straight; it has no aceessory saccules. The e-bristle is straight and short, about at third or a half the length of the eapitulam of the rod-shaped organ. All the joints are quite bare

Second antenna: - Protopodite: In speremens with shells about $1,4,5 \mathrm{~mm}$. this measured about $0,7 \mathrm{~mm}$. Exapodite: The propention between the length of this branch and that of the protopodite is about $11: 20$ or $1 \underline{2}: 20$. The proportion between the length of the first joint and that of the eight loblowing joints is about $3: 1$. The proportion between the length of the longest natatory bristles and that of this hameh is about $4: 3$ or $5: 3$. The first joint has about the same shape as is reprothed below for C. semulate, but is not quite so wide; proximally it has a rather sparse longitudinal pow of short, fine epbes, of about the same type as in C. symmetriea (rf. my fig. 12 of this speceses). but with far pewer spines. Endopodite: First joint: The processus mammillaris hats no distal veruca. The a- and b-bristles have short, fine hairs. Second joint: The e- and d-bristles are comparatively short. in most cases rather considerably shorter than this joint (but not always so shont as in the accompanying fig. 7); they have short, fine hairs ar are ahost bare. The e-bristle is comparatively well developed, about half as long as the two last-mentioned bristles or sometimes even somewhat longer. The g-bristle is about as long as or in most cases sumewhat shorter than the langth of the protopodite. the f-hristle is rather slightly shomer: the g-bristhe is in most cases furnisherl with sparse, exceedingly short hairs, the f-bristle is bare; none of these is decidedly swort

 The h- i- and j-bristhes are subergal, about as home as somewhat shorter tham half the length of the g-hristle: the hase a proximal part that suddenty beomes rery marow, about the same as in the acompanying fige 7 : they are vere thin and hyatine, imegulaty rolled up and bare.

Mandibla: - Protopudite: Coxale: The toothed edge on the pars incisiva has from twelve fofferen teeth. Hee anterior one of which is of about the same relative size and type ins in most other spetes of this gemus. the others mather smath, suberual, somewhat ireوrubaly trimgular (cf. the acompanying fig. 9) : some of the posterior teeth are in some cases a little less developed than in this figure, the most posterior one seems, however, almost always to be well developed. sometimes it is bren somewhat more powerful than in the above-mentioned figure. Distal tooth-list: This is fumished posteriorly with a rather large and powerful, fanglike, bare tooth, in front of which there is a single row of about $20-25$ subegual, rather small, smonth, triangular servate teeth; of. the acempanying fig. 10. Proximal tooth list (fig. 11): This varies somewhat in type, but agrees on the whole with the preceding list. It is armed posteriorly with a rather large and powerful, fang-like, bare tooth, in front of which there is a single row of rather small and somewhat irregular pointed serrate teeth. In most eases it has. in adelition. mblike what is the case in the distal tooth-list, two or three rather powerful and large fing-like teeth (which are most frequently somewhat smaller than the most posterior large tooth); these have in most cases, at least proximally, some more or less well-developed secondary teeth. The inside of this tooth-list is not furnished with close smail spines. Both the tooth-lists are of about the same width and are slightly narrower than the distal toothed edge of the pars incisiva. The masticatory pad is rather high and narrow, about half the width of the toothlists. and is divided into abont four or five transverse ridges. armed with exceedingly fine, rather short and excecedingly dense spines. The part of the pars incisiva that is surrounded by the row of bristles and hairs is somewhat pad-like and has fine papillae, some of which are exceedingly short. Basale: The six teeth on the distal edge of the endite are rather finely sermated. The single tooth on the outside of this process is in most cases somewhat smaller than in my fig. 19 of ('. symmetrica, rather finely serrulated or sometimes even almost smooth. The antero-medial bristle on this juint is comparatively long, in most cases almost as long as the proximo-anterior bristle on the endite of this joint, which is about as long as in my fig. 22 of C '. symmetrica. There is no epipodial appendage. Endopodite: The first joint has only two posterior bristles, both of which have short hairs: one is situated somewhat laterally and is about as long as or somewhat longer than the total length of the anterior side of the two proximal endopodite joints, the other is situated somewhat medially and is only about a half or a third of the length of the former one. Of the three anterior bristles on the second joint the two longer ones are in most eases somewhat longer comparatively than in my fig. 2.2 of C. symmetrica; one of them is about as long as the longest of the bristles on the end joint: the other is rather slightly shorter. Pilosity: The second endopodite joint has hairs on its anterior side.

Maxilla: - Protopodite: Only the antero-inner tube-bristle on the endite of the procoxale has long seendary bristles. Endite on the coxale: On the posterior process
there are five tube-bristles, not four, as is usually the case in this genus. The outer-anterior bristle on the anterior process is somewhat shorter and weaker relatively than in my fig. 24 of C. symmetrica. The basale has no bristles. Endopodite (see the accompanying fig. 12): First joint: At about the middle of the anterior side there are four short-haired bristles, three of which are about as long as or somewhat longer than the anterior side of this joint, the remaining one, one of the most distal ones. is about half as long or somewhat more. The ent joint is comparatively short and wide, its ventral edge is in most cases not quite so long as the width of the first endopodite joint distally (ealculating from front to back), its dorsal edge is about half as long as the ventral edge or rather slightly longer.

Fifthlimb: - Protopodite: The longer of the two tube-bristles on the second rodite has in most cases short hairs. Endopodite: Unlike most species of this genus, this is furnished with nine bristles. as there are two tube-bristles, not, as usual, only one, dorsally of the short claw; one of these two bristles is about as long as the short claw, the other somewhat shorter. The three ventero-anterior bristles on this branch are of about the same type as has been described for C. oblonga. This branch has no spines. Exopodite: This agrees with the type that has been indicated above for C^{\prime}. obtusata, but all the ventral bristles on the first joint have short hairs.

Sixth limb: - Endopodite: One of the two bristles usually has short hairs. Exopodite: First joint: At the middle of the rentral side there are two, rarely three, bristles, one of which is relatively long (about as long as the height of this joint) and is furnished with rather long secondary bristles, the other is rather short and in most cases bare or with short hairs. Ventero-distally on this joint there are also two, rarely three, bristles, all rather short and most frequently furnished with short hairs or bare. The dorso-lateral bristle on this joint is relatively short and has short hairs, the dorso-distal one always seems to be absent.

Penis: - This is of about the same type as in (${ }^{\prime}$. symmetrica, but is olten of about the same height along the greater part of its length and is somewhat oblicuely cut off distally: ef. the accompanying fig. 13. At about the middle it is furnished with a series of about four to six oblique transverse muscles, distally of which there are no muscles. It has a rather large copulatory appendage, of about the type reproduced in the figure just mentioned.

Furca: - Behind the claws there is an umpaired short-laired bristle wh about the same relative length as in my fig. 33 of C. symmetrica.

Rod-shaped organ: - The shaft reaches to about the distal boundary of the second or third joint of the first antenna; the capitulum is always of about the type reproducet by (i. WV. Míleer. 1906 a pl. XVII, fig. e9, (f. my fig. 4.

Upper lip: - The postorior ventral edge is of a type uncommon in this genus: ef. the accompanying fig. 15. Its combs are sometimes lurnished with some weak spine-like processes which decrease in strength medially about the same as in the figure mentioned. sometimes with rather well-developed hairs. Between the combs there is a narrow, deep notch. The paragnates are triangularly rounded; ef. fig. It.

Female:
Shell: - Length: This varies within the same limits as in the male. Seen from the side the shells of all the sperimens investigated by me were of about the same type
 Whagated !po as that of the mate, but with the posterior part of the shell dominating some what more wer the amterine part. In oher respects it was about the same as that of the male.
 howewn the lirst and second jeints. The secomb joint has mo Inistle. The r-bristle is about
 it has mather sparse, short, lime hais: it is

 Tha sperimen form ctation fitb. not sword-shaped distally. The :1-, h-, cand d-bristles are subegual and about hath as long as the e-bristle. There are pellowish-brown pigment corpuseles, al least in some cases, in the proximal part wif this limb. All the joints are bare.

Sceond antenna: - The protopodite is only slightly weaker than in the male. The proportion between the length of the protopodite and that of the exopodite is about the same as in the mate. Lindopodite: This has two joints, the original bomdary between the second and third joint having quite disappeared. The i-, g-, h-, i- and j-bristles are subequal and are about as long as or somewhat longer than half the length of the protopodite: they are all bare and withont any shafts. There is an extremely small papilla (scarcely perceptible with Relchelr's ocular 4 and Levth's immersion $1 / 12$ between the h- and i-bristles. (one of the e-and d-bristles is diveloped, at least in some cases; it is very short, only about as long as the proximal width of, for instance, the f-bristle (is this bristle:s absence secondary?). Jilosity: The second andopodite joint is bare.

Sixth limb: - Endopoditr: One of the two bristles is in most cases fumished with short hairs. Exopodit e: The first joint has mo dorso-distal bristle: the otherbristles vary somewhat in length: they are often of the same relative lengths as in my fig. 30 of $($ ' . symmetrica.

Rod-shaped organ: - The point of the shaft reaches about as far in front of the point of the first antema as the length of the capituhm. The capituhm is somewhat more than half the length of the first antenna: it rarios in shape; it was found to be of about the same types as are drawn by (i. W. Mitı, IER, 1906: pl. XVII, figs. 30-33.

Remark: - Is this species. such as it is taken in the present work, a mit from a systematic point of siew? This is a problem at present extremely difficult to decide.

In the original description. which is worked ont from ,, Wenige Individuen" caught at a depth of $1000-4000$ metres at about the equator in the Pacific Ocean (lat. $1000^{\circ}-120^{\circ} \mathrm{W}^{\text {. }}$). (i. W. Mituble gives the following infomation:

Shall: dength. 1.15 mm . Seen from the side it is rather clongated: pl. AXVIII, fig. 42. the shell of a female, seen from the side, shows, as has been pointed out above, a type that agrees farly dusely with the one found by me in the Antaretic.

Fifist antenna: The e-bristle in the male is furnished with ten paits of spines of about the same type and position as has been shown by me above.

Rod-shaped organ: The capitulum varies in type; in the mate it is sometimes of the type reproduced by me in fig. tabore. sometimes ahmost straightand distally rounded; in the female types were found that resembled rather closely those found by me in the Antarctic specimens.

No difference is mentioned between the male and female shell nor any variation in the shape of the shell, nor is any variation mentioned in the armature of the e-bristle on the mate first antenna.
(x. Wr. MUxdeli's description of this speetes, 19016 a, is based on specimens from the Atlantie, Antaretic and Indian Ocems. The following information is given in this description:

Shell: Von schr wechsehder Form. das Vaphältnis zwischen Höhe und dänge schwankt zwischen $4 / 7$ and $\% / 19$ " (i. e. abont $1: 1.75$ to $1: 2.37$). In short specimens the posterior part of the shell dominated rather strongly over the anterior part, in the most elongated ones the anterior part of the shell was about as large as the posterior part. The posterior margin of the shell was more or less strongly rounded; as a rule the elongated pecimens were characterized by a very decided arcuation, the shorter ones, on the other hand, had a somewhat weaker one.

First antenna: With regard to the e-bristle it is remarked in the text that it agrees with this bristle in ('. masotuberculata; in the latter species this bristle is said to be armed with , etwa" twelve pairs of spines; in pl. XVIl, fig. 34 eleven spines are drawn on this bristle.

Neeond antenna: Tu judge from the figures the c- and d-bristles are developed on the endopodite in the male. For the clasping organs see p. 6.51 above.

Rod-shaped organ: In the male the capituhm is of about the type reproduced by me in fig. 4 above; in the female this appendage varied within about the same limits as in the Antaretic specimens investigated by me; ef. p. 654 above.

No information is to be fomed in this treatise as to whether the variation of the shell was continual or whether specimens with different types of shell were fonnd together at the same localities. The statement quoted on p. 649 above as to the length of the shell perhaps indicates that the Antarctic specimens investigated by this author were also all characterized by having elongated shells.
(6. H. Fowlen, 1909, looks upon the clongated forms as ..Ntage l", the short ones as ,Stage Il"; cf. p. 567 above. With regard to this question this anthor writes as follows: , Aecending to Dr. MílLER, the shells of this species exhibited a remarkable variation in shape, the height being anything from +1 to 57 per cent. of the length. Now in all other Halocypridue which I have handled the shell-shape is very fairly constant, and the general contone gives one of the most reliable specific characters, but its diagnostic vahe would be seriomsly weakened if so great
 Fortumately, it appears that this extreme range of possible contour is due, not to individual

(with the exception of one ahmomal seximen) all sperimens at sage I. were of the elongate
 dmount uf individual variation.

The fullowing information is foumd in the worls mentioned:
Sholl: ..stage l": The mate shell is of about the tepe reproduced be me in fig. 1 athere, but not quite solongated (hengh : height about 1,9:1). The female shell is somewhat more chongated than the one given by me in fig. 3 above (., length may be more than twice the hemgh"). ..stage If": The male shell is rather short and high, of abont the type reproduced
 shell is still higher: length : height $=$ about $1,4-1,5: 1$.

First antenna: ..Nage I": The e-bristle in the male is furnished with from ten (1) twelve pairs of spines of the same type and position as has been described by me above. ..stage Il": This bristle is armed with eight or nime similar pairs of spines.
seeond antenna: , Ntage I": The male endopodite is characterized by clasping orgins similar to those reproduced by me above (figs. 7 and 8). The e- and d-bristles (,,basal bristles", according to (i. H. FowleER's teminology) are developed. „Stage II": The clasping organ on the right male endopodite has a marked proximal bend (fig. 209); ,, with no basal bristles".
 ...tage II": .TThe general type is that of Stage I, but shorter and plumper". q: In both ,Stage I" and .,stage $I I^{\circ}$ rather variable; the same types as G. W. MitLer observed were found.

Do .,Stage $1^{"}$ and ..Stage I^{*} really represent two succeeding stages of one and the same species? I believe that this question must be answered in the negative. The fact which in my "pinion forms the strongest argument against this theory of G. H. Fowner's is that in my Antarctic material the oldest larve were of about the same elongated type as the mature specimens. For further information on this point see p. 567 above.

How are we to look upon ,.Stage 11": As is shown by the quotation given above the variation in shell-shape was not continnous in the material investigated by G. H. Fowler; two centres of variation could be distinguished. This indicates, of course, that the material was not pure from a systematic point of view. It does not seem to me improbable that "Stage II" belongs to a species very closely related to C. rotundata that has already been described by G. W. Melleer, 1906 at this species is C '. nasotuberculata. The reasons for this view are as follows: The shell of C. nasotuberculata has about the same shape as .,Stage II"; the length also agrees fairly well: cf. G. H. Fon LER: p. 273 . The clasping organ of the endopodite on the right second antenna in the male is in this species of a type closely resembling that which is characteristic of , stage II": cf. G. W. Nu'Ller's fig. 30, pl. XVIH, 1906 a with G. H. Fowler's fig. 209; in both are found what G. W. MLler describes as: ,,mit außen wenig abgerundeter rechtwinkliger Eeke". In addition we must note the great resemblance between the rod-shaped organ in pl. 6, fig. 18, (f . WV. Müller, 1894 and G. H. Fowler's fig. 208. This figure in G. WV. Mưllek is reproduced from a specimen of the same short type of shell and with a similarly shaped clasping urgan on the male right second antenna as in ,Stage II". In the work just mentioned it was
defined by G. Wr. Muller as C. rotundata, in a later work, 1906 a, as C. nasotuberculata*. It is, however, to be noted that ,Stage $11^{"}$, according to (. H. Fowler, has no c- and d-bristles on the endopodite of the make second antenna. These bristless are, at least if we are to judge from G. II. Mưller's pl. 6, figs. 10 and 11, 1894, developed in C. nasotuberculata. It would perhaps be best to say that the systematic position of .Stage 11 " is uncertain.

Besides the fact that G. H. Fowler found that the variation of the shell was not continuons in the material investigated by him the eircumstance that exclusively clongated specimens were found in (G . WV. MELLER's sample from the Pacific Ocean and my samples from the Antarctic may perhaps indicate that two very closely related forms - perhaps overlapping in their variation - have been mixed together. A certain decision in this question would necessitate, however, a very careful investigation of an abundant material. It is therefore desirable that future investigators should give very accurate information with regard to the variation in the material of this "species" investigated by them.

In G. IV. Meller's work of 1906 a we find (p. 79) that Halocypris punca Ta. Scome $(1894,1,143$, pl. XV, figs. $7,8,39,40)$ is given as a probable synonym of one of the species belonging to the Rotundata group: , welcher Art, das läßt sich bei der mangelhaften Darstellung von Scott nicht feststellen". This writer, in his work of 1912, puts this species of Scort's as a synonym of C. rotunduta, but adds a query. It did not seem to me convenient to include this name in the list of synonyms given above, as there is no close resemblance between these forms; on the contrary there are rather essential differences to be noted both in the shape of the shell and in the second antenna and the rod-shaped organ. As far as I ean see, this species of Scott's is not synonymons with any other species hitherto deseribed.

In G. IV. MCLLeli's work of 1912 C. rotundata, (i. IV. Mt'Llerz, 1894, is also included as a synonym of this species. The reason why this name was not included in the list of synonyms given above will be seen from what has been said above. In addition I may point ont the rather great difference that seems to exist between the penis in the form investigated by me and that of the Mediterranean form; see (i. W. MïLLER, pl. 6, fig. 20, 1894.
('. rotundata, LO Bianco, 1903, p. 199, is not given in the list of synonyms as it lacks verificatory informations and drawings. "C'. roturdeta" of this author, 1904, p. 45 is also uncertain; with a very superficial drawing.

Habitat: - Antaretic ()ewan:
 1902; temperature at the surface, $7,90^{\circ}$ ($1 .: 7$ mature males and 9 mature females; R. II. S. 2n.3. S. A. E., Pl. station 65 b; at the same locality: depth $400-0110.2$. 3. V1. 1902: temperature at $400 \mathrm{~mm}, 3,95^{\circ} \mathrm{C} .: 1$ jurenis; R. M.s. 236. S. A. E. Pl. station 66 b , at the same lerality: depth,

[^93]

 and 1 jusenis: R. M. S. Siss.

Distribution: - Aceording to (i. IV. NCthest in the Atlantic. Indian and Pacife Oceans. In the Atantic (Antaretic (1eem) as far as lat. 655° s.

The specimens investigated bye were canght in the region of distribution previousty known.

Conchoecia isocheira G. W. Müller.

$$
\begin{array}{llllll}
. . & . . & ., & . . & . . & 1906 \mathrm{c} \cdot \mathrm{p} .4 . \\
. & . . & . . & . . & \text {.. } & 1908, \mathrm{p} .70 . \\
. . & . . & . . & . . & . . & 1912,1.77 .
\end{array}
$$

Mescription: - See (i. W. Mithar, 1906 a, p. St.

Supplementary description: - Male: -
Shell: - Length: Aecording to G. W. Mitlerr, $0,9 \mathrm{~mm}$. The specimens investigated bu゙ me were also of this length. Length : height about $1,7: 1$; length : breadth about 2,3:1. Seen from the side it is of the type described by G. W. Meller. Seen from below it has its greatest width at about the middle, with uniformly and rather strongly curved side contours, the anterior end rather narrowly rounded, with about a symmetrical rostrum, the posterior end somewhat pointed and the anterior and posterior ends of the shell about the same size; ef. the accompanying fig. $2 . \hat{o}=$ of. The shoulder vault is very weakly developed and well rounded. The surface of the shell is bare or has only a few exceedingly short hairs. Neen from inside: Nelvage: This is of the same type as in C. rotundata or else it is practically quite smooth-edged. The glands are as established by G. W. Mullere; it is to be noted that the dorso-medial glands are quite absent both in males and females, contrary to what is the case in C. rotundata, in which, though weak, they are found in the male, and unlike in most other species of this genus. The medial glands along the posterior margin of the shell are about similar to those of C. rotundata. There is no distinctly developed hingesocket or hinge-tooth at the posterior dorsal corner of the shell.

First antenna: - This is of the type described and reproduced by G. W. Mưlere. E-bristle: This has from seven to nine spines situated in a single row. Each of these spines has distally a moderately large, oval, hyaline appendage (something like a suctorial organ; ef. the accompanving figs. 3 and 4). The secondary bristles on the anterior side of this bristle are like those of (6 . rotumdotu. The b-and d-bristles have a moderate number or rather few exceedingly fine distally pointing spines at about the corresponding place to that of the spines

Digitized by Microsoft ${ }^{\circledR}$

on the e-bristle. None of these three bristles is widened distally or has a pat-like appendage. All the joints are quite bare.

Second antenna: - I'rotopodite: Jength 0,3-0,4mm. Exopodite: The proportion between the length of this branch and that of the protopodite is about $10: 13$. The proportion between the length of the first joint and the total length of the eight following joints is about $10: 4$. The proportion between the length of the longest natatory bristles and that of this banch is about $14: 10$. As far as 1 could observe the first joint is quite bare. Endopodite: This is of about the type described and repro-

 botow, p: $20 \times$. 3. and if Equipment of that e-hristle on the first antenna, $j: 1200 \times$. 5 . Panis seen from mutside;
 sperimens from station ith.)
duced by fi. W. Mi'liEs; the length of the f- and g-bristles bears a proportion of about $2: 3$ to the length of the protopotitr. The a- and b-bristles have short hairs, the other bristles are bare.

Mandible: - Protopodite: Coxale: The toothed odge of the pars incisiva is of about the same type as in C. rotunduta, but its teeth, apart from the large anterior one, are somewhat smaller relatively; this part may be described as evenly and finely serrulated; the number of the teeth is somewhat larger than in the species mentioned, about $14-18$ were observed. The distal tooth-list is of about the same type as in frotundatce. The proximal tooth-list is also of about the same type as in this specker, Pont the mmber of its teeth seemes
m most cases th he somewhat smaller. In other resperts the pars incisiva agrees with the same organ in ('. rotundefa. Basale: Of the six teeth on the distal edge of the endite the five anterior omes are rather powerfully sermbated, the sixth is only slighty semplated or is quite smooth. Both the appemtages behind these six teethare of the bubebristle type. The single tooth on the outside of this culte is rere smatl. about as large as the distal teeth. 'The hrist les of this joint are like those of ('. rotumdutand ans in the speries mentioned, mo epipodial appendage is developed. E ndopudita: The first joint lras only one posterior bristle, which has short hatis. is about as long as the anterior side of this joint and is situated somewhat laterally. Second joint: of the thee anterior histles the two shorter ones are often subequal and about as long as the anterior side of the two distal joints or somewhat shorter. Of the two posterior bristles on this joint the longer one is in most cases about as long as the two shorter anterior omes, the uther is about half as long or somewhat longer.

Il axilla: - This is of the same type as in C. motulata.
Fifth 1 imb : - Of the same trpe as in C. rotundata, but sometimes all the bristles on the endopodite and the dorso-lateral bristle of the first exopodite joint have short hairs; sometimes one of the rentero-proximal bristles on the first exopodite joint may be fumished with long hairs.

Sjxth limb: - Endopodite: Both the bristles sometimes have short hairs: sometimes. howerer; both are even furnished with rather long hars. Exopodite: loirst joint: This has the same bristles as in C. symmetrica, but has no dorso-distal bristle. The bristles are of about the same relative length as in the species mentioned or sometimes somewhat longer: they are either all furnished with rather long hairs or else one or two of them have short hairs. Third joint: The dorsal bristle is relatively long, often about twice as long as the ventral one.

Penis: - This is of the type usual in this genus. At about or somewhat distally of the middle there are about four oblique transverse muscles, distally of which there are no muscles. In the three specimens investigated by me the bent distal part of the ras deferens was twisted forward in the way shown in the accompanying fig. 5 . There seems to be no sign of any copulatory appendage.

The furca, upper lip and paragnates are similar to those of C. rotundatu.
Rod-shaped organ: - The shaft reaches to about the distal boundary of the second joint of the first antemn or somewhat farther. The eapitulum is of the type reproduced by (i. II. MLLLER; it is about as long as the second joint of the first antenna.

Female: -
Shell: - Length: According to (r. 11 . Më́ller, , ,tiemlich konstant $1,07 \mathrm{~mm}$ ". The specimens investigated by me measured $0,95-1 \mathrm{~mm}$. Length : height about $1,8: 1$. Seen from the side it is of the type described by G. W. MưLLER; of. the accompanying fig. 1. scen from below it was of about the same type as the male; cf. the accompanying fig. 2. In other respects it was like that of the male.

First antenna: - This is of the type reproduced by G. Wr. Muller. I did not succeed in finding hairs on the anterior side of the proximal part of the e-bristle. All the joints
are bare. Yellowish-brown corpuscles of pigment are found at least in the proximal part of this antemna.

Second antenna: - The endopodite is of the same type as in C'. rotumdata, but I never found either of the e- and d-bristles developect.

Sixth limb: - Of about the same type as in ('. rotundata.
Rod-shaped organ: - This is sometimes of the type described and reproduced by G. IV. MïLler, sometimes somewhat pointed distally: of. the aceompanying fig. 6.

Habitat: - Antaretic Ocean:
S. A. E., Pl. station 317. lat. $53^{\prime \prime} 0^{\prime}$ S. long. $48^{\circ} 27^{\prime} \mathrm{W}$.; depth, 250-0 m. ; 17. IV. 1902: temperature at 250 m . and at the surface, $+3^{0}, 40\left(\mathrm{C}\right.$. and $+1^{0}, 30(\therefore 1$ mature female: R. II. S. 340. S. A. E.. Pl. station 318; at the same locality: drpth, 500 if m. : 17. IV. 1902; temperature at $500 \mathrm{~m} .,+1^{0}, 50$ C.: I mature female: R. M. S. 341 . S. A. E., Pl. station 44 b , lat. $65^{0} 56^{\prime} \mathrm{S}$. long. $54^{0} 35^{\prime} \mathrm{W}$.; tepth. $700-0 \mathrm{~m} . ; 22.1$. 1002 ; temperature at the surface - $1^{0}, 15$ (.$: 3$ mature males 4 mature females and 1 juvenis; R. M. S. 239.

Distribution: - In the Antarctic Ocean s. of lat. $55^{\circ} \mathrm{S}$.
A couple of my above-mentioned finds thus come from localities somewhat north of the previously known region of distribution.

Curta group G. W. Müller.

(Mihroconchoeciu (. (Laus.)
This group, which includes two forms in addition to the two dealt with below, is certainly quite a natural one. The careful comparative investigation to which I subjected the two following species affords, at any rate, very strong evidence in favour of this.

Conchoecia curta J. Lubbock.

For synonymy see (i. W. Méller, 1906 a, p. 86.
 figs. 1-9.

Supplementary description: - Itale: -
Shell: - Length: According to (B . W. Müldj?, $0.75-0,95 \mathrm{~mm}$. The specimens investigated by me measured $0,7-0,9 \mathrm{~mm}$. Length : height about $1,6: 1$; length : breadth about 1,75: 1. Seen from the side it is of the type described and reprotuced by

wideh at about the midella and the interion part of the shell considerably larger than the posterior Patt: the side comtemrs are rather decetedty comeave just behind the middle, apart from which they are ewolly enved: the antorior and posterion ends are broally pointed, the rostrum is almost symmetrical. The shoulder vault is rather well developed and abways well rombled. The surlace of the shell is bare and has a sculpture of the type reproduced by
 and ahone the anterior margin of the shell and the anterior half of the ventral margin of the shell; posteriorly it is exceedingly finely sermbated. It has no spine-like process on the rostrum. The erlants are as described by (i. W. Memen; the left unsymmetrical gland has its exit just at the pusterior dorsal comer of the shell. There is an almost complete absence of medial glands along the posterior margin of the shell (apart, of course, from the dorsal medial glands that are well developed); the few that are found emerge with single pores a short distance inside the margin of the shell. At the posterior dorsal corner there is a well developed hinge-socket and hinge-tooth: see the aceompraying fig. $4(\hat{o}=$ q).

First antenna: - The first joint is somewhat shorter than the second. The bomblary between the origimal second and third joints is scarecly or not at all developed. The b-, d-and e-bristles are in most cases subegual, about one and a half times the length of this limb, or somewhat shorter. The e-bristle is armed with from eight to thirteen spines, according to (i. II. MCLLER; in C. Clats's figures (1891 a) there are from seven to fourteen; on the specimens investigated by me I counted from eleven to thirteen; these spines agree with the type reproduced by (C. CLata, 1891 a. Proximally of the spines there are sparse and very short secondary bristles on the anterior side of this bristle. These three bristles are bent at an angle, which is in most cases a rather decided one, at about two-thirds of the way along them; they are not widened distally and have no pad-like formations. G. II. MClefr states that the b- and d-bristles are bare; in the specimens investigated by me I was able in most cases to find a few short, fine, distally pointing hairs abont opposite the spines of the e-bristle. The aand c-bristles are of about the types shown in pl. XX, fig. 17, C. CLAUs, 1891 a . All the joints are quite bare.

Second antenna: - Protopodite: In specimens with shells $0,8 \mathrm{~mm}$. long this measured about $0,4 \mathrm{~mm}$. Exopodite: The proportion between the length of this branch and that of the protopudite is about $10: 16$. The proportion between the length of the first joint and the total length of the eight distal joints is about $10: 4$. The longest natatory bristles are about a quarter longer than this branch. The first joint is bare. Endopodite: First joint: The processus mammillaris has no distal verruca and is comparatively small. The $a-$ and b-bristles have short hairs. Second joint: The c-, d- and e-bristles are of about the same relative lengths as in the figures 13 and 14 of \mathcal{C}. symmetrica. The g-bristle is, as a rule, somewhat longer than the protopodite, somewhat sword-shaped distally and furnished with exceedingly short and fine hairs. The f-bristle is somewhat shorter than the protopodite, narrow, bare and furnished with very short and fine hairs. Third joint: The clasping organs are of about the types reproduced by G. W. MÜLLER, 1906 a, pl. XXX, figs. 4-7; they have rather decided transverse creases distally. The h^{-}- i - and j-bristles are subequal, about half the length of the g-bristle
and about as wide as the f-bristle proximally, bare or with extremely short and fine hairs. The h-bristle has a spinous shaft, the $\mathrm{f}-, \mathrm{g}$-, i - and j -bristles have no shafts.

Mandible: - Protopodite: Coxale: The toothed edge of the pars incisiva has about ten teeth. The distal tooth-list is of about the same relative size and type as has been previously described for C. oblonga, but the number of teeth is on the average somewhat fewer. The proximal tooth-list also varies within about the same limits as the corresponding part in the species just mentioned, but here, too, the number of teetly is on the average somewhat less. The masticatory pad is very powerfully developed; it is divided into from four to six more or less distinct transverse ridges; the distal one of these is about as wide as the two toothlists, the next distal one is about half as wide, the others decrease somewhat in width the more proximally they are situated. The whole masticatory pad is armed with rather small papillae, placed elose together. The part of the pars incisiva that is surrounded by the lancet bristles and hairs is rather powerful and is armed with papillae similar to those on the masticatory pad; this part is also armed with a couple of low and powerful teeth. Basate: The six tecth on the distal edge of the endite are furnished with moderately fine serrulation. The single tooth on the outside of this endite is more powerful than in my fig. 19 of C. symmetrica and is of the same type as has been described for $(\%$ elegans. The epipodial verruca is very small and has a very short bristle. The exopodite verruca is very weakly developed. Endopodite: The first joint has only two posterior bristles, both with short hairs; these have about the same position and relative length as the two corresponding bristles in C. rotundata. Pilosity: The second endopodite joint has hairs.

Maxilla: — Protopodite: Endite on the procoxale: Besides the anterior imer tube-bristle the two bristles nearest to this are also provided in most cases with long secondary bristles. The basale has no bristle. Endopodite: First joint: The six bristles on the anterior side of this joint are somewhat relatively shorter than in most other species of this genus. The end joint is of about the same type as in C'. rotundata.

Fifth limb: - Protopodite: The longer of the two tube-bristles on the second endite has short hairs. Endopodite: This is similar to that of (' oblonga. Exopodite: The first joint is similar to that of the above-mentioned species, but all the ventral bristles usually have short hairs. The ventral end claw varies in length; sometimes it is only a quarter or a sixth of the length of the middlle claw.

Sixth limb: - Exopodite: The ventral bristles on the first joint are sometimes somewhat relatively shorter than in my fig. 29 of C. symmetrica; the dorso-lateral and dorso-distal bristles sometimes seem to be quite absent.

Penis: - This is of the type reproduced by G. II. Möuer, $1906 \mathrm{a}, \mathrm{ph}$. XXX, fig. 9; it has a rather narow copulatory appendage; cf. the accompanying fig. 5 .

Furea: - There is no unpaired bristle behind the elaws.
Rod-shaped organ: - The shaft reaches to about the distal boundary of the second joint of the first antenna or somewhat farther. The capitulum is of about the type
 cf. the accompanying fig. 6 ; it is sometimes somewhat more pointed distally than in

1i. IV: Mctatas and my figure: the propertion betwern its lengh and that of the second jomt "if the first anteman is abmut t :

Lepper lip: - The part hetwen the combs on the postere-ventral efge of this hp is rather denply and narmowly moteded: it is not quite as deep as in my fig. 1.5 of C. rofumdala. The par:a in $11: 16$ os are of abomt the same type as in (5 . symmetrica.

Female: -
shell: - Lengli: Acending to (i. 11 . NCldase, $0,8-0,95 \mathrm{~mm}$. The specimems measured be me were 0.7 - $0,85 \mathrm{~mm}$. long. Length: height about $1,4: 1$. Seen from the

 organ + a bart of the first antenna, of 5h7 X. (From spetimens from station 13'.)
fig. 3. Seen from below it is of about the same type as in the male, but the anterior part is searcely perceptibly larger than the posterior part and the side contours are not curved in or searcely pereeptibly so just behind the middle. The left unsymmetrical gland has its exit somewhat ventrally of the postero-dorsal corner of the shell; see the accompanying fig. 4. In other respects it is like that of the male.

First antenna: - The division into joints is rather weak. The first joint is, as is the case in the male, somewhat shorter than the second. The boundary between the original second and third joints is in most cases rather well developed. The bristle of the second joint has short hairs ur is almost bare; it is somewhat shorter than this joint (fig. 7). E-bristle:

This is about one and a half times the length of this limb or somewhat longer. The simple sensorial filament, the d-bristle, is in most cases not guite a third ol the longth of the e-bristle. All the joints are bare.

Seeond antenna: - Protopodite: In specimens with shells $10,7 \mathrm{~mm}$. long this moasured about $0,25-0.28 \mathrm{~mm}$. Lixopodite: The proportion between the length of this brameh and that of the protopodite is about $10: 11$. The proportion between the length of the first joint and the total longth of the eight following joints is about the same as in the male. The natatory bristles are also of the same relative length as in the other sex. Endopodita: This has two joints, the boundary between the wiginal second and third joints not being developed. Second joint: The g-bristle is of about the same type and retative length as in the male. The $\mathrm{f}-\mathrm{h}$-, i- and j -bristles are suberual and about a third shorter than the g-bristle, bare or furnished with sparse short hairs and without any shatts: otherwise they are of about the same type as in the male. Jhere is a small papilla between the h-and i-hristles. Pilonity: The second endopodite joint is bare.

Sixth limb: - Endopodite: One of the two bristles sometimes las shomt hairs. Exopodite: First joint: (he or more of the ventral bristles often have short hairs. The dorso-distal bristle is short; in some cases it seems to be quite absent. The dorsal one of the three bristles on the end joint is often only half the length of the middle one.

Rod-shaped organ: - This is of about the type described and reproduced by (6. Wr. Muller, Its point reaches about as far as the point of the first antema or only rather slightly distally of this; cf. the accompanying fig. 7.

Remarks: - The synonymy of this species is exceedingly complicated and it seems impossible at present to unravel it with any certainty. In the present work I have entirely followed the view adopted by (\because. W. Héller, 1906 a and merely refer to this writer's exposition.

Conchoecia curta, J. LebBock. 1861, p. $16(188)$ is mentioned by the following authors:

C. rostrata (J. LLbbock, 1860, p. 17 [189]) is only mentioned by (f. W. MéliEil, 1906 a, p. S6, 1906 b, p. 5 and 191:3, p. 7 .
(. Clausi ($(\pm .0)$ SuR, 1887, p. 87 [206]) is mentioned by the fothowing authors:

 P. 700 , (. S. BRAMY, 1897 , p. 97.1902 a, p. 199 (1903 , P1. 337,338), P. T. (1LEAE, 1900),
 A. M. NommiN. 1905, p. 155, A. Satit, 1905. p. 370, V. VAR., 1906, p. 61, (11. dllls,
 1916, p. 364.

During my re-examination of the original material I werified that ('. (Microconcheccia)

 at the surface: (6 . N1I. 1901 : temperature $23,2^{\circ} \mathrm{C} .: 1$ mature male, 7 mature females and 5 juvenes;
 S. NH. 1!ol: temperature, $2.29^{\circ}(\therefore: 1$ mature male and 1 mature female; R. M. S. 246.

Lat. $42^{0} 09^{\prime}$ N.. long. $42^{0} 15^{\prime}$ W.: 17. H1. 1898: 1 mature male; R. M. S. 381. Lat. $40^{\circ} 30^{\prime}$ N., long. $16^{\circ} 5^{\prime} \mathrm{W} .: 4$. IV. 1899: 3 specimens; R. M. S. 382 ($=$ the specimens of P. T. CLEVE, 1900).

Mistribution: - Aceording to (: W. MÜLlek in the Atlantie (from lat. $31^{0} \mathrm{~N}$. to lat. 37^{0} ふ.). Indian and Pacific Oceans.
some of the localities of the S wedish South Polar Expedition are thus somewhat north of the area of distribution in the Atlantic fixed by the above writer and those noted by P. T. Cleve lie still more to the north.

Conchoecia echinulata (C. Claus).

Mikroconchoeciu echimulata, (C. CLALA, 1891 a, pl. XX.
Conchoecia \quad, \quad (i. W. MÜLler, 1906 a, p. 88; pl. XXX, figs. 10—17.
1908, p. 70.
1912, p. 78.
Description: - see (i. II. Meller, 1906 a, p. 88.
Remarks: - In the characters not mentioned by \mathfrak{G}. W. Míllek this species agrees well with C'. curta. It is to be noted that a copulatory appendage is developed on the penis, but it is considerably narrower than in the species mentioned; cf. the accompanying fig. 1.

Habitat:-Atlantic Ocean:
\therefore A. E., Pll. station 23 , lat. $34^{0} \underline{2}$ N., long. $18^{0} \underline{2} 1^{\prime} \mathrm{W}^{\prime}$; at the surface; 5. XI. 1901; temperature, $20,1^{\circ}(\because: 3$ mature males, 5 mature females and 3 juvenes; R. M. S. Qos1. S. A. E.,

Pl. station 30, lat. $29^{\circ} 52^{\prime}$ N., long. $20^{\prime \prime} 14^{\prime} \mathrm{IV}^{r}$; at the surface; 7. NI. 1901; temperature, $21,1^{\circ}$ ('.: 1 mature male and 7 mature females (all the females belonging to this species?); R. M. S. 252 . S. A. E., Pl. station 34, lat. $27^{\circ} 49^{\prime}$ N., long. $20^{\circ} 51^{\prime} W$. ; at the surface; 8. XI. 1901; temperature, 21, 4^{0} C.: 1 mature male (see C.curta, p. 666 above). S.A. E., Pl. station 38, lat. $25^{\prime \prime} 46^{\prime}$ N., long. $21^{\circ} 31^{\prime} \mathrm{W}$.; at the surface; 9. X1. 1901; temperature, 22,500 (.: 1 mature male; R. M. S. 253. S. A.E., Pl. station 23 b, lat. 19 19' S., long. $36^{\circ \prime} 9^{\prime} \mathbb{W}^{\top}$; at the surface; 3. XII. 1901; temperature, 25,20 (3 : 2 mature males (see ('. curta, p. 666).

Distribution: - „Die ., ' a ldivia" fischte diese Art zwischen

Fig. CMXIT. - Conchoecia echinulata (C. Claus), $\hat{0}$. - 1. Penis seen from outsite; $340 \times$. (From a specimen from station 23 b .) dem $26^{\circ} \mathrm{s}$. Br. und dem $37^{\circ} \mathrm{s}$. Br. und außerdem einmal unter $31^{\circ} \mathrm{n}$. Br. Auch nach den Gau B - Fängen scheint die Art in einer breiten äquatorialen Zone zu fehlen. Atlantischer, Indiseher Ozean" (G. W. MULLERR, 1908, p. 70).

The finds mentioned above seem scarcely to support this idea. Probably this species is distributed all over the central part of the Atlantic Ocean.

Bispinosa group G. W. Müller.

According to (F . W. Mulder this group comprises, in addition to the forms dealt with below: three other species, namely ('. striola G. W. Mitller. ('. atantica (J. Libbrock) and C. orthotrichota G. II. MULLER. To these may be added the forms inchuded by this writer as synonyms of C. bispinosa, namely C. secernende V. VÁrka and C. Hülleri Cin. Jithay.
 out, certainly very elosely related to one another. It is diffieult to say anything certain as to the systematic position of C. secemende and ('. Mielleri (cf. pp. 674. 675 below). but at any rate they are very close to the three species just mentioned.

On the other hand C. atlantica and C. orthotrichota are, accorting to (. . 11 . MCLLER, more isolated; it is less certain that they betong to this group. I was unfortmately mable to investigate material of these species, so that it is not possible for me to give any further opinion in this question.

Conchoccia Haddoni G. S. Brady and A. M. Norman.

 hesrip(iom).
P. 'T. ('LEDE, 1! (15), p. I:30.

