Isopoda, Tanaidacea, Cumacea, Amphipoda (excl. Hyperiidea)

K. Stephensen.

With 33 figures in the text.

Published April 15. 1915.

The present work, being Part I of the Report on the Crustacea of the Expedition, comprises Isopoda Tanaidacea, Cumacea and Amphipoda, excl. Hyperiidea. These last have, for practical reasons, not been included here, but will appear as Part II of the Crustacea. A great deal of the material has, it is true, already been classified, but the descriptions and drawings of the new or little known species are not yet completed, and the total material of the Hyperiidea is so enormous (abt. 3000 tubes) that its inclusion here would probably involve the postponement of publication of the present groups for at least a year.

As will be seen, from Dr. Schmidt's introductory remarks on the material (Vol. I, p. 22-24), and from the list of stations (Vol. I, p. 25-49), the expedition was based on plankton investigations, and dredgings were only occasionally made. The groups here dealt with consist mainly of bottom organisms and the result will thus necessarily be but poor. I have thought it advisable to call attention to thi point, lest the present work should be taken as a typical example of the methods of work employed by the expedition, which is very far from being the case. Not until the reports on the plankton have been published will it be possible to form any idea as to the quality of the work done by the expedition.

The geographical area to be dealt with in the works on the Crustacea embraces the Mediterranean with adjacent waters, bounded approximately by lat. $50^{\circ} \mathrm{N}$. , long. $30^{\circ} \mathrm{W}$. and lat. $30^{\circ} \mathrm{N}$. Only wher quite exceptional circumstances rendered it advisable have I included species found outside this field.

The fact that most of the species here treated are represented only by single or very few specimen renders it almost impossible for me to furnish those biological details, the procuring of which otherwise forms one of the principal objects of the expedition. And indeed the groups here dealt with should, in order to rightly estimate their value, rather be considered as the "refuse" of the expedition. This refuse is, however, by no means lacking in interest, proving as it does, inter alia, that the deeper portions of the Mediterranean still contain a number of unknown species

The present work includes altogether 80 species, of which 13 n. spp., viz

25 Isopoda,	of which 4 n.	spp.	39 Gammaridea of which 5 n. spp.	
5 Tanaidacea	$"$	$"$	1	$"$
Cumacea	$"$	$"$	3	$"$

10 Cumacea

1 Caprellid.

The species are as follows: (those marked * being new)

Isopoda.

1. Flabellifera.

Fam. Anthuridæ. Paranthura nigropunctata Lucas. Fam. Gnathiidæ. *Gnathia Thori n. sp.
Fam. Ægidæ.

Ega incisa Schiødte \& Meinert.

 Rocinela Danmoniensis Leach Syscenus infelix Harger.Fam. Cirolanidæ. Cirolana borealis Lilljeb.
Eurydice spinigera H. J. Hanse truncata Norman

- Grimaldii Dollfu.

Fam. Cymothoidæ. 2 spp. juv
Fam. Sphæromidæ. Cymodocea truncata Leach
. Valviiera.
am. Idoteidæ. Idotea metallica Bosc baltica Pallas
Stenosoma capito Rathke. acuminatum Leach. appendiculatum Risso. Fam. Arcturidæ. *Astacilla (?) Bonnierii n. sp. - Deshayesii Lucas.

3. Asellota.

 Fam. Ianiridæ*Ianirella Bonnierii n. sp. Fam. Desmosomidæ *Desmosoma chelatum n. s Fam. Munnopsidæ. Munneurycope Tjalfiensis K. St.

4. Epicaridea.

. Dajidæ. Holophryxus Richardi Koehler
Heterophryxus appendiculatus G. O. Sars.

Tanaidacea.

Fam. Apseudidæ. *Apseudes graciloides n. sp. - retusifrons Richardson. grossimanus Norman \& Steb
echinatus G. O. Sars
Fam. Tanaidæ. Tanais robustus Moore

Cumacea.
Fam. Vaunthompsoniidæ. ?Bathycuma longicauda

Fam. Bodotriidæ.
Fam. Platysympodidæ
Fam. Diastylidæ.

Fam. Procampylaspididæ tum Calman
Cyclaspis longicaudata G. O. Sars

Platysympus typicus G. O. Sars.
*Diastylis processifera n.sp - Stebbingii n. sp Adiasty.
Sars.
Makrokylindrus Josephinæ G. O. Sars.
Procampylaspis armata Bonnier.
Campylaspis vitrea Cal

- horridoides n. sp.

Amphipoda.

1. Gammaridea.

Fam. Lysianassidæ. Trischizostoma nicæense Costa Lysianassa ceratina Walker. Aristias tumidus H. J. H. Ichnopus spinicornis Boeck.
*Hippomedon tunisiacus n. sp.
Katius obesus Chevreux.
Cyphocaris anonyx Boeck.

> - Richardi Chevreux.

- Alicei Chevreux.

Metacyphocaris Helgæ Tattersall.
Crybelocephalus megalurus Tattersall.
*Thoriella islandica n. gen., n. sp. *Chevreuxiella metopoides n. gen., n. sp.

Ampelisca diadema Costa. spinipes Boeck. brevicornis Costa
?Haploops Dellavallei Chevreux
Fam. Haustoriidæ. Urothoe pulchella Costa.
Fam. Colomastigidæ. Colomastix pusilla Grube.
Fam. Oediceratidæ. Monoculodes carinatus Bate.
Fam. Calliopiidæ. Stenopleura atlantica Stebbing.
Apherusa bispinosa Bate.
Fam. Atylidæ. Nototropis vedlomensis Bate \& Westwood. mand Enirus longipes Boeck. * Schmidtii nop Gammarus locusta L.
Fam. Dexaminidæ. Dexamine spinosa Mont
Fam. Talitridæ. Hyale Grimaldii Chevreux

- pontica Rathke.
- Schmidtii Heller.
- camptonyx Heller.