V. Vibli.. 1906, p. 4!) pl. IV. figs. 65-75.
(i, W. MCtLder, 1908s. p. 70.

Supplementary description: - Male: -
shell: - Length: G. S. Brean and A. N1. Nohsum give this as $2,55 \mathrm{~mm}$. (i. WV. Múbleks. 1906 a says: .,Die Tiere sehemen sich ziemlich scharf in eine klemere nördliche Rasse (7 bis 2.6 , of mur his 1.9) und cine gröbere südliche Rasse ($72,6-2,95$. $02.2-2,5$) zu sondern": the former one would be found in the north, the latter in the south hemisphere. The total amount of variation for the length of the shell in the males would be $1.85-2,5 \mathrm{~mm}$. This division is obviously incorrect: the male investigated by (. S. BRan and A. M. Nomans, which was caught off the coast of Ireland, measured $2,55 \mathrm{~mm}$., as has already been pointed out, i. e. more than (. WI. Méller's sonthern specmens; in addition V. VAlR. gives a length of 2. $4-2.5 \mathrm{~mm}$. for northern specimens: (i . H. Fowlilk states 2.1 mm . The specimens investigated by me measured $2,3-6 \mathrm{~mm}$. Length : height about $2: 1$. J, ongth : breadth about $2,3: 1$. Seen from the side the shell has about the type reproduced by G. S. Brans and 1. M. Normix: see the acompanying fig. I. Seen frombelow it has its greatest width at about the middle and the anterior part is somewhat larger than the posterior part. The side contours are somewhat concave just behind the middle but apart from this they are uniformly curved. The anterior end is broady rounded, with an almost symmetrical rostrum, the posterior end is somewhat pointed or rather narrowly rounded; of. the accompanying fig. 2. The shoulder vault is rather well developed and well rounded. The surface of the shell is bare. Seen from inside: Selvage: This is either smootheedged or finely sermated on the rostrum and las no spines of any great size. It is smooth-edged along the anterior margin of the shell and the anterior half of the ventral margin; along the posterior half of the ventral margin of the shell it is finm serrulated and along the ventral half of the posterior margin of the shell it is coarsely and irregularly serrulated. The glands are of the type deseribed by G. W. Dlitler. The medial glands along the posterior margin of the shell are rather large; most of them have a single exit; their exits are arranged in a rather distinct row running about half
way hetween the selvage and the margin of the shell or in most cases somewhat nearer the later and (at least in the case of some of them) joined by a fine undulating line in abont the way shown in my fig. 5 of ('. symmetrica. Within the rentral part of the posterior margin of the shell, just dorsally of the left unsymmetrical gland. a mumber of these glandular exits are joined in about three groups; each of these groups of glands comprises from two to four glandular exits. These three groups are situated in line with the other glandular exits or often somewhat inside them. There is no distinetly developed hinge-socket or hinge-tooth at the josterior dorsal corner of the shell.

First antenna (fig. 3): - This is of the type described and reproduced by A. II. Mobser. The a-bristle is in must eases about as long as the second joint of this antemna. The pad of the b-bristle is of the same type and relative length as in (. bispinose: see my fig. 3 of this species. The e-bristle has about $43-47$ spines in each row; the distal 15-20 of these spines are situated in pairs, the others alternate more or less regularly; their shape seems to be the same as is reproduced by (. IV. Melleli, pl. XVIll, fig. 7. 1906 a; there are no spines or bristles distally of these rows of spines. The anterior side of this bristle is almost quite bare; only one or at few short secondary bristles can be observed. All the joints are quite bare.

Second antenna: - Protopodite: In specimens with shells $2,4 \mathrm{~mm}$. long this measured about $1,2 \mathrm{~mm}$. Exopodite: The proportion between the length of this branch and that of the protopodite is about $10: 18$ or $1: 2$. The proportion between the length of the first joint and the total length of the cight following joints is about $10: 4$ or $10: 5$. The proportion between the length of the longest matatory bristles and that of this branch is about $3: 2$. The first joint is furnished with spines proximo-dorsally, but these are fewer than in C. symmetrica (cf. my fig. 12 of this species). Endopodite: This is of thr type deseribed and reproduced by $4 . \mathbb{W}$. Mollen. First joint: The processus mammillaris has a distal peg-like process. Third joint: The clasping organ on the right andopodite is in most ases not quite so strongly bent as in (f. IV. Mómeris pl. XVIII, fig. 10. 1900 a: of. the accompanying fig. 4; this character varies, however, to some extent. 'The shaft of the h-bristle is usually furnished with short, fine spines; those of the i - and j-bristles are usually smooth.

Il andible: - Protopodite: Coxale: The toothed edge of the pars incisiva has about ten teeth. The distal tooth-list is of about the same relative size and type as has been described above for (${ }^{\prime}$. oblomga, though the number of teeth is on the average somewhat, though only slightly, greater than in the species mentioned. The proximal tooth-list is slightly narrower than the distal one. its tecth are rather irregular, often resembling more or less the type reproduced in my fig. 18 of C . symmetrica: on the inside it is furnished with small papillae sittated close together. The masticatory pad is rather considerably narrower than the tooth-lists. about the same as in my fig. \ln of ('. symmetrica, in most cases rather indistinctly divided into four of five transwerse ridges and furnished with elose small papillac. There is a low tooth just proximally of the masticatory pad. Basale: The six teeth on the distal edge of the podite have paceedingly fine sermation. The single tooth on the matside of this endite is of about the same type and

Digitized by Microsoft ${ }^{\circledR}$
 and rehative size as in ('. symmetrieat of. my lig. 2l of this spectes. Eadopodita: The lirst joint has four postorion bristlos, all of thom ustatly with shord hars. One of these, whith is situated somewhat laterally, is often about as long as the anteriors side of the first and seemet molopedite joints, the there whers, situated somewhat medially, are relatively short, about hati as long as the distat height of this joint or even somewhat shontere

Ilaxilla: - The remtral enge of the end joint is about as long as the distal widh of the tirst cmopordite joint (calculating from front to baek), its dorsal edge is about hall as long.

 2. Shell seen from below; 3' \Varangle. 3. Distal part of the first antenna and the rod-shaped organ: the b-, d- and e-bristles of the antenna are broken: 117 X . 4 . and 5 . Distal joint of the endopodite of the right and left second antennae; the bristles are broken: $2 n 0 \times$. 6 . Distat part of the penis. seen from outside; $567 \times$. (From specimens from station 64 b.)

Fifthlimb: - Protopodite: The longest tube-bristle of the second endite has short hairs. Endopodite: This is of the same type as has been described above for C. oblonga. Exopodjte: First joint: This has two, only in exceptional cases one, medial ventral bristles, both with short hairs. The proximo-ventral group has four or five bristles, one of whieh is in most cases furnished with long hairs. The distal ventral group has three or four bristles, all of which sometimes have short hairs, but sometimes one has long hairs. The
ctorso-lateral bristle is furnished with long hairs. The bristles on this joint are of about the same relative length as in my fig. 27 of (.symmetrica. The dorsal bristle of the end joint is relatively somewhat shorter than in the figure just mentioned.

Sixth limb: - Exopodite: The bristles of the first joint are in most cases about the same as in my fig. 29 of ('. symmetrica (the number of the ventral bristles is sometimes somewhat reduced?). The ventral bristle of the third joint is relatively long, often about as long as the height of this joint.

The end joint of the seventh limb is provided with spines.
Penis: - This has almost the same height along its whole length and is obliquely rounded distally. There are six rather broad oblique transverse muscles at the middle, distally of which there are no museles. It has a well developed and moderately wide copulatory appendage of about the type reproduced in fig. 6.

Furca: - There is no umpaired bristle behind the claws.
Rod-shaped organ: - This is of the type described and reproduced by (.) IV. ML̈LLER; of. the accompanying fig. 3.

Upperlip: - The part between the combs on the postero-ventral edge of this lip is usually somewhat, though only rather slightly, more deeply notehed in the middle than it is in my fig. 37 of C. symmetrica.

Female: -
Shell: - Length: According to (i. S. Brady and A. II. Nokxan, 3 mm.; G. V. MÜller, 1906 a, gives 2,2-2,95 mm. (cf. p. 668 above); (4. H. Fowler, 2,5-3 mm. The specimens measured by me were $2,7-3,2 \mathrm{~mm}$. long. Sean from the side it is of about the type reproduced by (r. W. Mơller. Seen frombelow it is of abont the same type as in the male, but the posterior part of the shell is somewhat larger than in the latter and the anterior part somewhat smaller, in other words the anterior part of the shell dominates over the posterior part considerably less than in the male, sometimes the dominance is scarcely perceptible. In other respects it is like that of the male.

First antenna: - This is of the type reprochect by (6. W. Mölhom. The e-bristle has short hairs on the anterior side of its proximal third. The second joint has a moderate number of short, fine spines scattered proximally ventrally; the fourth joint, too, is armed with similar spines. Exceedingly fine spines of the same lind can also, at least in some cases, be observed at other places on this limb. I did not succed in finding any yellow pigment corpuscles in this limb.

Second antenna: - Protopodite: In sperimens with shells about 3 mm . long this measured about $1,2 \mathrm{~mm}$. The exopodite is like that of the male. Endopodite: This has two joints: First joint: The processus mammillaris is like that of the male. Seeond joint: One of the e- and d-bristles is always developed; it has short hairs and is about as long as in pl. XVIII, fig. 8, (6. W. Müller, 1906 a; sometimes both of these bristles are dereloped, in which ease one of them is always very short. The g-bristle is of about the same type and length as in the male (i. e. about as long as or somewhat longer than the protopodite). The f-bristle is about a third or a quarter sionter? The mificimfopristes are subequal, about

 Pilonety: The sweond combupalite joint is bare.
sisth limb: - The vental bristle whe the jesint is most frepmently somewhat relatively longer than in my fig. 30 of C^{\prime}. symmetrica.

Therod-shaped oryan is of the type described by G. Wr. Mixtrat
Remark: - It is trate that I lomed a number of difforences between the epectimens investigated by me and the original deseription ol ('. Moddomi as worked out by (i. S. Brathe and I. II. Nondul, but it sems to me extremely probable that my specimens belong to this spectes and that the deviations are due to the uncertainty of the original deseription. "Eine Sachuntersudhung dieser lndividuen wäre dringend erwïnscht, auch wegen der sicheren

Of the names included in the above list of syomyms ('. Maddoni, P. T'. ('LEDE, 190n,
 amel ielentificatory figures. On afcomet of the typical appearance of this species it seemed to mo correct, however, to include them as synonyms. The other names are acompanied by verificatory information.

Habitat: - Itlantic Ocean:
 1002: 10 mature males, 27 mature females and 3 juvenes; R. $11 . S .254$ and 255 .

Vistribution: - The Atlantic, between lat. $60^{\circ} \mathrm{N}$. (V. VARRA) and lat. $40^{\circ} \mathrm{S}$. (G. II. M(1Ller) and Indian Oeean (G. W. Melleir).

The specimens investigated by me were thus caught somewhat south of the previonsly established area of distribution.

Conchoecia bispinosa C. Claus.

Conchoecia bispmosa, C. ('lats, 1890. p. 10.
1891 a, p. 59 ; pl. 1; pl. VI, fig. 1; pl. VIII, figs. 7, 8. (i. s. Brady and A. M. Norman, 1896, p. $692(=$ a reproduction of the original description).
P. T. Clleve, 1900, p. 38.
(part?) (\%. W. MÜller, 1906 a, p. 90 ; pl. XVIII, figs. $12-19$. 1912, p. 7!

Description: - See C. Claus, 1891 a, p. 59.
Supplementary description: - Male:-
Digitized by Microsoft ${ }^{(B)}$

Shell: - Length: According to (. CLAUS, $1,5-1,8 \mathrm{~mm}$. (no difference in this character between male and female is given). The male investigated by me was $1,75 \mathrm{~mm}$. long. Length: height about $2.2: 1$; length : brealth about $2,3: 1$. Seen irom the side it is of about the type reproduced by C . ('Lal s; the posterior margin of the shell is perhaps not quite so straight. Seenfrombelow it is of about the type deseribed and reproduced above for C. Haddoni; the anterior part perhaps does not dominate quite so much aver the posterior part as in the figure of the species mentioned. In other respects it resembles ('. Muddomi.

Firstantennat - This is of the same type as in ('. Iaddoni except that the e-bristle is fumished with only about $30-32$ spines in each row; there are sparse short secondary bristles on the anterior side of this bristle.

Second antenna: This is of quite the same type as is described and reproduced above for C. IIcddoni; the elasping organ on the left endopudite was perhaps somewhat more rounded proximally in the specimen investigated by me than in my fig. 5 of the species just mentioned.

Mandible: - of the

Fig. CXXVIII. - Conchneciu bispinosa C. Claus. - 1. Shell seen froon the side, $\circ ; 750 \times 2$. Shell setn from helow, $\circ ; 42 \times$. 42 . Pad on the b-bristle of the first antenma, ${ }^{2} ; 1200 \times$. \& Distal part of the rodshapel organ and the lirst antemat, + : $187 \times$. (Fig. 3 from a specimen from station 6b, the other figures are from specimens from station $2(0 \mathrm{~b}$. same type as in C. Haddoni, but the number of teeth on the distal tooth-list is somewhat less (about the same as in my fig. 17 of C^{\prime}. symmetrica). The proximal tonth-list varies somewhat in type.

The maxilla, the fifth, sixth and seventh limbs, the furea, the rod-shaped organ and the upper lip are of the same type as in C. Haddoni.

The penis on the sperimen investigated by me agreed well with the one reprodnced by ('. ('Lats, $1891 \mathrm{a}, \mathrm{pl} . \mathrm{V}$, fig. 4 (conserpuently also with this organ in (${ }^{\text {. . Haddom; the coputatory }}$ appendage is, however, not toothed at the edge as in my fig. 6 of the species in question).

Female: —
Shell: - Length: The specimens investigated by me measured 1.6-1,95 mm. Length : height about 2.2:1; length : breadth about 2.5: S. Seen from the side (fig. 1) it is of the same type as that of the mate, but the shoulder vanlt is somewhat less developed. Seen from bebow (fig. or) it is abont the same as in C. Haddoni. In wher respects it is like that of the make.
 alwals to be bate.

In wher resperes it resembtes (') Maddomi.

Remerk: - It serms Io me beromb doubt that the form dealt with by me above is identical whth ('. bispimesel C. '1...t is. It is true that a mumber of smatl differenees may be noted between the originat deseription of this speries and the specemens investigated by me. lout these are
 that in the females investigated by me the second joint of the first anteman was furnished with
 To judge from C. CLALs.pl. V', fig. 4 and pl. Vhll, fig. 7 in the work mentioned the penis of this apectes would be subject to a considerable variation. In the male investigated by me this organ agreed, as has heen pointed out above, with the first of these two figures. It is to be noted that ($:$ Calls does mot mention in the text that this organ is subject to variation. Did the penis reproduced in pl. Vllt, fig. 7 belong to a specimen of another species than the one dealt with here?

Is is seen above, C. CiALs states that there was a moderately great variation in the length of the shell in this species ($1,5-1,8 \mathrm{~mm}$.). The specimens investigated ly me also showed a relatively moderate variation with regard to this character: as is secn above, they resembled rather closely the specimens investigated by (. (Lals ($1,6-1,95 \mathrm{~mm}$.). Contrary to this, (i. II. Mituer: points out (1906 a) that the length of the shell in this species is subject to very Atrong variation: , (iröße anßewrdentlich schwankent: f. $1,74-3,0$, of, $1,66-2,4 \mathrm{~mm}$." This variation was. however, not continuous. We read as follows about it (1906 a, p. 91): ,An manchen Fundorten sondern sich die Individuen deutlich in größere und kkinere, \%. B. in Station $26 \neq 1.74,1.8,2.5 .2,6 \mathrm{~mm} ; 3 \widehat{3} 1,66 \mathrm{~mm}, 2 \widehat{2} 2,3 \mathrm{~mm}$ mid derartige Funde legen den Gedanken nahe, daß wir es mit 2 Varietäten zu thm haben, doeh finden sich zwischen den verschiedenen Gröben alle Cbergänge, auch einen Zusammenhang zwischen Gröbe und geographischer Verbreitung vermag ich nicht au erkemnen, ebensowenig wie zwischen Größe und der verschicdenen Beschaffenheit der Oberfläche, des Frontalorgans und der Greiforgane des ô."

Are we concerned here with a species whose shell shows a very great amplitude of variation with regard to length or has (i. W. AtiLer confused two very closely related varieties?

Apart from G. W. MULLER, Y. YAVRA is the only writer who has touched on this problem. In his work of 1906 this author distinguisbes the larger specimens (o $=2,5 \mathrm{~mm}$., $, ~=2,8 \mathrm{~mm}$; no variation is stated in this work) as a new species, C. secernenda*. With regard to the relation of this species to C. bispinosa V. VAlpa writes (p. 60): "Conchoecia secemenda 11. sp. steht C. Uispinosu CĽ. nahe, doch ist die Schalenform verschieden und um die Hälfte größer als diese. Die männliche Hauptborste trägt bei ('. secernenda to Zähne, be C'. bispinosa 30 Zähne". The difference in the shape of the shell between $(\therefore$. bispinosa and C. secemenda is rather slight. To judge from V. VAVra's fig. 121 the difference really seems to consist merely in the fact that the posterior part of the shell is somewhat higher in V. VAtRA's new species; the posterior margin of the shell is also somewhat less straight in the latter form (in this the latter agrees with the

[^94]specimens investigated by me). The differences in the length of the shell and the armature of the e-bristle on the mate first antenna are however, more important.

In his later works (. W. Müller retains the view that he adopted in his work of 1906 a . In his syoptic work (1912) he thus writes ('. secernenda as a synonym of ('. bispinose.

It is of conrse exceedingly difficult for me to have any decided views on this question, as I have only been able to investigate a rather small material of these forms. I have preliminarily sided with V. VÁBR. The facts that led me to this decision were, first, the discontinuity of the variation in the length of the shell observed by G. W. Mćllek at several localities and, secondly, the fact that in the male investigated by me the e-bristle on the first antenna was armed with about the same mumber of spines as C. CLats found in the specimens investigated by him.

Besides the places inchaded in the list of synonyms worked out above C. bispinosa C. Clatts is mentioned in the following places: (土. S. Brany, 1897, p. 95, P. T. Cleve, 1905, p. 129 and C. W. MU'LLER, 1906 b and 1908 . The reasons why I did not include these statements in the list just mentioned are. first. the uncertainty I have just jointed out and, secondly, the fact that there is no verificatory information about them.
C. bispinosa, P'. T. Cleve, 1900 is also without any verificatory information. I have nevertheless included it as a synonym because I have myself investigated the original material of this form: cf. below.
(1 . W. Múller (1912) also inchudes (. Mülleri, (II. Jubar. 1906 as a synonym of C. bispinosa. This identification is probably incorrect. Unfortunately, however, the original description of this species is too incomplete and uncertain to permit of any certain decision (length of shell, $\hat{\delta}=\mathbf{2}, 6 \mathrm{~mm} ., \quad, \quad=\mathbf{Q}, 8 \mathrm{~mm}$.).
C. bispinosa is extremely closely related to C. Haddom. The only characters that distinguish these two species are really, as is shown above, the occurrence of spines on the posterior dorsal corner of the shell in ('. bispinosa and the armature of the e-bristle on the male first antenna. In the latter character the (large) specimens of C. Moddoni investigated by me resembled C '. seeernenda. ('f., in addition, the femate antenna in the two forms. It would perhaps be most convenicnt to include C. Maddomi as a variety of C. bispinosa. That they are identical, i. e. that the differences mentioned are due to individual rariation. seems to me rather improbable, especially because their areas of distribution do not quite coincide. Thus G. H. Fowler found (.. Haddoni in the Bay of Biscay, but not, on the other hand, C. bispinose, in spite of the not inconsiderable material. V. VABRa found C. Huddomi at four stations, in vielen Exemplaren". ('. secernende at not less than twenty stations. In addition the two forms were never found together. Cf. also (t. W. Múller, 1906 a . It remains, however, a task for future investigators to exanime this question in more detail.

IItubtat: - Atlantic Ueean:
S. A. E., Pl. station 30, lat. $29^{\circ} 52^{\prime}$ N. long. $20^{\circ} 14^{\prime}$ W.; at the surface; 7. XI. 1901 ; temperature, $21^{\circ}, 1 \mathrm{C} .: 1$ male juvenis; R. A1. S. 259 . S. A. E., Pl. station 4 b, lat. $250^{0} 51^{\prime}$ N... long. $21^{\circ} 29^{\prime} \mathrm{W}$.; at the surface: 9. Xiginolptenperature, $22,500^{6}$: (2) mature females: R. II.

 O6.4" C.: 2 mature fomates and 3 juremes: R. Il. N. .25s.

 R. II. S. $3831=$ I'. T'. (1asa's material, 19001).
 (C. ('LALE, 1891 :).

All the stations of the Swedish ... n ntaretie" Expedition are consequently situated south of the distributional area of this species as stated by previous authors.

Gaussi group n.

Besides the species dealt with below, which has given the group its name, only C. incisa G. W. Me'ller, out of the species of this genus hitherto described, seems to belong to this group. Unfortumately on account of the incompleteness of G. II. Múllere's description of C. incisa it is impossible as yet to make a detailed diagnosis of this group. The most striking character in this group is the occurrence of a large compound gland on both valves at about the middle of the ventral margin of the shell. There is no such gland in any of the other species so far known of this genus. There are no c- and el-bristles on the endopodite of the female second antema.
G. IV. Mülele in his work of 1906 a included C'. incisa provisionally in the Bispinosa group. :Terwand diirfte der Gruppe C. incisa sein, und mag diese Art hier ihren Plata finden." This writer was supported in this view by his investigation of C. Gorussi. He writes on this point (1908, p. 72): , Die Richtigkeit dieser Anschaumg wird durch die Untersuchung von ('. Cinussi bestätigt, da diese Form die für diese Gruppe charakteristischen Merkmale, Vergrößerung ciniger medialer Drüsenzellen des Hinterrandes, auffillige Entwicklung einer lateralen Borste des zweiten Giliedes des Innenastes der zweiten Ant. zeigt, allerdings weniger auffällig als bei den typischen Formen. Am Hinterrand findet sich nur eine kleine Gruppe von Zellen. und diese Zellen scheinen micht größer als die benachbarten . . . die längere laterale Borste ist micht länger, sondern nur so lang wic das zugehörige Glied, aber immerhin länger als bei len anderen Arten der Gattung Conchoecia, auch ist sie viel länger als die neben ihr stehende. Man beachte auch die Bewaffnung der Nebenborsten der ersten Antn." The similarities pointed out by this writer are obviously not of a specially far-reaching nature. But it seems to me rather probable that C. Gaussi and C. incisa are fairly closely related to C. bispinosa. The

[^95]Digitized by Microsoft ${ }^{(B)}$
differences are, however, so many that the unity of the Bispinosu group would be weakened very essentially and its characterization rendered diffienlt, if these two forms were to be included in it. It seemed accordingly most comvenient to distinguish them as a special group.

Conchoecia Gaussi G. W. Müller.

> ('onchoecine (ionssi. (i. II. Méller, 190s, p. 71; pl. IX, figs. 14-16; pl. X, figs. 9—12. " .,, 1912, p. 80.

Description: - See (t. IT. Mutler, 1908, p. 71.
Supplementary description:-- Female: -
Shell: - Length: $3,6 \mathrm{~mm}$. Length : height about $2: 1$: length $:$ breadth about 2.45:1. Sren from the side (see the accompanying fig. 1) it is of about thr same type as that of the male. Seen from below (see the accompanying fig. 2) it has its greatest width at about or just in front of the middle and has the anterior part of the shell somewhat larger than the posterior part; the side contours are evenly curved, the anterior end is broadly rounded, the rostrum is symmetrical and the posterior end is pointed. The shonlder vault is only weakly developed and is rounded. The surface of the shell is bare; its senlpture agrees with that of the male. Seen frominside: Selvage: This is smoothedged on the rostrum and has no spine-like process. Along the anterior margin and the anterior half of the ventral margin of the shell it is also smooth-edged. An exceedingly fine serrulation can be observed on the edge of the selvage at about the middle of the ventral margin; this sermlation inereases somewhat, though only rather slightly, in strength ahong the posterior part of the ventral margin of the shell. Near the right unsymmetrical gland the servulation is rather course and irregular. Dorsally of this gland the selvage is either irregularly seratehed or else it is of the type reproduced in my fig. 4 of ('. symmetrich, i. e. undulated and with a small lamelliform appentage in every hollow. The compund glands are like those descrithed be (x. W. Mffatere for the male; there are no clorso-medial glands. With regard to the medial glands atong the posterior margin of the shell in the male (i. W. Mülders states that ,.die Mündungen sind durch flache Bogen verhunden, sie mïnden einzeln, abgesehen ron einer kleinen (iruppe von drei Zellen, welche in der Nachbarschaft (dorsal von) der rediten unsymmetrischen J)riise liegt. Thre Miindungen liegen außerhalb, der die Mändungen der anderen Zeflen berbindenden Linie, welche hier etwas ausgelöscht ist." (A group of glandular opemings of this sort was found by this writer omly on one valve; the corresponding place on the other valve of the only specimen investigated was defective.) The same state of affars was fornd hy me in the fromato that I investigated, but with the difference that the group of glandular openings consisted of four. not three, openings and a smilar group was found on both valves. There is no distinctly developed hinge-socket or hinge-tonth at the posterior dorsal corner of the shell.

First antenna (fig. 3): - The joints are rather well differentiated. The first

hairs and is somewhat lemger than the total hemgth of the secomed and thire joints. The e-hristhe
 short hats proximatly as well. The other hostles om the two end joints are not guite half as long as the ebristle. .lll the joints are smonth.
 mestigated was $1.4-1.5 \mathrm{~mm}$. E x x^{\prime} podite: The proportion between the length of this branch and that of the protepodite is ahout 10: 6. The proportion between the fength of the

Fig. CIIIX. - Conchopal Caussi G. W. Mller. 2. - 1. Shell seen from the side: 2t X. 2. Shell sepn from behw: 20 - 3. Left first antenna and the rod-shaped organ; the end bristles of the antenna are broken; $233 \times$. 4 . End joint of the endopolite of the second antenna seen from inside: the bristles are lroken; 2for \times. 5. Distal part of the Z-bris!le of this joint: $160 \times$. 6.-11. Mandible. 6. Tonthed edge of the right pars incisiva sem from outside: $900 \times$. -. Right distal tonth-list seen from nutside: 900 χ. 8. Right proximal tooth-list seen from outside: 900 \times. 9. The distal transwerse rilge of the mastiratory pad; $90 n \times$. 10. Distal part of the multe of the loft basale seen from outside: $626 \because$ 11. The proximo-medial ridge of the basate + the cpipodial appendage; sti X. (From station 701. .)
first joint and the total length of the eight following joints is about 10: 4. The propertion between the length of the longest natatory bristles and that of the exopodite is about $7: 5$. The first joint is similar to that of C. symmetrica. Endopudite: 'This has two joints. First joint: The a- and b-bristles have short hairs, ahost bare. Seeond joint (fig. 4): The proportion between the length of the g-bristle and that of the protopodite is about $3: 4$; this bristle has no distinct shalt and is rather broadly sword-shaped distally (ct. the accompanying fig. 5). The f -, h-, j - and j -hristles are subequal and abont a quarter or a fifth shorter than the g -bristle; they all have rather well developed shafts and are not sword-shaped distally. The g-, f-, h-$i-$ and j-bristles have short hairs proximally; the four latter ones are quite or almost quite bare distally; the g-bristle has short hairs along one edge. There are no c- and d-bristles. Between the h- and i-bristles there is an exceedingly small papilla. Pilosity: The second endopodite joint is bare.

Mandible: - Protopodite: The toothed edge of the pars incisiva is of a type rather different lrom the rest of this genus (see the accompanying fig. 6). Its anterior tooth is of about the same type and relative size as in (all?) the other species of this genns. Behind this tooth there follows a series of (somewhat more than twenty) smooth triangular teeth, of which the anterior ones (about five) are moderately large and strong, the others decreasiug in size and strength the more posteriorly they are situated; the posterior ones form a fine serrulation. This edge ends posteriorly with a powerful, low, wide, irregularly rounded, smooth tooth. Distal tooth-list (see the accompanying fig. 7): This is somewhat narrower than the toothed edge; it has a large, powerlul, smooth, fang-like posterior tooth and a single row of about fifteen to seventeen simple, smooth, pointed. moderately large teeth which vary somewhat in size. Proximal tooth-list (see the accompanying fig. 8): This is somewhat narrower than the distal toothlist. It has a relatively small and somewhat varying number of smooth, pointed teeth, of which the posterior one is of about the same type and strength as the posterior touth on the distal tooth-list, the others decreasing irregularly in size and strength, the anterior ones being quite suall (on both the mandibles in the specimen investigated they were about the same trpe as in the accompanying figure). The masticatory pad is rather high, divided into four thin plates placed transversally, the distal one of which is somewhat narrower than the proximal toothlist, the others decreasing somewhat in width the more proximally they are situated; the free edges of these plates are deeply and irregularly toothed (ef. the accompanying fig. 9). The part of the pars incisiva that is surrounded by lancet-bristles and hairs is somewhat raised and is furnished with dense papillae and short, fine hairs. Basale: This has the same number of teeth on the distal edge of the endite as in the other species of this genus investigated by me; the difference between main teeth and secondary teeth has, however. almost vanished (the former are considerably weaker, the latter considerably stronger, than in the majority of the species of this genus). so that this edge seems rather finely and evenly servulated (cf. the accompanying fig. 10). The single tooth on the outside of this process is somewhat wider than each of the (six) distal teeth and is quite or almost quite smooth. The two appendages on the posterior edge of this endite are furnished with unusually strong secondary spines. The disto-medial bristle on this joint is relatively long and has long hairs. The epipodial appendage is
rather suall athed has a rathere small bristle with a thick base (see the arempanying fig. 11). f: nd "podit e: The lirst joint has four shorthated bristles on the pesterior side; these are of ahont the same relative longths an in fige ore of ' symmetrice. The antern-distal bristle ont this joint has short hairs and is mot inconsiderably henger than the seomd endepedite joint.

Ifaxilla: - I'rotopodita: Entite on the promaxale: The three pestero-omerer tuhe-bristes and the pointed bristle sitnated elose to them are fumished with a few moderately fong somondary bristhes. The four other single-pointed bristles are furnished with rather long apines. the two atherion imber ones (like the anterior inner tube-hristle) have rather long serondary bristles as well. (The difference between , secondary brist les" and .,spines" is of course not a fundamental ome. but only one of degree: the , spines" are more or less stronger than the ..secondary hristles*.) Endite on the eoxale: There are only three, mot, as is ustal in this gems, fomr mbebristles on the posterior process. Eindopodite: First joint: On ome maxilla in the specimen investigated bey me there were three bristles on the pusterior edge (ass is usual in this genns), on the other there were four. The end joint is relatively short and of about the same trpe as in my fig. 9 of ('. sermulata.

Fifth limb: - Protopodite: The longer of the two tube-bristles on the second endite has short hairs. Endopodite: This is of the same type as las been described for ('. oblonge (see my fig. 27 of C. symmetrica). Exopodite: Jirst joint: This has one or two medio-ventral short-haired bristles, three proximo-ventral bristles, the two longest of which are furnished with rather long secondary bristles, the third having short hairs, two disto-ventral bristles. one of which is furnished with rather long secondary bristles. The dorso-lateral bristle on this joint is furnished with rather long secondary bristles. All the bristles on this joint are of about the same relative length as in my fig. 27 of C . symmetrica. Of the bristles on the end joint the dorsal one and the ventral one are subeyua\}, somewhat more than half the length of the middle one. Pilosity: The protopodite and the first exopodite joint are partly furnished with long hairs.

Sixth limb: Exopodite: First joint: The dorso-listal bristle is relatively somewhat longer, the dorso-lateral bristle relatively somewhat shorter than in my fig. 30 of (. symmetrica. On one limb one of the thee ventero-distal bristles of this joint had short hairs in the specimen investigated by me.
seventh limb: - The end joint is furnished with spines.
Fnrea: - Behind the claws there is no unpaired bristle.
Rod-shaped wryan: - This is of the same type as in C. Haddoni and C. bispinosa; cf. the aceompanying fig. 3.

Upper lip: - This is of about the same type as in the two species just mentioned, but the part between the combs is perhaps somewhat more deeply notched (not so much, however, as in my fig. 15 of ('. rotundata) and the teeth of the combs are somewhat coarser. The paragnates are similar to those of the species just mentioned.

Remark: - It seems to me extremely probable that the female described above really belongs to this species, partly because of the great similarity that is shown in the type and size
of the shell and partly beeause it was eaught in a region whieh, from the point of view of its plankton-fauna, presumably agrees very dosely with that from which the male describod by (i. W. M"Ller came. Of course this identification is not puite efrtain.

Habitat: - Antaretic Ocean:

 $\left.{ }^{1}\right)_{11}$ slides in the rollections of R. M. S.
 long. $2^{0} \mathrm{E}$.

Serrulata group n .

(Pseuduconchoecia ('. (LLA's)
Of the species of this genus hitherto described the one dealt with below seems to be the only one that can be referred with entire certainty to this group.
('. sermlata was provisionally plaeed by (. Wr. Miller, 1906 a, in the Loricata group. As far as I ean see, this assignment was based practically exclusively on the agreement with regard to the positions of the compound glands. To this character, however, no great systematic importance is to be attached, as the positions of these glands do not differ more or less decidedty from what is the case in most of the other species of this genus. but are, on the eontrary, very near to what one might eall the normal for this genus. (Cif., for instance, ('. rhynchene (i. W. Millek and ('. plinthina (i. W. Míllek, ete.) On the other hand the differences between
 the Loricata group, are not ineonsiderable. By ineluding C. servalata in the Loricate group the systematic unity of this group is lessened to a very great extent. It seemed to me arcordingly ineonvenient to follow this proeedure of ($:$. W'. M'LLER's and so I have distinguished ('. sermetue as a representative of a special group.

Whether C. concentrica C. W. Moluela is closety related to C. sprrulutn I cannot saly. It does not seem to me impossible. (G. WT. IItLLER writes as follows with regarl to this species (1006 b, p. ll): , hch vermag keine deutlichen verwandtschafthehen Beziehungen zu einer der bekannten Arten zu erkemen; manche (lrametere sprechan für eine Vowandtschaft mit r. sermutate."

Conchoecia serrulata C. Claus.

Conchoecia semulatu. (. (Lators, 1874 a, p. 176.
1874 b, p. t; pl. 1, figs. ㄹ-7.9.11; pl. 11. figs. 12. 13, 17. 19.
Halocypris allantica, (土. A. BRADY, 1880, p. 164: pl. XL: pl. XIII. figs. 11. 12.


```
Pioncluercin
```



```
1'onchluection
```



```
                            ligs. 20-33.
```


Supplementury description: - Male: -

 dentlich kheiner.. The specimens investigated by me measured $1,05-1,4 \mathrm{~mm}$. Length : height about $1.6: 1$: length : breadth about $1.7: 1$. Seen irom the side it is of about the type reproduced by (${ }^{(1)}$ (1ths, 1891 a.pl. XIX. fig. 1 (see the accompanying fig. 1), i. e. it has a somewhat less arehed ventral margin than in (i. II. Mílum’s pl. XXII. fig. 24, 190世; a. Seen fromberow its greatest width is at about the middle and, owing to its shoukder vault being very powerfully developed, the anterior part of the shell is somewhat larger than the posterior part. (Jwing to the powerful development of the shoulder valt a simation is produced somewhat behind the middle; apart from this the side contours are evenly curved. The anterior end is rather broadly rounded and has a symmetrical rostrum, the posterior end is also rombed or somewhat pointed: cl. the accompanying fig. 2. As has alrady been pointed out, the shoulder vanlt is very powerfully developed, but well rounded. The surface: The sompture varies, sometimes being tather powerfully developed. of alout the type described by (G. W. MillaER, sunctimes more or less weak, the striation having more or less completely disappeared just as . ithe marginal serrulations": specimens with reduced shell-sculpture have so far been found only in the Antaretic: cj. p. 686 below. The surface of the shell has nohairs. Seen from insille: Shage: This is smooth-edged on the rostrum and along the anterioe margin of the shell and the anterior half of the ventral margin of the shell; it has no spine-like process on the rostrum. It is finely serrulated along the posterior half of the ventral margin of the shell and the posterior margin of the shell. The compound glands are of the type described by G. IV. MedafR. The glands along the posterior margin of the shell are comparatively weakly deseloped; their exits are of about the type described above for C. oblongu. There is a rather well developed oval hinge-sorket and hinge-tooth at the posterior dorsal corner of the shell.

First antenna (fig. 3):-This is of about the type described and reproduced by (i. II. M"LLER. The retinaculum of the second joint was bare in the specimens investigated by me: in (r . II. MČLLER's pl. XXIII, fig. 22 this bristle has short hairs. According to (4 . W. Molleer the ..Nebenborsten" are .,nicht behart"; in the specimens investigated by me these bristles were furnished with a larger or smaller number of short, fine, distally pointing hairs about opposite to the distal part of the row of spines on the e-bristle; these lairs were
always more mmerous on the b-bristle than on the d-bristle. On the anterior side of the e-bristle there are sparse short distally pointing hairs, the distal ones of which (at the row of spines) are somewhat more powerful than the proximal ones. These three bristles have no pad-like formations. The a-bristle is somewhat shorter than the second joint of this anterna. All the joints are quite bare.

Second antenna: - Protopodite: In specimens whose shells were about $1,35 \mathrm{~mm}$. long this part was about $0,7 \mathrm{~mm}$. long. Ex"podite: The proportion between the length of this branch and that of the protopodite is about $11: 20$. The proportion between the length of its first joint and the total length of the eight following joints is about $10: 4$. The proportion between the length of the longest natatory bristles and that of this branch is about $3: 2$. The first joint is very wide and flattened (ef. the accompanying fig. 4) and, as far as I can see, quite bare. Endopodite: This is of the type described and reproduced by (i. W. Múler; see figs. 5 and 6. The a- and b-bristles have short hairs. The e-bristle is developed, but is very short. The g-bristle is about as long as or somewhat shorter than the protopodite. The h-, i- and j-bristles are very narow, only about half the proximal width of the f-bristle or still narrower.

Mandible: - Protopodite: Coxale: The toothed elge of the pars ineisiva has from about seven to ten teeth, the posterior one of which is rather powerful; dil the aecompanying fig. 7 . The distal tooth-list is of about the same type and relative size as has been deseribed for C. oblongu above. The proximal tonth-list is rather slightly narrower than the distal one, but otherwise it varies rather eonsiderably in type. In his diagnosis of the genus Pseuloconehociat C. Chatis states (1891 a. p. 71) that , die distale Zahnleiste beginnt mit zwei, die proximale mit nur einem Zalm'. The first part of this statement is quite correct; the incorrectness of the second part is best shown by the accompanying fig. 8 , which shows one of the many types that this tooth-list had in the specimens investigated by me. The mastieatory pad is not inconsiderably narrower than the tonth-lists; it is divided into four or five transverse ridges, which are separated by moderately deep grooves, and is armed with fine papillae sitnated dese together. The part near the lancet-bristles and row of hairs is rather weakly pat-shaped and is furnished with a number of papillae. Basale: This is relatively short, about the same as in pl. XIX, fig. 10, C. ('Ladis, 1891 a. The six teeth on the distal edge of the endite are furnished with very fine serrulation. The single tooth on the outside of this process is of about the type described for C. elegans above. The epipodial appendage is represented by a rather short bristhe. Endopodite: The first joint has four short-haired bristles on the posterior side, one of which is situated somewhat laterally and is about as long as the anterior side of the first and second endopodite joints; the three others, which are situated somewhat medially, are rather short, sometimes even very short. The anterion distal bristles of the second joint are relatively somewhat longer than in my fig. 22 of (. symmetrica.

Maxilla: - Endopodite: First joint: One or ment of the bristles on the anturior edge of this joint are furnished at the middle with rather long secondary bristles, and similar bristles are also found on one of or often even on all the bristles on the posterior edge of this joint. The end joint is moderately long, its negutadedge is sontebrat tonger finn the width of this joint

Fig. CAXX. - Conchocen sorvalata C. Clats. - 1. Shell seen from the side of; $66 \times$. 2. Shell seen from betuw. j; $60 \times$. 3. Distal part of the left first antema and the rod-shaped organ; the b-, d-and e-bristles of the antoma are broken, $j ; 213 \times$. Exopodite of the rifht sec urd antenna seen from outside, all the long bristles are broken, $\overrightarrow{0}: 260 \times$. Endopodite of the right second antmana seen from inside. f. and g.bristhes broken, of: $400 \times$. 6. 1histat part of the endopodite of the left second anterna seen from inside; the f -, g -, h -, i - and j -hristles are broken, j : tou \times. Z. The tonthed edge of the pars incisiva of the left mandihle seen from inside. $8 ; 83: \times$. 8 . The proximat tooth-list of the right mandible seen from inside. $8: 1200 \times$. 9 . Distal part of the endopodite of the left maxilla sem

 and the first exopodite joint are partly furnished with long hairs.
sixth limb: - This is about the same as in my fig. 2! of (! symmetrice, but, as is the casc in most of the other speetes of this gems, the ventral bristle on the end joint is fumished with long secontary bristles.

The ent joint of the seventh limb has spines.
''cnis: - This is of about the same type as in my fig. 32 of ('. symmetrica, moly bemg perhaps somewhat less elongated. At about the middle it is funished with alont six oblipue transverse muscles. distally of which there are no muscles. The copulatory appemtage is rather narrow, resembling in shape the type reproduced for (. Itaddoni. but without surulation.

FFnrea: - Behind the claws there is an unpaired. moderately long, long-haired bristle, of about the type shown in pl. NIX, fig. 14. (. ('Lats, 1891 a.

Rodeshaped organ: - The shaft reaches to about the proximal boundary of the thirct joint of the first antemat or somewhat farther. The "apitulum is of about the trpe
 joint of the first antenna.

Upper lip: - The part between the combs on the posterion vantral edge of this lip is of abont the type reproduced by me in my fig. 4 of C. Belyicue. The parag 11 at es are about the same as in ('. symmetriat.

Eemale: -
Shell: - Length: Acomeding to (i. W. MCLLAR, 1.6- 1,7 mmo; two femates from the Indian ocean that were investigated by this writer measured only 1.4 mm . af. p. 682 abowe The lengths of the specimens investigated by me varid between 1,2 ant 1.65 mm . Se en from the sid a the shell is of about the type reproduced by C. (4ats, 1891 a, pl. XIX. fig. 2 . consequently somewhat more elongated than in the mate. Sern frombelow it is of about the type reprotued in fig. 3 of the plate just mentiomed. i. e. with its shoulder vandt less strongly developeed. In other respects it is about the same as in the mate.

First antenna: - This is of the type reproduced by (. ('Lats, $1891 \mathrm{a}, \mathrm{pl}$. X / X. fig. 6. but has a well developed dersal bristle on the second juint; this bristle has shont hatis and is almost as long as the seeond joint. The e-bristle, which is not widened and sword-shaped distally, hats on the anterior side of the proximal half a nockerate mumber of rather short hairs. The second joint is partly lumished with short hairs; the distal part of this limb is fumished more or less abundantly with rather short hairs.
seennd antenna: The protopodite is somewhat weaker than in the mate. The proportions of the wxupodite are about the same as in the male. Endopodite: This has three joints; the thind joint is, howerer. "xtremely small; ci. (i. W. MClaler, 1906 a, p. 98. The bristles on the first joint are the same as the male. Feeond joint: The er-bristle is either of about the same type and relative length as in the male or else it is slighty shorter. The f-bristle is about a quarter or a fifth shomer than the gelnistle and is also of the same type as in the male. The c-and d-bristles are often puite absent, sometimes one of them is developed:

 without thatis．benwern the h－and i－hristes theme is，at hast in some cases，an excerdingly small papilla．l＇ilosity：＇The second endopoclite joint is fumished with moderately long，line

Sixth limb：－One of the tre bristles on the melopedite has short hatrs．

Remurk：It seems to be quite certain that the species dealt with above is identieal Whh（＇．sermetu．（＇．（＇Lats．1sit．It is true that the original description of C＇．Chats＇s speries is not complete and also in some details ubviously incorrect（e．g．in the number of bristles on the male first antema：see this writer． 1874 b．pl．I．fig．7）．but．in spite of this，it may be said to be sufticient for a quite revtain identification on account of the type of this species，which is in several respects characteristic．
 with this spectes．This identifieation is based chefly on the shodl：most of the other organs are certaimly described and reproduced by（．S．Bradr；but the descriptions and figures are mfor－ tmately soneertain and ineorrect that no regard can be paid to them．In spite of this it may be said that the correctness of this identification is beyond doubt．It has also been adopeted buth by（i．s．Bratsi himself and by（i．W．Mölder．（The latter added a query，however． in his latest work，1912．）An important reservation must，however，be made with regarel to this identifieation．＇The uncertainty of（i．s．Bbinh＇s determinations is such that it is best mot to accept the information as to the loealities of this species that is given by this writer．The following is a goobl illustration of this unecrtainty．In his work of 1880 it is stated that this spectes was eanght by the ，（＇hallonger＂Expedition at twelve stations scattered over the Atlantic and Pacific Oceans．According to the same writer＇s work of 1897，p．97，this expedition caucht this species at only four stations；only two of these stations are the same as those givern in 1880.

In his work of 190 G （土．S．Brably states that（＇．serruluta was caught by the „D is en F － cry at some stations in the Antaretic Ocean．With regard to these specimens it is staterl that they ．．differed in all cases from the type in being almost destitute of colour and striation of the shell，and in the absence of marginal sermutions＂．In all other respects，however，they seemed to agree with the type species．On account of these deviations G．S．BradD distinguished these specimens as the representatives of a special variety，which be called laevis．－These
 BEaD Y＇\＆．．emigen／Wwoifel an dee Richtigkeit der Identifizierung nicht unberechtigt erseheinen＂． Both forms（ $($ ．sermatata sermlata and（＇．sermatalaevis）are，however，incluted in this writer＇s synoptic work of 1910 ．It is certainly not impossible that the specimens defined by G．S．BRAWY as （ \quad ．sermatalatais belong to quite a different species，but there seems to me to be no special reasons to doubt the correctness of the identification．As has been printed out above in the supplementary description worked out by one，the shell－sculpture in this species is subject to considerable rariation．A good ilhstration of this is found in（t．II．Mullere＇s deseription of
this species (1906 a). The specimens investigated by me also varied with regard to the strength of their seupture: in a momber of them the seupture was rather strong, in others, on the contrary. it was more or less weak; 1 never, however, found it quite so weak as is stated by (i. S. Bhabr. but it does not seem to me impossible that specimens which live at a very low temperature might be more or less entirely destitude of seulpture (cf. (. berealis-maxima). The distinguishing feature of the variation found by me was that it was continuous. Because of this it seemed to me best not to retain the form laevis as a special variety. but in the list ol symomyms given above I have included it as a synonym of the type species.

Habitut: - Antaretic Ocean:

S. A. E., Pl. station 64 b, lat. $48^{n} 27^{\prime}$ S., long. $42^{\prime \prime} 36^{\prime}$ W.; depth, $2500-0$ m.; 23 . V1. 1902 ; temperature at the surface, $7,9^{\prime \prime}$ ($\because: 325$ mature specimens and 20 juvenes; proportion between males and females about 3:5; R. M. S. 264 and 265. S. X. E.. Pl. station 65 b, at the same locality; depth, $400-10 \mathrm{~m} . ; 23$. V1. 1902 ; temperature at $400 \mathrm{~m}, 3,95^{01}$ ($: 2$: 2 mature males and 9 mature females; R. M. S. 267. S. . F.. Pl. station 66 b , at the same locality; depth. 200-0 m.: 23. KT. 1902; temperature at $200 \mathrm{~m} ., 5,25^{\circ}$ (.$: 8$ mature males, 6 mature females and 1 juvenis; R. II. S. 268. S. A. E., Pl. station 67 b , at the same loeality; depth 100-0 m. : 23. V1. 1902; temperature at $100 \mathrm{mi}, 8,3^{\circ} \mathrm{C} .: 14$ mature males, 122 mature femates and 1 juvenis; R. M. S. 269. S A. E., Pl. station 68 b, at the same loeality: depth $50-1 \mathrm{~m}$. ; 23. VI. 1902; temperature at $50 \mathrm{~m} .7,55^{\circ} \mathrm{C}: .4$ mature males and 1 mature femate: R. 11. S. 270, S. I. E., Pl. station 345, lat. $48^{\prime \prime} 32^{\prime}$ S., long. $44^{\circ} 28^{\prime} \mathrm{W}^{\prime}$: at the surface: 24. V. 1902; temperatme. $7.9^{\prime \prime}$ C.: 1 mature female; R. M. S. 291. S. A. E., Pl. station 347. lat. $49^{\prime \prime} 3^{\prime}$ S., long. 46° at ${ }^{\prime}$ W.: at the surface; 25. Y1. 1902: temperature, $4,5^{\circ}(\mathrm{C}: 6$ juvenes. S. A. E., Pl. station 70 b , lat. $4!0^{n} 56^{\prime}$ S. long. 4! $56^{\prime} \mathbb{W}$; depth $2700-0 \mathrm{~m}$; 27. VT. 1902; temperature at 2701 m . and at the surface, $+1,67^{\circ} \mathrm{C}$. ant $3,4^{\circ} \mathrm{C}$. resp. : 2 mature females; R. M. S. 27 . It the same station; depth 500-0 m.: 1 mature female and 4 juvenes; R. M. S. 271 . S.A. A., Ill. station 357, lat. $51^{\prime \prime} 31^{\prime}$ S., long. $54^{\circ} 39^{\prime} \mathrm{W}$.; at the surface; 1. WIl. 1900; temperature. 5.0° C.: 1 mature femate and 2 juvenes; R. M. S. 293. S. A. E. IPl. station 355, lat. $51^{\circ} 34^{\prime}$ S. long. $53^{\circ} 18^{\prime}$ W.; at the surface; 30 . VI. 1902; temperature, $4,5^{n}(\therefore, 3$ mature femates and 5 jurenes: R. M. S. 2902.
 at 500 m . and at the surface, $3,78^{\circ} \mathrm{C}^{\prime}$. and $6,28^{\circ} \mathrm{C}^{\circ}$. resp. $: 6$ mature males, 3 mature females and 2 juvenes; R. M. S. $27!$. S. A. E., Pl. station 301, at the same lucality; depth $1001-11 \mathrm{~m}$; 12. IV. 1002 ; temperature at $100 \mathrm{~m} .5,78^{\prime \prime}(\ldots: 10$ mature males, 12 matme females and $!1$ jurenes: R. M1.S.278. S. A. E., Pl. station 300. at the same locality; depth $50-11 \mathrm{mI}$; 12. 1 V . 1902 : tempera-
 S. A. E., Pl. station 298, at the same locality: at the surface: 12. IV. 1902: 1 mature male and 14 mature females; R. N. S. 275 . S. A. F., Pl. station 60 b, lat. 52" 39^{\prime} S.. long $37^{0 n} 35^{\prime}$

 temperature at 70 m. 2.25^{0} (.$: 3$ mature females and 1 juvenis: R. M. S. es. S. A. E., I'l.

 1902: temperature. 3.67" C.: 1 mature femate and 1 juvenis; R. M. S. 290. S. A. F., Pl. station

 the surface: 7.1 .1902 : temperature, $6.1^{\circ}\left({ }^{\prime} .: 1\right.$ mature male, 1 mature femate amal 1 juvenis; R. II. ㅅ. 283.

Distribution: - Iecording to (: (hatss, 1874 b: ..Athantischer Ocean. Kïste von Chile." This writer does not specify the localities of the finds in the Atlantic. According to (i. II. Mölder. 1906 a and 1908. it is found in the Atlantic between lat. 10" A. and lat. $58^{\circ \prime}$ A. and in the Indian ()cean. (C . S. Brabr, 1907, found it in the Antaretic as far south as lat. $59^{\circ} \mathrm{S}$.

The sperimens investigated by we were canght within the previonsly known area of distribution.

Magna group G. W. Müller.

(- ('mehnerin [part.] (. (ilals).

As (i. IV. Mi'LLER pointed ont, 1906 a p. 99, this group camot be defimed and eharacterized quite sharply. To judge, howevar. from the descriptions of species belonging to it that arp fom in the literature. We are nevertheless probably concerned with a quite natural unit. The cmly doubt expressed by (i. W". Míhefin the work just mentioned was as to the relationship
of the species dealt with below, C'. spimirnstris, to the other species of this group. With regard to this of. p. 616 abowe.
 (i. H. Fowlerf, 1909, also belongs to this group. This spocies camot, however, be retained; as I hope to be able to show in a following work, we are only concened here with non-mature individuals of ('. macrocheira (f. IV. Motlleme.

Conchoecia lophura G. W. Müller.

```
C'onchoecial lophurt. (:. IV. IlöLLER, 1906 a, p. 99; pl. XX. figs. 1-10.
    1906 b, p. (%.
    1908, p. 73.
    .. hychophyllum (part.), (2. H. Fowlem, 1909, pp. 236, 265; pl. NTN, figs. 9010
                                    !2, 102; pl. NX. figs. 103, 104.
    .. lophurl, (i. IV. MÖller. 1912, p. 82.
    Description: - See (%. II. MU'ller, 1906 a, p. 99.
```

Supplementary description: - Male:-
Shell: - Length: According to (t . 11 . Micler 2.2 - 2.8 mm . The specimen investig-
ated by me measured $2,65 \mathrm{~mm}$. Length : height about $1,9: 1$; length : breadth about $2,1: 1$.
 cf. the accompanying fig. 1. Seen from below it has its greatest width at about the middle and its anterior and posterior parts abont equal in size. In front of the middle the side contours are evenly curved, the anterior end is broadly rounded with a symmetrical rostrum: behind the middle the side eontours are undulated in about the same way as in the accompanying
 sculpture was perceptible on the speemen investigated by me. Aren from inside: Setvage: On the rostrum this is smooth-edged and without any spine. Along the anterior margin of the shell and the anterior half of the ventral margin it is extrmely finely sermated, almost smooth; along the posterior half of the ventral margin it is finely sermated. Along the posterior margin of the shell it is more or tess coarsely and irregularly sermated and seratehed and partly lumished with small leaf-like appendages of the trpe that is reproduced in my fig. 4 of $\mathbf{~}^{\prime}$. sym. metriea. The glands are as described by (i. W. MélezR. The glands along the posterior margin of the shell are of about the same type as has been described for (C^{\prime}. (icenssi, but the little group) of three or four glandular exits is absent. There is a sather well doveloped wal hinge-socdsot and hinge-tooth at the posterior dorsal comer.

First antenna: - This is of the type described and mproduced hy (x. Wr. MéluFR: in the specimen investigated by me the a-bristle was somewhat longer than the serond joint

[^96]
 bistally of these rows of spimes this bistle is quite without armathere. All the joints are bare There are at manher of pedtowish-hown composeles in the first joint.
 this part meatimed 1.3 mom. Exapodite: Thr proportion between the length of this branch and that of the protepmedite is about 11: 20. The proportion between the length of the tirst juint and the total length of the eight bollowing joints is about $10: 4$. The proportion hetween the length of the longest matatory bristles and that of the exopodite is about $5: 3$.

 : 4 pendag. of the left second antema: $233 \times$. 6. Proximat tooth-list of the right mandible seen from incide; $800 \times$. Endupetite of Une mandible, the tmistlas are hroken: $160 \times$. (From station fít b.)

The first joint has spines proximally-dorsally, as in my fig. I2 of ('. symmetrief. Endopodite: This is of about the type deseribed and reproduced by $6 . W$. Nitads: see the accompanying figs. 4 and 5. First joint: The processus mammillaris is peinted. The a-hristle has short hairs. The b-bristle on both the right and the left endopodite was furnished somewhat proximally of the middle with a group of twelve long hairs: distally of this group there are a moderato number of rather powertul spines. Second joint: The g-bristle is somowhat (about a fifth) longer than the protopodite, not sword-shaped distallyand is furnished with sparse short hairs. The f-bristle is of about the same type as the g-bristle. but about a fifth shorter than this. bare or furnished with short hairs. Third joint: The he, i- and j-bristles are subequal; the proportion between their fength and that of the g-bristle is about $2: 5$. The clasping organs have a short hyaline papibla distally and are moderately strongly cross-striated distally. In the proximal part of this braneh there were a number of small yeflowish-brown corpusetes in the specimm investigated.

I andible: - Protopodite: 'oxake: The toothed list on the pars incisiva has about ten or eleven teeth. The dista\} tooth-list is of about the same type as has been previousty described for (. . blongu. The proximal tooth-list is rather stightly nawower than the distal one; as is the case in most species it is presumably of a som what varying type: in the specimen investigated by me it was about the same as in the acompanying fig. 6. The masticatory pad is relatively narrow. only about half as wide as the proximal list, divided inte, from three to five transverse ridges and fumished with fine papillae situated close togethert. The part that is surounded by lancet-bristles and hairs is raised somewhat like a pad and is ako furnished with fine papillar situated close together. Between this part and the masticatm? pad there are, as in, for instance, pl. IV. fig. $\overline{5}, 1$. CLats, 1891 a, a couphe of low. powerfut spines. Basale: The six teeth on the distal edge of the endite have very fine sercułatiom. The single tooth on the outside of this joint is of abent the same type and size as has been deseribed abowe for C'. elegans. The epipodial appendage is represented be a little verruca with a very short bristle. The endopodite is relativaly short and high; see the accompanying fig. 7. The first joint has four short-hared bristles on the prsterior side, wh about the same relative lengths as in my fig. 22 of (\% symmetrica.

II axibla: — Endopodite: The distak spines on the first jeint are musmably hong. about habf as kong as the herght of the end joint. The end joint is of about the same type as in (.. sermulata.

Fifthlimb: - This is of the same type as in my fig. 27 of (? symmetrect, lut the endopodite has no spines and the middle end daw of the exopoctite is relatively benger. (On the first exopodite joint I found two bristles in the mediat-ventral group, form or five in the proximo-ventral group, and three or four in the disto-ventral group. Pikosity: The protopodite and the first exopodite joint are partly fumished with rather long havs.

Sixth limb: - The dorso-lateral bristhe on the first exoporite joint was absent in the specimen investigated by me.

Seventhlimb: - The end joint has spines.

 as homg as the suenth or eighth datw.

The rod-shapod organ is as described and mproduced by (i. Wr. Mitatik; see the acompanying tige 3 .
 of (${ }^{2}$. symmetrica.

 ('. Iophura. but adde a query. It can be considered beyond doubt that ('. magna CII. Jubas is mot a symonym of C^{\prime}. megnee ('. ('alts. Certainly its identity with C'. lophura seems to me far from impossible, but if is so uneertain that it did not seem to me proper to include the name in question in the list of syomyms given above.

To judge from Fombiars deseription it seems very prohable that (i. H. Fonsmers .. Lophura-st ance" of ('. hyolophylhem is identical with ('. lophure: see p. 565 above.

Habitat: - Antaretir Ocean: -
 1!02: 1 mature male: on slites in the collections of R. II.S.

Distribution: - Atlantic Ocean from about lat. 46° N. ((G. H. F(Mlder) to lat. 35° S. (i . W. Míldem), Indian Ocean ($(\mathrm{i}$. W. Millder).

The station of the Swerish ., Antaretic" Expedition is consequently situated somewhat south of the distributional area stated by previons authors.

Conchoecia parvidentata G. W. Müller.

 1908. p. 73. $191 \because$ p. 83.

Description: (i. IV. Mt'llelr, 1906 a, p. 10\%.
Supplementary description: - F e malo: -
Shell: - The specimens investigated by me were from 2,4 to 2.7 mm . long. The sculpture varied to some extent, sometimes resembling the type reproduced by G. W. MuLLER for C. lophere and exceedingly difficult to observe. The selvage the glands along the posterior margin of the shell and the hinge were of the types dessribed above for $($ '. lophura. In othes respects it agred with (i. Wr. Ilildelis statement.
 is, as far as I cond diseover, bare on the anterior side. The second joint is partly furnished with short spines, the end joints are furnished with moderately long hairs. The first and second joints have numerous small yellowish-brown corpuscles.
second antenna: - ()f the same trpe as in (C lophurce. The first joint of the oxopodite is ahmost or quite bare. The small end joint on the endopodite is, at least in some cases, rather distinct. A rather short e- or d-bristle is sometimes developed on the second endopodite joint. Between the h-and i-bristles there is a small papilla. The armature of the b-bristle is more powerful than that of the a-bristle. The second endoporlite joint is bare.

Fig. CXIXII. - \quad onchneriat parcidemala Ci. IV. II i.t.en. 1. Distal farl of the rox-shaprol organ. $\frac{q}{2}$ 207 \because.

Mandible: - As in C. lophura. but only the long lateral bristle is developed on the posterior side of the first endopodite joint, the three medial ones are quite absent. The epipodial appendage is sometimes represented by a verruca without any bristle.

The maxillat the fifth and seventhlimbs, the furca and the upper i ip are of the same types as in (: lophura. The sixth 1 imb is of the type reproduced in my fig. 30 of ('. symmetrica.

The rod-shaped organ varies somewhat: it is sometimes of the same type as in ('. lophora: see the accompanying fig. 1.

Mabitat: - Antaretie (1) a an:
 1!02: to mature femates; R. N. S. 2ot.

Distribution: - Atlantio Oeean between lat. $31^{\circ} \mathrm{N}$. and lat. $433^{\circ} \mathrm{A}$. bodian Ocean. Ily specimens were conserpently canght somewhat south of the distributional area stated by f. IV. MOLLEER.

Conchoecia hyalophyllum C. Claus.

('onchoeciu hyulophyllum. ('. ('1..1T S . 1890), p. 11.
1891 a. p. 60: pl. VI. figs. 2-10: f1. Vlll. fig. 9.
 of the origimal description).
(i. IV. MḦLLEER, 1906 a. p. 101: pl. XX, figs. 19-26.

1008, p. 74.
(part.), (: H. FOWLER, 1909, ph. 2366. 265. 287: pl. NTX.

(: DIg Mitized by M/icrosoft (B)

 tho shedl wias hare. 'The selvage was as in ('. lophura. 'Tho ghands alonge the pesterior matran

 an the sperimen investigated by me were bare. In addition this speremon had no small yedlowishhowwn torpheses in the tirst and serond joints.
 a-hrostle was almost as powertal as that on the b-bristle. 'There was no ('- or d-bristle.

Jandible: - The protopoditrand the epipodjal appendage are similar to those of ('. lophma. The endopodite is perhaps somewhat more elongated than in the species just mentioned. Its first joint has omy two bristles on the posterior side: hoth these bristles have short hairs: one of them corresponds in position and size to the lateral ome, the other to one of the three medial ones. of the comesponding bristles in C. lophura. It is to be noted that in pl. V'J. fig. 7 . ('. ('1AAts, 1891 a, there ire three bristles at the corresponding place, one long one and two short ones.

The maxilla, the fifth and sixth limbs, the furea and tho rod*haped organ ire similar to those of ('. parvidentater

Lpper lip: - The part between the combs is of abomt the same trpe as in my fig. t uf ('. Relgicae. The paragnates are similar to those of (C . symmetrica.

Remark: - Besides the phaces given in the above list of synonyms (C. hytrophyllum is mentioned in the following places: (. S. Brady. 1902 a, p. 199 ($=$ the same author, 1903. pp. 337, 338 , 339 and A. I1. Nomsin, 1905, p. 155) and (.. H. Fowler, 1903, p. 121. These statements are not accompanied by any verificatory information or figures. On accoment of the great difficulty in determining with eertainty the species of this gronp it did mot seem to me proper to include these statments in the list given above.
C. hyalophyllum, (H. JTAY, 1906 , p. 20 is eertainly not identical with C. hyalophyllum (: Clats. It is perhaps identical with the former author's C. magna; cf. p. 692 arbove.

With regard to C. hyalophyllum, (. H. Fowner, 1909 I refer to what is written (1) p. 565 above. I was unable to discover in the specimen investigated by me any lateral glands with exits such as are shown in this writer's pl. XX, fig. 97.

Habitat: - Antarctje Ocean:
 1 mature frmate: on slides. R. M. N.

The female described above was consequently caught somewhat south of the previously linown distributional area.

Conchoecia subarcuata C. Claus.

:- suburcuta, (i. S. Brass and A. M. Nohmin, 1896 . p. 691 (- a reproduction of the original description).

.. \quad, \quad. .. $1906 \mathrm{~b}, \mathrm{p} .7$.
" $, \quad, \quad, \quad, \quad 1908, \mathrm{p} .74$.
". $\because \quad$. $1912, \mathrm{p} 83.$.

Supplementary description: - Il a le: -
Shell: - length: According to G. W. Mưllekr, 1.8-2 mm. The specimeminvestigated by me measured $1,8 \mathrm{~mm}$. The shape as (t . W. HíluER pointed out, agrees closely with ('. lophura. The surface of the shell is bare. The selvage, the ghands along the posterior margin of the shell and the hinge are also similar to those of (${ }^{\prime}$. lophura. The compound glands are of the type described by (i. W. Müldek; for other characters ser this author's work.

First antenna: - This is of the same type as in ('. lophore, but the amature of the e-bristle is different; cf. G. W. MÖLAER; in the specimen investigated by me I counted nineteen or twenty spines in each row; a number of these were arranged in pairs and some altermated more or less distinctly. The anterior side of this bristle was, as far as I could see, yuite bare.

Second antenna: - The protopodito and the exopodite are al the same type as in C. lophure, but the first exopodite joint is almost bare. Endopodite: This is of the same type as in C. lophura. First joint: The a-bristle is bare or has some short hairs at the middle; the b-bristle is also bare, and has only about three or four long hairs just proximally of the middle. The e-bristle was not developed in the specimen investigated by me.

Il andible (fig. 1): - Of the same type as in C. hyalophyllum, but the first modopoolite joint is furnished on its posterior side with three bristles, all of which have short hairs: these three bristles correspond in position and size to the long lateral bristle and two of the medial ones in my fig. 22 of C. symmetrica.

The maxilla and the lifth and $s i x t h$ limbs ate similare to these of ('. lephura P'enis: - Of about the same typer as in ('. lophura; its copulatory appendage is somewhat smaller; ci. the accompmuingfgitiaed by Microsoft \mathbb{B}

 of this specties.
 this idemification is, howerer, not quite eertain as the deserigtion is tow incomplete for certaint! of intemitication: the original material is obvously lost. (G. WV. Matar adds in 1902 , part." (1) this mathe: his is. howner, obvionsly due to a mistake: ('. ('Lats hat only a single specimen of this species at his disposal, as is shown by a statement of his, 1890. 1. 13: . Now in cinem mannlichon Exemplar . . gefunden"; see also (i. W. MClLLEN, 1!00 a, 1. 102 with regard to this identification.
('. subarcuata. V. VAliks, 1906, p. 33, seems, as (i. II. Müldak peinted out, 190s, p. 74, not to be identical with C. Chots's species of the same name. The description is, however, too incomplete for a certain decision of this question; see for instance, the shape of the capituhum of the rod-shaped organ in the male, pl. I. fig. 9; in any case the difficulty of distinguishing the species in this group is too great to justify us in accepting straight off all the 44 stations included by V. VAvtis.

C'. suburcuata is also mentioned by P. T. ('Leve, $1905, \mathrm{p} .130$. As this writer gives no verificatory information at all it seemed to me best not to include this name in the above list of synonyms.
C. striata, (i. S. BRady y, 1902 a. p. 190, is not a symonym of the species dealt with here; this was established by me by a re-examination of this writer's original material. I was unfortmately umable to establish with full certainty the species to which this material (a mature mate) belonget.

Habitat: - A1 lantie Ucean:
\therefore A. E., Pl. station 19, kat. $36^{\circ} 13^{\prime}$ N.. long. $17^{\prime \prime} 16^{\prime} \mathrm{II}$; at the surface, 4. XI. 1901:

 M(̈lleni), Indian teean ((i. II. MO゙lleli).

Conchoecia spinirostris C. Claus.

Conchoecia spimirostris (part.), C. CLals, 1874 a. p. 177.
.. ., .. 1574 b, p. 6; pl. 1, fig. 8: pl. H1, fig. 11.
(i. O. Sims, 1887, p. 80; pl. XI. figs. 1-4: pl. Xll; pl. Xlll, figs. 1-4.
.. spimionstris. (. (Llats. 1890. p. 7.
.., 1891 a, p. 56: pl. I: figs. 1-12
., (G. W. MULLER, 189t, p. 227: pl. 6. figs. 1-9, 13; pl.37, figs. 10. 11 .
.. .. (土. S. Brady and A. M. Mormid. 1896. p. 689: pl. LX, fig. ⒉2
.. ., (ㄴ.S. BRady, 1902 a , p. 190.
.. .. C'if. Juday, 1906, p. 18; pl. HII. fige. 4—7.
., .. (part.), G. H. Fowler, 1909. p. 252; pl. XXIJ and NX゙V.

Description: - See C. Clars. 1891 a. p. 56 and (4. IV. Mi'ller, 1894, p. 227.

Supplementary deseription: - 11 ale: -
Shell: - Length: The specimens investigated by me measured 0,9-1,05 mm.; cf. p. 704 below. Length : height about $2: 1$, length : breadth about $2,25: 1$. Seen from the side it is of about the type reproduced in the accompanying fig. 1 , i. e. it agrees very well with the figures given by C. Clatis and G. IV. HCLler. Seen from below (fig. 2) it has its greatest width at about the middle and has evenly curved side contours; it is broadly rounded anteriorly, with an almost symmetrical rostrum, and somewhat pointed posteriorly. The shoulder vault is rather well developed and always well rounded. The surface of the shell has a few scattered rather long, soft hairs, especially on or near the rostrum. Seen from inside: Selvage: On the rostrum this is more or less finely and inregularly serateedged or almost smooth; it is about as wide as in pl. 37, fig. 10. G. Wr. Mélumer, 1894 (consequently rather considerably wider than in pl. 1, fig. 2. ('. (L.Ars, 1891 a) and has no large spine-like process. Along the anterior margin of the shell and the anterior part of the ventral margin it is quite smooth-edged or execedingly finely serrulated: along, the posterior half of the ventral margin of the shell and for a short distance along the most ventral part of the posterior margin it is finely serrulated; inside the remaining part of the ventral half of the posterior margin of the shell the marginal spines of the selvage are somewhat larger than the more ventral ones. The unsymmetrical glands have their exits at the usual place. There are no lateral corner glands. On the anterior margin, just ventrally of the rostrum, I have not found ,.dieht nebeneinander zwei je nach Erhaltung und physiologischem Zustand mehr oder weniger auffallige Drüsen"; cf. G. IV. MLLER, 1906 a, p. 99. The medial glands along the posterior margin of the shell are of about the same type as is described for ('. oblonga on p. 618 above. I did not succeed in discovering as deep a junction between the lamellae of the shell inside the rostral ineisur as in pl. 37, fig. 10, G. W, Muler, 1894; on the other hand I was able to find

 1: (1)-11:- 1s! 1 :
 a y uarter or a fifth longer than the jeints of this antemat. The e-bristle had the following

 seventh wines counting from the point of the bristle, $3: 1267 \times$ 6. The proximat tonth list of the right mandible

 33: fig. 3 from a specimen from station 19: lig. 5 from a specinen from station 53 and figs, 6 and 9 from a sperimen from station '45.)
armature in the specimens investigated by me (cf. for other details pp. 702-706 below): Somewhat distally of the middle this bristle has two rows of proximally pointing spines along about a quarter of its length. The distal spines in each of these rows are situated close together; these spines are situated in pairs in the two rows. From the eighth or the tenth pair, counting distally-proximally, the two rows approach each other and the spines push alternately in between each other, so that a single, thongh not a quite straight, row is formed; at the same time the distance between the spines increases, some of these being often even rather sparsely sitnated (about the same as in pl. 6, fig. 5. (i. W. MíLler, 1894). In profile I saw about 20-25 spines
(it is to be noted that the distal donble row is here counted singly). (! Cbates makes no direet statement as to the shape of these spines; he only denotes the distal ones as "Häkchen", the proximal ones as ,Hakenspitzen". (1. W. Mitlerk denotes the distal ones as "kräftig, solid", the proximal ones as "borstenformig". As far as I could see (with Reicherif's ocular t, Lert\%'s immersion $1 / 12$) the distal spines are of about the type reproduced in the accompanying figure 5 , i. e. they are furnished along the side that is tumed towards the point of the bristle with a winglike appendage and with a more or less narrowly oval plate distally; the more proximally these "spines" are situated on the bristle, the smaller the wing-like appendage and the distal plate become; on about the eighth to the tenth pair of spines these appendages are scarcely perceptible; the proximal spines are narrow and pointed. Distally of these rows of spines this bristle is quite bare. (More or less distally pointing spines such as are found in several speries of this genus, c. g. C. oblonga, are thus quite absent.) Just distally of these rows of spines this bristle is bent at a rather deeided angle; the part of the bristle distally of this knee is not widened. On the anterior side this bristle is almost quite bare. The b- and d-bristles are in most cases bent at a rather distinct angle at about the corresponding place as the e-bristle and are not widened distally; at about the eorresponding place as the rows of spines on the e-bristle they are furnished rather sparsely with short, exceedingly fine, distally pointing spines. None of these three bristles has pad-like formations. The a-bristle is relatively long (see the accompanying fig. 4); when it points backwards, it reaches in most eases to about the middle of the first joint. of this limb, sometimes it is rather slightly shorter or longer; it has no accessory sacrule. The e-bristle is quite short, about as long as or rather slightly longer than the distal height of the seeond joint. This bristle is more or less straight; the a-bristle too is most freeguently rather straight, at any rate it is not strongly rolled up. All the joints are quite bare.

Seeond antenna: - Protopodite: In specimens with shells about 1 mm . long this part attained a length of about $0,5-0,55 \mathrm{~mm}$. The distal-medial verruca varies in shape, being in most eases somewhat irregularly lobate. Exopodite: The proportion between the length of this braneh and that of the protopodite is about $1: \geq$. The proportion between the length of the first joint and the total length of the eight following joints is about $2: 1$. The proportion between the length of the longest natatory bristles and that of the exopodite is about $7: 5$. The first joint is in most cases quite bare, at least as far as I could decide with REICHERT's oenlar 4, LEITZ's immersion $1 / 12$: sometimes, however', it is furnished proximodorsally with more or less abundant weak spines. End opudite: First joint: The processus mammillaris has no distal verruea. The a-bristle has short, fine hairs, the b-bristle, which also has short, fine hairs along the greater part of its length, was in all the specimens investigated by me furnished with two rather long hairs somewhat proximally of the middle; in a number of specimens there were from about two to four moderately long hairs close to the two long ones. See pp. 703-706 below with regard to this character. Second joint: The e- and d-bistles are in most cases somewhat shorter than this joint and have short, fine hairs, almost bare. The e-bristle is extremely short (sometimes absent?). The g-bristle is about as long as or rather slightly shorter than the protopodite; it grows gradually narrower distally and is furnished

a y yarter or a sixth shorter and is hare. 'Third joint: The clasping organs are of about the types reproluced by (i. 11 . Motati, 1906 a, pl. XXIl, figs. 27 and 28 . The h-, i - and j-bristles are subequal, about as long as or somewhat shorter or longer than half the length of the gebristle; along the greater part of their length they are about as wide as the proximal part of the f-bristle, only slighty widened proximally, with rather distinct shafts and with short, fine hairs or almost bare.

Itandible: - Protopodite: Coxale: The toothed edge on the pars incisisa has about tem weeth. The distal tooth-list is of about the same relatioe size and type as has been deseribed athere for ('. oblomga. Proximal tooth-list: This is rather slightly narrower than the distal one and varies somewhat in type: its teeth, which vary in mumber between about ten and eighteen, are sometines developed in about the same way as is shown in fig. 6, i. e. they are all conieal. more or less puinted, smooth, the posterior ones rather large and powerful, the others deceasing rather wemly in size and strength the more anteriorly they aresituated, or else they are more umequal in strength and shape, the anterior one being smaller and more numerous. On the inside this tooth-list is furnished with mumerons short, fine spines situated close together. The masticatory pad is of about the type that is reproduced by (. Cladus, 1891 a , pl. I, fig. 9, i. e. it is relaticely narmow, being only about half the width of the tooth-lists, and is divided into about four to six transverse ridges, which are armed with rather small, low, irregular papillac. In addition there are, close to the side of the masticatory pad that points towards the lancetbristles, a couple of low veruciform spines like those in the figure just mentioned. Basale: The six teeth on the distal edge of the endite are furnished with rather fine serrulation. The single tooth on the outside of this endite is of about the same type and size as in my fig. 19 of C. symmetrica: its serrulation is very diffienlt to discover; the shape varies, however, to some extent. The epipodial appendage consists of an extremely small verruca with or withont a very short and fine bristle. (This appendage is sometimes so small that it is scarcely perceptible with Reichert's ocular 4, Leitz's immersion $1 / 12$.) Endopodite: The first joint has only two posterior bristles, both of which have short hairs, one situated somewhat laterally and rather long. about as long as the anterior side of the endopodite, the other, situated somewhat medially, is only about a third or a half the length of the former one. Pilosity: The rows of hairs on the posterior side of the basale are represented by only a few hairs.

Maxilla: - Protopodite: Endite on the coxale: On the posterior process there are only three, not four tube-bristles, as is usual in this genus. Endopodite: The ventral side of the end joint is abont as long as the distal width of the first endopodite joint (calculating from front to back), its dorsal side is about half as long.

Fifth limb: - Protopodite: The longer of the two tube-bristles on the second endite has short hairs. Endopodite: Of the three ventral-anterior bristles one is usually of the same length and type as the long bristle on the first endite and has in most cases long secondary bristles, one is about as long as or slightly shorter than the former, but has short hairs, the third is relatively short and weak, often about half or a third the length of the longest claw on this branch, and has short hairs. The dorsal tube-bristle is relatively short, often only about half as long as the short claw; the other tube-bristle is also rather short. This branch has no spines. Exopodite: First joint: This has one or two medio-ventral bristles, in most

Digitized by Microsoft ${ }^{\circledR}$

cases subequal, about as long as the proximal height of this joint; both have short hairs or alse one of them has rathes long secondary bristles. The proximo-ventral group of bristles has three or four bristles, which vary in length, the longest being sometimes about as long as or even somewhat longer than the medio-ventral bristles, the shortest about half as long; they are all often furnished with short hairs, sometimes one of them has rather long secondary bristles. The distal-ventral group of bristles consists of two or three bristles, in most eases with short hairs; the length of these bristles most frequently varies within the same limits as in the case of the bristles in the proximo-ventral group. The dorso-lateral bristle is relatively short, often only about as long as the height of this joint, and is furnished with long hairs. Ent joint: The dorsal claw is about a third shorter than the middle claw or even somewhat shorter. Pilosity: The protopodite and the first exopodite joints are sometimes furnished with sparse hairs, but in most eases they are bare.

Sixth limb: - The andopodite most frepuently has only one bristle but I discovered two at least in one case; in this case, however, one was rather short. Exopodite: The first joint is in most cases quite without bristles; in one case a very short dorso-distal bristle was observed. The bristle on the second joint is exceedingly short, verruciform, scarecly perceptible with Reicnert's ocular 4, Leitz's immersion $1 / 12$. The dursal bristle on the third joint is of the usual size and type, the ventral one is like that on the preceding joint.

Penis: - This is of about the type reproduced by (t. W. Míller. 1894. pl. 6. fig. 13: (f. the accompanying fig. 7. At about the middle it is furnished with a series of from four to eight oblique transverse muscles (the more numerous these are the narrower they are), distally of which there are no muscles. It has a rather large copulatory appendage of varying shape: of. the accompanying figs. 7 and 8 .

Furca: - There is no umpaired bristle behind the claws.
Rod-shaped organ: - The shaft reaches to about the proximal boundary of the third joint of the first antema or to the point of this limb. The capitulum (ef. the accompanying fig. 4) is in most eases somewhat shorter than the second joint ol the first antema and is of the type deseribed and reproduced by (i. IV. Alliller.

Upper lip: - The part between the combs on the posterior ventral edge of this lip is almost straight or rather weakly concave: it is sometimes of the same type as in my fig. 37 of C. symmetrica, sometimes more notched in the middle. The paragnates are about the same as in the speeies just mentioned.

Female: -
Shell: - Length: The specimens investigated by me measured $1,1-1.15 \mathrm{~mm}$. : (f. below. Length : height about $2,1: 1$; length : breadth about 2.5: 1 . Spen from the side (see the accompanying fig. 3) it is of about the type reproduced by (. (chas and (r. IV. MCler. Seen from below it is of about the same type as that of the mak, but, as is seen from the figures given above, it is relatively narrower. Scen frominsidn: The selvage on the rostrum has a smooth edge or is rather finely and irregularly serrate and is furnished with a spine as in pl. 37, fig. 11, (7. W. Metlder, 1894. In other respeets it resembles that of the mate. Digitized by Microsoft $(B$
 and seound joints ate mbly stighty sepatated．The seeond joint has mo bristles．The r－bristhe 1s whatererized he the fact that it has rather momerne moderately long fine hairs atong the amterior side of its proximal third：it is mot sword－shaped distally．There were no yollow pigment． rappastes in this limb in the specimens investigated by me．This antenna is bare．

S゙いOnd antenna：－The protopodite is ahmost as well developed as m the male．The propertion beswem the hength of the protepodite and that of the exopo－ dit ${ }^{\prime}$ is about the satme as in the make Endopodite：This has two joints；I did not succed in disonvering any boundary between the original second and third joints．The type
 18：44．The a－and b－hristles have short hair．The g－bristle is about half as long as the proto－ perdite，not on only slighty sword－shaped distally and furnished with sparse short hairs．The f－h－，i－and j－hristles are of somewhat different lengths．about a thirel or a fifth shorter than the e－hristle，bare and with searcely perceptibl shalts；otherwise they are of the same type as in the male．I was not able to discover any bristle between the he and i－bristles．Pilosity： The second endoperlite joint is bare．

Sixth limb：－Unlike what is the case in the male this is equipped with the normal mamber of bristles for this gemus．Exopodite：All the bristles on the first joint are relatively short and weak：the dorso－lateral one especially is very mueh shortened；it is about as long as or even somewhat shorter than the dorso－distal one．Some of the ventral bristles on this joint witen have short hairs；the dorso－lateral one has in most cases rather long hairs． End joint：The dorsal daw and the ventral claw are often only about half as long as the middle rlaw．

Rod－shaped organ：（fig．9）－This is of the type reproduced by the above－ mentioned writers；it has two fine points distally and is bare；of．p． 707 below．

Remarks：－The species（＇．spinirostris described by（＇．（＇1Ats， 1874 a and b is pre－ sumably not a mit，as it is rather probable that the males and females grouped under this name belong to different species．The descriptions and figures of both sexes are extremely incomplete and donot permit of a quite certain identification of the species．It was also with rather consid－ rable hesitation that 1 jdentified the form dealt with by me above with the mate of this species of CLuls＇s．This identification is based chiofly on C．Clats＇s figure of the first antenna，pl．I， fig． 8 ．With regard to this figure 1 wish to point out specially the length of the a－bristle and the armature of the e－bristle；on the latter bristle we count ten rather strong，closely situated spines （certainly＝pairs of spines），proximally of which one considerably weaker spine is found．The length of the shell stated by C．Clats，namely $1,2-1,4 \mathrm{~mm}$ ．，which may secm，of course，to be evidence against this identification，presumably refers，like other statements in the diagnosis （searcely three lines in length！），to the female specimens．A comparison between C．CLAUs， pl．I，fig． 1 and the figure 3 inserted here of the female shell should be enough to show with all desirable clearness that the females described by this author under this name in the works mentioned do not belong to the species dealt with hy me abore；in C．CLAUs＇s

Digitized by Microsoft ${ }^{\circledR}$

figure the postero-dorsal comer of the shell is pointed, in mine it is rommed; ef. in addition the proportions of the lengths of the end claws in C. Chats, 1874 b , pl. 11 , fig. 15 with the information given by me above.

It seems to me very probable that (i. O. Suns's species ('. pellucide, 1887, is identical with the form described by me above. This identification is, however, not quite certaim, as the original description of this species is unfortunately too incomplete to permit of a quite certain identification*. Among the facts that seem to me specially to support this identification the following may be mentioned: Length of shell : $\hat{\sigma}=1.15 \mathrm{~mm} . ;=1.25 \mathrm{~mm}$. E-bristle wn the male first antenna: In pl. XllI, fig. 2 a ten pairs of spines are drawn on this bristle. (The equipment of the b-bristle on the first endopodite joint of the male second antema is uncertain.) - C. Clats put forward as anly as in his treatise of 1888 (p. 153) the assmmption that this species of (i. O. Surs's might possibly prove to be identical with C. spinimatris. In his work of 1890 this author writes ($p .7$) these two names as certain synonyms; this procedure has since been followed by almost all subsequent writers.

The certainty of the identification of C. spinirostris, C. (1LAls, 1890 and 1891 a with the species described by me above may be taken as being complete. The following charaters may be specially mentioned: Length of shell: $\hat{\jmath}=$,circa 1.1 mm .": $\underset{\mp}{ }=$..eirca 1.25 mm ." With regard to the e-bristle on the male first antema this author writes, $1891 \mathrm{a}, \mathrm{p} .56:$, mit 1 m 8 bis 10 Häkchenpaaren besitzt, auf welche noch vereinzelte. umregelmäßigg gestelle Hakenspitzen in weitem Abstande folgen**.. According to pl. I, fig. 6, 1891 a. the b-bristle om the endopodite of the male second antema has only two long hairs.

It may also be said that there is full certainty with regard to the identification of ('. spinirostris, (i. W. MCLLLER. 1894 with the species dealt with abore. The following information with regard to the characters just mentioned is given in the work quoted: Length of shell: of $1,0-1,1 \mathrm{~mm} . ; \%=1,1-1,18 \mathrm{~mm}$. Wale first antenna: We read about the equipment of the e-bristle: „Bis zum 11. oder 12. folgen sich die Haken in kurzer Entfermung, stehen paarweis, damn rïcken sie weiter und weiter anseinander und stehen einzeln, um sich seliliphlich wieder rascher zu folgen. Nach dem 11. Hakenpaare kommen noch etwa I2 Borstenhaken, die zum Theil schwer zu erkennen sind." The b-bristle on the first condoperdite joint of the male second antenna is furnished with two long hairs.

I have also included without hesitation (. spinirostris, G. S. Brams and A. M. NokMm. 1896 in the list of symonyms given above. With regard to the e-bristle on the male first antenna we read as follows in the treatise mentioned: having only eight or ten pairs of hooked marginal appendages following which, but separated by wite intervals, are some hook-like processes of irregular size." The length of the shell and the b-bristle on the endopotite of the male second antema are not mentioned in this work.

The symonymization of (C spinirostris, (C . S. BRam), 1902 a with this species is based on a re-examination of this writer's original material. It is to be noted that this symonymization

[^97]
 the Paditie hater mot heren insestigated hey me.

The form ('. spimiostris desoribed bey ('In, H1M), 1901 alsa shows very far-reaching angroment with the species deseribed bey above. With regard th the above-mentioned characters this writer states: lemgth of shell: $j=1.0-1,1 \mathrm{~mm} ., \circ=1.1-1,4 \mathrm{~mm}$. The e-bristle on the male first antemas: .the distal ehemen or twelve pairs of hooks large, strong and elosely sed, followed proximatly he ton or twelve mon smather ones which are farther apart." The b-bristle on the endepentite of the male second antema is furnished with two long hairs.

Finally the form described by d: II. Fowder, 190日, under the name of ('. spinirostris, ...stage Il (spinirostris stage)" is certamly itemtical with the species dealt with here. The following information is given about the above-mentioned characters: length of shell: $\overrightarrow{0}=10,9$ to $1.1 \mathrm{~mm} .:=1.1-1.2 \mathrm{~mm}$. W-bristle on the mate first antema: , about $8-11$ pairs of sawweth and s--9 pairs uf spine-teeth". The b-hristle on the endopodite of the male second antenna hats iwo long hairs. With regard to the armature of the e-bristle this writer must certainly have math a mistake; the ..eight or nine pairs of spine-teeth" mentioned certainly represent a single row of eight or nine spines.

It will be seen form this that the forms incheded in the list of syonyms given above show very little variation with regard to the three characters in question, the length of the shell, the armature of the e-bristle on the male first antema and the b-bristle on the male second antenna.
C. spinirostris (: ('LALS is also ineluded in (. W. MC'Ller's large work of 1906 a . In this work we find the following information about the three characters just mentioned: Length of shell: $\dot{j}=0,95-1.4 \mathrm{~mm} ; q=1,1-1,6 \mathrm{~mm}$. E-bristle on the male first antenna: , die Zähnchenreihe der Haupthorste beginnt distal mit einer Doppelreihe sehr dicht stehender breiter Zähne, welche nur wenig Raum zwischen sich lassen. Etwa beim 14. Zahn nähern sich beide Reihen und schieben sich zwischencinander. so daß sie eine einzige, wem anch nicht ganz gerade Reihe bilden. Von derselben Stelle an rïcken die Zähne weiter ansemander, werden borstenförmig. Man sieht im Profil $30-40$ Zähne resp. Borsten (wobei die Doppelreihe einfach gezählt ist) ${ }^{\circ}$. The b-bristle on the endopodite of the male second antenna is furnished with ., eine kleine Gruppe von langen Haaren (fehlen öfters. abgebochen)": in pl. XXII, fig. 23 there are five Jong hairs on this bristle. The difference between these statements and those given above is not inconsiderable.

Among the material investigated by me there were also two mature males, canght at \therefore S. Ki, Pl. station 4 b (lat. $25^{n} 51^{\prime} \mathrm{N}$., long. $21^{0} 29^{\prime} \mathrm{W}$. at the surface; 9. XI. 1901; temperature, $22,50^{\circ} \mathrm{C}$.), to which no attention is paid in the deseription given above. These individuals differed in the following respects from those previonsly described by me.

Shell: - Length, $1,3-1,4 \mathrm{~mm}$, ; it was thus rather considerably longer than in those described by me above, but agreed with that of the longest ones imvestigated by (. W. Muller, 1906 a.

First antenna: - The armature of the e-bristle agreed with that given by G. IV. MCLLer, $1906 \mathrm{a}, \mathrm{i}$. e. the distal spines were situated in pairs to about the fourteenth spine and one saw in profile about forty spines (the distal double row being counting singly). The distal ones of these spines had more weakly developed distal plates.

Second antenna: - The b-bristle on the first joint of the endopertite han in one specimen two, in the other three long hairs.
sixth limb: - The endopodite had twe bristles, one of which was rather short. Exopodite: The first joint had one short dorso-distal bristle and one rather short bristle at about the middle of the ventral side.

Are we concerned here with two dosely related forms. which were confused by $1:$. W. MCLER. 1906 a, or is C'spmirostris a species with a relatively great amplitude of variation?

In answering this question the folluwing remark of $\mathrm{C} . \mathrm{W}$. Müllef, $1906 \mathrm{a}, \mathrm{p} .10 \mathrm{~s}$. has a certain interest: , q von iiber 1,4 und 6 von uiber 1,3 fanden sich nur in Station $32-55$, wo die Thiere uiberhaupt im Durehschnitt größer." In the samples investigated by this writer the large and small speeimens were thms not mixed up together quite without any principle; on the contrary, at the sixteen stations at which large specimens were caught no small specimons were found, nor were any large speemens found at the 36 stations where the plankton samples contained small specimens. The stations in question, nos. $32-55$, are situated in the Atlantie from lat. $24^{0} \mathrm{~N}$. and lat. $2^{0} \mathrm{~N}$.: the depths are only known in two cases, $42 \mathrm{~S} .-550-250 \mathrm{~m}$. : $48 \mathrm{Sb}-280-130 \mathrm{~m}$. To judge from the latter statements it does not serm probable that this difference in size between the specimens investigated is due to external conditions. It is also to be noted that at S.A. E., Pl. Station 4 b no small specimens were fomed, and that no large specimens were found at those stations of this expedition from which the small specimens described by me above came.
G. WV. Mullef, in his work of 1906 a just mentionet, put forward the assumption that ('. porrecta C. Clatis was a synonym of ('. spmirostris. ,ICh halte C. porrecta (llath nur fïr gestreckto Indivichen von ('. spimirostris." (The identification was not based on a re-examination of C. Clatr's original material, as is shown by a statement on p. 105 in the work quoted.) It is certain that these two forms are very closely related to each other. According to the description and figures C. porrecta differs from C. spiniostris chiefly in the following rharacters: Length of shell: $1,6 \mathrm{~mm}$. (this statement, like, as a matter of fact, the whole deseription of the shell. certainly refers to femake specimens). Hale first antenna: The a-bristle is relatively shont, reaching only to about the boundary between the first and second joints of this limb. E-bristle: mit sehr zahlrejehen, wohl $40-50$ Paaren von Häkehen besptzt. ron denen die $14-16$ distaten Paare viel dicker und dichter gestellt sind, die nach der Basis zu folgendern in weiteren Zwischenräumen stehen und zu Stachelborsten werden." (The b-bristle on the first endopeditw joint of the male second antema is not mentioned or reproduced by this writer.)

If we assume that C. ('Lat's made a mistake in ohservation (which does not seem to me improbable on aceount of the uncertainty that often characterizes the statements as to details: given by this writer) and there was not a double but only a single row of spines on the a-bristla of the male first antemna proximally of the fourteen to sixtoen distal pairs of spines, then the agreement between the information given by this writer for ('. prorectu and (i . W. Milldex's description of (C spinirostris, 1906 at beomes almenst complete. The latter writer gives bo information as to the a-bristle on the male first antema. The specimens investigated by me

 Honger: it rathed in most mase to athout the middle of the first joint wh this limh. - 'The stater-
 ow that 1 do men think it commeniont (10 dal with it at any length in this comection.)

It sums 10 me not improbable that these questions mast be answered in the affimation: if this is the case, then it is clear that me specmens from S. A. E., Pl. station 4 b and the
 A detinite answer to this problem is. however, not possible at present. A renewed investigation (alried wit on abundant material would be necessary before it conld be given.

In aecount of this state of uncertainty it did not seem to me proper to include the name ut ('. spimionetris. (i. II. Jthater, 1906 a, non the same mame in this investigator's works of 1906 h , 1948 and 1912 in 1 yy list of symonyms.

The only one of the wher writers who has acepted the symonymation ('. spinerestris - 1'. porrecta is Tir. NCotT. 1!12a.
 they have found ('. porrecta, but unfortunately these writers give neither description nor figures. 1. VAIRL. Who states that he found this species - only female specimens - at no less than filteen of the stations of the .,Plankton Expedition", only writes . diese leicht erkenntliche Art". an expersion that is presumably taken direct from (. ('La's's original description.
(i. H. Fowtar, 1909. takes C. porrecta as „Stage I" of C'. spinirostris. Only two specimens, two males, of the first-mentioned form were found in the material in question. Both these *perimens had shells 1.3 mm . long. The e-bristle on the first antena was characterized by .11 pairs of saw-like teeth. followed by about 11 pairs of spine-teeth; the latter so markedly alternate as to suggest a single row mless viewed directly from above"; there were comsequently 16 pairs of ..saw-like teeth" and a row of 22 .spine-teeth", i. e. about the
 work in question, p. 25.5 . (f. also in this matter $p .565$ above.

The only writer who has followed this procedure of C. H. Fowler's is L. Scimeiger, 1912. This writers says (p. 266) that he followed (.. H. Fonlerr and not (\%. IV. Mưluele ,weil mir vereinzelte Stadium II matergekommen sind, die aber doch im Verhältnis gestreckte Formen waren. und umgekehrt Formen von I, die aber weniger gestreckt als die vorher erwähnten waren." Nor length is given for the ..porrecta stage": the mates of the ,.spinirostris stage" would have attained a length of $1,10-1,3 \mathrm{~mm}$. and the females $1,12-1,5 \mathrm{~mm}$. The work, which is eharacterized by a certain amount of uncertainty: has no other information that is of any interest in commection with this problem.
C. spinirostris. Y. VA'R. 1906 , has not been included in the above list of synonyms because this writer states that the females of this species investigated by him had a dorsal bristle on the second joint of the first antenna: ,mit sehr feiner, gewolnhich dem Frontalorgan eng anliegender Dorsalborste, so daß dieselbe von einigen Autoren iibersehen wurde"; in plate I,
fig. 7 this antenna has a very powerful bristle of this kind. A very careful investigation of the specimens at my disposal showed that there was no such bristle in the species dealt with by me above. Of the other characters only the length of the shell and the rod-shaped organ in the female are mentioned by V. VÁVRA; these statements do not permit of a certain identification.

The name C. spinirostris Clats is alsofound mentioned in the following places in literature: C. Chal's, 1893, p. 286 and 1894, p. 2; G. IV. MULer, 1893, p. 376; E. Graffle, 1900, p. 34 ; (\%. S. Brady, 1902 a, p. 199 ($=$ the same author, 1903 , pp, 338 and 339 and A. M. Normax, 1905, p. 155); S. LO Bhinco, 1903, pp. 120, 122, 124, 125, 128, 148, 150, 199, 235 and 1904 , p. 45 (will a very superficial drawing); P. T. Clete, 1904, p. 370; B. Kaddiž, 1912, pp. 938 and 939 and Tı. Scott, 1912 a, p. 587. (x. NT. Mullek, 1893, only deals with larvae, and it is impossible to decide their identity with certainty by means of the descriptions he gives. The rest of these statements have neither deseriptions nor verificatory figures. Because of this and of the mecertainty attached to this species it seemed to me best not to include theste statements in the list of symonyms given above.
L. SCHHEIGER in his treatise of 1912 points out (p. 267) , eeme MiBbildung" with regard to the rod-shaped organ in four females; this abnormality consisted in the fact that this organ was furnished with two fine tlistal points. The females of the above-mentioned species investigated by me were characterized, as is seen above. by two similar points on this organ.

Special attention ought perhaps to be drawn to the curious fact that in the plankton samples brought home by the S.A. E. the males of this species were in an enormous majority. Only four females were found, three at station 19 and one at station 45 . At station 33 there were found no less than 22 males of this speeies and not a single female! ln other species the males and females were in most cases almost equatly numerous or else the latter predominated. How are we to explain this curious state of affars?

Habitat: - Atlantic Ocean:
S. A. E., Pl. station 19, lat. $36^{\circ} 13^{\prime}$ N.. long. $17^{\circ \prime} 16^{\prime} 11$; at the suface; 4. N1. 1901: temperature, $18, \pi^{n}$ C.: 3 mature females and 3 jurenes; R. M. S. 296. S. A. E. Pll station 23 , lat. $34^{0} 2^{\prime}$ N., long. $18^{\prime \prime} 21^{\prime} \mathrm{W}^{\prime}$; at the surface; 5 . XI. 1901; temperature, $20,1^{0} \mathrm{C} .: 1$ mature mate; R. M. S. 297 . S. A. E., Pl. station 26 , lat. $32^{0} 21^{\prime}$ N., long. $199^{\circ} 8^{\prime} \mathbb{I V}^{\circ}$; at the smface: 6. Xl. 1901; temperature, 20, $5^{\circ}(\mathrm{C}: 1$ mature male: R. 11. S. 298. S. A. E. I'l. station 33, lat. $28^{\circ} 21^{\prime} \mathrm{N}$., long. $20^{\circ} 42^{\prime} \mathrm{II}^{\prime}$; at the surface; 8. XI. 1901 ; temperature, $21,5^{\circ} \mathrm{C} .: 20$ mature males: R. M1. S. 299. S. A. E., Pl. station t5, lat. $22^{\prime \prime} 8^{\prime}$ N., long. $22^{\circ} 52^{\prime} W$.; at the surfate, 11. X1. 1901: temperature, $23,3^{\circ}(\mathrm{C}: 6$ mature males and 1 mature female; R. II. S. 300. N. A. E., Pl. station 53, lat. $18^{0} 10^{\prime}$ N., long. $24^{0} 28^{\prime} \mathbb{I V}^{\prime}$: at the surface: 13. N1.
 at the surface; 22. Xl. 1901 ; temperature, $26.8^{\prime \prime}$ ($1:$ I mature male; R. M. S. 301. S. A. E., Pl. station 95, lat. $3^{\prime \prime} 7^{\prime}$ S., long. $30^{\prime \prime} 54^{\prime}$ II.; at the surface; 25. X1. 1901; temprrature, 266.30 (${ }^{\prime}$: \therefore mature mates; R. II. S. 302. S. A. E., Pl. station 127 , lat. $20^{\prime \prime} 3 \bar{y}^{\prime}$ S.. long. $37^{0} 26^{\prime}$ II.:

 $\because 3.20 C^{\prime}: 1$ matmre male: R. I. … Bul.

some of the tinds of the swedish adntaretic" expedition in the Athatic are ronsonpently shmad considerably more to the south than the most sonthem point stated in the previuns treatises.

Mollis group G. W. MüLler.

Oi the twhespecies in this gromp I have unfortunately been able personally to investigate sl fiar only ('. borealis, which is dealt with below. Becanse of this it is, of course, impossible for me to give any opinion as to whether this group is quite natural or not. Apparently, however, most at least of the species incluted by (: W. Maber in this group seem to be very closely related to one another.

Conchoecia borealis G. 0. Sars.

Conchoecia boralis. (5. O. Sarss, 1865. p. 119.
(i. A. Brame and A. M. Nomas., 1896, p. 685; pl. LXl. figs. 9-19.
 1900, p. 38).
H. H. (ikAN. 1902, pp. $83,: 210$.

P'. T. (LEDE, 1903. p. 93.
1'. 'T. Cleve and (). Pefterisins, $1: 003$, pp. :2, 7.

1. Y'Aㄱ.1, 1906, p. 48: pl. 111, figs. 56-63.

Supplementary description: - 11 ale:-
Shef]: - Length: Of the males investigated by me the specimens from skager Rak measured $2,10-2,20 \mathrm{~mm}$. those from Lofoten $2,15-2,30 \mathrm{~mm}$. and those from the Arctic Ocean 2.3 mm. Length : height about $2.3: 1$; length : breadth about $2,8: 1$. Seen from the side it was of about the type deseribed and reproduced by (i. O. SHs, 1900, for C. moximu,

[^98]\& (cf. the appended fig. 1), but somewhat, though only rather stightly, varying. Ne en from below (see the appended fig. 2) it has its greatest width at about the middle and the anterior part in most cases somewhat larger than the posterior part. The side contours are either evenly curved or else are somewhat undulating posterionly or slightly concave just in front of the posterior point. The anterior end is rounded and has a symmetrical rostrmm, the posterior end is more or less pointed. The shoulder vault is powerfully developed; when the shell is seen from the side it covers a rather long piece of the domsal margin; it is wing-shaped with a sharp edge along the greater part of its length. The surface of the shell is bare; it is alsor. as (. S. Bram and A. M. Nohmas state (1896), .densely cross-hatched with quadrangular reticutations which are arranged diagonally. the edges of the areas werlapping each other in a squamons fashon". The strength of the sculpture was certamly subject to some variation in the specimens investigated by me, but this variation was, all the same, not particularly great. seen from inside: Solvage: (on the rostrum and along the anterior margin of the shell and the anterior half of the ventral margin it is smooth, at least I did not suceece in establishing any distinct sermlation even with Rehchert's ocular 4 and Lerth's inmersion ${ }^{\frac{1}{12}}$. There is no spine-like process on the rostrum. It is finely serrulated along the posterior half of the ventral margin of the shell; along the ventral half of the posterior margin of the shell it is very narrow and has small leaf-like appendages of about the same type as in my fig.t of ('. symmetrica. The glands are as desmbed and reprochuced by (3. W. MíleER, 1906 a , for (. antipoda. There is no distinetly developed hinge-socket or hinge-tooth at the fusterior dorsal comer of the shefl.

First antenna: - E-bristle: This is about one and a third or one and a half times as long as this limb and is bent at a distinct angle at about or somewhat distally of two thirds of its length. Just proximally of this bend it has akong about a third of its length two frow of very short, elosety placed, proximally pointing spines, about $50-55$ spines in each row: cl. the appended fig. 4. Amost all the spines are of the same size (only the distat ones and the proximal ones are somewhat smatler than the others); they are about as long as the thielmess of the bristle and moderately strong, all of them are peinted and are fumished with a wing-like appendage of about the same type as in the appended fig. 5 . Inst distally of these rows of spines there is in most cases a small chitimons protuberance but. on the other hand. there are no spines at all. The part of the bristle distally of the bend is witened in the shape of a sworl. This bristle is quite bare proximally of the rows of spines. The d-bristle is a quarter or a thind shorter than the e-bristle. At about the part of this bristle whieh. When the d- ant e-bristles are close together, is situated against the rows of spines on the latter. there are closely phaced (not merely in a row but a stripe) short, stiff, fine spines or hairs. (on the proximal half (or someWhat more) of this part these spines point almost at right angles to the bristle. an the distal half they point more distally; of. the appented fig. 15 . opposite these spines and continuing almost out to the point of the bristle there are a mocerate number of somewhat longer and thicker spines, pointing distally. This bristle is not sword-shaped distally. The b-bristle is in most cases somewhat longer than the (d-bristle ant like it. not sword-shaped distally. Neas the puint it has a rather strongly developerd pad, whish is about half the lemgth

 ati \times. 3. Diztal part of the right firs anteana and the rod shaped organ. the hristles of the first antenna are hroken, j : $250 \times$. í Distal part of the e-bristle of this antenna, $\mathfrak{j} ; 360 \times$. 5. I spine of this hristle; 108: \times. 6. Distal part of the b-bristle, ó: $360 \times$. 7. Distal part of the pad of this briatle. 6 ; 108i \times. 8. Endrpodite of the right second antema seen from inside. The ard lrisiles are hoken, of $260 \times$. 9. and 10. Clasping ongan of the endopodite of the left second anterna, $3 ; 260 \times$. 11. Distat part of the peris seen from outside; $400 \times$. 12. Distal part of the rod-shaped organ + a part of the first antenua, $8 ; 167 \times$. 13. and 14. Distal part of the red-shaped organ. ミ; $15^{-7} \times$. (Figs. 7 and 13 are drawn from specimens from Skager Rak, the others from specimens from Lofoten.)
are a few rather short, stifl spines, but otherwise this bristle is bare. The a- and e-bristles are subequal, about as long as the second joint of this limb; the a-bristle has an accessory saceule (see the appended fig. 3) and is more or less irregularly bent; the e-bristle has no accessory saccule and is more or less straight. All the joints are quite bare.

Second antenna: - Protopodite: In specimens with shells about $2,2 \mathrm{~mm}$. long this part measured abont $1-1,1 \mathrm{~mm}$. Exopodite: The proportion between the length of this branch and that of the protopodite is about $18-20: 40$. The proportion between the length of its first joint and the total length of the cight distal joints is about $10: 4-5$. The proportion between the length of the longest natatory bristles and that of the exopodite is about 15-18:10. The first joint has spines proximo-dursally, but these form no distinct row as in my fig. 13 of C. symmetrica. Endopodite (see my fig. 8): First joint: The processus mammillaris has a small distal verruca. The a-bristle is bare; the b-bristle is bare or has only sparse short hairs. Second joint: The e- and d-bristles are somewhat shorter than this joint and are bare or almost bare. The e-bristle is short. The g-bristle is about as long as or in most cases somewhat shorter than the protopodite; it is rather broadly sword-shaped distally and has sparse short hairs along one edge. The f-bristle is about a third shorter than the g-bristle and is also somewhat sword-shaped distally and in most cases bare. Third joint: The clasping organs are of the types described and reproduced by I. VÁras; see the appended figs. 8,9 and 10 . The right clasping organ is in most cases furnished proximally with two verrucae of about the same types as in the figure just mentioned and, in addition, with small, fine spines along the concave side; distally it has transverse creases and an exceedingly small hyaline papilla. The left clasping organ is also cross-grooved distally and has an exceedingly small hyaline papilla; its proximal angle varies somewhat in type. The h-, i- and j-bristles are about half as long as the g-bristle. The h-bristle has a short but very sharply marked shaft, the i - and j-bristles have a shaft that is somewhat longer but only weakly developed. Just distally of the shatt these bristles are sonnewhat thicker than the g-bristhe. All these three bristles are bare.

Mandible: - Protopodite: Coxale: The toothed edge on the pars incisiva has from about eight to twelve teeth; this comparatively great variation was not due to the specimens investigated being from different loealities, as the extreme numbers could be observed in specimens from the same locality. The posterior ones of these tecth are often somewhat more strongly developed than in my fig. 16 of C. symmetrice. I istal tooth-list: This is of abont the same relativegize and type asthas bech rleseribed above for ('. oblongu.

 ormond hy the maruin of tristles and hats is mised somewhat like a pad and is furnished with line papillan similar to these on the masticatory pad. Basale: The six teeth on the distal edge of the endite are furnished with rather fine sermbation. The single tooth on the outside

 fordita: Gn the posterion side of the first joint there are four bristles of abont the same selation hengthe and prestions as in my fig. 2e of ('. symmetrice. Bither all these bristles are formished with shopt hairs or ebse one or two of the shorter ones have long hairs. Pilosity: The hasale has rather sparse mederately long hairs ventero-medially.

Maxilla: - Protopodite: Endite on the procoxale: The there anterojmer hristos have rather long secondary bristles. the outer one of them has in most cases, however, only yuite a low (sometimes none at all:). Gne or two of the three postero-outer tube-bristles wten hase a fow similar secondary bristles. Endopodite: The end joint is rather long, its fentral side is often somewhat longer than the distal width of the first joint (calcolating from fromt to back), its dorsal side about half as long or somewhat longer.
$\mathrm{f}^{\circ} \mathrm{i}$ ith limb: - of the same type as my fig. 27 of ('. symmetrica. Endopodite: sometimes only one of the two shorter of the thee antero-ventral bristles has short hairs, the wther having rather long hairs at the middle. This branch is lurnished with spines. Ex opoditr: First joint: The ventero-medial group has two bristles, the proximo-ventral group has fonr or five and the disto-ventral one thee or four. One of the bristles in the proximoventral group, is usmally fumished with long hairs, the others have short hairs. Pilosity: The protopordite and the first exopodite joint are partly furnished with rather long hairs.

Sixth limb: - Exopodite: The bristles on the second and third joints are relatively long, about as long as the height of the corresponding joint at the middle. The bristles on the first joint are also sometimes relatively long.
seventh limb: - The end joint has spines.
Penis: - This is whout the same type as in my fig. 32 of C. symmetrice. At the midlle it has from about six to nine oblique transverse muscles, distally of which there are no muscles. The copulatory appendage is well developed: it varies somewhat in type, being sometimes of about the type shown in my appended fig. II, sometimes somewhat lobate, about the same as in my fig. 6 of C. Maddom: in all the specimens investigated by me it was, however. rather high and moderately wide. This variation was not due to the specimens having been caught at different localities: a similar variation was found in specimens from the same locality.

Furea: - This is of about the type reproduced in pl. XXXVI, fig. 10, G. O. Sılim, 1900, for ('. maxima; behind the claws there is a short-haired inpaired bristle of about the same length as the fifth claw.

Rod-shaped organ: - The shaft rearhes to about the third joint of the first antema or somewhat farther. The capituhm is about as long as or somewhat shonter than the second joint of the first antenna and of about the type reproduced by (i. S. Brawh and A. M. Nomms. 1896; see the appended fig. 3.

Upper lip: - This is of about the same type as in my fig. 37 of ('. symmetrice; the part between the combs is sometimes, however, notched sumewhat derper at the middle, about the same as in my fig. 4 of ('. Belgicae. The paragatates are of about the same type as in my fig. 38 of ('. symmetrica.

Female: -
Shell: - Length: Of the specimens investigated by me those from Nkager Rak measured about $2,5-2,7 \mathrm{~mm}$, those from Lofoten about $2,55-2,9 \mathrm{~mm}$. ant those from the Aretie ()cean $2,4-2,7 \mathrm{~mm}$. Seen from the side it is of about the sametype as in the male, but is somewhat higher posteriorly. Seen from below it is also of about the same type as in the male, but the posterior part is somewhat larger and the side contours evenly curved. The proportion between length and breadth is about $2,5: 1$. In other respects it is like that of the male.

First antenna: - The division into joints is rather slight. The dorsal bristle on the second joint is about as long as the total length of the two proximal juints of this limb and has short hairs. The e-bristle is about twiee as long as this limb, not at all or only very slightly widened and sword-shaped distally; its anterier side is bare. The a-, b-, c- and d-bristles are subequal, about a third of the length of the e-bristle. The first and second joints are partly furnished with short hairs. These joints have vellowish-brown corpuseles.

Second antenna: - The protopodite is rather slightly weaker than in the male. Exopodite: The proportion between the length of this branch and that of the protopodite is about $21-22: 40$. The proportion between the joints of this branch is about the same as in the male. Endopodite: This has two joints; sometimes, however, the litthe third joint is weakly marked off. The f- and g-bristles are of about the same type and relative size as in the male. The h-, i- and j-bristles, which have no distinetly developed shalts, arr either of about the same relative length as in the male or else rather slightly longer: There is an extremely small papilla between the h - and i-bristles. The second endopodite joint is bare

Rod-shaped organ: - The shaft reaches sommenat in front of the point wi the first antenna; see the appended fig. 12. The capitulum is relatively somewhat shorter than in the mate and its shape is about the same as is described and reproduced by V. Yaini.. but varies th some extent; see the appended figures $12 \ldots 14$.

Remarks: - It seems to be quite certain that the form dealt with above is identical with ('. borealis, G. O. SARs, 1865. The supplementary description worked out by me is based on material from the type-locality of this spectes - Lofoten - and this material was defined bye G. O. Sites himself as (. borealis.

Becanse of the uncertainty with reqaded the relation of this speries to the fom (' maxime established by (i. S. Brams and A. N. Nomma (ef, behow) it is impussible at

 1s a symberm of this form; the specimens described and reproduced by these writers were presumatly canght off the west coast of Noway. The description and figures are, however.

 antemat the mad juint is furnstard with six long bristles, a momber that is not fomm in a single speress of this embs: two gr-bristles are drawn insteat of one.

 mens on which this statment is based were definet by (i. O. S.Ln, who distinguished between ('. berealis and ('. maxima on that necasion.
 ineluded in this list after I had muself subjected the orjgimal material to a careful verificatory examimation.

It seems to me rather probable that C.borealis, V. V'A nis., 1906 is also identical with this *pectes. Only two specimens were canght by the Plankton Rxpedition, a mature mate and a mature female, both at the same station, in the Latmater current. A number of differentes can certainly be noted. e. g. the shape of the female shell, the glands along the posterior margin of the shell (ef. pl. III. fig. 55) and the armature of the (l-bristle on the male first antemat. Wre should also note this author's statement with regard to the sculpture of the shell: ", Die Struktur der schale ist zjemlich fein. aber deutlich, in rhombischen Feldern bestehend." This statement seems to support the idea that in these two spectimens the seulpture was more weally developed than in the specimens from the west coast of Scandinavia. What seems in my opinion specially to support the idea of identity with the form dealt with above is the information as to the length of the shell; the male was $2,35 \mathrm{~mm}$., the female $2,9 \mathrm{~mm}$. long, i. e, in this claraeter they agreed very elosely with the specimens from Lofoten. A re-examination of these speemens is desirable.

The following statements about finds of this species from the west coast of Norway and from Skager Rak and the North sea are also presumably to be referred to this species. As, however, they have no verificatory information and as it is not clear whether a distinction has been drawn between C^{\prime}. borealis and C. masima, it seemed to me best not to include them in my list of symonyms. These finds are as follows: ('. borealis, G. O. Shis, 1869, p. 360, O. Nonbambit,

 pp. 14, 16.

The name (${ }^{\prime}$ borealis ($\mathbf{i} .0$. Surs is also mentioned in the following places in the literature:

 1945, 队. 2.28; E. KOEFOED, 1907, pp. 150, 151. 156, 157. 160, 161, 163, 164, 165, 167, 170 ,
$172,175,178,180,183,186,187,188,189,192,193,195,196,197,204,299,210,214,215$, $\because 17,219,22.206,228,231.232,233,242,243,249,252,258,259,266,269,271 ; 1) .101114$

Hobitat: - Ekager Rak:
North Koster,; 2. II.: depth. 65m.: 1 mature make and 3 mature Pemales; R. M.N. 357. South Koster; 1. II.: Depth, 125 m.: 1 mature male; R. M.S. 358 . Deptlı, 140 m. : 5 mature males. ? mature females and 1 juvenis; R. M. S. 359. - These three samples were taken by the swedish Hydrographical Biobogical ('ommission duringacruise in 1911.

Lat. 58^{0} N., long. $9^{\circ} \mathrm{E} .(=\mathrm{S} . \mathrm{VIII}$.$) ; 9. VIII.: At the surface: 1$ mature male; R. II. K. 386. Depth, $300-1$ m. : 3 mature females: R. M. S. 385. ($=$ A part of the material of I'. T. ('LETE, 1903.)

Coast of Norway:
Lofoten Istands; coll. et det. (: O. Sulis: 11 mature males, 78 mature fomales and 3 juvenes.

Arctic Ocean:

 (. W. S. AdRINLALIS. 1899, p. (66).

Distribution: - West coast of Norway and Nkager Rak; Labrator ('urrent, lat. 50" N., long. tsin (V. VÁR.S, 1906).

Conchoecia borealis G. O. Sars var. maxima G. S. Brady and A. M. Norman.
 borpalis. E. VINHÖFFEX. 1897. p. 285.

.. .. (part.), P. T. (Llete. 190日, p. 38.
.. mavima. (i. 0. SUR, 190\%, p. 127: pl. XXXI. XXXVI.
.. borealis. (i. W. Mi's.ler, 19M1. p. 4. figs. 4- -

.. .. P. T. (ILE\E, 1903, p. こ! +
.. .. (. H. Ontexpelat, 19\%6, p. 96.
.. .. K. Atephexsec, 1913. p. 356.

Remarh:s: - The form deabt with here was, as is seen abowe, entablished as a spectal spectes by (i, A. Brans and A. M. Nothld in 1896. Aecording to these writers this form is
limulton to

 Tha following diderennes between these wo forms are moted in the work just mentioned:

 - idnrable mure mbus."

 marked soulpeture of the shall, as alsomen som in the form of the latere. On a choser eomparison, -bme miner differences may also be fomed to exist in the strueture of the sereral appendages."
(i. II. M"A, bat in his work of 1901 put forwat the view that the two forms are quite idnontal: the same view is also baken lọ this writer in his later works, $1906: 1, p$. 111 and 1912 ,

Which of these opmions is the correct one? Are these two foms quite identical or mot?
It seems to me impossible at present fo answer this guestion with complete certainty. Fond this it would be necessary to cary out remewed and carefnl investigations on a eonsiderably more abmolant material tham that which was at my disposal. At present it seems to mo most probable that ('. marimu is not quite identical with ('. berealis. The differences between the forms in question ire howerer. so small that it seemed to me to be best to put the former as a variete of the latter.

The only yuite certain difforence I was able to find was that of size. (i. O. Surs states that the male of (6 . maxima had at shell $3,20 \mathrm{~mm}$. long and the femate $3,50 \mathrm{~mm}$. (F . WI. MULLEER's mates from (iremand measured $3.0-3.15 \mathrm{~mm}$. The males of the maxima fom investigated he me had shells $2.95-3.2 \mathrm{~mm}$. long: the females were $3.25-3.5 \mathrm{~mm}$. long. The difference hotwent these figures and those prevonsly given for C? borentis is, of course, striking. The maximum lemgth for the latter species is 0 - 2,35 (V. VA\RA), of $=2.9 \mathrm{~mm}$. May this difference in size be comeneced with a difference in locality? Is the increase in size not merely the result of a modifieation under Aretie conditions? This explanation. which may, of course. sum a priori exeredingly protable is very decidedly opposed, however, by the fact that I found a typiral mature (. burealis male as far north as lat. $79^{\prime \prime} 58^{\prime} \mathrm{N}$.; the length of shell of this male was not greater than that of the specimens from Lofoten: ff. p. 708 above. At lat. $76^{0} 36^{\prime}$ one mature male and three mature females were found. all typical C. borealis: the male mensured, as is seen abowe, 2.3 mm . the females $2.4-2,7 \mathrm{~mm}$., i. e. the latter were even someWhat smaller than the Lofoten specimens. It was these finds especially that caused me mot

The posterior edge of the shell of the mature male is in most cases somewhat less ronnded in the maxima form than in the borealis form: ef. pl. XXXV, fig. 3. G. O. S.1ps, 1900 and my appended fig. 1: there is, however not quite complete constancy with regard to this character. The shoulder vault of the shell is. in both males and females of the maxima form, somewhat lass developed than in borealis. On account of this the shell, when seen from the side, gets as staighter dorsal margin in the former form; see (i. O). Stas's figs. 1900 and G. W. Mither's
fig., 1901. In a number of the femate* specimens of maxime investigated be me the shoukder vault was romeded, in others it was more or less distinctly sharp-edged. The seulpture wh the shell in the maxima form is, as C. O. Suss pointed ont, weaker than in borcalis, but this character too is subject to some variation. (On the other hand I was mable to discover any differemere in the denseness of the reticulation such as C.S. Brish and A. MI. Nonsun pointed out. Nor was I able, like these writers, to find any distinct difference between the two forms with regand to the type of the shell as seen from above.)

An exceedingly mimate investigation of the other organs of these two forms did not confirm (. O. SaRs's supposition that additional differences exist. Thus, molike C. S. Bratr and A. MI. Normax, I was unable to find any difference with regarel to the strength of the spines on the e-bristle of the male first antema. There is, however, possibly a difference in the number of these spines; in the maxima specimens investigated by me there were only 44 - $4!8$ spines in each row, while in the borealis specimens, as is seen above, there were 50-5.5.
 identical with the maximu form is shown with all desirable dearmess ly (i. Wr. Mitheris description and figures.
 1900) was verified by myself on a re-examination of the original material; ff. below. - ('. broentis. (C W. S. Acrivillits, 1899 , ppe. 62 and 66 proved. on the contrary, after a vorificatory insestigation carried out by me, to be typieal boreatis forms; cf. p. 715 above.
 are not aceompanied by any verificatory information, it seemed to me justifiable, all the same, to include them in the list of synonyms given above.
('. maxima, G. S. Brad)Y, 1902 a, f. 199 (the same auther 1903. pu. 337 , 338 and A. M. Nonsmin 1905, p. 155) is, on the other hand not included in this list. as these authors themselves point out the uncertainty of the deteminations by adthes a puere
C. maxima, G. H. Fowlder, 1897, p. 523 and 1903 . p. 121 are not followed ly ally descriptions or verificatory drawings: under these ciremmetanees it did not seem embeniout to me to inchude these names in the list of syonyms given abowe.

Habietat: - Aretic Ocam:

 S. 389. Lat. $77^{\prime \prime} 39^{\prime}$ N., long. $1^{0} 18^{\prime}$ E.; depth, 500-0 0 m.: 24.-27. VII. 1898: 15 specimems:
 R. 11. S. 391. Lat. $78^{0} 13^{\prime}$ N.. lomg. $2^{0} 58^{\prime} W^{\prime} .: 29 .-30$. VII. 1898 : Depth, 100 - 10 m. : 1 juvenis:

The statements as to how many specimens of this form were caught at catch of the abowementioned stations are taken from an umpublished mannseript of Profosson .J. (i. A Insistix八.

[^99]

 mens preserved fome each of the stations in ymestion, so that the statements as to identity Coll lo veritied.

Conchoecia borealis G. 0. Sars var. antipoda G. W. Müller.

$1908 . \mathrm{p} .75$
1912, p. 87.

Hescription: - Ner (i. IV. Mílditi. I906: al, 110.
siupplementrry deveription: - Male:-
Shell: - Length: Aceording to G. W. Mewer, 2.8-2.95 mm. Both the specimens investigated by me measured 2.8 mm . The shape was quite or at any mate almost quite the same as in ($:$ borealis. Thus the shoulder vault had a sharp edge, contrary to what is stated by (i. II. Miclete, 190% a: males and females are alike in this respect (a variable character?). The posterior margin of the shell too is about the same as in the form just mentioned and, as is the ease in this form, it varies to some extent. The sculpture is of the same type as in ('. borealis. but is rather considerably weaker; with suitable manpulation it is visible on the whole surface of the shefl; it varies somewhat in strength. In other respects tha sholl is like that of (. borealis.

With regard to \quad other eharacters this form agrees with C.borealis, with the exception of the d-bristle on the male first antenna, which is of about the type reprotuced in (i. W. ML̈Llele's pl. XXVI, fig. 9: on the e-bristle of this limb) there were only 40 to 44 spines in each row in the specimens investigated by me. Female: Shell: - Length: According to

 sation fílo.
G. W. Mélder, 3,15-3,3 mm. The sperimens investigated by me measured $3,11-3.2$ mon. Seen from the side it is
relatively somewhat higher posteriorly, but otherwise it is of about the same type as in the mate. Seen from below it is of the same shape as in ('. borealis.

In the case of the other organs it agreed with (: bureales.
Remerhs: - As is secol above, this form is looked upom by (4. W. Mïader as a special
 The differences that distinguish it from this form - the length and seulpure of the shell, the number of spines on the e-bristle of the mate first antema and the armature on the d-bristhe of this limb - are so small that they seem to me to form an adequate argument in favour of this alteration; cf., for instance, the difference between (. obtusate (t. O. Suls and its variety antarctica.
G. IV. MU LLER puts forward (1906 a, p. 111) a number of other differences between these two forms besides those pointed out above. The explanation of this is probably partly that this writer had only muxima forms of ('. boreutis at his disposal and partly also his somewhat deficient knowledge of this form.

Habitut: - Antaretic Ora゙an:
 2 mature males. 16 mature females and 12 juvenes; R. M. N. 30.5. 306. S. A. E., Pl. station 70 b , lat. $49^{\circ} 56^{\prime} \mathrm{S}$. . long. $49^{\prime \prime} 56^{\prime} \mathrm{W}^{\prime}$; depth, $2700-0 \mathrm{~m}$; 27 . VI. 1902; temperature at 2700 m . and at the surface, $+1,67^{\circ}\left({ }^{\prime} \text {. and } 3,4\right)^{\prime \prime}($ C resp. $: 5$ mature females and + juvenes; R. M. S. 307.

Distribution: - South Atlantic Ocean and Antaretic Geean between lat. 1" S. and lat. 6.5"

The funds of the :Antaretic." are consequently made withen the area of distribution stated by G. W. MOLLAELA.

Imbricata group G. W. Müller

(Conchoceissel (. ('lalli)*.
This group, comprising five species, is certainly quite matural. I camot say with certainty whether C. prosudene 6. W. MULLER belongs to it ; it seems probable that it is not chosely rolated to these species.

Conchoecia symmetrica G. W. Mû́ler.

 special gemus, but all the satue he did mot make this himself.

šupplementury descriptum: - II ale: -

 diflers from this in for following rexpects. The anterior part of the dorsal margin is partly

 from betw; $16 \times$. 3. Anterior part of the left valve seen from inside: $39 \times$. 4. A part of the selvage just inside
 surcimens from station fíbl. 1
covered by the shoulder vault. The rentral margin is somewhat, though only rather slightly, concave. The lateral comer glands have their exits on a large conical peg, which is of about the same size and type on both valves and which extends rather considerably beyond the margin of the shell. The processes at the postern-dorsal comer of the shell are somewhat, though only rather slightly, shorter. Seen from below it has its greatest breadth at about the middle and the anterior part somewhat larger than the posterior part. The side contours are rather crenly curved except just behind the middle, where they undulate rather weakly. Both the back and front conds are pointed; the rostral process on the left valve is only slightly larger than that on the right valve; see the appended fig. 2. 'The shoulder vault is well developed and is rounded. For the sculpture see G. Wr. Mthers. The surface of the shell has a very

 First antenat the rod-shaped orgatn. $3: 58 \times$. 8. I part of the e-bristle of the first antemat, 3 ; $450 \times$. 9 . Two of the spines of this bristle, c mpressed; $450 \times$. 10. Left first antema + the rod shaped organ: the e-fisthe of the antemat

 protopodile + the proximat pat of the exnpodite and the emdopodite of the left second antrmat sern from inside; the end hristles of the endopodite are broken, ${ }^{*} ; 131 \times$. 1't. Endopodite of the right secont antema sem from inside.

Zoloog. bidrag, Uppsala. Suppl.-Bd. I.

 is of the same type as is deseribed above for ('. borealis. 'There is no distinctly developed hingesocker or hingertonth at the pesterion domsal comer of the shell.

First alntonna (sere the appented fig. 7): - W-bristle: This is somewhat longer than this limb and is lent at a deeded angle at or somewhat proximally of two thirds of its length. Inst proximally of this hend there are two wrill separated rows of st rong, smooth spines, puinting somblat proximall?: there areabout seventeen or eighteen spines in each wo (see the appended tig. s). The spines in these rows are either plated in pairs or else there is weak or even complete atermation. The distamee between the distal spines is about as great as or somewhat more than the with of these spines at the base; the proximal ones are situated somewhat closer together than the distal ones. Ill the spines are of the same type; the distal ones are, however, somewhat larger than the proximal ones: seen from the side they are bent somewhat proximally and are pointed: if they arestrongly compressed they appear to be flattened and somewhat rounded or more or less ahmutly ent off distally: see the appended fig. 9. Otherwise this bristle is quite bare. Distally of the rows of spines it is slightly sworl-shaped. The b- and d-bristles are subecual, either about as long as the e-bristle or somewhat shorter (sometimes somewhat shorter than in the appended fig. 7). The b-bristle, or else both these bristles. are bent at a distinct angle at about the eorresponding place as the e-bristle. Both have about opposite the spines of the e-bristle a varying mumber (from about 5 - 25 were observed) of short, weak, distally pointing secondary bristles. Distally these bristles are narrow or at any rate only very slightly sworlshaped; both of them are without any pad-like appendages. The a- and e-bristles are suberual, about a cutarter of the length of the the e-bristle; the c-bristle is straight, the a-bristle more or less rolled up; the a-bristle has a more or less wealily developed accessory saceule. All the joints are quite bare.

上econd antenna: - Protopodite (see the appended figs. 11 and 13): In specimens with shells t, (1-4, 1 mm . long this limb measured $1,6-1,7 \mathrm{~mm}$. Ex opodite (see the accompanying fig. 12): The proportion between the length of this branch and that of the protopodite is about $11: 20$. The proportion between the length of the first joint and the total length of the eight following joints is about $10: 4-5$. The proportion between the length of the longest matatory bristles and that of this branch is about $15-17: 10$. The first joint is furmished proximu-dorsatly with a single dense longitudinal row of short, fine spines along about a duarter or a thind of the length of this joint and close to this row there are a rather large number of scattered spines of the same kind and size. Endopodite (see the appended figs. 13 and 14): First joint: The processus mammillaris has a small distal verruca. The a- and b-bristles are bare. Second juint: The e- and d-bristles are not inconsiderably shorter than this joint and are bare. The e-bristle is short. The g-bristle is about one and a half times the length of the protopodite: the f-bristle is about a quarter shorter. Both these bristles are weakly swordshaped distally; the g-bristle has short hairs, the f-bristle is often bare. End joint: Clasping urgans: These are of the types reproduced by G. W. Meller. The right organ may sometimes

Fig. CXL. - Conchnecia symmetrica (: W. Mänier, \&. - Mandible. D. Parsincivivaf the righl made sen from inside; $382 \times$ 16.-18. Parts of this endite. all smon from inside: f38 \times. 1f. The touthed etge. 17. The distat tooth-list.

have asmall verruea sumenhat distally of the basal vermea. Both the right and the left orgath have an exceedingly small papilla distally and are weakty eross-greoved distally; the right organ is, in additom. fumished distally with some short spines amd hairs. The h-, i- and j-bristles are most frequmty subequal, about as long as the exopodito and bare; the h-bristle has a short hut sharply matied shaft: the i - and j -bristles have a somewhat longer shaft, but one that is moly very weakly or mot at all defined. Just distatly of the shaft these three bristles ate about as thich as the or-histle is proximatly.

Fig. CNLI. - Conchoecia symmetrica G. W. Mtleer. - Maxilla. 23. Endite of the left procoxale seen from insidehehind. $\circ: 567 \times$. 2 2. Endite of the right coxale seen from outside-behind. ${ }^{\circ}: 567 \times$. 25. Left endopodite + basale seen from inside. 3 : $139 \times$. 26 . Distal part of a bristle on the posterior side of the first endopodite joint, of $833 \times$.
(From specimens from station 6.' b.)

Mandible (see the appended fig. 22): - Protopodite: Coxate (see the appended fig. 15): The toothed edge of the pars incisiva has abont ten teeth (see the ajpended fig. 16). Distal tooth-list: 'This is of the same type as is described above for C. oblonge and has from about twelve to sixteen teeth (see the appended fig. 17). Proximal tooth-list: This is rather slightly narrower than the distal one and varies somewhat in type. It consists of about 10 to 25 irregularly arranged smooth conical teeth which vary in size and strength; some of the posterior ones are almost as large as the two postcrior ones on the distal tooth list; see the accompanying fig. 18 . On the inside this list is furnished with fine, short spines, situated close together. The masticatory pad is rather narrow and high, somewhatmore thanhalf the width of the toothlists, and is divided into four or five transverse ridges; it is armed with short, fine papillac,

Fig. CALII. - Comehoria symmetrica (: W. Mulafer, 万. - 27. 1aft fifth limb spm from outside: 11: X. 28. Distal part of tho midde end claw of thic limb: 9:8 \therefore (From a sumimen from station 6ith.) placed. elose togetlier.
The part that is surronded by the row of bristles and hairs is raised somewhat like a pad and is also furnished with short, fine papillae, placed close together. Basale: The six teeth on the distal edge of the endite are furnished with rather fine sermlation (see the appended figs. 19 and 20). The single tooth on the outside of this process is of about the type reprodnced in the figure just mentioned. The epipodial appendage consists of a moderately large verruca with a moderately long bristle; sce the appended fig. 2l. Eindopodite: The first joint has four bristles on the posterior side; one of these is situated somewhat laterally and is about as long as this branch. The three others are situated more or less medially and are about half the length of the former bristle or a little shorter or longer; one of these three bristles usually has long hairs, the others have short liairs. Pilosity: The basake is furnished medioventrally with moderately long andyrather sparse hairs.
 twely longe．athout the simme lengtla as in（＇．burealis．

F゙ifthlimb：－This is af abont the same type as in my fig．27．Protopoditr： The hager of the two tubebristles on the second endite has long secondary bristles．E in do－ podite：Gne of the thee ventral anterior bristles is of about the same length and type as the fong hristle on the first endite．The two others are somewhat shorter；one of them has short hairs，the wher minally has rather long secondary bristles．On the outside the endopodite is furnished anterion！with a mmber of short spines．Exopodite：First joint：The ventero－ modial grenp has two bristhes，the proximo－ventral one has four or five bristles and the disto－ rentral one three or four bristles．One or two of the proximo－ventral ones and the same number of the disto－ventral ones are usually furnished at the middle with long hairs．This limb is some－ times bare，somerimes the protopodite and the first exopodite joint are partly furnished with moderately long hairs．

Sixth limb（see the appended fig．29）：－The ventral bristle on the end joint has shore hairs．

太゙eventh limb：－The end joint has spines；see the appended fig． 31.
Penis：－This is of about the type reproduced in the appended fig．32．It has about six to eight ublique transverse muscles at the middle，distally of which there are no musctes． The copulatory appendage is well developed and varies somewhat in type；in most eases it is rather wide and rounded as in the figure just mentioned．

Furca（see the appended figs． 33 and 34）：－Behind the claws there is an unpaired short－haired bristle，about as long as the sixth or seventh claw．

Rod－shaped organ：－The shaft reaches to about the distal boundary of the seemed joint of the first antenna or to the point of this limb．The capitulum（see the appended figs． 6 and 7）is of about the type reproduced by G．W．MU＇LLER，about as long as or somewhat shorter than the second joint of the first antena．

Upper lip（see the appended figs．35－37）：－The part between the combs on the postero－ventral edge of this lip is only slightly concave in the middle．The paragnates are of about the type reproduced in the appended fig． 38.

Female：－
Shell：－Length：According to G．W．Müluer， $4,1-4,4 \mathrm{~mm}$ ．Of the specimens investigated by me one（abnormal）measured $4,0 \mathrm{~mm}$ ．， 32 were $4,4-4,6 \mathrm{~mm}$ ．and one was $4,7 \mathrm{~mm}$ ．long．Seen from the side it is almost entirely of the same type as the male shell； it differs by having the rostrum somewhat longer and perhaps somewhat straighter and by being in most cases relatively somewhat higher posteriorly．Seen from below it is also of about the same type as in the male，but the anterior part is not or is at least scarcely percept－ ibly larger than the posterior part and the side contours are more evenly curved．

First antenna（see the appended fig．10）：－The division into joints is fairly distinet． The dorsal bristle on the second joint is about as long as the a－d－bristles and has short hairs． The e－bristle is about twice as long as this limb；it is only slightly sword－shaped distally and its anterior side is bare．The a－b－c－d－bristles are subequal，about a third of the length of the

Digitized by Microsoft ${ }^{\circledR}$

 seen from ondsite, of $58 \times$. 30 . Left sixth tiob (without the erppoliat appentage) seen from oulsile, : 11:

 Whw, $₹ ;$ f: $\%$. 35 . The upper and under lips seen from beneath, $o ; 116 X$. 3f. The upper lip and the right paragnate suen fron the sile 0^{2}; $99 \times$. 37 . The posterior part of the upper lip seen from above, 9 ; $292 \times$. :38. Paragnate seen from below, 6 ; $292 \times$. (From specimems liom station 6́ b.)
o-bristle. The first and second joints ate partly furnished with fine spines. These joints have vellowish-brown corpuscles.

Second antenna: - The protopodite is rather slightly weaker than in the male. The exopodite is relatively somewhat shoren than in the mate, but is otherwise the same. Endopodite: This is rather distinctly three-jointed. The f - and g-bristles are of about the same type and relative size as in the male or only rather slightly shorter. The h-. i- and j-bristles are in most cases relatively somewhat shorter than in the male; in most cases they have no distinct shafts and are furnished proximally with short, fine spines. The f-bristhe too is furnished with short hairs more often than in the case of the made. Between the h_{1-} and i-bristles there is sometimes an exceedingly small papilla, but in most cases it is quife absent. The second endopodite joint is bare.

Rod-shaped organ: - The stem extends in most cases about as far as half the length of the capitulum beyond the point of the first antenna. The capitulum is of the type described by (i. IV. Muts, ER (see the accompanying fig. 10) and is about one and a half times or twice as long as the second joint of the first antenna.

Remarks: - The larvale investigated by me belonged to Stages I-111. They measured $3,05-3,3 \mathrm{~mm}$., 2,05-2,2 mm. and 1,3-1,35 mm.

Habritut: - Antaretic゙ (leean:
S. A. E., Pl. station 34 b, lat. $46^{\circ} 45^{\prime}$ s., long. $58^{\prime \prime} 2^{\prime} \mathrm{W}^{\prime}$; depth, $700-500 \mathrm{~m}$; 28. N1l. 1901: 1 juvenis of Stage IIl. S. A. E., Pl. station 64 b , lat. $48^{0} 27^{\prime} \mathrm{S} .$, long. $42^{0} 36^{\prime} \mathrm{W}$. : depth. $2500-10 \mathrm{~m} .: 23$. VI. 1902: 24 mature males, 43 mature femates and 54 juvenes; R. M. S.

 males, 1 mature female and 14 juvenes; R. M. S. 312.

Distribution: - South Atlantic Ocean amel Antaretice ()cean between the mplator and lat . $54^{0} \mathrm{~S}$. Indian Ocean.

The three stations of the . Antaretice expedition arre conserfumen sitnated within the area of distribution stated bey (i. W. Motledia.

Alata group G. W. Müller.

With regard to this group I lookd quite the same view as has been put forward by

Conchoccia hettacra G. W. Müluer.

.. 1! 10 e. p. 4.
.. 190s. p. T8.
.. 1!12. 1.92.
Hescription: - See (i. WV. Mialas, 1906: p. 121.
supplementary description: - Il ale: -
 The specimens investigated by me measured $1,8-1.9 \mathrm{~mm}$. length : height about $2: 1$; length : headth abont 2.1: 1 . Seen from the sjde it is of about the type reproduced by (: II. MCluth。 Seen from below (see the appemed fig. 1) it has its greatest width at or just in front of the midetle and the anterior part rather considerably larger than the posterior part. The side contours are evenly curbed, but have a rather marked sinuation just behind the middle. It is broadly roundet anteriorly with a symmetrical rostrum and is pointed posterionly: The shoukder vault is rather well developed, with a somewhat sharp edge or roundmal. The surface of the shell is bare ant its seuppure is of the type describect by (i. WV. Müldelk, Ne en from inside: Selvage: This is smooth on the rostrum just as it is along the anterior margin of the shell and the anterior half of the ventral margin of the shell: there is no spine-like process on the rostrum. Along the posterior half of the ventral margin it is finely serrulatex, along the posterior margin of the shell it has coarse, irregular sermation; see the appended fig. $5\left(0^{\circ}=\right.$ f). The compound glands are as described by G. W. Mưbelk. The metial glands along the posterior margin of the shell are of about the same type as is tesariboll for ('.oblonga on p. 618 above, but some of them are joined by a ratherdistinet list. At the posterion dorsal conner there is a well eleveloped, elongated hinge-socket and hinge-tooth; sere the appented fig. $4(\hat{s}=\mathrm{f})$.

First antenna: - This is of the type described and reproduced by G. W. Moller. la-bristle: This has a double row of five or six ,stempelartigen Zapfen"; these "Zapfen" are uf about the same type as is shown on p. 699 above for C.spimirostris; see the appended fig. 6 . Along the proximal half this bristle has on its anterior side a moderate number of rather short hairs: it is narrow distally. The equipment of the b- and d-bristles agrees with that stated by ($\mathrm{C} . \mathrm{IV}$. Milliffr; these bristles are narrow distally and have no pad-like appendages. Thw a-bristle has an accessory saccule. All the joints are quite bare.

Second antenna: - Protopodite: Length about 0,9mm. Exopodite: The proportion between the length of this branch and that of the protopodite is about $16-17: 30$. The proportion between the length of the first joint and the total length of the eight following joints is about $10: 4$. The proportion between the length of the longest natatory bristles and that of this branch is about $5: 3$. The armature of the first joint is about the same as in
(. symmetrice. End opodite: First joint: The processus mammillaris hats mo distab papilla. The a- and b-bristles have short hairs or are almost bare. Second joint: The e- and d-bristles are not inconsiderably shorter than this joint and are bare. The e-bristle is rather short. The g-bristle is most frequently somewhat longer, the f-bristle somewhat shorter, than the protopodite; neither of them is sword-shaped distally and both bave a few short hairs. Third joint: The clasping organs are as described by (t. Wr. Mither. The h-, i- and j-bristhes are subequal and about as long as or somewhat shorter than the first joint of the exopoditr: the h-bristle has, at least in some eases, signs of a shaft, the others have no distinct shaft; they are narrow, ahmost only half as wide as the proximal width of the g-bristle, and are bare.

 station 58 b.)

Il andible: - This limb agrees ahmost entirely with the same limb in ('. symmetricu. The toothed edge on the pars incisiva has from about ten to thirteen teeth. In most cases all the four bristles on the posterior side of the first endopodite joint have short hairs.

Maxilla: - The end joint is comparatively long, about the same type as in C. borealis.

Fifth 1 imb : - Abont the same as in C. symmetrica. Of the three antero-ventral bristles on the endopodite both the two shorter ones usuatly have short hairs. The endopodite has no spines. There are one or two ventero-methal bristles on the first ex apodite joint. Digitized by Microsoft ©
́ath limb: - lindopodile: This hasume or twormistles. Whichare sometmes furmshed with short hairs. somotimes with long ones. EX xopodite: first joint: At abont the midde of the sentral side there are one or two bristless one of which is rather long and has tons hats and the other msally short and whth short hars. Disto-ventrally there are two or there heristles, all of whed ate memally rather short and have short hairs. The two dorsal bristles on this joint are also short and have shom hairs. Sometimes all the bristles on this joint have shont hairs.

Penis: - This is of about the same type as in ('. symmetrice, but the eopmatery uphondare is considerably narower, about as marow as in C. Haddoni.

Forera: - Behind the chaws there is an matared bristle, which is about as long as the sixth or the seventh claw.

Rod-shaped oris an: - The shaft reaches to about the distal boundary of the -romel joint of the first antema or to the peint of this limb. The capitulum (see the appended tig. 7) is abme as long as or somewhat shorter than the second joint of the first antema and is of alomet the trpe reproduced by (i. W. Mutleta.

Uppor Jip: - The part between the combs is of about the same type as in my fige 4 of (. Belgicae. The paraenates are about the same as in C. symmetrica.

Female: -
-hell: - Length: Aecording to (i. IV. Míluen 2.35 mm . The specimens investigated hy me measured 2.0-2,25 mm. Length: Jeight about $2: 1$; length : breadth about $2,8: 1$. soen from the side (see the appended fig. 2) it is of about the same type as the male shell, but is somewhat higher posteriorly. Seen from below it has its greatest width at about the middle and the anterior part dominates somewhat less over the posterior part; the side contours are evenly curved; see fig. 3 . In other respects it is like that of the make.

First antenna: - This has mather distinct joints. The bristle on the second joint is about as long as the capitulum on the rod-shaped organ and has short hairs. The e-bristle is mot duite twiee as lomg as this limb and has on its anterior side a similar equipment to that of the male; it is not sword-shaped distally. The a-to the d-bristles are subequal and about a thire of the length of the e-bristle. The first and seeond joints are partly furnished with short, fine spines.
sarond antenna: - The protopodite is somewhat weaker than in the male: it attains a length of about 0.9 mm . in specimens whose shells are $2,15 \mathrm{~mm}$. long. Exupodit ${ }^{\text {a }}$: The proportion between the length of this branch and that of the protopodite is about 17: 30. Endopodite: This has two joints. The g-bristle is not quite so long as the protopolite, the f-bristle is about a third or a quarter shorter; otherwise they are like those of the male. The h-, i- and j-bristles are about half as long as the \underline{y}-bristle or somewhat shorter or longer; they have sparse short hairs. The second joint is bare.

Rod-shaped organ: - The shaft extends to about the point of the first antemma. The capitulum is of the type reproduced and described by (i. W. Mlluer.

Digitized by Microsoft ${ }^{\circledR}$

Habitat: - Antarcticocean:
S. A. E., Pl. station 34 b, lat. $46^{0} 45^{\prime}$ S. long. $58^{\prime \prime} 2^{\prime} \mathbb{W}$.; depth $700-500 \mathrm{~m} . ; 28$. XII. 1901: 1 mature male and 1 mature female; R. M. S. 313. S. A. E., Pl. station 70 b, lat. $49^{0} 56^{\prime}$ s., long. $49^{0} 56^{\prime} \mathrm{W}^{\top}$; depth $2700-0 \mathrm{~m}$. 27 . VI. 1902 ; temperature at 2700 m . and at the surface $+1,67^{\circ} \mathrm{C}$. and $3,40^{\circ} \mathrm{C}$. resp.: 1 mature female and 1 juvenis; R. M. S. 319. S. A. E., Pl. station 60 b , lat. $52^{0} 39^{\prime} \mathrm{S}$., long. $37^{\circ} 35^{\prime} \mathrm{W}$.; depth $500-0 \mathrm{~m}$.; 17. VI. 1902; temperature at 500 m . and at the surface $+1,35^{\circ} \mathrm{C}$. and $+0,50^{\circ} \mathrm{C} .: 2$ mature lomales and 4 juvenes; R. M. S. 317. S. A. E., Pl. station 61 b , at the same locality; depth $2000-0 \mathrm{~m} . ; 17 . \mathrm{VI}$. 1902; temperature at $2000 \mathrm{~m} .+1,30^{\circ} \mathrm{C} .: 1$ mature female; R. M. S. 318. S. A. E., Pl. stations 318 and 59 b , lat. $53^{0} 0^{\prime} \mathrm{S}$. , long. $48^{\circ} 27^{\prime} \mathrm{W} . ;$ depth $500-0 \mathrm{m}$. ; 17. IV. 1902; temperature at 500 m . and at the surface $+1,50^{\circ} \mathrm{C}$. and $3,40^{\circ} \mathrm{C}$. resp.: 4 mature males, 8 mature females and 3 juvenes; R. M. S. 316 and 320 . S. A. R., Pl. station 58 b, at the same locality; depth $250-0 \mathrm{~m} . ; 17$. IV. 1902 ; temperature at $250 \mathrm{~m} .+1,30^{\circ}$ (. : 3 mature males, 10 mature females and 2 juvenes; R. M. S. 315. S. A. E., Pl. station 57 b. at the same locality; depth $100-0 \mathrm{~m} . ; 17$. IV. 1902; temperature at $100 \mathrm{~m} .+30 \mathrm{C}$. : 1 mature female; R. M. S. 314. S. A. E., Pl. station 44 b, lat. $65^{\circ} 56^{\prime}$ S., long. $54^{0} 35^{\prime} \mathrm{W}^{\prime}$., depth $700-0 \mathrm{~m} . ; 22$. I. 1902; temperature at the surface - $1,15^{0}$ C.: 1 juvenis; R. M. S., on a slide.

Distribution: - South part of the Atlantic Ocean and the Antarctic Ocean; between lat. $43^{\circ} \mathrm{S}$. and $70^{\circ} \mathrm{S}$.

All the stations of the ,Antarctie" expedition are consequently situated within the area of distribution stated by (i. II. Müllef.

Conchoecia Belgicae G. W. Müller.

('onchoeciu Belyicue, (i. W. Mülder, 1906; c. p. 4; figs. 1-11.

```
        .. imnominata, G. S. Braby, 1907, p. 1; pl. Il, figs. 7-14.
```

 .. Belyicue, G. IV. MOLLER, 1908, p. 79.
 ", ". ". ., 1912, p. 92.
 Description: - Sce G. IV. Müller 1906 c; p. 4 and (i. S. Brabl 1907, p. 1.

Supplementary description:- Male:-
Shell: - Length: According to G. Wr. Mülder $2.4-2,6 \mathrm{~mm}$. The specimens investigated by me measured $2,5-2,6 \mathrm{~mm}$. Length : height about $1,8: 1$; length : breadth about $2: 1$. Seen from the side it is of about the type reproduced and described by (i. W. Muller; see the appended fig. 1. Seen from below it is of about the same type as in C. hettucra of see the appended fig. D. The compound ghands are as described by G. W. MULLER. In other respects it is hike Cothacra, but the selvage sometimes has with
 in my fig. 4 of ('. symmetrica.
 with ...eine Doppelreihe von otw: 30 last sembereht abstehenden stabartigen, an der Spitze schwach kollhig (oder stempet-

 from the sile: $2 s \times$. 2 . Shell seen from below: $28 \times$. 3 . Distal part uf the reol-shaped organ seen from below: $133 \times$. ' The middle part of the pmstero-ventral alge of the upper lip; 83:3 \times. (From specimens from station $\mathfrak{i 2}$ h.) artig?) erweiterten Gebilden". In the specimens investigated by me there were $27-30$ of these processes in each row; they were of precisely the same type as the corresponding proeesses in C'. Wettacra. In other respects too this antenna agreed with the corresponding antema in the species just mentioned.

Second antenna: - This is quite like the same limb in C. hettacra. It seems impossible to find any difference even in the shape of the clasping organs of the endopodite; their shape is subject to some, though only slight, variation in this species just as in C. hettacru.
The mandible, maxilla, fifth, sixth amb seventh limbs, furea, upper lip and paragnates are like those of ('. hettacra.

The penis is of about the type reproduced in pl. II, fig. 13, G. S. Brabry, 1907; its copulatory appendage is like that of C. hettecra.

The rod-shaped organ is the sam as is described and reproduced by (i. W. MULEER.
Remark: - Although there are a number of small differences between ('. imominatu as described by ($\mathrm{i} . \mathrm{S}$. Brasmy and the species dealt with above, there seems to be no doubt that G. II. Meller's identification of these two forms is cuite correct.

Habitat: - Antarctic Ocean:
S. A. E., Pl. station 42 b, lat. $65^{\circ} 49^{\prime} \mathrm{S} .$, long. $58^{\prime \prime} 40^{\prime} \mathrm{W}$; depth $250-0 \mathrm{~m}$. ; 18. 1. 1902; temperature at 250 m . and at the surface $-1,35^{\circ} \mathrm{C}$. and $+1,10^{\circ} \mathrm{C}$. resp.: 3 mature males and 2 juvenes; R. M. S. 322.

Distribution: - Antarctic Ocean south of lat. $64^{\circ} \mathrm{S}$.
My specimens were consequently caught within the area of distribution stated before.

Conchoecia Valdiviae G. W. Müller.

$$
\begin{array}{llllll}
" & . & , & " & " & 1908, \text { p. } 79 . \\
. & \text { " } & " & " & " & 1912, \text { p. } 93 .
\end{array}
$$

Description: - See (. W. Millder, 1906 a, P. 123.
Supplementary description: - Female:-
Shell: - Length: According to G. W. Mutlere ,ziemlich konstant $5,5 \mathrm{~mm} .{ }^{\text {G }}$. The specimen investigated by me was $5,4 \mathrm{~mm}$. long. Length : height about $1,75: 1$; length $:$ breadth about $2,3: 1$. Seen from the side it is of about the type deseribed and reproduced ly (\mathbf{h}. W. Mchlure; see the appended fig. 1. Seen from below (fig. 2) it is narrowly oval, with its greatest width at about the middle and the anterior and posterior parts of about "yual size and of the same type; the side contours are evenly curved, the ends well rounded and the rostrum symmetrical. The shoulder vanlt is rather weakly developed and well rounded. The surfaed of the shell has a few scattered moderately long or short bristles. The scupture and the compound glands are the same as are described by G. W. Mulleta. Seen from ins ide: The glands along the posterior margin of the shell are about the same as are described on p. 618 above for C. oblonga. The selvage is of the same type as is described for C. borealis 1. 709 above. At the posterior dorsal comer of the shell there is a well developed oblong hinge-socket and hinge-tooth (of about the same type as is reproduced above for (. hettacra).

First antenna (fig. 3): - This has rather weak division into joints. The bristle of the second joint is somewhat shorter than the capitulum of the rod-shaped organ and has short hairs. The e-bristle is not sword-shaped distally; it is almost or quite bare proximally on the anterior side. All the joints are partly fumished with short, rather fine spines.

Second antenna: - Protopodite: In the specimen investigated by me this measured $2,2 \mathrm{~mm}$. Exopodite: The proportion between the length of this branch and that of the protopodite is about $11-12: 20$. The proportion between the length of the first joint and the total length of the eight distal joints is about $\mathbf{l 0}: 4$. The proportion between the length of the longest natatory bristles and that of the exopodite is about $3: 2$. The first joint has rather few spines proximo-dorsally. Endopodite: This has three joints. First joint: The a-and b-bristles are bare or have only a few short hairs. The processus mammillaris has a small papilla distally. Second joint: The e- and d-bristles are developed and are about the same size as is seen in pl. XXIH, fig. S, G. W. Mithere, 1906 a . The g-bristle is somewhat longer than the protopodite; the f-bristle is about a third shorter than the g-bristle: both are furnished with short hairs and are not sword-shaped distally. End joint: The h-, i- and j-bristles are subequal, somewhat less than half the length of the g-bristle, and are about as thick proximally as the f-bristle; all of them have rather slight indications of shafts and are moderately densely furnished with spines proximally. There is an extremely small papilla between the h- and i-bristles! Gilie-seond jont of the efinopordite is bare.

Il a malible: - This limb agrees almest completely with the one deseribed above for ('. symmetrico, but all the form bristles on the posterior side of the first endopodite joint have short hatirs.

Il a x illat: Most of the bristles on the endites of both the procoxate and the eoxale are bery powerfully amed. Vatito on the procosate: The three antero-inner bristles are fumished with long secomdary bristles and all the postero-outer tube-bristles have rather long spines. On the maxilla of one side there were four postero-onter tube-bristles in the specimen investiGated by me: the accessory (abmomal?) bristle was of about the same length as the there others

Fig. CXIJ1I. - Conchecia Valdiviae G. WZ. Mulaer, of. - 1. Shell seen from the side: $16 \times$. 2. Shell seen from helow: $1: 3 \times$. 3 . bintal part uf tho left first antma (the distal bristles are broken) + the rod-shaped organ: $52 \times$. (From a sperimen from station 6's b.)
but considerably weaker than these. The spines situated distally-medially on the first endopodite joint are relatively large and powerful. The end joint is about the same as in ('. borealis.

Fifth limb: - This is about the same as in C. symmetrica. The two shorter of the three antero-ventral bristles on the endopodite have short hairs.
seventh limb: - The end joint has spines.
The furca, upper fip and paragnates are similar to those of C. symmetrica.
Rod-shaped organ: - The shaft extends somewhat distally of the point of the first antenna: see the appended fig. 3. The capitulum is of about the type deseribed and reproduced by (i. IV. Mëlleli.

Habitat: - Antaretic Ocean:
S. A. E., Pl. station 64 b. lat. $48^{\circ} 27^{\prime} \mathrm{S} .$. long. $42^{\circ} 36^{\prime} \mathrm{W}^{\prime}$; depth $2500-0 \mathrm{~m}$. $23 . \mathrm{VI}$. 1902: 1 mature female and 1 juvenis; R. M. S. 323.

Distribution: - Atlantie and Antarctic Oceans between lat. $18^{\prime \prime} \mathrm{N}$. and lat. 58°. N. Indian Ocean.

The , Antarctic" specimens were conseruently (aught within the area of distribution stated by (G. W. Mtizer.

Genus Euconchoecia G. W. Müller.

Enconchoecin, (i. W. MëLdER, 1890 a ete.; this name is also used in the following works: (6. A. Braby, 1902 a, P. T. Cleve, 1905, Thi, SCott, 1909 and 1912a, V. VÁvis, 1906. Halocypris (part.), TH. Scott. 1894 and I'eneomehoecin (on account of a mistake in the determination), P. T. Cleve, 1900.

Description: - Shell: - The rostrum is well developed. The ,,unsymmetrical glands" have their exit symmetrically on the posterior margin of the shell near the posterior dorsal comer; they are sometimes rather small. Apart from these there are no large groups of glandular cells at all. The pores of the surface are small and difficult to verify with certainty. The part of the selvage that runs on the rostrum has no spines.

First antenna: - This slows marked dimorphism.
Male: - This is moderately long and powerfuł; it grows gently narrower distally. It has five joints, but the boundary between the third and fourth joints is often rather difficult to ascertain with certainty. The proportion between the lengths of the joints seems to be subject to rather slight variation in the species sof far known; I may give as an example the result of measurements made by me on E. Chierchice:

$$
I: 11: 111: 1 V^{r}: V:=\text { about } \frac{11}{11}: \frac{12}{7}: \frac{1}{7}: \frac{7}{7}: \frac{1}{1}
$$

The second and third joints have no bristles at all. The fourth joint has numerous bristles ventrally (from cluse on twenty to a considerably larger number); these are developed as thinwalled sensorial filaments. All these bristles are of the same type, moderately long and all of about the same length, moderately thick or rather narrow, of about equal thickness throughout their whole length, rounted distally, almost straight and bare. The end joint has four or five bristles, all without spines. Two of these bristles are rather powerful and lomg, of different lengths, the longest being rather considerably longer than this antenna, the other about half or three-quarters of the length of the former one, both rather strongly and evenly bent ventrally: The two or three remaining bristles on this joint are moderately long of rather short and rather weak, straight or irregularly bent.

Femalo: - This is rather considerably shorter ant weaker than that of the make, with a (omparatively weakly developed muscular system (ef. p. 580 above) and with rather indistinct division into joints. The number of joints seems to vary; accorting to what has been stated it seems that in most cases onbythrezigintigan bedistinguisher hat sometimes, however.

 juint are of about the same type and number as in the male. The original fifth joint has asomeWhat fewer momber of bistles than in the mate (from two to four were wheredel); these bristles are about as thick as or somewhat thimer than the sensory bristles on the original fourth joint: some wi them are, howerer, perhaps somewhat stronger than these; the longest of them is about as lung as or mother slighty hemger or shorter than the bristles on the original fourth joint.

Male: - The protopudite has no verrucac (contrary to the genus Conchoeciu). The first joint of the exopodite is ahmost equally thick throughont its length. Endopodita: 'Thr first joint is extensive. more or less conical and las no processus mammillaris. The second joint has only two bristles, the f - and g-bristles, one of which is very long, sometimes even as kong as womewhat longer than the shell. On the right endopodite the end joint is developed as an chongated powerful clasping organ, with long proximal and distal shanks. Its thee bristles are attached at the angle between the proximal and distal shanks and are strikingly different in length. On the left endopodite this joint has no distal shank; its proximal shank is uf the same type as that on the right side. The three bristles are situated distally on the joint.

Female: - The protopodite is similar to that of the male. Endopodite: This has two joints. The first joint is like that of the male, but is somewhat weaker. The second joint has, as in the male, only the f - and g-bristles, the longer of which is somewhatshorter than in the male. The original third joint is almost completely reduced and has a varying number (one to three) of bristles; it is joined to the original second joint.

The mandible. maxilla, fifth, sixth and seventh limbs, penis, furca and lips are so incompletely known in the species described by preceding writers that it did not seem to be convenient to include them in the genus diagnosis. With regard to these organs 1 shall only refer to the description of E. Chierchiae given below.

Rod-shaped organ:- This shows no - or at any rate very slight - dimorphism. It is narrow. uniformly thick, and unjointed, in most cases slightly arched ventrally or almost straight. For this organ in E. lacunosa G. W. Metler, see p. 575 above of the sub-family diagnosis.

Remarks: - This genns comprises only four speries described so tar, namely:
E. ('hierchiae. (i. II. Mither, 1890 a, p. 277: pl. NXYHI, figs. 1-10.
E. aculeata (Tı. SCOTT, 1894), (f. W. Mitıer, 19016a, p. 129; pl. XXXII, figs. 18-23, 25, 26.
E. lacmusa. (i. IV. Míller, 1908, p. 80: pl. X. figs. 1-S.
E. d'Arcy-Thompsone, Th. scott, 1909, p. 12s; pl. Ill, fig. 19; pl. IV, figs. l-l2.

As is shown. however, by the remark under E. (Vherchiue. p. 753 below, it is not quite impossible that the first of these four species, in the seope that it is taken by \mathbf{G}. W. Motherk, 1906 a, comprises two very closedy-mated forms.

The first two of these species, E. (Wherehiae and E. aculeate, are certainly rather closely connected to each other; on the other hand they show rather far-reaching differences from E. lacunosa and E. d'Arcy-Thompsomi. It is rather difficult to say anything certain about the relation between the two last-mentioned species, partly becanse the male of E. lacunosa is quite unknown, and partly because of the incompleteness of the descriptions. But it seems to me not improbable that they are fairly closely related. These reasons also make it impossible to decide whether these two species are to be distinguished as the representatives of a special sub-genus; it seems, however, fairly probable that future investigations will make this necessary.

First antenna: (. Wr. Muller, in his work 1906 a. states that this antenna is five-jointed in the male, ,,die Grenze zwischen dem 3. and 4. Gilied ist schwer zu erkemnen". In his work of 1912 this writer states that this antemna is four-jointed: ,,1. Antenne des of mit 3 längeren Gliedern und einem 4. sehr kurzen Gliede". In the latter work it is obvious that the third and fourth joints are taken as one joint. As will be seen above, I have adopted the former view in the genns deseription, because in the species investigated by me the two last-mentioned joints were distinctly separated; the fourth joint (sensu men) was even moved by several special museles.

This same author writes in his work, 1890 a: ,die Burste des zweiten (iliedes fehlt überhaupt; an der Stelle, wo sie beim Weibehen von Conchoecia steht, findet sich eine flache Grube, welche auf ihre frïhere Existenz an dieser Stelle hinzuweisen scheint." It was unable to observe any such cavity; it seems to me not at all impossible that this is a mistake on the part of this writer.

In the diagnosis of this genus, 1906 a, p. 127, G. W. Mélder states that from the third joint of the first antenna of the males, ,ragt ein hakenartiger Fortsatz in das 4 . hinein; derselbe liegt medial; ist nicht immer gleich dentlich. Ich habe keine volle Klarheit über scine Lage und Bedeutung gewinmen können. Anscheinend liegt er im Innern des Gliedes, dient dem Muskelansatz." - I was not able to observe any such chitinous process on the specimens of this genus that were investigated by me. It does not seem impossible. however. that this is a mistake on the part of C. W. Moller. The ventero-medial part of the wall of the fourth joint in the male first antema of E. ('herchice is rather strongly chitinized. The elorsal boundary of this part is indicated in the adjoining fig. 12 by a line ruming longitudinally at about half the height of the joint. Does this part correspond to the process mentioned by (G. W. MiLLER? This does not seem impossible to me; its medial position is in favour of this; as is shown by the aloove quotation, G. IV. Mílesk himself was not quite certam whether the process in question was really situated inside the joint; its medial position, on the other hand, was quite elear. (This process is not mentioned in this author's work of 1912.)

Mandible: To julge from pl. X. fig. T, (. W. Mïleler, 1908, E. lacunosa shows, with regard to the structure of the pars ineisiva of the cosale, a type quite different not only from E. Chierchiae, described below, but from all the forms hitherto known in the family Halocypridue. (5. W. MüLLER's reproduction and description of this organ are, however, so incomplete and indistinct that I did not thinkitrighte teryanyatemtiontothis information in working out the gemus and sub-family diagnoses.

Relaltons: between

1 atm anmewhat douhtul :thout the homologization of the masticatory pad and the oval
 compespond to the masticatory pad + the part survemeded by the hristes and hairs or only to the former in the erems 'omethercia? And in the latter ease does the part suromeded hy the hristles and hairs in the lattor gemse correspond to the wal easity in buconehocia? It does nut soem possible at present to amswer these questions with full certainty.

Euconchoecia Chierchiae G. W. Müller.

 P'eraconchore ia whonga. P. 'T. ('LEAE, 1900. p. 40.

\% .. $\because \quad$ (part.). (i. IV. MitlaER, 1912, p. 96.

Description: - Il alo:-
Shell: - Length. $1.15-1.25 \mathrm{~mm}$. Length : height about $2: 1$: length : breadth about 2.3: 1. Neen flom the side (fig. 1), it is moderately elongated, with its greatest leight somewhat in front of the middle and the anterior part of the shell somewhat, though rather slightly, larger than the posterior part. The ventral margin is moderately strongly and uniformly curved and passes without comers into the anterior and posterior margins. The posterior margin is also uniformly and moderately couved; it forms an angle of about 90° with the dorsal margin. At the posterior dorsal corner the right valve is in most cases* armed with a moderately long narrow spine, more or less pointed distally. The left valve is more or less rounded here, armed in most cases with a very small spine (fig. 4); the latter is sometimes quite absent, however (as in fig. s of the female): in exceptional (ases (cf. p. 754 below) both valves have a well developed spine in this corner. The rostrum points almost straight forwarl; it is rather broad and symmetrical (fig. 5). The shoulder vault is rather small. well rounded, not wing-shaped. Seen from below (fig. 2), the shell is somewhat lentil-shaped, with its greatest breadth somewhat in front of the middle and its anterior part distinctly larger than the posterior part: it is rather broadly rounded anteriorly and grows narrow rather rapidly posteriorly, where it becomes pointed: the side-contours are rather evenly curved. In the specimens investigated by me the surfare of the shell had no perceptible sculpture and no hairs. There are no signs of a hinge-socket or a hinge-tooth postero-dorsally. Scen from inside: The selvage* is very narrow and extremely difficult to verify with rertainty; as far as I could wherve it had a whole margin throughout its length, even on the rostrum. The lamellae of the shell are exceedingly thin: the part at which they are joined is narrow.

First antenna (fig. 12): - The first joint has disto-ventrally a rather large, verruciform, rounded process. (A process of about the same kind is found in all the males of this genus in which this antenna is known: is it a generic character?) The fourth joint has ventrally somewhat more than twenty ($21-24$ found) sensory bristles. arranged in three longitudinal

rows situated close together, from seven to nine in each row; in the specimens investigated by me the number in the inner row was always seven. The hagth of these bristles is somewhat less than or equal to the total length of the first and second joints. The longest of the bristles on the end joint is about twice as long as this limb, the next longest is about a third or somewhat more shorter than the fomer one. The middle of the three shorter ones is about as long as the total length of the two proximal joints of this antena: The ventral one is about half this length, the dorsal one still somewhat shorter. The dorsal one of the three shorter of these bristles has in most eases short, fine hairs, the others are bare or almost bare. For the chitinization of the fourth joint see p. 739 above. All the joints are quite bare.

Second antenna: - The protopodite is about $1 / 2 \mathrm{~mm}$. long. Fxopodite: The proportion between the length of the protopodite and that of the exopodite is about 5 to 3 . The proportion between the length of the first joint and the total length of the eight distal joints is about 2 tol 1 . The elghth joint is well developerl, about as long as the next preceding joint. The first joint is bare; its ventero-tistal bristle is of the ordinary type, more or less straight, about as long as the total length of the two or three following joints, very weak and bare. The natatory bristles on the seeond to the eighth joints are all of about the same length - the distal ones are only slightly shorter than the proximal mes - about a quarter to a third longer than this branch. They agree with each other in their type as well; the distal part, about a fifth to a seventh of the length of the bristle, is bare and hyaline, butonly very slightly or not at all lancet-shaped (sensory organ); proximally of this part the bristles are furnished with compratively long natatory hairs almost right down to the base. The end joint has only two bristles. The ventral one of these is about as long as this branch and is of the same type as the natatory bristles on the preceding joints; the dorsal one is short, abont as long as the total length of the three to five distal joints, and bare. Endopolite (figs. 21 and 22): The at and b-bristles on the first joint are bare, comparatively short and weak; the longer one is about as long as or somewhat longer than half the length of the second joint, the other is about half as long as the longer one or somewhat more. Seeond joint: This is about half as long as the first joint, rather powerful and somewhat rounded on the right endopodite, somewhat more oblong on the left. This joint has a romuted or somowhat broadly conical smooth verruca anterodistally; this veruca is rather powerful on the right, rather small and weak on the left endupodite. Of the f- and g-bristles one is about as long as or somewhat longer than the shell. the other is about a third of this length or somewhat more: they are both rather powerful proximally and hyaline distally, narmow and bare or sparsmy furnished with short hairs. The end joint on the right endopodite is rather narrow, and is about equally thick throughout its length: it forms an acute angle. its proximal shank being more or less straight, its distal shank, which is somewhat longer than the proximal one, is eventy curved; it is distally rounded and has a bew rather powerful transverse ridges. ()f its three bristles one is short, about as kong as the with of the joint, and bent inter a hook; the two others ate moterately long, ome abont ats long as the proximal shank of the joint, the other about twice as long or somewhat mere. All these three bristles are have and narow, somewhat flattemed distally. On the left modepodite this joint is about as long as the proximal shank of the end joint on the right endopotine: its bistles tow haw the

Fig. CXLVIII. Euconchopcia Chierchiae G. W. Milien. - 1. Shell seen from the side, Ji; fit X. 2. Shell seen

 Hart of the shell sem from inside. $\frac{\text { f }}{}$: 13 ' \times. 10 . Upuer lip and the left paragnate seen from the side, $8 ; 186 \times$.

same proportions. Pilosity: On the anterior side of the first joint of the endopodite there are exceetingly short hairs more or less abundantly. Otherwise this branch is bare.

Mandible (fig. 20): - Protopodite: Coxale: The toothed edge of the pars incisiva has twelve or thirteen moderately large, simple, smooth, triangular teeth, of which the two anterior ones are rather considerably larger than the others (fig. 15). The distal tooth-list, which is only slightly narrower than the toothed edge of the pars incisiva, is furnished with twelve to fourteen teeth. Of these the two posterior ones are very large, tusk-like and smooth; of the others, all of which are simple, smooth, triangular and moderately large, the most anterior one is often the largest (fig. 16). The proximal tooth-list is very narrow, being only about a thide of the width of the distal tooth-list, and is attached at or somewhat behind the middle of this; it consists of from five to eight moderately large or small, smooth teeth, usually decreasing in size the more anteriorly they are situated; they vary somewhat in type; cf. figs. 14, 16, 17. (It does not seem impossible that the larger of the two posterior tecth on the distal tooth-list actually belongs to the proximal tooth-list; cf. figs. 14 and 16.) The masticatory pad is very large, about as wide as or rather slightly narrower than the distal tooth-list, simple, and (when it is pressed beneath the coverglass) ent off distally about parallel to the toothed edge of the pars incisiva and armed with very close, short, fine spines. Somewhat proximally of the masticatory pad there is a large oval cavity with a sharp, raised edge. This cavity is situated longitudinally on and somewhat in front of the middle of the pars incisiva; it is about as long as the width of the masticatory pad, is smooth inside and is furnished posteriorly on the outside with close, short: fine spines; near the edge of the cavity there are also rather numerous moderately long, fine spines. In addition this cavity has on the inside of the posterior edge a dense row of eight to ten smooth, usually simple, lancet-bristles of moderate size (see p. 583 above, under the special terminology for the genus Halocypris); these lancet-bristles can be opened out like a fan (see fig. 18 and (t. W. MĽller, 1890 a, pl. XXVIII, fig. 10); when pressed together they go down into the cavity (see fig. 14). Basale: The six teeth on the distal edge of the endite are all of about the same width; most of them are furnished with comparatively strong secondary teeth; the anterior one or the two anterior ones of these teeth are rather low, with little or eren no difference between the main point and the secondary teeth. The anterior one of the two processes situated posteriorly on this edge is a very short and bare tube-bristle; the posterior one is dagger-shaped and fumished in most cases with more or less powerful secondary teeth. The single tooth on the outside of this endite is situated proximally of distal teeth nos. 2 and 3 (comnting from in front), is of about the same size and strength as the distal teeth and is in most cases serrated on the anterior elge. The bristle on the anterior edge of this endite is about as long as the distal edge of the endite. The three other bristles on this process are about two or three times as longas the bristle just mentioned and are situated somewhat proximally of and behind it. All these four bristles have short, fine hairs, almost bare. Apart from these this joint has no bristles. The epipodial appendage is represented by a very long bristle*, which is about as long as the auterior side of the two proximal endopodite joints and has sparse, long

[^100]
 inside; the long end brithes of the antematare broken, $3: 260 \%$. 13 . The same organs of the fernale seen from

 15. The tomed mete of the pars imisiva: 1200 . 16 . The fuoth-lists: 1200×17. The moximal tooth-list; $1200 \times$
 $33^{n} \times$. (From spmimens from Cruz lay. Si. Johns.)
hairs. The exopodite is also represented only by a bristle, which is in most cases not quite so long as the epipodial bristle. Endopodite: First joint: This has antero-distally a very short and almost bare bristle, which is often even shorter than in the adjoining figure. It has posteriorly three bristles, which have short, fine hairs, almost bare, and are somewhat different in length, being about as long as or somewhat shorter than this joint. Second joint: Of the three bristles situated antero-distally one is about one and a half times or twice as long as the anterior side of the third joint, one is about as long as the anterior side of the third joint and the third is very short. The longest of these three bristles is furnished with short, rather weak spines, the two others have short, fine hairs, almost bare. (on the posterior side of this joint there is only one bristle, which has short, fine hairs and is about the same length as the end joint. End joint: Of the seven distal bristles on this joint the third (counting from the front) is very powerfnl, somewhat longer than the anterior side of the first and second endopodite joints and furmished with moderately powerful secondary spines. The most anterior one is of the same type as the former one, but is only about half as long. The other five bristles are moderately strong or rather weak, with short, fine hairs or almost bare; the second (counting from the front) and one of the four posterior ones are slightly shorter than the most anterior one; the three others are only about half as long as the latter bristle. Pilosity: Except for the groups of hairs posteriorly on the endite the basale seems to be quite bare; the first and seeond endopodite joints are bare.

Maxilla: - Protopodite: The endite on the procoxale has seven bristles. Of these the antero-inner one and the two postero-outer ones are of the tube-bristle type. The former is moderately long, rather powerful and has two transverse wreaths of long, stiff secondary bristles. The two others, one of which is attached somewhat proximally of the other bristles, are rather considerably shorter and weaker and have short, fine hairs or are almost bare. The four remaining bristles on this endite are rather powerful, pointed, finely pectinated or almost bare, and are of moderate and somewhat different lengths (the proportions are often the same as in the adjoining figure $\mathbf{2 4}$). The endite on the coxale (fig, 25) is armed with thirteen bristles, seven of which are situated on the posterior and six on the anterior process. Of the seven former ones the postero-inner one is moderately long and strong, pointed, moderately strongly pectinated ant is situated somewhat proximally of the others. The one situated next to this is somewhat shorter, but very powerful and pointed; it is weakly pectinated or almost bare. Two bristles are of the tube-bristle type, rather short and moderately strong, bare or almost bare. The three remaining ones are all of the same type, pointed and moderately strongly or rather weakly pectinated; the most anterior one is moderately long, but rather powerful, the two others decrease in most eases rather much in length and strength the more posteriorly they are situated. Of the six bristles on the anterior process on this endite the antero-onter one is of about the same type as the postero-inner bristle of the posterior process, but is somewhat shorter and weaker; three are of about the same type and size as the next posterior bristle on the posterior process. the two remaining ones are tube-bristles and of about the same type and size as the tube-bristles on the posterior process of this endite. The basale (fig. 26) has a single short-haired or almost bare tube-bristle, the point of which almost reaches the distal

Fig. CL. - Eucunchoecia rhierchae (i. W. Muller. - 21 and 22. Endopodite of the right and left second antema (the three longest bristles are broken) seen from inside, $\overrightarrow{0} ; 382 \times$. 23. Endopodite of the left second antenna (the two longest bristles are broken) seen from inside, $9 ; 382 \times$ 。 2 . Endite of the procoxale of the right maxilla seen from inside and behind, \circ; $1350 \times$. 25. Endite of the coxale of the right maxilla seen from outside and behind, of $1350 \times$. 25. Basale + entopodite of the right maxila, seen from inside, 으응. (From specimens from Cruz Bay, St. Johns.)
boundary of the first endopodite joint. Endopodite (fig. 26): The first joint has along its anterior edge a sparse row of five long bristles, differing somewhat in length, the longest being somewhat longer than this joint, the shortest about as long as the width of this joint; they all have short, fine hairs, almost bare; the distal one is in most eases of the tube-bristle type, the others are pointed. On the posterior edge of this joint there are three bristles, situated at some distance from each other somewhat distally of the middle of this joint; they are of somewhat different lengths, the longest being about as long as the width of this joint, the shortest somewhat more than half of this length; they all have short, fine hairs, almost bare; they are either all well pointed or one or two of them are of the tube-bristle type. The inner bristle on this joint is very much displaced posteriorly, and is situated close to the three posterior bristles; it is about as long as the shortest of the three just mentioned and has short, fine hairs; it is usually of the tube-bristle type. The end joint is comparatively short and thick, only about as long as half the middle breadth of the first endopodite joint. It is provided with six distal bristles; this is noteworthy, as the other species of this sub-family that are dealt with in this work have only five bristles on this joint. Of these bristles the anterior and the posterior ones are rather strong, the others are moderately strong or rather weak; the anterior one is about as long as the anterior side of this joint, the posterior one is in most cases not quite twice this length. The rest vary somewhat in length, the longest of them being in most eases about as long as the most posterior one, the shortest about as long as or somewhat shorter than the anterior one; they are all finely pectinated or almost bare; some of them are of the tube-bristle type (there is variation in this last character). Pilosity: A couple of transverse rows of rather long, stiff hairs are found on the two endites. A collection of similar hairs is also seen on the inside of the first endopodite joint, anteriorly at about half-way along the joint. In addition the end joint has a transverse row of similar hairs on the anterior side about half-way along the joint. It is to be noted that the first endopodite joint has no spines at all distally on the inside.

Fifth limb (fig. 27): - The protopodite is unjointed. On its first endite there are two bristles. the proximal one of which is a short and short-haired tube-bristle, the other being about as long as the breadth of this joint (calculating from front to back); it is armed at the middle with numerous rather long, stiff secondary bristles, has short hairs distally and is pointed. On the second endite there are three bristles, two of whieh are of the same type and about the same length as the short tube-bristle on the first endite, the remaining one being of the same type and about the same length as the long bristle on the first endite. The epipodial plate has only four bristles in the middle group. Endopodite: This has constantly eight bristles. Two of these, one situated proximally on the anterior side of the process close to the protopodite and one situated ventrally near the exopodite, are of the same type and about the same length as the long bristles on the endites of the protopodite. The others have short, fine hairs, almost bare, and are of different lengths: one of these, situated disto-ventrally on the process, is somewhat shorter than the two former, and rather powerfu\}, the one situated close to this is of the same type but only about half as long, one is about as long as the longer of the two powerful ones, but is weak, the others are more or less short and often of the tube-bristle type. Exopodite: First joint: This has usually five, in exceptional cases four, short-

Fig. CLI. - Euconchoecia Chiprchiae G. IV. Müller. - 2\%. Left fifth limb (except the epipodial appendage) seen from inside. 0 : $337 \times$. 28 . Right sixth limb (except the epipodial appendage) seen from outside, "ot; $292 \times$. 29. Right sixth limb (except the epipodial appendage) seen from inside, $\%$; $450 \times$. 30. Furca, 0 : $225 \times$. 31. Penis, seen from insidr: $210 \times$.32. Distal part of the penis, seen from outside: $555 \times$. (From specimens from Cruz Bay, St. Johns.)
haired bristles ventrally. Most of these are usually of the tube-bristle type and are about as long as the proximal height of this joint; three (two) of these are situated about half-way along the joint. the two others are placed distally. Laterally at about the middle of this joint there are two bristles, of about the same length as the former ones, but with long, soft hairs, and short hairs distally; they are pointed. The bristle situated dorso-distally on this joint is very long, being about as long as the total length of the first and second exopodite joints; it has short, fine hairs and is pointed. The three bristles on the second joint have short, fine hairs. The two ventral ones are subequal, somewhat more than half the length of this joint. The dorsal one is about as long as this joint. The dorsal one is usually pointed, the ventral ones usually of the tube-bristle type. End joint: The middle one of the three bristles is rather powerful and about as long as the total length of the two distal exopodite joints; it is finely pectinated; its point is in most cases of about the type reproduced in fig. 28 of Conchoecia symmetrica. The two others are somewhat shorter and weaker and have short, fine hairs; they are of the tube-bristle type or are pointed. Pilosity: Proximo-anteriorly on the protopodite there are groups of short, fine hairs; the first exopodite joint has groups of soft hairs, principally proximo-ventrally and dorsally, but sometimes medio-distally as well.

Sixth limb (fig. 28): - This is large and powerful and has a very powerfully developed musculature; it is used as an auxiliary organ in swimming: The protopodite is unjointed. Endopodite: This is quite joined to the protopodite; its special musculature has quite disappeared. It has two short-haired, pointed bristles, one of which is about as long as the width of the protopodite (calculating from front to back), the other is often only about half as long; both are attached antero-ventrally on this part. Exopodite: First joint: Scattered along the ventral side, somewhat medially, there are five bristles of the same type as the two just mentioned, about as long as or rather slightly shorter or longer than the proximal height of this joint. Laterally at about the middle of this joint there is a single bristle of the same type and about the same length as the ventral bristles. The dorso-distal bristle on this joint is bare or almost bare, pointed, and about as long as or somewhat shorter than half the length of the second exopodite joint. Second joint: Ventrally at or somewhat in front of the middle there are (contrary to all the other species of this sub-family known to me) two subequal, bare or almost bare, pointed bristles, one situated somewhat distally of the other, in most cases not quite half the length of this joint. Third joint: The two bristles are bare or almost bare, pointed and subequal, almost as long as this joint; they are situated somewhat in front of the middle of the joint. The three bristles of the fourth joint are subequal and all of the same type; they are about as long as or even somewhat longer than the exopodite; along the distal two-thirds of their length they are furnished with rather long natatory hairs, and are evenly and rather strongly eurved ventrally (when in a state of rest these three bristles point dorso-posteriorly; their points are often visible at the postero-dorsal corner of the shell; it ought perhaps to be pointed out that these three bristles do not change into sensory organs distally). Pilosity: Anteriorly on the protopodite and the endopodite there are a rather sparse number of rather short, soft hairs. On the first exopodite joint there is a group of similar hairs proximo-laterally, somewhat ventrally.

Sobenth 1 m b: - - The longest end briste is abont a quarter of the length of the shell. The emd joint is furnished with short, fine hairs.

Ponis: - This has a marked -shape. The part proximally of the contraction is amost as large ats the distal part. It is monded distally. There is no copulatory appendage. For further details see figures 31 and 32 .

Fure: (hig. 30): - This has seven claws: the armature of the daws is very weak. Between the first and second chaw a romded, werrueiform process seems always to be developed. Behind the chaws there is always an mpared bristle, about as long as or somewhat shorter than the posterior chaw. The lamedlae are fumished with gromps of rather short, stiff hairs, in most atases on both the medial and the lateral sides.

The rod-shaped organ is pointed distally (sometimes it has two points) and reaches about as far as the dorso-distal boundary of the third joint of the first antema (fig. 12).

Upper lip: - This projects rather decidedly and is rounded anteriorly. It is prorided anteriorly with two low, rounded protuberances, one on each side, at some distance from the middle line (one of these protuberances is indieated in the adjoining figure 10), but apart from these it is smooth. The glands of the upper lip open out on two moderately large and somewhat rounded fields, one on each side, at some distance from the middle line and from the posterior ventral edge of this lip (one of these fiedds is shown by a weakly undulating line on the adjoining fig. 10). The posterior ventral edge of the upper lip is rounded (see fig. 11); its combs project rather decidedly and are furnished with numerous rather fine hairs. No glands have their exits on these combs. The part between these combs is about as broad as pach of the latter and is weakly and uniformly convex.

The paragnates are of abont the type reprodnced by me for Conchoccia rotundata, p. 650 above. The ehitinous lists behind the lower lipare of quite the same type as is reproduced for Conchoecia symmetrica.

Female: -
Shell: - This differs rather considerably from that of the male. Length, 1,10 to $1,3 \mathrm{~mm}$. Length : height about $2,3: 1$; length : breadth abont $2,75: 1$. Seen from the side (fig. 6), it is elongated, with its greatest height at about the middle and the anterior and posterior parts of about the same size or the posterior part slightly larger than the anterior part. The ventral margin is like that of the male; the posterior margin, which is somewhat more weakly curved than in the male, forms, together with the dorsal margin, an angle that is rather considerably less than 90°. The posterior dorsal comer is of the same type as in the male, i. e. the right valve is always furnished with a spine, the left valve has in most cases an extremely small spine, which is sometimes quite absent (cf. fig. 8). The rostrum is bent somewhat more ventrally than in the male, and is rather narrow and unsymmetrical; the left rostral process is longer than the other and is drawn out distally in a more or less long point; asymmetry varies somewhat; it is seldom more distinct than in the adjoining figure 9, sometimes it is rather weak. The shoulder vault is not distinct. Seen from below (fig. 7) the shell is lentil-shaped, with its greatest breadth at or just behind the middle, the posterior part slightly or not at all larger than the anterior part, with pointed anterior and posterior

Digitized by Microsoft ${ }^{\circledR}$

ends and weakly irregularly curved sides. The surface of the shell, hinge of the shell, selvage and lamellae of the shell are similar to those of the mate.

First antenna (fig. 13): - The boundaries between the original first and second, second and third, and thind and fourth joints are developed rather distinctly, and, at least sometimes, traces of the boundary between the original fourth and fifth joints can be found. The bristles on the original forth joint are ahmost as long as the total length of the three proximal joints (only slightly shorter than in the male); the number found was $21-23$. The original fifth joint has four bristles of different lengths: the longest one is in most cases somewhat shorter than the sensory bristles of the fourth joint, the shortest is a bout a third of the length of the longest one: there are sometimes a few short hairs distally on the longest one, the others are most frequently bare; the longest one is perhaps somewhat more powerful than the bristles of the original fourth joint, the others are weak. All the joints are quite bare.

Second antenna (fig. 23): - The proportion between the protopodite and the exopodite is about the same as in the male, but they are somewhat smaller, the protoporlite being only about $0,4 \mathrm{~mm}$. long. Endopodite E : This is also somewhat smaller than in the male. The bristles of the first joint are of the same type and relative length as in the male. Second joint: This is somewhat less than half the length of the first joint. The distal verruca that is characteristic for the male is absent. The longest of the f - and g -bristles is about half as long as the shell or somewhat more (it measured $0.55-0,7 \mathrm{~mm}$.), the other is about a third or somewhat more of this length; both are narrow and have short, fine hairs, almost bare. To the original third joint corresponds an exceedingly small verruca, situated at the place corresponding to that of this joint in the male; it is not bounded off from the original joint. It has only one bristle, which is of about the same type and relative length as the longest bristle on the end joint of this branch in the male. The endopodite is bare.

Mandible: - This is quite similar in males and females or at any rate dimorphism is scarcely perceptible. The only difference I could observe in the specimens investigated by me was that the four bristles on the endite of the second protopodite joint were perhaps somewhat longer in the males than in the females.
sixth limb (fig. 29): - This is rather considerably smaller and weaker than that of the male; the musculature especially is considerably more weakly developed. In order to show the state of affairs with regard to size it may be pointed out that the male exopodite of this limb is about twice as long as the female one (exchuding, of course, the end bristles). The endopodite is rather well marked off from the protopodite. (I cannot say anything about the musculature because of the bad state of preservation of the material.) The bristles are similar to those of the male. Rxopodite: This has the same number of bristles as in the male. First joint: The five ventral bristles are in most cases subequal and relatively about as long as or somewhat longer than the corresponding bristles in the male: their length varies, however, to some extent. Three of them are in most cases of the same type as those of the male, two (in most cases nos. 3 and 5 , counting proximally (listally) have long hairs at the middle. The bristle at the middle of the outside of this joint is of about the same type and length as the two bristles just mentioned. The dorso-distal bristle, which has short, fine hairs,
is about as long as the second exopodite joint. Soworl joint: The two ventral bristles have short, fine hairs and are in most cases somewhat longer relatively than those of the male. Thisd joint: The bristles are like those of the male, with short, fine hairs. End joint: The dorsal one of the three bristles is in most cases about as long as the total length of the three distal joints: the midtle bristle is somewhat shorter, the ventral one is the shortest, being about a third shorer than the dorsal one: these three brist hes are of the same types as the corresponding bristles on the fifth limb. Pilosity: Hairs are developed at the same places as in the male sixth dimb, hat are in most eases somewhat more abundant.

The rod-shaped organ (figg. 13) is of the same type as in the male and reaches to abont the point of the first antema.

Egys: - A particularly interesting point about this species is that the female carries her eggs for a time between the back of the body and the shefl; as has already been pointed out (p. 561 above), this is the only case of care of the brood that has been found so far. (Curionsty enough, it is not mentioned by preceding anthors, althongh they investigated females; this fact has helped to prevent E. ('hierchiae, G. W. Möllent, 1906 a and 1908, from being included in the list of syonyms given above; there were no females in the material of this species investigated by (. W. Mtiller, 1890 a.) Some of the females investigated by me had no egge in their brood-chambers; in others two to seven or even eight eggs were found; the eggs in the brood-chamber were comparatively large; cf. the adjoining figures 6 and 7 .

Remarks: - The form deseribed by me above is either very closely related to the E. ('hierchiae from the coast of Brazil described by G. W. MULLER, 1890 a, or else it is identical with this form. In spite of a number of differences between the original description of this species of (r. W. Mtller's and the specimens on which the description worked out by me above is founded 1 decided in favour of the latter alternative. This was due, first, to the fact that a number of the specimens investigated by me were caught not far from the type-locality of the species just mentioned, and, secondly, to the superficial nature of G. W. Muller's original description, which makes it not improbable that these differences are due to mistakes on the part of this writer.

The following are the main differences between the original description of E. Chierchiae worked out by \mathfrak{G}. W. Müsler and the specimens investigated by me:

Shell: The right valve always had a moderately long spine postero-dorsally in the specimens investigated by me. In C. W. Mctler's original deseription it is stated that a spine of this sort was only found sometimes (five mature males were investigated by this author): „Bisweilen ist der rechte Vorsprung in eine Spitze ausgezogen"; pl. XXVIII, fig. 8 in this work of G. W. Meller's represents a shell with such a spine; in the explanation of the figure this type is described as an ,,abweichende Form". According to this writer's exposition the left valve is never provided with a spine dorso-posteriorly in this species; in addition this species has no selvage: .Saum scheint überhaupt zu fehlen."

First antenna: While the specimens deseribed by me above had somewhat more than twenty sensory bristles on the fourth joint, arranged in three abmost parallel rows, Digitized by Microsoft © ${ }^{(}$
aconding to G. W. Míhber's original description this joint has a somewhat smaller nomber of these bristles (on p. 259 he says .,gegen $20^{\prime \prime}$ and, according to ful. XXVItI, fig. I, there are only fifteen), all arranged in one row. (It is to be noted that in this author's figures of the first antemnae of both E. (therchiue and E. aculenta. 1906 an. pl. XXXII. these sensory bristles are also placed in one row.)

Cf. also the remark under the gemms on p. 739 above for the carity on the second joint of this antenna.

Mandible: According to G. W. Méller's statement of 1894, p. 49. the genus Euconchoecia is characterized by ..eme fast vollständige Rückbildung des Zahnes" on the pars incisiva of the coxate. This statement clearly refers to E. Cherchice. The figure of the pars incisiva of this joint given by this writer (1890a, pl. KXllll, fig. l0) is unfortunately too incomplete and uncertain to allow of a comparison of the development of the masticatory pad in this species. To judge from C. WV. Mituese's origimal description, the development and the number of the bristles are different in E. Chierchiae and in the specimens investigated by me. I need only mention here that in (i. W. MéLLEER's fig. 1, pl. XXVIII, the first endopodite joint las only one bristle on the posterior side and the end joint is armed with five bristles, of which the two longest are subequal and about as long as the total length of the two distal joints.

Maxilla: According to pl. NXVlII, fig. 6, G. IV. Mćller, 1890 a, the end joint on this limb in E. Chicrchiae either has five bristles, three of which are rather long and the two others very short and fine, or else it has only three bristles, in which case the short, fine ..bristles" represent a comple of long, stiff hairs of the kind reproduced above for the form described by me. According to fig. 1 of the same plate, however. this joint has five well-developed bristles in E. Chierehiue. (No better illustration of the uncertainty in this writer's information could be desired.) Other differences in the numbers of the bristles can be found in these figures of E. Chierchice given by G. W. Mowder and the specimens exammed by me. For these I merely refer to a comparison between these figures and those given by me above.

A number of differences can be found in the following limbs as well.
It is natural that, under these circumstances, the identification was a matter of grave doubt; I even thought it best to add a query.

On the other hand I deeided - though only after rather serious donbt - not to include E. Cherchine, (i. IV. Mulles, 1906a, in the above list of syonyms of the form described by me. This was due especially to the fact that in the above-mentioned work G. IV. Mitler himself expressed a supposition that in this case he had been guilty of combining two very closely related forms; he writers as Follows, p. 128: „Ich habe geglant, die verschiedenen Fomem, welche sich durch die Ausbildung der S'pitze der rechten Schale unterscheiden, als verschiedene Arten unterscheiden zu können, zumal mit der verschiedenen (iestaltung der Spitze Unterschiede in der (iröße Hand in Hand gehen (diejengen mit abgestutzter Spitze sind kleiner), doch hatre ich in Emangelung durchgreifender Unterschiecte von der Aufsteflung besonderer Arten abgeschen." It is, of emuse, impossibte for me to decide whether this suspicion is justified or not. as I have not investigated this material, but it does not seem impossible that it is well grombled: this idea is supported, among other things, be the great variation in the length of the shell:
1.1.i-1.0is. $\quad 1.1 .5-1.4,5$ man. There is, in addition, the liat that this description of
 atho that there are a number of diflerences betwern this deseription and the sperimens investigatel hy me. 'This is shown bey ampatison between (i. II. Mowders pl. XXXII, fig. 9, the shedl of the femate seen from the side, and my fig.t.

For these reasons I ako thomght it best not to inchude in this list E. ('herechiue, (i. W'.
 of the sperimens that were eaught.
 IVh:R-sid, is based on a re-examination of the original specimens. (.J. G. ANmERSison does not seem to have been quite eertain about the correctness of this identification of his, as he had added a fuery on the label: this was not included however. by P. T. (1dELE.) Only two malos were found in the two samples. Of these the specimen from lat. $333^{\prime \prime} 17^{\prime} \mathrm{N} ., \mathrm{long} .74^{\circ} 2^{\prime} \mathrm{IV}$. hat a shell 1.17 mm . long, the specimen from lat. $42^{\circ} 9^{\prime} \mathrm{N}$., long. $42^{0} 15^{\prime} \mathbf{~ W}$. was $1,23 \mathrm{~mm}$. long. The latter specimen was characterized by the fact that the two valves were furnished posterodursally with a moderately long spine: cf. fig. 3. Otherwise they agreed with the wther specimens of this species investigated by me.

Under these circumstances it did not seem convenient to me to inelude E. Chierchione. P. T. (1,EtE, 1904, p. 370 in the list of syonyms given above; this form has no deseription ur verificatory figures.

The inclusion of E. Chierchiue. G. S. BRADY, 1902 a as a synonym of the form described above is the not to any far-reaching resemblance between (i. S. Bhany's description and figures and the specimens investigated by me, but to the fact that the description worked out by me above is based on the same material as formed the basis of this writer's description. (I ramoot understand how V. VAlpa was able to identify this species of G. S. Brad Y's with E. ('hierchuce, (i. W. Mtimer, 1890 a withont a re-examination of the original material.) The following differences are noteworthy: Length of the shell in the female $=0,55 \mathrm{~mm}$. The first antema of the mate has a very long bristle (about as long as the whole antema) dorso-distally on the second joint; the female first intemna also has a bristle dorsally, but this is much shorter than that of the male. (Does this ..bristle" correspond to the rod-shaped organ?) The end joint of the endoporlite of the second antema has only two bristles in the female. The mandible has a longitudinal row of hairs on the first and second endopodite joints (= the exopodite bristle?). The furca has only five chaws. (This is a good illustration of the uncertainty in this writer's method of description!)
V. VÁRA's form E. Chierchiae, 1906, p. 29, has not been included as a synonym, first because the description given by this writer is too uncertain to permit of certain species identifieation, and secondly because there are a number of differences between this description and the specimens examined by me.
P. T. (LETE, in his work of 1905. p. 131. synonymizes Halocypris aculeata, Th. Scofr, 18!4. with Euconchnecia ('herchiue: no reasons are given for this. This symonymization was arcepted be Tu. scomp himself in two later works. 1909, p. 129 and 1912 a. p. 588 ; this anthor Digitized by Microsott ${ }^{\circledR}$
did not give any reason for this procedure, either. Without attaching too great importance to these statements - the writers in question obviously did not possess any very profound knowledge of the systematic value of the different characters in this genus - I wish to point out that the length of the frontal organ in the above-mentioned species of Tri. Scory's, especially in the female, (ef. loc. cit. pl. XV, fig. 33) agrees very much better with the corresponding organ in E. Chierchiac, re-described by me above, than with E. aculeata, (i. W. Müller, 1906 a. The shape of the shell, too, (see TH. Scotrr, 1894, pl. XV, figs. 5 and 6), seems to favour the view of the two first-mentioned writers more than that of (1. W. Meller: But on account of the incompleteness in the description given by Th. Scott it did not seem convenient to include the name Halocypris aculata in the list of symoms worked out above.

Hubitat: - Atbantic Oeean:
S. A. E., Pl. station 23 b, lat. $19^{\circ} 19^{\prime} \mathrm{N}$., long. $36^{\prime \prime} 9^{\prime} \mathrm{W}^{\prime}$; at the surface; 3. X11. 1900 ; temperature, $25,2^{\circ}$ (.$: 2$ mature males; R. M. S. 204 . S. A. E., Pl. station 127, lat. $20^{\prime \prime} 35^{\prime}$ S., long. $37^{\circ} 26^{\prime} \mathrm{W}$.; at the surface; 4. XII. 1901: 1 mature female; R. M. S. 205.

St. Johns (Lesser Antilles), ('ruz Bay; 10. I. 1896; collector: Chr, Levinsen: 19 mature mates, 18 mature females and 47 larvae ($=$ the material examined by (G . S. Bradis, 1902a). Stored in the collections of K. \%/. II.

, $42^{\prime \prime} 9^{\prime} \quad . . \quad . . \quad 42^{0} 15^{\prime} \quad, \quad 17$. III. 1898: 1
$=$ the material of P. T. Cleve's Peraconchoecia oblomye, 1900.
These two specimens are to be fommel in the collections of R. M. S., on slides. It is to be noted that these two stations are sitnated within the region of the Gulf Stream.

Distribution: - Coast of Brazil ($(1.1$. MƯllet: 1890 a).

List of the Tow Net Gatherings of the Swedish „Antarctic" Expedition 1901-03, with the Species of Halocyprids found in each.

Station 19. Lat. $36^{\circ} 13^{\prime}$ N.. long. $17^{\circ} 16^{\prime} \mathrm{II}$.
At the surface. 4. XI. 1901. Temperature $18,5^{\circ} \mathrm{C}$.
Conchoeciu curte .J. Lebbock specimens.
subarcuata С. CLat: 3

Digitized by Microsoft ${ }^{\circledR}$

s仿mulutu 11 .,

spinirnstris 1 .,

cheqans (i. (). sitis 1

.. spimirostris C. (1, \& 1 specimen.

At the sulface. 7. Nh. 1901. Temperature. 21.1" ('.
Halocypris berirostris (J. D. D.INA) 1 specimen.
("onchoecia echmulate (C. (Lals) 8 specimens.
bispinosa C. Clats 1 specimen.
station 33. Lat. $28^{0} 21^{\prime}$ N., long. $20^{\circ} 42^{\prime}$ II.
At the surface. 8. XI. 1901. Temperature, $21,5^{\circ} \mathrm{C}$.
Conchocciar spiniostris. C. Clas 22 specimens.
Station 34. Lat. $27^{0} 49^{\prime}$ N. long. $20^{\circ} 51^{\prime} \mathrm{W}^{+}$.
At the surface. 8. Xl. 1901. Temperature, 21,40 ('.
Conchocciat eleguns (. 0. Sars I specimetn.
curte J. Llibock . 22 specimens.
echinulata (C. (billis) 1 specimen.
Station 4 b. Lat. $25^{\prime \prime} 51^{\prime}$ N.. long. $21^{0} 29^{\prime} 1 /$.
At the surface. 3. X1. 1901. Temperature. $22.50^{\prime \prime \prime}$ (.
Halucypris brevirostris (J. D. DANA) 10 specimens.
Conchopcia canta J. Lı bBOCk 1 specimen.
bispinusa (.. (Lats. 2 specimens.
spinirostris , , 2
Station 38. Lat. $25^{0} 46^{\prime}$ N., kng. $21^{0} 31^{\prime} \mathbb{I V}^{\prime}$.
At the surface: 9. XI. 1901. Temperature, 22.50 5^{0}. ('onchoecia echimulate (C). (Lals)

I specimen.

At the surface. 10. NI. 1901. Temperature, $233^{\prime \prime}(\because$
Halocypris brerirostris (J. D. DMA) 1 specimen.
Conchoeciet oblonge (C. (LLALS) 1
bispinosa C. ('L.AUS . 1
Station 7 b. Lat. $22^{20} 26^{\prime}$ N., fong. $22^{\prime \prime} 45^{\prime} \mathrm{W}$.
At the surfate 11. X1. 1901. Temperature, $23,60^{\prime \prime}($.
IIalocypris brevirostris (J. D. I.ANA) 1 specimen.
Station 45. Lat. $22^{\prime \prime} 8^{\prime} \mathrm{N} .$. long. $22^{\prime \prime} 52^{\prime} \mathbb{W}$.
At the surface. 11. NI. 1901. Temperature, $23,3^{\prime \prime}$ (
Halocypris brevirostris (J. D. DANA) 1 specimen.
Conchoccia elegans (8. 0. Suris 1
spenerostris (${ }^{\text {. }}$ (labls 7 specimens.
Station 8 b (and 46). Lat. $21^{0} 51^{\prime}$ N., long. $23^{\prime \prime} 0^{\prime} W^{\prime}$.
At the surface. 11. AI. 1901. Temperature, $23,21^{\prime \prime} \mathrm{C}$.
Halocypris bretirostris (J. D. Dana) \& specimens.
C'onchoeciut oblonga (C: CLALS) 1 specimen.
curta J. Llвbock \quad. specimens.
bispinosu C. Clatis 1 specimen.
Station 53. Lat. $18^{0} 10^{\prime}$ N., long. $2 t^{n} 28^{\prime} 11$.
At the surface. 13. XI. 1901. Temperature, $23,8^{\prime \prime}(\mathbb{C}$
IIalocypris brevirostris (J. D. DANA) 2 specimens.
Conchoecin spinirostris C. Clalis I specimen.
Station 12 b. Lat. $14^{\circ} 28^{\prime}$ N.. long. $26^{\circ} 1^{\prime}$ II.
At the surface. 15. N1. 1901. Temperature. 25,5" (".
Halocypris brecirostris (J. D. D.NX) 32 specimens.
Ntation $1+\mathrm{b}$. Lat. $122^{0} \supseteq 1^{\prime} \mathrm{N}$., long. $26^{0} 49^{\prime} \mathrm{IV}^{\prime}$.

Maloegpris brecirostris (J. D. DAXI) II speeimens.
Station 18 b (and 8:3). Lat. $1^{\prime \prime} 31^{\prime}$ N., long. $299^{\prime \prime} \mathfrak{I V}^{\prime}$.
At the surface. 22. XI. 1901 . Temperature. $26,5^{00}$ (.
Halocypres brevirostris (J. D. D.INA) :- specimens.
Conchoccia spimirostris (. (Lslls I speciment.
Station 95. Lat. $3^{0} 7^{\prime}$ S., long. $30^{\circ} 5 t^{\prime}$ W.
At the surface. 2.5. XI. 1901. Temperature. 26.30 C.

bispliulosel (! ('1.Alが .

Halneypris berivostris (I. D. DANi) is specimens.
('onchuecial curle d. J. bisock . $3!1$
pchimulate (C'. (LLAs.)

Station 127. Lat. $20^{\circ} 35^{\prime}$ S., long. $37^{n} \because 6^{\prime} W^{\prime}$.
It the surface 4. Xll. 1900. Temperature manown.
('unchoecia spinirostris (. ('LAts................................ \because. specimens.

Sitation li3t. Lat. $24^{0} 21^{\prime}$ ぶ. lomg. $41^{0} 23^{\prime} 11$.
At the surface. 6. X1I. 1901. Temperature, $23,22^{\prime \prime}$ (1
('onchoecia elegans (i. O. Sins 4 specimens.
curta J. LL ввиск 13
spinirostris C. C1ats 1 specimen.
Nation $2 s^{5}$ b, Lat. $2\left(6^{\circ} 58^{\prime} \mathrm{S} .\right.$, long. $44^{\prime \prime} 57^{\prime} \mathrm{IV}$.
It the surface. 8. XII. 1901. Temperature, 220,9 (
('onchoecia curla J. Le bвоск . specimens.
Station 34 b . Lat. $46^{\circ} 45^{\prime}$ s... long. $58^{\circ} 2^{\prime} \mathrm{IV}^{\circ}$.
Depth, 7an-500 m. 28. XII. 1901. Temperature unknown.
C'onchociat eleguns (i. (). Silis \& specimens.
symmetrica (i. II. MüLlek 1 specimen.
hellacra (i. W. Mthati............................ 2 specimens.
Station (it b. Lat. $48^{\prime \prime} 27^{\prime}$ N.. Jong. $42^{\prime \prime} 36^{\prime} 11$.
Depth, 250, 21 m . 23. V1. 1902. Temperature at the surface, $7.9{ }^{\circ}$ (.
C'onchoecial elegans (i. O). Nilis
63 specimens.
Chumi (: II. Mitlek 2

roturduta (I. II. MÜLLEE …...................... 16
Digitized by Microsoft ©
Station 65 b. Lat. $48^{0} 27^{\prime} \mathrm{S} .$, long. $42^{\prime \prime} 36^{\prime} \mathrm{W}$.
Depth, $400-11 \mathrm{~m} .23 . V^{\prime}\left[.1902\right.$. Temperature at $40 \mathrm{~m} ., 3,95^{\circ} \mathrm{C}$.

```

```

Station 66 b . Lat: $48^{0} 27^{\prime} \mathrm{S} .$. long. $42^{\prime \prime} 36^{\prime} \mathrm{W}$.
Depth, 200-0 m. 23. V]. 1!002. Temperature at $2000 \mathrm{~m}, 5,25^{\circ}$ (
('omelnecial elegans (i. O. Sus 4 sperimens.
obtusuta :, var. antarctica (i. W'. MILLLER: . 3
.. rotandata (\%. W. MÖıLER 1 specimen.
,, semplate (. (LAL'S 15 specimens.
Station 67 b . Lat. $48^{\circ} 27^{\prime} \mathrm{S} .$, long. $42^{\circ} 36^{\prime} \mathrm{II}$.
Depth, $100-0 \mathrm{~m} .23 . \operatorname{VY} .1902$. Temperature at $100 \mathrm{~m} .8 .3^{\circ}\left({ }^{\prime}\right.$.
Conchoccia semulata C. CLALS 2 . specimens.
Station 68 b . Lat. $48^{0} 27^{\prime} \mathrm{S} .$, long. $42^{0} 36^{\prime} \mathrm{IV}^{\prime}$.

```


```

Station 345. Lat. $48^{0} 33^{\prime}$ S.. long. $44^{\prime \prime} 28^{\prime}$ IV.
It the surface. $2-4$. VI. 1902 . Temperature, $7.9^{n}(1$.

```


```

Station 347. Lat. $49^{\circ} 33^{\prime} \mathrm{N} ., \operatorname{long} .46^{\circ} 5 t^{\prime}$ IV.
It the surface 25. VI. 190 2. Temperature, 4,5" (${ }^{\circ}$.
('onchoeriat elegans (x. (). SAls 1 specimen.
. \quad obusata (i. O. Siden vir. antarction (i. IV. Mitadi z specimens.

```

```

Station 70 b . Lat. $49^{\circ} 50^{\prime}$ N. . lomg. $49^{n} 56^{\prime} 11$.

```



 ..... 1 sperimerin．

Cóaussi（i．II．Milalilk 1 spuccimer．
sorvalula（＇．（＇a．11 ..... \(\because\) sperimens．
 ..... ！
symmetricel（：IV．MíLAJE ..... 18
hellacree ..... \(\because\)
Station－ 11 h ．Depth，500－ 11 m ．
（＇onchoerine elegremes（i．（）．心ARS ..... 15 specimens．
 servilutu（．CLasts． ..... 5
speries indet．，a few juvencs．
ぶation 35\％．Lat． \(51^{\circ} 31^{\prime} \mathrm{S}\) ．，long． \(54^{0} 39^{\prime} \mathrm{W}\) ．

Conchoecia semulate（C．CLasts 3 specimens．
Station 35．5．lat．．510 \(34^{\prime}\) 太．．long． \(53^{0} 15^{\prime} 11\).
At the surface．30．V1．1902．Temperature， \(4,5^{\circ} \mathrm{C}\) ．
Conchoecin serrulata C．CLALs ..... S specimens．
Station 302.1 Lat． \(52^{0} 6^{\prime}\) 太．，long． \(55^{\circ} 32^{\prime}\) II．
Depth， \(500-0 \mathrm{~m} .12\) ．IV．1902．Temperature at 500 m ．and at the surface，\(3,78^{\circ} \mathrm{C}\) ．and \(6,28^{\circ}\)（．resp．C＇mehnecia nbtusata（i．U．Silis var．antarctica G．W．Mithbri．．．aspecimens．semulata（．（＇LALS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 11
N゙tation 301．Lat．520n \(6^{\prime} \mathrm{S}\) ．long． \(55^{n} 32^{\prime} 11\) ．
Depth，100－0 m．12．IV．1002．Temperature at \(100 \mathrm{~m} ., 5,78^{\circ} \mathrm{C}\) ．
（＇onehoecia sermulata C．Clates ..... 31 specimens．
Station 300．Lat． \(52^{\circ} 6^{\prime} S .\). long． \(55^{\circ} 32^{\prime} \mathbb{N}\).
Depth． \(50-1)\) m．12．IV． 1002. Temperature at \(50 \mathrm{~m} .6 .21^{\circ} \mathrm{C}\) ．
Conchopcia sermlata（＇．CLALS ..... 1：2 specimens．
Station 298．Lat． \(52^{\circ} 0^{\prime}\) S．，long． \(55^{0} 32^{\prime} 11\).It the surface．lo．IV．1910．Temperature， \(6,3^{\circ}\)（：


Depth. 50\%-0 m. 17. 11. 190.2. Temperature at 50\% m. and at the surface, \(+1,35^{\prime \prime}\left({ }^{\prime}\right.\). and \(+0,50^{\prime \prime}(1\). resp.

hettacre (1. II. MOLblisi
(i) specimons.
station 61 b . Lat. \(52^{\prime \prime} 39^{\prime} \mathrm{N} .0\) lomg. \(37^{\circ} 355^{\prime} \mathrm{W}\).
Depth. 2000-10 m. 17. V1. 1902. Temperature at 2000 m.. \(+1,30^{\prime \prime} \mathrm{C}\) '.
C'onchoecin hittucrit (i. IV. Mêller
1 specimen.
Station 307. Lat. \(52^{0} 55^{\prime}\) S., long. \(53^{n} 12^{\prime} \mathrm{W}^{\top}\).
At the surface. 14. I \({ }^{\top}\). 1902. Temperature, ( \(5.1^{\prime \prime}\) ('.
Conchoecia servulata C. Clat's ................................... 6 specimens.

Depth, 500 - 0 m .17 .1 N .1902 . Temperature at 50 m . and at the surface, \(+1,50^{\prime \prime}\) ('. and \(3,40^{\circ}\) ( \({ }^{\prime}\). resp.

.. isocheira (i. WF. MČLlen ............................ I specimen.
.. sempluta (. Clusis................................. it specimens.
.. hettucra (土. W. Míllel .............. ............ 15
Station 58 b (and 317). Lat. \(53^{\circ} 0^{\prime} \mathrm{S}\)., long. \(48^{\circ} 27^{\prime} \mathrm{II}\).
Depth, \(2.50-01 \mathrm{~m} .17 .1 \mathrm{~V}\). 1902. Temperature at \(2.50 \mathrm{~m} . .+1.30^{\circ} \mathrm{f}^{\prime}\).

.. ('humi (i. IV. MCleEb .... ...................... is specimens.
,. whusute (i. (). Suns var. antarctica (i. WV. MïLber 1 specimen.



Station 57 b (and 316 ). Lat. \(53^{\prime \prime} 0^{\prime} \mathrm{S}\). long. \(48^{\prime \prime} 27^{\prime} \mathrm{W}\).


1 specimes.

,. hettacra (i. II. Milleke
1 specimen.
Station 56 b (and 315). Lat. \(23^{\prime \prime} 0^{\prime}\) \&.. long. \(48^{\circ} 27^{\prime} \mathrm{II}\).
Depth, \(50-0 \mathrm{~m} .17\). IV. 1902. Temperature at \(50 \mathrm{~m} .0 .3 .35^{\circ} \mathrm{C}\)

Ntation 314. Lat. \(533^{\prime \prime} 0^{\prime}\) s., home. \(18^{\prime \prime} 2 \sigma^{\prime}\) IV.
At the surface. 17. 1 V '. 190 . 2 . 'Temperature. \(3.38^{\circ}\left(^{\circ}\right.\).




















    It the surliace. 3. IIl. 1!tiz. T'emperatures. s.tio \(C^{\circ}\).

    Siltion 214 . Lat. \(57^{0} 9^{\prime} 太\)., long. \(60^{0} 25^{\prime \prime} 11\).
        It the surface. 7. 1. 1902 . Temperature, \(6^{\circ} C^{6}\)

sitation 42 b. lat. \(65^{\circ} 49^{\prime} \mathrm{s} . . \operatorname{long} .58^{\circ} 40^{\prime}\) II.
        1)epth, \(2.50-0\) m. 18. J. 1902. Temperature at 250 m. and at the surface, - 1,35\()^{\prime \prime}\left({ }^{\circ}\right.\).
            and \(+1.10^{0}\) ( \({ }^{1}\). resp).

Station 44 b. Latt. \(65^{\circ} 56^{\prime} \mathrm{B}\) 。 \(\operatorname{lomg} .54^{\circ} 35^{\prime} \mathrm{IV}\).

            ("onchopcia isocheira (i. IV. Jlillpi: ........................ \& specimens.
                        hellacri .. .. .. ........................ 1 specimen.

\section*{Sub=Order III. Polycopiformes.}

\author{
 \\  \\  \\  \\  \\ 
}

\section*{Family Polycopidae.}

\author{


}

Diagrosis: - Sore sub-ordo Polycopiformes.

\section*{Genus Polycope G. O. Sars.}

Dingmasis: - Bere (I. IV. Mítarad loce rit.
Remarks: - Is I had only a single speries of this genus at my disposal and as most ol the other species are described in an incomplete and uncertain manner, it did not seem to me
 the same reason I have not worked out a deseripetion of this family:

\section*{Polycope setigera n. sp.}

 the midelle of the anterion side. Sepafonm botow it is lentil-shaped, about the same as



 p. 233 . being situated lateratly of the later. The proportion between the joints is about as follows:

Ther first joint has mu histles. It the midate of the dorsal side of the seeomed joint there is a -hort-hatere or almost bare bristle, wheh is about half as long as the dorsal side of this joint. The thind joint has dorsally a plumous bristle, which is somewhat longer than this joint. The ond joint has five narmw natatory hristles. the four longest of which are about twice as long as this limb, the remaining one about a third shorter: they are all furnished proximally with rather Short natatory hains and are bare distally. The wall of the second joint grows very much thicker dorsally, distally of the bristle. Pilosity: The first joint has some obligue longitudinal rows of short fine hairs on the inside. Second joint: Broximatly of the bristle this joint is furnished dorsatly with a dense mass of rather long hairs and has moderately long hairs seattered medially. Distally of the bristhe this joint is fumished with short. stiff hairs, placed close together dorsally: similar hairs are also found along the distal edge of this joint. There is a collection of rather long habrs ventrally on this joint just in front of the point where the hristle is fixed. The thire joint has short, time hairs ventrally.

Necond antonna: - Protopodita: This is about a quarter of the length of the shell and is of the type reproduced by (. W. MolluER, 1894, pl. 7 , fig. 5 ; it has mo bristles or appendages. Exopodite (see the appended fig. 3): This is somewhat more than half the length of the protopodite and is of about the same type as in the figure of G. W. Mutleb's just mentioned. It has nine joints; the first joint is not quite so long as the total length of the right following joints. Unlike in the ('rpridinids and Halocyprids, there is a long natatory bristle ventero-medially on each of the first eight joints (the branch in thought of as pointing forward as in fig. 6. pl. 7. (i. WV. MC'LLEE, IS94): these bristles are fumished with more or less long natatory hairs along the greater part of their length (they have no spines, unlike in a number of ('ypridinids); the distal part of these bristles is not widened or specifically differentiated in any other way. The bristles on the first to the eighth joints are subequal, about as long as or even somewhat more than twice the length of the protopodite. The end joint has three bristles. The ventral one of these three is about two and a half times the length of the exoportite: one of the two others is about as long as this branch, the other is about as long as the total length of the 3 -. distal joints. The shortest of these three bristles is almost bare, the two others are fumished with rather shor matatory hairs. At the middle of the inside there
is a spine on the distal edge of the first to the seventh joints; on the first joint this spine is moderately large, on the lollowing ones it decreases gradually in strength the more distally it is situated. All the joints are bare. Endopodite (see the appended fig. 4): This is somewhat more than half the length of the exopodite; it has three joints, all of which are distinctly developed. The first joint is from three to four times as long as the second joint, which is some-










 -homeres. Ill the joints are hare.

 there rather distinet joints. The procoxale has no bristle or endite. The coxale is developed comrally as a long. powerful endite which is furnished distally whth thee powerful pointed teeth, with al smatler terth of the same kind between the two anterior ones. and two shothated hristes. ond of whelh is about as hong as the kare berth, the other exeredingly short. At the madthe of the pesterion side of this malite there is, in addition. a mather shor bristle with short hairs. Basale: This is somewhat swollen ventrally and is there lumished with four suberual bristes. Which are phomons at the middle and have short hairs distally; these bristes are about as hay as the height of this joint. Somewhat in front of and dorsally of the midde this joint has on one side a rather short phomous bristle as wetl. Exapodite: There are indications of a division into two joints. The proximal joint has a single bave bristle domedistally, which is atheut as long as this joint. 'The distal joint is narow and revindriat and has mo bristles. Findopodite: This has two joints. The first joint has rentrally at and somewhat proximally of the middle thee suberpal bristles of about the same type as the rentral bristles on the basale and about as kong as or rather slighty longer than these. Dorso-distally on this joint there aro two suhergal bristles of about the same length as the whole of this limb; these bristles are furmished proximally with rather long hairs (these hatis are mumpors, espercially (on the anterior side of the anterion one of these two bristles) and have shom hairs distally. 'The and juint is extremely small and is furnished with two suberpual bristles of abont the same type and length as the rentral bristles on the first endopodite joint. Pilosity: On the posterior side and distally on the cmate of the coxale there are short, stiff hairs, situated rather close together. Donsally on the distal joint of the exoporlite there is a collection of rather long, fine hairs. The first endepodite joint in also furnished with hairs, some on the side and some ventrally-proximally.

Maxilla (see the appended fig. 6): - This is of about the sametype as in Polycope frequens (i. W. Jithbilk: see this writer. 1894. pl. 7, fig. It. Protopodite: This is Astinctly three-jointed: all the joints are strong and of about the same longth. Procoxale: Vintrally-medially-distally this has a rather weak endite, armed with five bristles of somewhat different lengths. the longest one being somewhat shorter than the height of this joint, the shortest about a third of this lengtly; they are all furnished with fine and rather long secondary hristles, situated cluse together. Ventero-distally on this joint there are also three bristles of abont the same type and length as the longest ones on the above-mentioned endite. Apart from these this joint has no bristles. Coxale: This has two very weak andites ventero-medially. ()n the proximat endite there are four long-haired bristles: the two proximal one of these bristles

\section*{Digitized by Microsoft \({ }^{\circledR}\)}
are somewhat longer than the height of this joint, the two others are only about half as bong. On the distal endite there are only two bristles of about the same type and length as the two distal bristles on the preceding endite. In addition there are on this jeint. ventrally of the distal endite, two tong-haired subequal bristles. which are about as long as the total length of the coxate and the basale. Basate: This has only two bristles. both with long hairs and sitmated ventrallydistally: one is about as kog as or somewhat longer than the two bristles just mentionet, the other is about a third or a half of this length. Exopodite: About as long as the coxale. rather narrow and unjeinted. It has nine bristles distally, of different lengths, the longest one being about as long as this limb, the shortest about hatf as long. A number of these bristles have rather sparse moderately long senondary bristles, others are more or less completely bare Endopodite: This has three joints; the first joint is about as long as the basale, the secont joint is about half as long, the end joint is very small. The first joint has at about the midule of the central side a long-haired bristle which is about as long ats the total length of the basale and this joint. Second joint: This has two bristles dorso-distally. which have long hairs at the middle. One of these bristles is about as long as the basale and the endopodite together, the other is about a quarter of this length. Ventero-distally this joint has three long-haired bristlos of different lengths: the longest one is almost as long as this limh. the shortest one is only about half this length. The end joint has four bristles: two of these are about as long as the total length of the basale and the endopodite, the two others are somewhat longer; these four bristles are furnished with a few long secondary bristles at the middle but are otherwise bare. Pilosity: The basale is somewhat hairy ventrally. The exopodite has two transverse rows of rather long hairs dorsally. The first endopotite joint has three similar rows dorsally.

Fifth limb (see theaccompanying fig. 7): - This is of about the same typeas in Polycope
 and foliaccous; it consists of two joints, the proximal (me of which, (the procoxale + ) the coxale. is about spuare and is somewhat larger than the triangular basale. The coxale has no endites. somewhat distally of the middle it has two short bristles with Jong hairs. Distally-medially there are two short bristles, one of which has short hairs, the other being bare. Ipart from these this joint has no bristles. Basale: Just proximally of the exopodite there are on the outside edge three long-haired bristles, one of which is about as long as this joint, the two others somewhat shorter. On the imner edge of this joint there are four bristles, three in a group somewhat distally of the middle and one distally. The distal one of these and one of the three others have long hairs and are about as long as the two shorter ones on the outer edge of this joint. the other two are short, one bare, the other phmons. The epipodial appendage, which is attached along the whole coxate, is furnished with eleven or twelve marginal bristhes, all of which have long hairs, phaced dose together in the shape of a feather. The exopodite is somewhat displaced proximally, rather small, unjointed, and has five distal long-haired buistles of different lenghth: the shentest one is ahmest as long as the basale, the longest one is about twice as lomg as the shortest one. The endopodite is somewhat smather than the exopodite and has signs of two joints. It has only one bristle. Which is sitnated distally and is of about the same length and type as the shortest bristle on the exoporlite. Pilosity: (on the




imer edge of the coxale there are three groups of stiff hairs. Distally on this joint there is, in addition, an oblique transverse row of fime hairs. On the inner edge of the basale there are stiff hairs, situated close together. Apart from these there are rather numerous hairs scattered on this joint. The exopodite is bare, the endopodite is hairy.

Firrea (see the appended fig. 8): - This is almost exactly of the same type as in the species just mentioned; see G. W. Moller, 1894, pl. 7. fig. 24. It las consequently seven moderately long and strong claws, which decrease miformly in size the more posteriorly they are situated and are all well marked off from each other. The pectination of the claws is uniform. Between all the claws there is a triangular process, the one between claws no. 1 and 2 being rather large, the others decreasing in size and strength posteriorly; the posterior one is quite small. There is also a little spine behind the posterior claw. The larger ones of these processes are furnished distally with a collection of fine hairs. In front of claw no. 1 there is a triangular pointed process, abont as large as or somewhat larger than the process between claws nos. 1 and 2 . On this spine there is a series of rather strong small spines, which continue some distance up on the lateral side of the lamella. On the inner side the lamella is partly furnished with short hairs. Just behind the claws there is an unpaired process (the end of the body) with a single bare bristle, somewhat shorter than the posterior furcal claw.

Dorsally of the furca there are on the back some transverse folds furnished with a series of fine, stiff hairs.

On the front at the same place as the rod-shaped organ in C'ypridiniformes and Halocypriformes there is a low swelling, furnished with two long-haired subequal bristles about as long as the dorsal side of the scoond joint of the first antema; see the appended fig. 9 (a character from which this species is named).

The upperlip is rather helmet-shaped (fig. 9) and has some groups of fine, stiff hairs.
Remarks: - On account of the incompleteness and uncertainty of the descriptions of most species belonging to this genus it is exceedingly difficult to decide with certainty the systematic position of the form described above. It is certainly very closely related to the species \(P\). frequens G. W. MÚLLER which has been mentioned on several occasions above.

The most curious thing about this species of mine seems to be the two bristles on the front at the place where the rod-shaped organ is found in Cypridinids and Halocyprids. As there are a couple of bristles at about the corresponding place in both Copepoda and Cladocera it seems to me not improbable that we are concerned here with a very old character; cf. p. 96 above and (. CLAUs, 1891 a, p. 18.

Habitat: - Monaco, just off the harbour; depth 200 m. ; fine clay; 27. III. 1916: 1 mature female; R. M. S., on slides (auctor coll.).

\section*{Abbreviations.}
```

Exprditions:
E. I. E. = Swedish o,Antarctic" Exjedition, 190t-03.
\therefore. (i. E. - Swedish Greenland Expedition.
\& M. E. - Swedish Marellan (Tiema del Fuego) Expe-
Niti"
S. \&. K. = swedish spitzbergen Lxpedition.
Mtseumes:
B. Z. M. = Bergens Zoolog. Museum.
Clur. 7. M. = Christiania Zoolog. Museum.
k. %. II. = Kjobenhavns Zoolog. Museum.
R. M. ミ. - Riksmuseum Stochholm (Swedish State Museum).
U. M. = Uppsala %oulog. Mus⿱um.
Shell:
c. = edge.
i. l. = inner line.
j. I. = jrining line.
l. = list.
s. = selvage.
s. s. = secondary selvage.

```

\section*{Limbs:}

Ba. - besale.
Co.\(=\) coxale .
\(\mathrm{E} .=\) endite.
E. E = epipodial appondas.

Pr. or Pco. = promale.
Pr. = protopodite.
Re. = exopodite.
Ri. = endopodite.
Other ahbreviations:
ant. = anterior.
ch. l. = chitinous list.
dist. = distal.
dors. \(=\) dorsal.
exl. = exterior.
int. = interior.
m. = muscle.
pert. = posterior.
ventr. = ventral.

\section*{Index．}
aberrata，Asterope；pp．2，468，50＇t， 509. abyssicola，Asterope：pp．2．467．535，539， 510.
aculeala，Euconchoecia：गp．538，239， 753.
Halocypris；pp．75＇． 755.
acuminala，Conchoecetta；p． 1. Conchoecia；p． 1.
．．Cypridina（Cypridina）；p．19：
．．Monopia（Cypridinodes）；pp．33，334．
Adamsi，Cypridina；pp．437，4＇41，fits．
Ileterodesmus：p． 299.
aerpuiseta，Conchoeria；pp．61＇， 615.
alfinis，Copechaete；pp．519， 521.
Agassizi，Asterope；p． 437.
．．Cypridina；pp．4́x．143．
．，Gigantocypris；pu．200， 216.
Alata－group of Conchoecia；p． 229.
allomaculata，Cypridina；p．44．
allotherium，Conchoeria；pp．61＇， 616.
americana，Asterope；pp．437．4＇12．

> .. Pyrocypris; p. 2.
amelra，Conchoecia；pp．129， 131.
amphiacantha，Cypridina（Cypridina）；p． 19 ．
antarclica，Cypridina；1． 265.
\[
\text { .. .. (Vargula) pp. 2. } 266 .
\]
antipoda，Conchnecia；p． 718.
Appeltöfi．Philomedes（Scleroconcha）；pp．36f，367，380，i19． Ar＇hiconchoecia；pp．563，564， 580.
armoricana，Copechacle；pp．488， 490.
Arthuri，Asterope：p．＇if1．
aspera，Philomedes；p． 351.
assimilis，Philonedes：Pp，352，36\％， 413.

Asleropidae：pp．430． 439.
Asleropleron；pp．A＇t2，ití．
asymmetrica，Cypridina；Pp．190，191，33＇．
．，Monopia（Cypridinodes）；pp．333，3\％．
atlantica．Conchoria；pp．576，667．
IIalocypris；pp．3＇，556，681， 686.
 Pairdi，Cypridina；pp．190，191， 33 ＇．
．．Ionopia（Cypridinodes）；p． 3 亿ン．

Belgicae，Conchoecia；p． 733.
hiornis，Halocypris；p．58．3．
bimarulata，Cypris；pp．433．440， 411.
bispinosa，Conchoecia；pp．1，2．616，667．672，674，675．
Bispinosa－group of Conchoccia：pp．667，626， 672.
borealis，Cunchoeria；pl．1，2，554，566，208，213， 714.
antipoda．Conchoecia；p． 718.
maxima，．．：p． 715.
brachyaskos，Conchoecia；p． 129.
Pradycinelus；pp．349，350，368， 445.
brenda，Bradycinetus；1． 381.
Cypridina；p． 346.
．．Philomedes：pp．352．381，382，396， 418.
Inevirosiris，Conchnecia：p．58＇．
．．Halocypris：pp．583，584，597，599，600．
Drevis．Astorope：pp．437，4i2．
Cymbaterope；p． 2.
（astanea．Cypridina（Nacmefpridial）：pp．126．130．132． 281， 295.
raudata．Conchoecia；pp．615．61\％．
Charcoti，Philomedrs ；p． 418.
Chier hiap，Cypridina（Cypridina）；p． 317.
 752，753． 754.555.
Pyrocypris：1．\(\because\) ．
Chuni，Conchoectia；pp．615．6336．
Cladocopa；p． 763.
Clausi，Conchoectia：pp．563． 165. Micromenheria：ply．1， 6 6\％．
concentrica．Conchoeria：p． 681.
concha，Hatocypris：pp，58年，585．547，598．599．Б世木．
＇＂onchaceus，Monoculus：p． 151.
Conchocetta；P． 563.
Conchencia：Jp．555，562．563，56＇1．565．566， 572.580. 6141． 688.
Conchoeriadar：p．Thas．
Conthoeciidae：p．555．


Conchoecissa；pp．5fis， 519.
Copechaele：P．4is．
curmus. Halocypris, f. 5s:3.
- remulat., streptulebrra: B. :su.
ramola, Coddencrat p. \(\because\).




Corlagronip of Comelomia: po bitil.



Colindrulderinat: p. is30.

Cypridila: fr. \(15!, 323,313,315,331,368,415\).
Cepridimathe: P. 154.
Cyprdinide; pre 15! 10:。
Copridiniformes: plo 102, 159.

Cypriditmede: f. 331.
Cypriformes: p. 103.
Cyris: p. ít.
Cythereis: 1. 145.
C.Wherelliformes: p. 102.
daphoides, Conchoecta; pp. 128, 131.
laphmidesgroup of Conchoecia: p. 636.
d'Arey-Thompsoni. Euconchoecia; pp. 238, 739.
dastoplathalma. Conchoceia: pp. 615, 616, 617.
decipiens. Conchoecia: p. \(61 \%\).
demtata, Cypridina (Cypridina): p. 19 .
dictson, Cythere: p. s.
discophora, Conchoecia: pp. 524, 633.
distinctio. Halocypris; pp. 584, 598.
Doloria; p. 223.
dorsoserrata, Cypridina: p. थи\%.
dorsmbuberculata, Conchoecia; pp. 61i.615. 616.
duhiz. Halo ypris; pp. 58't, 600 . major, Halocypris; pp. 58i, 600.
echinala, Conchoccia; pp. 61:, 616.
mehinulata, Conchoecia; p. 666. Mikroconchoecia; p. \(\wp 66\).
Hegans. Conchoecia: pp. 1, 2, 129.131, 141,560, 566, 616. 62 ', 625, 631, 632, 633.
Elegans-group of Conchoecia; p. 62'.
.Hliplica, Astempe: pp. 433, 435. 432, :40, 441, 468, 509, 510.530.

Hongata, Copechante; IP. 518. 521.
Entomoconchidae; p. \(15 \%\).
Entomoconchus; p. 155.
Euconchoecia: TP. 563. 564, 578, 580, 537.
Eugeniae. Philomedes; pp. 366, 367, 410.
Eumonopia: fp. 189. 331.
Eup thistoma: p. 313.
extisa, Cypridina: F. 398.
fascigera. Asterope: P. 5ız. Cyclasterope; pp. 2. 439, 4: 1.542.
favus. Cypridina: pp. 189, 190. 191.
Cyprilinondes: fp. 2, 189. 1911. 191.
fisus, Mompil (Cypmitinoles): pp, 33: 3i?
fissa, Coprhath; pp, iss, iso.
Hawola. Copridina; p. 18!

flexilis, Philommes: for : 180 .
Fölini, Philomodas: p. 380.
(S.lerucomhta): 1p. 366, 307.
famolata, Cxpminat p. 2.


fusium. Asteropheron; H1.443.
Gallssi, Conchowida pp. 616, 676,672.
Ganssi-group of Conchoceia; p. 676.
Gigantocypris; p. 198.
ghacialis, Asterope: pp. 40, 467, 503.
ghobosa. Cypridina: p1. 349, 381, 397.
., Hahocyuris: pp. 126, 131, 583, 585, 600.
.. Fhifomedes: \(\mu \mathrm{p} .10,138,145,147,348,349,352\), \(381,382,396,418\).
globosus, Bradyeinetus; \(\mathrm{pp}, 350,381\).
,. Plikmedes; \(\mu \boldsymbol{\mu}, 381,382\).
gracilis, Asterope; \(p\). 4́to.
Conchercia; p. 614.
Paraconchoecia; pp. 624, 625, 632.
Grimaldi, Aslerope; pp. 146, 'f't, 467, 510.
Grimaldi-group of Asterope; p. 467.
Grimaldi vicina, Ascrope; pp. 467, 518.
grisea. Aslerope: p. 440.
groenlandica, Asterope; pp. 381, 398.
Haddoni, Conchoecia; pp. 127, 131, 567, 616, 668, 672, 675.
Halocypria; pp. 563, 583, 584.
Halocypridae; 1p. 555, 562, 563.
Halocypriformes; pp. 102, 555.
Halocyprinae; 1p. 555, 562, 563.
Halocypris; pp. 562, 563, 564, 577, 580, 581, 583, 737.
Hendersoni, Cyclaslesope; pp. 438, 439, 441, 542.
Heterodesmus; pp. 156, 299.
hetlacra, Conchoecia; pp. \(560,730\).
lifigendorli, Asterope: pp. 438, 439, 441.
Cypridina: pp. 194, 247. 432.
hirsuta, Conchoeria: pp. 614, 615.
Cypridina; pp. 192, 299.
hyalophyllum, Conchoecia; pp. 127, 131, 689, 692, 693, 69 i.
imbricata, Conchorcia; pp. 128, 131, 132.
Imbricata-group of Conchoecia; p. 719.
imbricata, Halocypris; p. 219.
incisa, Conchoecia; p. 676.
iaermis, Aslerope; pp. 445, 468.
., Conchnecia; pp. 129, 614, 615.
.. Cylialroleberis; p. 440.
.. Cypridia (Cypridina): p. 19 . Pyrocypris; p. 316.
iuflata. Conchocia; p. 584.
Halocypris; pp. 584, 585. 597, 600.
ianominata, Conchnecia; pp. 233, 234.
iasolita, Cypridina; p. 2.
interpuncta, Philomedes: pp. 351. 357, 368, 398.
interrupta, Philomedes; p. 366.
isocheira. Conchoecia; p. 658.
kampta, Conchoecia: pp. 129, 131.
Krithe; P]. 1'33, 145.
lacunosa, Eucon'hoecia: pp. 738, 739.
laevipes, Philomedes; p. 118.
Ienticularis, Monoculus; P. 151.
Iepidophor: Gypridina (Cypridina); pp. 194, 330.
levis, Cypridina (Doloria): pp. 9. 225.
lichenoides, Asterope: pp. 2, 441, 4'43.
Liguriae. Cyclasterope: p. 443.
Lilljeborgi, Bradycinetus: p. \({ }^{4} 02\). Philomedes; Py. 2, 349, 350, 366; 402, 404.
Lohian oi, Asterope; P. 437.
Cycloleberis; f. 4it.
., Cylindroleberis; 1r. Ai?.
Lomae, Philomedes: p. 380.
longicornis, Phitomedes; pp. 350, 381, 398.
longiseta, Philomedes: p. 380."
lophura, Conchoecia; pp. 131, 689, 692.
loricata. Conchoecia: pp. 129, 131, 681.
Loricata-group of Conchoecia; 1. 681.
macrocheir'd, Conchoecia; pp. 131, 565, 689.
Macrocypridina: p. 280.
magna, Conchoecia; pp. 129, 131, 567, 692, 69'.
Magna-group of Conchoecia; p. 688.
mamillata, Conchoecia; pJ. 614. 615, 616.
Mariae, Asterope; Pp. 2, 444, 490, 518, 519, 521, 522.
.. Cylindroleberis; pu. \(431,518,519,520,521,522\).
.. Cypridina: 1p. 440,518,519,520.
.. Philomedes; 1. 522.
maxima, Conchoecia: pp. 713, 714, \(716,717\).
mediterranea, Asterope; p. 433.
Cypridina; pp. 134, 135, 247, 399, 433.
megalops, Cypridina; pp. 2, 194, 269, 279, 397.
Mikroconchoecia; pp. 563, 661.
Mollis-group of Conchoecia: p. 708.
Monopia; p. 331.
monopia, Cypridina; p. 2.
monstrosa, Pontocypris: p. 10.
Mülleri. Astcrope; pp. 2, 467, 483. Conchoecia; pp. 667, 675.
.. Gigantocypris; p. 202.
Mulleri-group of Asterope; p. 466.
Mülleri, longiseta, Asterope; pp. 467, 491.
.. minor, Gigantocypris; p. 219.
nasotuberculata. Conchoecia; p]. 656, 657.
natans, Cypridina (Cypridina); p. 194.
nitidula, Asterope: p. 438 .
Cypridina; pp. 4́0, 4́1.
nobilis, Cypridina; pp. 192, 299.
norvegica, Asterope; pp. 2, 437, 467, 508, 527. Cyprilina (Vargula): pp. 2, 136, 145, 194, 198 247, 248.
obesa, Cypridina; pp. 281, 296.
oblonga, Astprope; pp. 436, 437, 440, 465, 488, 519, 520, 521, 522.
,hlonga, Conchopcia: pp. f14, 617, 622. 623.
., Cylindroleberis; pp. fio, 518, 519, 521, 522.
, Cypridina; pp. 4'0, 489, 520, 521, 522.
,. Paraconchoecia; pp. 1, 617, 622, 623, 240, 75 '
obtusata, Conchoecia; pp, 1, 563, 566, 640, 641, 6'f. antaretica, Conchoccia; p. 642.
Obtusata-group of Conchoecia; p. 640.
obtusata, Halocypris; p. 640.
oculata, Asterope: pp. 2, 445, 467, 488, 490, 523, 525, 526.
Ohlini, Asterope; pp. 467, 493.
olivacea, Cypridina: pp. 433, 440.
orbicularis, Cyclasterope; pp, 438, 439, 442.
Philomedes; pp. 368, 418.
orthotrichota, Conshoecia: j. 667.
Ostrapoda; p. 152.
ovalis, Asterope; pp. 440, 488, 489, 503.
ovolum, Cyelasterope; Pp . 439, 442.
pacifica, Asterope: 1. 440.
Paraconchoccia; pp. 563, 614, 737.
Paramekodon; p. 348.
parasitica, Cypridina: P. 26'.
parthenoda, Conchoecia; p. 6io.
parvidentata, Conchoecia; p. 692.
pectinata, Cypridina (Doloria); 1p. 9. 132, 144, 146, 198, 237.
pelagica, Halocypris: pp. 58́, 585, 598. 599, 600.
pellucida, Conchoecia; Pp. 697, 703.
.. Gigantucypris; pp. \(200,201,202,217\).
Philomedes; 1p. 313, 348, 350. 368, 381.
Philomedinap; 11). 17't. 348.
Pleoschisma: 1. 348.
Polycope: p. 263.
Polycopidae; 1. 763.
Potyenpiformes; pp. 102, 263.
porrecta, Conchoecia; pp. 205, 206.
procera, Conchoecia; pp. 127, 131, 623.
Procera-group of Conchoecia; p. \(61 \%\).
prosadene, Conchnecia; p. 719.
Pseudoconchoecia; p \(.563,681\).
Pseudophilomedes; p. 3is.
punica, Halocypris; p. \(65 \%\).
pusilla major, Conchoecia: p. 129.
Pyrocypris; 1!. 313, 315, 316.
Ituadrangularis. Conchoecia: pp. 624.632.
quadrata, Asterope; pp. 440, 665.
quinquesetae, Asterope; pp. 466, 420.
Quinqupselae-group of Asterope: 1p. 465, if 8.
reliculata, Conchopcia: p. 61'.
Reynaudi, Cypridiua: jp, 1, 315, 316.
mynchena, Conchoecia: pp. 128, 131.
roduntata, Conchoocia; p. 6\%9.
rostrata, Conchoeria; p. 665.
rotunda, Philomedes; pp. 366, 367, 368, 414, 418.
rotundata, Conchoecia; P1. 129, 131, 567, 616, 649. 656, 657.
Rotundata-gronp of Conchopecia: P. 648.
Sarsi. Cypridina: \(\%\) 2行。
seleroconcha: p. it9.
- ulph. Plabomedin, :isu.





-

 lavis. Pandoconhomia: \(\beta\). bise.



Sjphomitra: f. ses.

-. Comblamial IP 126, 131, 61\%.
.. Cyprilina (Siphonesta): R. 196, 300.
spinifera-group of Conchoctia: p. fito.
 \(303,204,805,206.202\).
squamiger, Asterope: p. isis.
squamosa. Cypridina: p. 2iン.
sligmatica. Combloecia; p. 131.
 .. Halocypris: p. 583.








Tritragonodon: p. 3 :s.
Thammatocyprinar: pro 5fin, 5fis.
Thammalocypris; p. Sfi.
Toynheeana, Haheypric; 19. 58: 597.
INoda, Conchoecta; 1p. 129, 133.
Vahliviac. Comboeria: f. \(3: 8\).

Vargula; p. 2́s.
varialitis, Comehoecia: pp. 647, 62:?
Wyvile-Thomsoni, Philomedes: 1 . 380 .
\%ealandica, Cyclasterope: 1. 4!2. Cypridina; 1p. 439, 42.
z.tesios. Condmeria; p1). 567, 689.

\section*{Bibliography.}

For the abhreviations of the titles of the periodicals see the , Loological Record".
\(\mathrm{C} 1 .=\) Cypridiniformes; \(\mathrm{H}_{\mathrm{L}}=\) Halocypriformes; \(\mathrm{P} .=\) Polycopiformes; \(\mathrm{C} .=\) Cypriformes; \(\mathrm{Ct} .=\) Cytherellifurmes; \(m\). = marine; \(f .=\) freshwater. \(\times\) Nothing about the Ostracods.

Alm, G. 1915. Monographie der Schwedischen Sußwasser-Ostratoden mobs systematischen Besprechungen der Tribus Podocopa. - Zool. Bidrag från Uppsala. Iki. 1V. Upisala 1915. - C., Cl.: m.. f.
Apstely, C. 1907. Das Plancton im Colombo-See auf Ceylon. - Zool. Jahrb. Abth. Syst. Dd. NXl. Jena 190\%. C.; i.
- 1911. Ostracoden. - Conseil perm. explor. mer. - Bull. trimestr. - Résumé olserv. Plankton 1902—1908. Copenhague 1911. - Cll., H.
Aurivallus, C. W. S. 1896. Mas Plankton der Baffins Bay und Davis' Strait. - Festskifl för IV. Lalljerors. Upsala 1896. - Cd.
- 1898. Vergleichende thiergeographisthe Untersuchungen uber die Plankton-Fanna des skageraks in den Jahren 1893-1897. - Vet.-Ak. Mandl. Bd. 30, No. 3. Stockholm 1898. - Cd., II.
- 1899. Animalisches Plankton aus dem Meere zwischen Jan Mayen, Spitzbergen, K. Karls Land und der Nordkiste Norwegens. - bid. Bd. 32, No. 6. Stockholm 1899. - H.
Palrd, W. 1842. Note on the Genus Cypridina, A1. Edwards: with a Description of two new Species. - Abn. Mas. Nat. Hisl. Vol. I. Second Series. Londun \(18: 12\) (December, not \(18 \mathbf{y}^{\prime} 8\) as it is stated by (. W. Mërler). - Cal.
- 1850a. The natural History of the British Entomostraca. - Ray Society. London 1850. - Cd., C.; m., f.
- 18501). Description of a new Crustacean. - Pror. Kool. Soc. Part XVill. London 1850. - Cd.
- 1850c. Description of several new suecies of Entomostraca. - Ibid. Part XVIlI. London 1850. - Cd., C.; m., f.
- 1851. Description of a new Crustacean. - Ann. Mag. Nat. Hist. Vol. V11. Second suries. Londun 1851 ( \(=\) W. BAIAD, 1850 b\()\).
- 1880a. Note upon the Genus Cypridina, M. Edwards, with a Destription of some new speries. - Proc. Zowl. soc: Part XXVCll. London 1860. - Cd.
- 1860h. On some new Speries of Gypridina. Amb. Nag. Nat. Hish. Vol. Vi. Third Series. Londen 1860 ( = W. Barrd, 1850a, the latter work is, however, firnished with ilhustrations).
13.aker, II. 1753. Employment Jor the Micrustope. Vol. Il. London 1753. - C. ; f.

Behang. A. 19t2. Studien uher die sergleichende Morphokgie sowie uber temprale und Lokatvariation der Phyllo. priden-Extremitaten. - Intern. Rev. Hydrobiol. Binl. suph. IV. Serie, H. 1. Leipzig 1912. - \(x\).
Busc, L. A. G. 1802. Histoire nalurelle des Crustatés, édition Buffun, par Deterville. - Paris 1802, — C.: in.. f.
Bosquet, J. 1897. Description des Entumostracés fossiles de la eraie de Maestrichi. - Nén. Som. R. Si. Liége. Lifote 18: 7 . Cd., C.
Bmady, G. S. 1865 . On new or imperfectly known speries of marime O.tracoda. - Trams. Zoul. soce Vol. V: Parl 5. London 1865. - Cil. C., Cl.; m.
- - 1867. Reporl on the Ostracoda dredged amongst the Mebrides. - Rep. Brit. Ass. 35. Meeting. Lundon 1867. - Ca., P., C., Cl.: m.
- 1868a. A sympris of the recent hutish Ostramda. - hatelled. Onserver. Vol. Xil. Lomdon 1868. - Cil., II.. P.. C.. Cl.; m.. f.

1868b. A Monograph of the recent Rritish Ostratoda. - Trans. Linn. Sor. Vol. XXVM, Part h. London 1868. - Cd., 11., P., C., Ct. ; m., I.

Digitized by Microsoft \({ }^{(B)}\)




 Iandon 1871．－lid．
－1sso．Report on the Otratoda dredged by H．At．S．Chaltenge during the Years 1873－1876．－Report of the boyge of 11．M．S．Cobathenger．Boal．Vol．I．Fart 111．London 1880．－Cd．，II．，C．，Ct．；m．


－18：\％A supplementary Renert on the Constaceans of the（iroup Myodocopa ohtained during the ，Challenger＂ Expedfion，with dotes on other new or imperlectly known Spectes．－Trans．\％ool．Soc．Vol．XIV．Part 111. Landon 189\％．－C．l． 11.
－－1sys．On new ur imperfectly－known species of Ostracoda，chefly from New Zealand．－lbid．Vol．XlV． Part Vllz．Landen 1 s98．－Cal．，C．．Ct．；m．，f．
－190\％a．Os new or imperfectly known Ostracodia，chiefly from a Collection in the Zoological Museum，Copen－ hagen．－Hhid．Vol．Xl＇l．Part IV．Lombon 1902．－Cd．．H．．C．：mo，f．
－1902b．Report on Dredging and other marine Resparch off the North－East Coast of England in 1901．－New－ castle．Trans．Vat．Klist．Soc．Vol．．XIV．London 1902．－Cd．．C．，Ct．；m．
－1903．List of the Ostracoda collected by Mr．Geurge Murray，J＂．R．S．．during the Cruise of the ，Oceana＂in 1898．－Am，Mag．Nat．Hist．Vol．NIl．Seventh Series．London t903．－Cd．，II．
－－190\％．Ostracoda．－Nat．Antaret．Exp．－Nat．Hist．Vol．HI．London 1907．CI．，II．，C．：m．
－－1911．Notes on Marine Ostracoda from Madcira．－I＇roc．Zool．Soc．London 191t．－Cd．，Ct．
－Crosskey，II．W：and Robertsox，D．187\％．A Monograph of the post－tertiary Entomostraca of Scolland ete． －Monogt．Palacont．Soc．London 187．．－Cil．，P．，C．，Ct．：m．，f．
－－and Cormax，A．M．1889．A Monograph of the marine and freshwater Ostracoda of the North Atlantic and of Corth－Western Europe．Section 1．Podocopa．－Sci．Trans．1R．Soe，Vol．1V．Series 11．Dublin 1889．－ C．；m．，f．
—－－1896．A Monograph of the marine and Ireshwater Ostracoda of the North Atlantic and of North－Western Europe．Sections II to IV：Myodocopa，Cladocopa，and Mlatycopa．Ibid．Vol．V．Series II．Dublin 1896．－ Cd．，H．，P．，C．，Ct．；m．，I．
－－and Robertson，D．1869．Notes of a Week＇s Dredging in the West of Ireland．－Ann．Mag．Nat．Hist， Vol．111．Fourth Serics．London 1869．－P．，C．：m．，f．
— 一 一 1872．On the Distribution of the British Ostracoda．Contributions to the Study of the Entomostraca． V1．－Ibid．Vol．IX．Fourtli Series．London 1872．－Cd．，H．，P．，C．；m．，f．
—－－18\％．On Ostracoda taken amongst the Scilly lslands，and on the Anatomy of Darwiniella Stevensoni． Contributions to the Study of the Entomostraca．1．X．kid．Vol．Xlll．Fourth Series．London 187\％．－ Cd．，P．，C．；m．
———— 1876．Report on Dredging off the Coast of Durham and North Yorkshire in 1874．－Rep．Brit．Ass． 45．Meeting．London 1876．－Cd．，P．，C．，Ct．；m．
Bras，A．1909．Nota di Crostacei parassiti provenienti dall＇Isola d＇Elba．－Boll．Naturalista．Amo X゙スlス．Siena 1909．－Cd．
Brooks，IV．K．1886．Report on the Slomatopoda etc．－Report of the Voyage of H．M．S．Challenger．Zool． Vol．dil．Part II．London 1886．－\(\times\) ．
Buex，O．de 1916．Los Crustáceos de Balcares．－Bol．Soc．Esp．Hist．Nat．Tomo XVI．Madrid 1916．－Ca．，H．， C．；m．
Burckhardt．G．1900．Quantitative Studien über das Zooplankton des Vierwaldstättersees．－Luzern 1900．－\(\times\) ．
Calmax，W．T．1909a．Crustacea．－Ray Lankester：A Treatise on Zoology．Part Vil．Third Fase．London 1909.
－1909b．Gigantocypris and the＂Challenger＂．－Nature．Vol．LXXX．London 1909．－Cd．
Chapmax，F．190\％．Description of a new Species of Cypridina from Hobson＇s Bay，Melbourne．－Proc．R．Soe．Vict． Vol．XIX．（New Series．）Part ll．Melbourne 1907．－Cd．
Cnus，C．1896．Die バauplien der Lepaden nebst Bemerkungen über das Sehwebvermögen der pelagiseh lebenden Crustaceen．－Bibliotheca Zoologica．Heft 19．Stuttgart 1896．－\(\times\) ．
—－1900．Aus den Tiefen des W＇eltmecres．－Jena 1900．－Cd．，H．
－1905．Die vertikale Verbreitung des marinen Planktons．－Compte Rendu des Séances du sixième Congrès international de Zoologie．Genève 1905．－H．
Claus，C．1865．Ueber die Organisation der Cypridinen．－Zs．wiss．Zool．Bd．XV．H．2．Leipzig 1865．－Cd．

-. - 187\%. Neme Beobachlungen uber Cypridinen. - Ibid. lid. XXIII. Leipzig 1823. - Cd.
- - 187a. Die Gattugen und Arten der Halocypriden. - Verh. \%onl. Bot. Ges. Bd. XXIV. Wien 1874. - J.
- - 187ab. Die Familie der IIabeypriden. - Schriften zoologisthen lohalts. F. I. Wien 187. - I1.
- - 1876. Untersuchugen zur Erlorschung der genealogisehen Grundage des Crustaceen-Systems. - Wien 1826. - Cil., II., C.; m.. f.
- 1885. Neue Beitrage zur Morphologin der Crustaceen. - Arb. Zool. lust. Unis. Wien. Tom. V'. Vien 1885. - General rpmarks about the Ostracols.
- 1888. Phomerkngen öber marine Ostracoten aus den Familipn der Cypribinen und Jaborypriden. - Ibid. Tom. VIII. Wien 1888. - Cd., II.
- - 1890. Lie Cathugen und Aren der mediterranen und atlantischen Haloeypriden. - Ibid. Tom. JX. TVien 1890. - II.
- - 1891a. Die Halocypriden des Allantischen Oceans und Mittelmeerps. - Wien 1891. - II.
- 1891b. Das Medianatuge der Crustaceen. - Arl. Zanol. Inst. Univ. Wien, Tom. IX. Wien 1891. - Cd., C.: m., f.
- 1893. Die postemhryonale Entwicklung der Halocypriden. - Anz. Ak. Wiss. Jahrg. XXX. Wien 189:3. - Il.
- 189'. Die Halocypriden umd ihre Entwicklungsstadien ele. - Denkshlr. Ak. Wiss. Rd. LXI. Wirn 189'. - H.

Clevf. P. T. 1900. The seasonaJ Distribution of Atlantic Plankton Organisms. - Cobteborg 1900. - II.
- 1903. Plankion Kesearches in 1901 and 1902. - Vet. Ak. Handl. Bit. 36. No. 8. Stockholm 1903. - Cal., HI.
- 190'. Report on Planktun codected by dr. Thorild Wulff during a Vogage to and from Bombay. - Areh. för Zool. Bal. I. Stuckholnı 190's. - Ci., H.
- 1905. The Plankton of the south Arrican Seas. Ill. - Halocymidinar. - Marine lumest. Vol. ]ly. Cate '1'own 1905. - H.
- 1905a. The Planklon of the south Viriman Seas 1V. - Cypridinap. - Did. Vol. IV. Cape Town 1905. - Cd.
- - and Pettersson, O. 1903. Hydrographic-hiological Researches by the Swetlish Commission in the skagerack and Baltic: Srenski Hydrogr. Biol. Kommissionens Skrilter I. Göteborg 190: - II.
 Congr. Dono dell'Aecad. Pontaniana. Vajoli 18'55. - Cil.

Ceshuan, J. A. 1906. Warine Ostracoda of Vineyard sound and adjacont Waters. - Proc. Sore. Nat. Jist. Vol, :32. V11. 10. Boslon. lass. 1906. - Cu., C.; m.
Daday. ľ. dr 190s. Otracodes marins. - Exp. Aularel. Françaiss (1903-1905). Parl 16. Paris 1908. - Cu.. C.; mı.
Danl. F. 1888. Die Cytheriden der westlichen Ostsee. - Zool. Jahrh. Ahth. Sysl. Bl. 1ll. Jena 1888. - C... m.
1) aras, D. and Kinefoed, E. 190\%, Le Plankion de la Mer du Gronland. - Crisière Océanographique . . da la Belgica dans la Mer du Gröland par Duc D'Orléans, 1905. Hruxelles 1907. - H.
 Foederatae Duce, hait et descripsit J. D. Dana. Pars II. - I'ror, Amer. Arad. Arts. Sci. Vol. Il. Boston. Mass. 18:9. - Cd., II., C.; m., f.
1859. Cpustarea. Vart 11. - Linited States Exploring Exp. Huring the Sears 1838-18:2. Vol. Xill. Phitadelphia 1852. - Cd.. H.. C.: m., f.
Desmanest. 1. G. 182\%. Considerations générales sur la Classu des Crustacés. - Paris 1825. - C., in., f.
 (leimar 1806). C.; mi., f.
 Classe Ak. Wiss. Bat 21. Moth. 2. Munchen 1901. - P., C., Ct.; m. (Kol 1902 as is stated by G. W. Muller.)
Farrax, G. P. 1913. Clare Island survey. Marine Entomoslraca. - I'roe. R. Irish Acad. Vol. 31. Duhdin 1913. 1'., C.: m.
Fïscuta, S. 1855. Beitrag zur Kenntuis der OAtracoden. - Abh. derk. bayer. Akad. J. Wiss. 11. Cl. Bul. VII, Abth. Ill. Wimehen 1855. - Cul., C.: m., f.
Fowler, f. If. 1892. Confribulions to our Fnowledge of the Plankion of the Faeroe Chanme - No. 2. -- Proc. Zool. Sor. London 1897. - II.
- - 1903. Contributions to our Kinowledge of the Plankton of the Farror Chanmel. - Mitl. 1903. Vol. 1. London 1903. - 11.
- - 1909. The Ostracoda. - Biscayan Planktors. Parl XII. - Trans. Limn. hore. Second series. \%ool. Vol. X. Part 9. London 1909. - Cd., H.
 Firmze 1887. - Cal.
Gay, C. 18i9. Ilistoria fisica y pulitica de Chile ete. - Konlogia. Tomo 111. Paris 18:49. Cd., C.; m., l.



 um! ?. Jan. 19t3. - Cul., W.. J'.. Co., Ct.: m.. f.





 (Pumishad :31. Were 19t5.) - Cd.
 Wiッ! 1sy2.
 Vaturg. Jahg. 25. Bd. B. Borlin 1859. - Ca. (Repproduced in: , Ein Ausfher nach Triest mad dem Guarnemo." Barlin. 18 tit .
- Prib. Hix lowd bussin mad ine Meeresfana, - Ireslau 1864. - Cu.
 Lillyth: Kjohenharn 188\%, - Cd.
 Tom \11. Patis 1828. - X.
 Bil. \(\mathrm{dl}^{\circ}\). Washington 1896. - \(\times\).


 - l'ari tioí. - Cof.

 sionens skriftur. M: (hotehorg 1912. - 11.
 lerkeloy 1906. - 11.
 Cil. II.. C.: m.

 sit\%-lher, Nk. Wiss, Rid. CXXI. H. V1H. Wirm 1912. - H.

 ( Woot suen by the auther.)
 jar Hur d'Ortéans 190\%. Bruxembes 1902. - H.
Kucu. C. .3. .1. 18:3-1838. Deutshhands Crustaceen, Myriapoden und Arachniden de. - Hoft 10-12. 21. Regens. harg 1832. 1838. - C.: f.
 sper. Theil. - Joma 1890.
L.avifster, E. Ray, 188t. Observations and Refledinns on the Appendages and on the nervous System of Apus cancriformis. - Q. J. Vicrusc, sii. Vol. XXi. New Series. London 1881. - \(\Varangle\).
Laloy, L. 1940. Gigantocypris agassazii. - Le Naturaliste. Pais 1910. - Cal.
1.atafille. P. A. 18u2. Histoire maturelde. générale at particulière des Crustares el des Inserles. - Jome 111. Paris 1802. - C.: m., f.
- 1sug. Genera Crustaceorum et Insectoruni. - Tomus I. Paris 1806. - C.; m, f.
- 1810. Considérations générales sur l'ordre naturel des animaux compmsint les dasspes des Crustacés, des Araphnides, ret des Iusectec, pte. - Paris 1810 . - C.; m.. F.
 1829. - C.: m., f.

Ledemüller, M. F. 1760. Mikroskopische Gemuths. und Augencrgölzang, etc. - Beyreuth 1760. - C.; f.
Ialdibong, II: 185\%. De Crustaceis ax ordinibus tribus: Clatocera, Ostracoda et Copepoda, in Scania oecurrentibus. - Lamd 185:3. - Cil. C.: m.. f .

Lallabong. W. 1876. De under swoma vetenskapliga expeditionen fill spetsbergen 1872-187: derstades samland Hafs-Entomastracerr. - Vet.-Ak.Öfvers. XXXII. Ág. No. \&. Stockholm 1876. - Cil.
lıxo, A. K. 190\%. Untersuchungen uber das Plankton des Barents-Meeres. - Wissenschafti.-praktisehe MurnanExpedition. - St. Pelersburg 1907. - Cal. H.
LivNÉ, C. Y. 1746. Fana Suecica, - Stuckholm 1746. - C.; l.
- - 1758. Systema Naturde. - Tomus 11. Ebilio A. Stockholin 1758. - C. ; fo
- 1761. Fana Suecica, - Stockholm 1761. - C.; f.

Laf Bhaco, S. 1903. Le pesche alrissali eseguite da li. A. Krupp col yacht puritan mefle adiacenze di Capri ehe. 111. Stal. Neapel. Bd. XVI. Berlin 1903. - Lid., 11., P., C.: m.
 und seiner Bewohner. I. Jena 190', - II.
J.ubbock, J. 1856. On some Entomostrara collected by Dr. Sutherland, in the Ahantic Oceath. - 'Thans. Entom. soc. New series. Vol. N. London 1856. - H.
- - 1860. On some oeeanic Entomostraca collected by Capkin Toynber. - Trans. Limn. Soc. Vol. XXIll. Lomdon 1860. - H.
l.ubers, 1. 1909. Gigantocypris agassizii (Mulebr) - Zs. wiss. Zonl. Bu. 92. Leipzig 1909. - Cal. Il.

Mandel, B. E. 1792. Monocte. - Encycl.-méth. Hist. Natur. Tome V11. Insecta. Paris 1792.
Marine Bhologlgal Assoghtion 190́a. Plymouth Marine Invertebrate Fama. - I. Mar. Biol. Ass. New series. Vol. Vll., So. 2. Plymouth 190'. - Cd., C.: m.
Malame Edwards, 11. 18\%0. Histoire naturelle des Crustacés, etc. - Tome troisieme. Paris 1840. - Cid., C.: m., I.
- - et Deshayes, G. P. 1838. Ilistuire naturelle des animanx sans vertèbres, par J. B. I. A. de Lamark. - Deuxième édition, revue ét augmentée. Tome V. Paris 1838. - Cd.. C.; in., I.
Muler, F. 186'. Fü Darwin. - Leipzig 186's. - Cd.
- 1870. Remerkungen uber Cypridina. - Jenaische Zs. Naturw. Bid. V. 1uripaig 1870.- (id.

Mïler, G. W. 1890. Neue Cypridiniden. - Zool. Jalurb. Abth. Syst. Bl. V. Jena 1890. - Cd.
- 1890a. Ueber Halocypriden. - Hoid. Bd. V. Jena 1890. - H.
- 1893. Ueber Lebensweise und Entwickelangsgeschichte der Ostracoden. - Sitzo-Br. Ak. Wiss. Jahrg. 189\%, Halbb. . Berlin 1893. - Cu., H., P., C.: m.
189:. Die Oitratoden des Golfes von Neapel und der angrenzenden Neeres. Dbschuilte. - Faumal Neapel. 21. Monoщraphie. Berlin 189t. - Ca., H., P., C., Ct.; m.
1895. Die Ostraroten. - Reports on the Dredging Opmations ofl the West Coast of Centual Imerica to the Galapagos, to the West Corast of Mexico, and in the Gulf of California etc., hy the U. S. Fish Commission steamert ...Ibatross" during 1891 etc. XIK. Rep. Mus. Comp. Zonl. Harvard Coll. Vol. XXVIl. Vo. 5. Cambridge. Mass. 1895. - Cd., 11.
- 1898. Ein Fabl von Selbstwerstummelung bui dinem Oitraroden (Philomedes brema baird). - Mitt. naturw. ler. Greiswald. Jahre dxid. firmin 1898. - Cd.
- 1901. Ostraroden. - Nordisches Plankton. Zuol. Tril. Bid. NV. Liof. 7. Kiel, Leiprag 1901. - Cul.. 11.

- - 1906b. Die Ostracoten der Siboga-Expedition. - Sibuga Exp. Nonographio XXX. Leiden 19nh. - Ci., 11.
- - 1906r. Oitracoden. - Résulats du Voyage d. S. Y. Belgiea en 1897-1898-1899. - Zoulngie. Anvers 19nh. II., C. ; II.
 Zonlogite. Ba. If. Derlia 1908. - Cat., II., I'., C.: im., f.

 Sol. LXI. Pat I. Ifondon 1272. - C.; f.
- - 1776. Zoologiae Danicae prodromas, sem animatimm baniad et Korvegiat indigenarum charatores. momina, et synonymat inprimis polularium. - Havniar 1776. - Cof.
- - 1785. Entomostraca seu Inserta Testacea. - Lijniate Haviar, 1785. - C.; m.. f .

Yordenshould, O. 1912. Die ozeanographishen Ergehnisse der Selawodischon südpolarexpedition. - Wiss. Ergehn.

 liergen 1898. - 11.


 Cal., H.. C.. III.







 Shethad Dredging Cimmither in 1867. Dhid. 37. Heeting. London 1868. - Cid. C. : m.


- 1891. Notes on the marime Crustama Ontracoda of Norway. - Am, Mag. Nat. Hist. Nixth Series. Vol Vll. Lanton 1891. - Cd.. J'. C.. Cl.: m.
- 1905. Irish Crustacea Uitracoda. - Irish Nal. Vol. Xiľ. Dublin 1905. - Ci., II., J’.. C... Cl.: m.. I.
 Vint. 111. Lenton 1909. - Cd.. I1., 1’.. C., C1.: m., f.

 expelitions pérontiques depuis le mois d'aût 1902 jusfu’au mois te mai 1905. -- Conseil perm. explor. mer. Pabl. circonstance. No. 33. Copenhague 1906. - Cad., HI., C.; m.

 Connonhatue 1909. - Cal.. II.. P.. C.. CI.: m.

 des Begrifls der ..inneren Reibung des W"assers" [in dieselhe. - Forshhugsher. hioh. Shation Plän. Bd. X. Stult. gart 1903. - A.
- 1903 b . Zar 'Therin der schweberorgange sowie dey' specilisehen Gewichtsbestimmungen sehwebender Organismen. - Arch. ges. Phy:iol. Rh, 9'. Bonn 1903. - \(\quad\).

Plate, L. 191: Prinzipion der systematik mit besonderer Berückschtigung des Systems der There. - Kultur der Gagenwart. Teil III: i. Berlin 1914. - .
Pobs. …1761. Insecta Musei Graecensis. Gramii 1761. - C.; r.
 ges hichte einger Monoculusarten. Halle 1805 . - C.; C .
 181\%. - C.; f.
 19世5. - Ctl.
- 19n6. bie weiblichen Gesehleehtsorgane von Cypridina mediteranea Custa. - Ardo Zowl. hust. Univ. Wien. Tom. Xll. Wian 1906. - Cal.

 - Bull. Hus. Honaco No. XI. Nonaco 190́f. - Cde, Il.

Riville, G. de 1250. Mèmoire sur la mer Jamincuse. - Mérn, math. jhys., Acad, Roy. Sci. Tome 111. Jaris 1260.- Cal. Rute. F. E. 1912. Monuraphie des remus Bosmina. - Zonlogica. Heft 63. Stullgart 1912. - X.
sars, G. O. 1863. On en i Sommeren 1862 foretagen zoolugisk Prise i Chrislianias og 'Trondhjems Stifler. - Chrisliania 1863. - Cd., C.; m.. f.
-- 1865. Orersigh of Norges marine Ostracoter. - Fomh. Vid. selsk. 1865. Christiania 1865. - Cal., II., P., C. CI.: m., I.
 1864. - Cd.. H.. C.; m.
- 18\%. Jye dyhrandscrustacer fra Lefoten. - J'orh Vid. selsk. 1869. Chrisliania 1800. - Cd.. P., C.; m.

Digitized by Microsoft ©

 Gil., II., C.: m., f.
 Math. Naturv. Ed. XII. Christiania 1887. - Cd., II., C.; ma., F.
- - 1890. Oversigt af Korges Crustacerr etr. 11. Branchioporda-Ostraroda-Copepoda. - Forda. Vid. scdok. I890. No. 1. Christiania 1890. - Cl., Il., P., C., Cl.; m., I.
- 1899. An Acoment of the Crustacta of Norway. - Vid. 11. Isoprda. Bergem 1899. - Cd.
- 1900. Crustacea. - The Nomegian Torth Polar Expedition 189:- 1896 . Sci. Results. Vol. I. Part V. Chis. tiania 1900. - H.
- 1909. Crustarea. - Rejnet of the secomd Vonwegian Ardic Expedition in thw "Fram" 1898 - 1902. - Videnskats Selskabet. Kistiania No. 18. Kristiania 1909. - Cd., P., C.; m.
 Wien 19tき. - H.
 Part 111. London 1905. - Cil., II., C., Ct.: m.
 II. Series. Vol. VI. Znol. Londun t89'. - Cal., H., P.. C.. Ct.: in., I.
- - 1899. Report on the marine and Ireshwater. Crustacea from Franz-Josof Land, collected hy Mr. IVillianm S. Bruce, of the Jackson-Flarmsworth Expedition. - J. Lim. Sos. Zool. Vol. Kivil. London isyy. - Cil.. l’.. C.; m., l.

 Part III. No. VII. Glasgow 1902. - Cal., H.

-- 1905. On Crustace collented Juring the hydrographic Cruises 1902-190\%. - Rep. Fishery . . . Invest. Vorth sea . . simtland. London 1905. - Cd., H.
 series. London 1909. - H.
 NLNIIS. Part 111. Edinlturgh I!t2. - Cd., II., C.; m.
 141t. So. 1. London 1912. - Cil.
 1883-188': Amo t, 1881-1885; Amm 5, 1885-1886. Palermo. - Cil., C.., Cit.: 111.
 Vation. Mns. Prow. Vil. XXXV. Washington 1908. - Cd., C.: ma., f.
 Cambritge 1900. - Cd.


 London 1910. - Cul., H., P., C.. Cit.; w.. I.





stever. S. 1910. Planktonkunde. - Lajokg 1910.
 Hydrobiol. Br. V. Ifabzig 1913. - II.
 191\% - 11.
 Wishington 185\%. C. C.
 18:1. C. : I.




 －1．1．．（．．：in．． 1 ．
 161．11．Merlin 18：3．．Cal．II．．C．：III．


 Thkyu 1s4．－Cal．（ Vol seen by the author．）



 1！11．－Cd．
 －Smilhamian lnst．Vation．Whis．Jroc．Vol．＇4．Washinglan 1913．－Cil．
 Clafnceron．－\％oolorica．Bu．： 6 ．Hell 67：2．Slutigart 191\％．－X．



\section*{Contents．}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Prelace ．．．．．．．．．．．．．．．．．． 1} \\
\hline Introduction & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\
Chapter 1．Gmopal terminology．With a discussion of the general momphology of the limbs
\end{tabular}}} \\
\hline & \\
\hline Chapter II．Contritutions to our knowledga if natural systen of the Ostracods． & 6 \\
\hline Chapter 171．Contributions to our knowledge of the Ostracond＇s adaptation to a planktonic life & 119 \\
\hline Chapter IV．Bronks law．With a general descriplion of the postembryonal development of a lew spo cies of Cypidiniformes and IFalorymiformes & 123 \\
\hline Spectial l＇art． & 1行 \\
\hline Octratoda & 1.51 \\
\hline Caypidiniformes & 159 \\
\hline Cypridinidae & 12＇ \\
\hline Cypridininae & 159 \\
\hline （rigantocypris & 198 \\
\hline Multeri & 202 \\
\hline ．Varr．mimor & 219 \\
\hline Cepmidina．genus & 222 \\
\hline Duloria & 223 \\
\hline Cyprisina（bolmia）havis． & 225 \\
\hline ．．pretinata & 2：37 \\
\hline Vargula & 245 \\
\hline Cupridina（Vargula）monegita & 245 \\
\hline ．．．．anlarclia & 266 \\
\hline ．．．．megalope & 269 \\
\hline Macrocguridima & 280 \\
\hline Cyprilina（Macrocymidina）castanca & \(\because 81\) \\
\hline Siphonostra & 298 \\
\hline Cypridina（Siphonostra）spinifera & 300 \\
\hline Cypridina，sub－genus． & 31.3 \\
\hline \multicolumn{2}{|l|}{Cyridina（Cypridina）serrata（f．W．Mülder． sar．affirmans n，var．} \\
\hline Monopia & 331 \\
\hline Cypridinodes & \(3: 3\) \\
\hline Vonopia（Cypritimodes）acmminata & ： 3 \\
\hline Philomedinae & ：3888888 \\
\hline Philomades，genus & ：48 \\
\hline Phir hates，suh－gernus & 381 \\
\hline
\end{tabular}
Philomedes（Philomedtés）grohosa ..... 381
Scleroroncha ..... 11： ..... 生ín
Philemades（sideromomhat）Ippedtafi
Asteropiran ..... i！！ ..... i！！
Astmoner ..... 位
＇guinquespota． ..... 150
．．spinifera ..... 分行
Lulleri ..... 18：
．．．rar．longiseta ..... 691
．．Ohlini ..... 193：
．．rurta ..... 49
．－aberrata ..... 50：
．．Grimalai ..... 511
．．．．var＇．virina ..... 318
．．moulata ..... 5
．．norverica ..... 527
．．alosssicola ..... 5：
Cyclasterope ..... 541
．．Jascigeta ..... \(5 \%\)
Haloryprifirms ..... 55\％
Halorypridare ..... 55．
Conthoerinat ..... ロis
Italocepris ..... 581Conelnmeta601
Spinileratgroup ..... bil
Conchoeria whonga ..... 6に
Elegans－group ..... 62
Conchoecia rlegans ..... が！
Diphnoides－group ..... 636
Conchoecia Chuni ..... 636
Obhusata－group ..... 6in
Conchoecta oblusala ..... tiol
nis
Rotumlata－group ..... lis
Conrhneria rotundata ..... bet
＂，isompeivat ..... f58
Curtio－group ..... itif

\section*{}
lith Comblamia humalis var, manima ..... 715
lisili ..... 718


iti= Imbriata-group ..... 219
 ..... \(71!\)
5i,2 Nl.1asgroul ..... \(22!1\)
 ..... 2: 11
lingiat.
lingiat. ..... 7:3:3 ..... 7:3:3
に... ..... lisi7:35
 ..... \(73 \%\)
iss
lis!6192
1993
695 - Pol ..... 275
List of the low wol gatherings of the swodish ..dnte  of llablocyrids limme in marll . . . . . . . 205
by Polycopidac ..... \(-6.3\)
308 Pulyenpe ..... 26. 3

.. seligeraiFri
Valls.armul


\section*{Corrigenda.}
P. 1 iन: 23. ..importane the ahumdance, of nourishment" - "importanch of the abuarlance of nourishment."
P. 151: 30. Monoculus lentoularis is probably not an Ostracod lut identical with the Phylopod-species Limnadia lenticularis (L.).
P. 2̨-5: 13. ..C. (Deloria) levis n. p." - "C. (Doloria) levis n. sp."
F. 30n: 32. ..siphonostra spinifera n. spr." - ..C. (Siphonostra) spinifera n. sp,"
P. 31\%: 35. ..Cypridina serpata (G. W: Muther) Var. affirmans n. var." - .,C. (Cypridina) sprtala (G. W. Müller) var. affirmans n. var."
P. 5å2: 31. ..about \(1 / 3\) limes" - ..about \(1 \frac{1}{3}\) limer."

Digitized by Microsoft \({ }^{\circledR}\)

Digitized by Microsoft \({ }^{\circledR}\)
```


[^0]: ...e this -putips helat.

[^1]: * Translation: The animals pmed to be very good to work with, the species were very woll distinguished. It is Whe literature that eauses difficulty on account of the great mumber of pon descriptions it contans.

[^2]: * The questions of the special termindugy hawe hare deall with in crmanetion with the prolleme to whim the :rre related.

 Yonlog bidrag, Uppaita suppl.-BA.I

[^3]: * The same process had been already observed previously both by C. Claus, 187' b, and by G. O. Sars, 1887 and G. W. Mëller, 1890 a . It is true that G. O. Sars did not directly state that this appendage was homologous with the exopodite, but nevertheless he points out (p. 75) that it ,.ifolge sin Beliggenhed aahenbart svarer til det nedadrettede memhrangse Vedhaeng hos Cypridiniderne og den staerkt udvikłede Vifteplade hos Podocoperne" (Translation: On account of its position it obviously corresponds to the downward pointing membranous appendage in the Cypri dinids and the strongly developed vibratory plate in the Podocopa"\%.
 ** (7. S. Brady. in his work of 1880 . pl. NL, fig. 10 reproduces a maxilla of ..Halocypris atiantica Lubbock" (presumably Conchoecia serrulatu Claus) with a strongly heveloped vibratory plate, and he inchudes this character both in the family and the genus diagnosis. Is G. O. Sars pointed out (1887, p. 75) it is presumably the vibratory plate on the fifth limb, which, owing to a mistake during the dissection, happened to be attached to the maxilla.

[^4]:

[^5]: * The interpretation of this part seems to me, however. rather uncertain.
 * This difference caused me at first to assume that the two powerful proximat joints represented the endopodite, an assumption that seemed to be supported by fig. i, p. 60. (G. W. Míler. 189' ($=$ my fig. IV: 3). It is, however, peamatole incorrert.

[^6]: * It sums to me improtathe that it is represented by the joint next the outhr one. Cf. the cmbrybugy of the limb below.

[^7]: * It is true that G. O. Sars in his work of $188 \%, 1$. 9 secms to adopl this explanation, as he writes as follows: ,Laminarum vibratoriarum 2 paria adsunt vahe dissimilin, anteriores de basi appendicum anteperultiof paris prodeuntes, . . posteriores apici appendicum pemultimi paris affixare, inferne vergentes, triangulares, vertialas, juxtapositae." But it is quite clear, however, from his statements on pre it and it in the same work that this is not the case. He shows here that the part of the fifth limb whith has leen explatued hy me above, arrording to the so. called first method of explanation, as the third and fourlh exopodite joints - it is described hy G. O. Ars as a ,tyndt og gjennemsigtigh membrarost ledhang* (a thin, transparont, membranows appendage) - is most probnlly homologous to .,den saakalde Viftoplade (lamitha vilratoria) paa det folgende Par Lemmer" (the so valled vibratury plate on the following pair of limbs). It is impossible to dewide with rertajnty what is G. S. Brady and A. Mo. Normas's view about this part of the sixth limb in their work of 1896 . They have not made any distiuet statement is to the homology of this organ - just as in the case of most of the other organs. In their description of Cypredena (I'argula) noropgıca W. Baird we real on p. Gis with regard to this limb: . The penultimate limbs or third maxillae end in three setifurous lobes, the outer side of the limb carries a subtrimpular vibratory lamina, margined at first with witu phumse sutae. beyond which the margin is simply finely ciliated, while near the further angle are three more phamose sutac." The whatory plate on the fifth limb is termed by these writers ..viloratory plate". The similar terms perhaps indi whe that these organs are consideped to be homonlugous. It is pusible. however, that these writers haver not even attempted to

[^8]: Zoolog. hidrag, Üppala Suppl.-Ed. I

[^9]: "Ye is not reckonel as a frontal organ (W. Giesbrecit, 1913. p, 120). G. IV. Mebrer writes. 1912. p. 8: ..Das Pronlal. argan... bestehl aus dem ireiteiligen lledianauge und.

[^10]:
 Znolng hidrag, Cppaili Suppl-Td I

[^11]: * G. II. Heler wites, f1. 198. that they were .in der Lepensweise den IIalocypriden am mathsten". When he wrote this. he was of the opinion that the thaloeyprids lipe wiefly at the bottom and onur \%ejtweilige sthwimmend aufstompu". 189', p. 13; of course he gate ug this opinion later on.

[^12]:

[^13]:
 ** Of course I do not mean by this that the action in this kind of swimming is the sumes in mexing. (1) Hh contray this is not al all the amse.

[^14]:

 value phylogenetically: This author writes as follows on this foint:... Von Inturesse seheint mir das Vorhandensein awemy

[^15]: * I teave athogether ont of considration the illogical dedurtion in this statment.

[^16]: Zoolog. bidrag, Uppsala. Suppl.Bd. 1.

[^17]: * The preparation was unfortunately defective.
 ** To be published in a following part of this work.

[^18]: *) G. W. Muler states, 189, p. 40 that the Cyprids always have a single bristle at this place. „Das 2. Glied des Innenastes . . . trägt constant eine kleine Borste am dorsalen Rand"; two bristles, are, however, drawn in the figures of several species belonging to this group that this author has given in this work. The statement made above is based on observations of a large number of species investigated by ine,

[^19]: * G. W. Mllefr puints out. 189'. P. 36 that .manche Arten weisen darauf hin, daß die Zahl ursprünglich größer war (Philomedes)". I careful study of some forms of this genus has convinced me that the chitinous structures on the end-joint of this luranch (of the males). to which this writer refers, cannot probably be explained as traces of a tonth joint. In addition it is 10 lee noted that, even if the genus philomedes originally had a ten-jointed exopodite on this limb, it is olovious that wo have no right, because of this to rondude that the Protostracods oriqimally had ten joints.

[^20]: Zoolog, bidrag, Uppsala. Suppl.-Bd I.

[^21]: * G. O. Sirs wriles, 1865, p. 10: ,,Den sidste Dul af Sammensaetningen, zúan. Aare. er specielt anvendl引aa disse Antenner, da deres Betydning som Bevaegelstorganer er nuget, man vil finde mere eller mindre tydeligt udpratget sadr igjennem den hele store Frebsdyrafdeling. Entomostraca. (The last part of the compound, \%e..川, oar, is specially. used for these antennace as their importance as locomotory urgas will be fomm more or less marked throughout the whole reat Crustarean Iroup Entomostraco.)

[^22]: * The same writer also states (loc. cit.! that .,Ausbildung von (fallertsubstanz durch Aufnahme von Wasser" - as in, for instance, the Hyperids - is also indicated in some II alocyprids. As I have not found any other etatement of this sort in the literature nor observed anything similar in the rather abundant material investigated by me. 1 must leave this information alone.

[^23]: *A rariant of this type is romed in the litthe family Potycopular, whi h never has a pulagian life, as far as
 I can give no opinion about the value of this statement.) Thw only information flat we foss ss as for the way in

 setigera (see the sjecial part of this whrk) living in an anmam. The sumimen wis haracterizell hy a shatholined. progressive. comparatively swift amd rather tenarious methed uf swimmiur. If it was disturbed it forse from the bottom and swam around with rapid matatory strokes frer it long (smmefimes several minntea or short foriod, some.

[^24]: times in the neighbourhood of the bottom. sometimes higher up, sometimes right up to the surface of the water, about two decimetres from the bottom. In other words it acted in the aquarium in about the same way as most Cypridinids. A closer investigation showed that in swinming the first antennae struck upward and barkward and somewhat outward, while the exopodite and endopodite of the second antenna and maxilla strurk downward and backward and somewhat outward. Alterations in the direction of the motion were produced chiefly by modification of the force of the strokes in one or more of these limbs.

 * To these belong the Polycopids too.

[^25]:

[^26]: * Il. 3h. lig. 2t shows a type very like that destribed by me above for stage V .

[^27]: * This is the name that is used for this family on p. 68% : in the beginning of the same work, however, these investigators use the name Conrheeciidqe. see 1ر, 622 and fog, or Concheciadup. pp. 627 and 6,28.

[^28]: * On account of profound differences between the Asteropids and the nther forms belonging to the group dise ssed here both in their morphology and occology, the knowledge of the first-named group has developed in a rather indenendent manner. Because of this it seemed most ronvenient to me in the present treatise to discuss the history of the investigation of the I steropils in a special chapter together with other problems conefring this giont

[^29]:
 **The rod-shapet organ in the Halucyluids was discovered one year cartier by J. D. leava.
 *** Translation: Letwem the eyes there is a long papilla growing narrower distally. which projects between the upper antennae. It is smaller at its base and has here an upward directed hump containing a matorial that is wery bike the pigment of the ure. This papilla may possibly he a tactile organ."

[^30]: * Obviously a misprint; it should be Philomedes.

[^31]: * Translation: ...t peculiar hyaline, cup-shaped appendix, evidently of sensorial nature "

[^32]: In a momber of forms, in whinh this endite is only weakly bifurcated, for instance in Cypridino (Cypridina) serrath var. affirmans (1 f . 1) low fig. 9 of this fom), there is belween the (wo distal pmints a morn or less well-developentspine-shaped or vermiform poress. In other forms, in whith this enditw is more depply hifurcated, this procass is entirely ahsont. To julge from its sitnation, this precess may possibly be interpreted as the original pint of the "ndite. The two comparatively powerful points on each sidn of the process in question wouk accoreting to this pmint of view he consiterentas having presumably arisen by lwof the distal spines with which the endite is more or less copionsly furnished having devedoped more powerfully than the olhars. According th this opinion this endite originally would have heen characturized liy a simph point in this gronp of animals.

 There are also, howerer. facts that scem to argue against this interpetation. First this endite is deeply bifureatel in Phitomedinne. Sarsiellidar and Asteropidae. thus in all the remainung grouss of Cupridiniformes in whith it is developed. and semotly it is most deeply bifurcated (about the same as in Philomedinae) in that genus of the sub-family Cypridininae (Crossophorus) which we have rather strong reasons to regard as the most primitive. An additional argument against the assumption that the two distal prints are to be regarted as a couple of spines sepms in me to lie in the fact that thes points, even in spectes in whith they are comparatively weakly developed, are almost always armed with secondary spin's contrary to the other spines of this emdite which are all perfectly smoth (exception: Monopia (Cypridenodes) acuminata).

 It mar. however, br impossible at present to decide with cerlainty which of these two allernatives is the correet one.

[^33]: * It is to be noted that in the description, for practical reasons, this limb is always thought of as pointing straight outwards, whereas in the natural position of rest it points obliquely outwards and backwards.

[^34]:

 of nante.

[^35]: *See also C. Chun, 1900, p. 515.

[^36]: * Cf. ©. Cine tam .

[^37]: * (G. 1). sins determ.

[^38]: * .. Volthommen im Irrthum ist jedoch Costa. wenn ur behauptet, daß Cypridina medterranera frarasitiseh in Pischen lebe."

 7olnog. harag, Ippostat, supplo Brf. T.

[^39]: = It is probably beat not to use names moling with C'ypris (e.g. Cigantacypris. Pyrocypris) for genera belonging (1.) r'yprodintarmes. This suffix may be resorved for real Cyprids.

[^40]: * Translation: .Owing to professor s. Lovèvs kindness I have hat the opportunty of buming arguabled with a Cypridinid canght in the Indixn Ocean and specially notable budtar of its powe of shining
 Cypridina Reynaudi and thus may be looked upen as the type of the gemps Gypridena whith was estadished hy the same author."
 \% This find was also mentioned dy W. Lallejebohg, 1853. p. 170.

[^41]: * This is not shown in the drawing; in this specimen the selvage was directed somewhat inward.

[^42]: * In this species I have observed, as G. W. Müller previously did lor other species (cf. G. W. Mullef, 1906 b, p. 16), that in a state of rest these bristles are bent posteriorly upwards along the dorsal side of the body inside the shell.

[^43]: * The following translation is (with a few corrections) reproduced from (c. A. Praby, 1868 b, p. aft: : ,.I have mostly found the setae of the lower antentae, as represented in falbsborg's figure, wery short. decreasing in mongth towards the apex, amb non-phonose. Only in a few specimms" (G. s. Brady writes: but in one indivilual....) .. which in other respects agree with the rest, one finds a pemarkable variation, the setac attachod to the last five joints being much clongated, and adapted for swimming. My attention was first drawn to this as follows dmong sumpat specimens which I hat in a glass of sea-water, I saw, to my surprise, one individual suddenly abamdon its show,
 and, with a peculiar rolling movement, give at shent bound urwarts from the buttom of the glass. On wamination

[^44]: nation. I have since fomd amongst my preserved sperimens many individuals thus fitted for swimming and have convincel myself that they like those with the short setae are femalos." (Brabs's translation is mot quite correct here. He writes: and have convinced mysidf that those with the short setite are femates"). "The pernliarity is not one of age merely, for thave fomblt it both young and old individuals. I have noliced it also in another speries." (Ph. (Ph.) Lilljoborgi) ,,In a [ew specimens" [Brapy writes: ..In this single example (which though . . etc.)", an incorent transtation whi do destroys the whole meaning of Sins's exp sition.] (which thongh I could not satisfactorily deted the copulatise orqans. I must take for makes) foe lowe antennae show another marked peculiarity, the shorter branch being thuch targer than in the fomate, and having in bergated memberons torminat joint armed with two shom sutare, whin is entirely wanting in the Semates."

[^45]: * "hrastation: , de single sperimen" (a male), was canght at Lototen rather near the surfare of the water".
 * ${ }^{*}$ Translation: ,Some matos were taken at the surfice of the sea at $790^{\circ} 50^{\prime} \mathrm{X}$. and 10° G.. which shows that these, with their natatory wrgans more deveroped than the fomales. are more wabab of motion than the latter and probably often swim up to the surfare of the sua. Whiln the femalos, on the olher hand, keep to the bottom."
 $\stackrel{+}{\dagger}$ Nmber of the month.

 Zoolog. hidrag, Cppsala. Suppl.-Td. I.

[^46]: * It about the same time as G. W. Wellet a Swedish scientist Professm J. G. Avmerssow, who investigated the
 investigations, which are still in manuscript. Were howerer, never fublished. I two intived at the same result guilu indw. pendently of these two investigators.

[^47]:

[^48]:

[^49]:

[^50]:
 batalory branch are umsually shot, with their haire warser and sitnated lese demsely. As a mater of lard these

[^51]: ＊It may he fuintuld ont that Ph．（Ph．）orhicularis．a species from the Intarclic．drscribed by G．S．Brady． which is（ertainly very closely ralated to Ph．（Ph．）rotunda．has．according to this author＇s drawing，1907．ph．I，fig． 8 ， long unbroken natatory liristles on the second antenna：there is，however．no information as to whether the female from whilh the antemna that is reproduced was takn hal eggsin the brood rhamber of if it was still in the plankton stage：

[^52]: in the matural prestion of rest it pants chliquely oulwards and batkwats.

[^53]: * This speciesis, hesitatingly, identified hy G. S. lirady himsolf, 1898, p. '355 as Streptoleberis crenulata, G. S. Brady, 1890 , p. 515 . This identification demands too much, however, from the inexactitude of the two descriptions to be adopted a priori. Of course its correctness is not absolutely impossible!! - It does not seem to me impossible that Ph. sculpta and Ph. floxilis are male and female of the same species.

[^54]:

[^55]:

[^56]: $\div \overline{\text {－matmte lomality．}}$

[^57]: * Not on the coast of Finland. This information, Which is fonad in fo. IV. Mllem's work of 1901, 1'. I0, is certanly a mistake; presumably it is, as is alrearly pointed out by C. Apstias, 1911, p. 168, a mitprint for
 work of 18:1.1.292, refers to another speries; cf. alow

[^58]:

[^59]:

[^60]:

[^61]: Pillifpl.

[^62]: Mratities pammullied

[^63]: * From \%ű\%os - rycle ind inßules - shell.

[^64]: * I must leave the question guite underided as lo whether this form is synonymons with Cymbriden zealandica, II. Latro, 1850 h . p. 102 as Ci. S. Lirad assumes.
 ** From Asterope and .teogo $=$ wing.

[^65]: * In the Znologial Muscum at Copethatigitized by Microsoft ©

[^66]: evidently this writer monts one fitament as the ..tronk" of a bitite, a methes whith is pertans the right one from
 decide which of these filaments is the distal part of the hates, ath of thom heing perfectly similar,

[^67]: * (G. II. Mallif (1899^{\prime}) denotes the d-bristle (like the sensory bristle of the fifth joint) by s. b., sensory lrislle, which is. of course, not right, lecause, as has been jointed out above, all the bristles of the end joint, except the a-claw, are to be looked up, ${ }^{2}$ as sensory bristles (CF. G. W. Muller, 189i, pts. 2, 3 and i).

[^68]: riymidinimac.

 Zoolog. bidrag, Uppsala, suph. - Pol, I,

[^69]: includet in this publication; the result was the same as for the then sperifs mentioned.

[^70]: * On the whole the natatory antenne in the mate are obviously more powerdully developed than in the female. thmegh, with the expplion of the emhenontite. they agrece lairly well in appearame

[^71]: \& bristles in a distinct lower row.
 7 ., ., ., иррег ".
 1 bristle abovo bristles nos. 3 and 4 of the latter row.
 1, 5.. 6
 2 bristles inside the main bristle b.
 1 bristle between the main bristles a and b.
 bightizedose to the main bristle a.

[^72]:

[^73]: as one can judge, to be a slip of the pen.
 of the spectes, as it does mot seen imponsibte that this is incoreret, that there has heem a printeres error a meveral of the two last figures.

[^74]:

[^75]: ＊．．A．elluptlca＂is also lound by E．Grafffe，1900，1．3＇．Nu description is given and it is consequently quite mpmssible to say anything about the synonymy of this form．

[^76]: = 1 applim to Professur sisps for the specimens montioned in under to reexan ine them. but was informed that unfortunately they hat all been lost beyond any brepe of recosery.

[^77]: * I may pertaps mention that I wrote to Drofessor (x. S. Brany to ask whether the typu-specimen of farm's sperims was in wistener and whether he had examined it. He answered that he did mot know whether it still existed and could not remember if he had investigated it.

[^78]:

[^79]: * On the other hand it seems imjossible te deride which of the two processes corresjonds to the original second e.dite and which is hom,logous with the original third endite. This has been done, however, hy G. W. Mimfu, $18: 10$ a. but without any reasus buing given.
 ** I 1 a number of forms (stis, for instance, fig. 27 of Conchoeria symmetrica) one can sometimes distinguish distadly on

[^80]: * Only in exceptional cases, in single sperimens, are three bristles found.
 ** For J. D. Daxis establishing of eyes (1852, p. 1297) see p. 562 below.
 ** ., some peculiar lenticular bodies, which are perhas to be interpeted as a sort of imperfect visual organs."
 unwhrscheinliche explanation of the rodeshaped organ in the Halocyprids that it is a light-percipient organ, nut, however, for forming images, but unly for , eine Laterscheidung won hell und dunkel".

[^81]:

[^82]:

[^83]: chararterized liy the same number.

[^84]:

[^85]: *The description of these orgams givan in this work is for the most part Laken from G. W: Mullen's large mum. graph. 189t (rp. 119 and t2n). This desmiption. which seems to be salisfactory in a treatment of the systematization
 tescriptions of the structure ant mechanism of theser organs in a subserpuent work.

[^86]: * In the present work montion is made of jointod ant anjantorl ront-sbaped organs. In this I follow the example of (r. W. Nuller. On the other hand C. Claus. 1891 in. p. 19, states that there are no real joints heri:

 furnished with muscles, but they sommines possess very great passiwn mohility. It sums in bu wrong to limit the

[^87]: * With regard to a larger number of bristles in Conchoecio serrulata sec the remark on this species below.

[^88]: * Not olserved by previous writers.

[^89]: * Zoolug. Anzeiger, B\&. XXVIII, !. 579.
 ** C. Claus wriles as follows in this work, jo. 178. with regard to the two furmo of J. W. Jana's just mentional:
 nach Weibchen beschriohen wurden". Chaus was ansegnently the lirst to identity these two forms with each other. In Jater works of C. Claus's these sjecies are nut mentioned.

[^90]:

 where It. pelugica was found ly this expedition is mentioned in this work. 1n (1. S. Brany's work. 1897. H\%. conchen
 been found at lwo of this expedition's stations. It is to be noted that the station fin $/ 1$. conche in the lather work

[^91]:
 whainly due to a mistake.

[^92]:
 fiw in working out the genus diagnosis.

[^93]: one of the Naples specimons was to be refored to C. nasotuberculata. Dut in 191\%. p. 77, however. the same athor
 of C. nasotuberculata it is stated that the rol-shaped organ is constant; the type shown in ph. dilll, fig. 28 dilfers. howerer, consilerably from the ligures of the same organ in 189 i. It is to be moted that in the work of 1912 r. rotundata is not includad at all as at synonym of c ". nesotuberculata.

[^94]:

[^95]: $=$ Not $29^{\circ} 56, W^{\circ}$.. as is slated by G. S. Brany.

[^96]: Zoolog. bitrag, Uppsala. Supm-Bat

[^97]: been lost.

[^98]: * Vot $29^{\circ} 56^{\prime} \mathrm{II}^{\circ}$ as is stated by (G . A. Brady, 1902 a.

[^99]:

[^100]: * Or else it is quite absent. In this cast the bristle mentioned above as the remains of the epipmal appentagr corresponds to the bristle that is sitnated distally on the inside of the hasibu in Ifalnoypris and connometa.