1 sp . indeterm.
Photis longicaudata Bate.
Eurystheus sp.
$\begin{array}{ll}\text { Fam. Photida. } & \text { Photis longic } \\ & \text { Eurystheus sp. }\end{array}$
Fam. Ampithoidæ. Ampithoe vaillantii Lucas
Fam. Corophiidæ. ?Ericthonius difformis M. Edw.
*Corophium rotundirostre n. sp.
2. Caprellidea.

Fam. Caprellidæ. Caprella acutifrons Latr. forma Andréæ P. Mayer.
man.
Fam. Campylaspididæ
beg to express my

In this, as in my previous works, an asterisk * affixed to the title of any publication quoted denotes (where nothing is otherwise stated) the best description, with illustrations, of the species referred to All the figures are drawn by the author.

ISOPODA

1. Flabellifera.
 Fam. ANTHURIDÆ.
 Genus PARANTHURA.

PARANTHURA NIGROPUNCTATA, Lucas.

Anthura nigropunctata Lucas, Explor. Scient. de l'Al gérie, Anim. Artic., 1849, vol. 1, p. 64, vol. 4, Pl. 5, fig. 9
Heller, Verhandl. K. K. zool. botan. Gesellsch. Wien, 1866 p. 732.

Paranthura costana Bate \& Westwood, British ses-sile-eyed Crust., vol. 2, 1866, p. 165.

Dohrn, Bau u. Entwickl. d. Arthropoden, Heft 1, 1870, p. 91, Pl. 9 .
nigropunctata Norman \& Stebbing, Iso Lightning; Transact.
Zool. Soc., vol. 12, pt. 4 ,
1886, p. 129, Pl. 26, fig. 2
St. $17.370^{\prime} N .23^{\circ} 27^{\prime} E, 55 \mathrm{~m} ., 30-12-1908$. Dredge 1 spec . (ㅇ), 11 mm .
This specimen agrees well with Dohrn's outline drawing, which is the best illustration extant; telson and uropoda are, however, slightly narrower in the pecimen from the "Thor" than shown in Dohrn's figure.
Also found in: Algeria (Lucas); Adriatic (Heller); Guernsey (Norman and Stebbing) ; Jersey (Norman; Ann. Ma Nat. Hist. ser. 7, vol. 20, 1907, p. 362)

Fam. GNATHIIDÆ.

As will be seen from the following, the material from the "Thor" contains one δ of genus Gnathia. This appears to belong to a new species; I have, however, in order to determine whether this was the case, collected all the works in which the Gnathia species were classed, going through for instance the whole of the Zoological Record. No complete synopsis having hitherto been published, I give my list below, Ax

Brian has, it is true, (l. c. 1909, vide list of works infra) given a catalogue of works and species; this is however, not complete.

The genus Gnathia, with its great number of species, of which several are only known in the Praniza stage, needs to be thoroughly revised. Almost all the species in older works on the subject are described and drawn in a manner so schematic as doubtless to render them very difficult, if not impossible, of recognition.

For a brief historical survey of what is known as to the relation between Gnathia (Anceus) and Praniza, vide G. O. Sars, 1. c. 1899, p. 51.

Where the titles of the works in the following list do not distinctly indicate the species treated, these are separately noted for each.

Reference list to Gnathiidæ.

Bate, Sp.: On Praniza and Anceus and their affinity to each other; Ann. Nat. Hist., ser. 3, vol. 2, 1858, p. 165 -7nce Pl. 6-7 (Praniza Edwardsii, P. coerulata Lilljb
Bate, Sp. \& Westwood:
Praniza auct.); Report 35. Meeting British Assoc Adv. Sci., 1865, Notice p. 83.

- A History of the British sessil

1868 (G. maxillaris Mont G British sesceyed Crust., vol. 2 1868 (G. maxillaris Mont., G. fuscata Johnston, G. ma-
Beddard: Prelim. Note Isop. Challenger; Proc. Zool. Soc London, 1886, p. 120. (A. bathybiuss (Bathygnathia b.), A. gigas (Euneognathia g.), A. tuberculosus, A. latidens.) Isop., Challenger-Report 1886.
Bonnier, J.: Rés. sci. de Camp. du „Caudan«; Ann. Univ Lyon 1896, p. 571 (G.propinqua).
bian, Al.: Nota forme arvali dei Anceidi ($G n$, maxilla ris Sars) raccolte sui pesci; Revista mensile di Pesca Idrobiologia, Napoli, Anno 11, 1909, No. 4-6. Carus, V.: Prodromus faunæ Mediterraneæ, vol. 1, Stutt gart 1885 .
Costa, O. ${ }^{1}$): Fauna del Regno di Napoli, Entomostraca 1840 (1852?) (teste Brian 1. c. 1909).
Dohrn, A.: Entwickl. u. Organisation von Praniza (Anceus) maxillaris; Zeitschr. f. Wiss. Zool., vol. 20, 1870 p. 65-90, Pl. 6-8.
p. 65-90, P. 6-8. dans les camp. de l'Hirondelle et de la Princesse Alice
Bull. Soc. Zool. France, vol. 26, 1901, p. 239-46 (key to the genera; G. Grimaldii, G. Richardii, G. robusta This work I have not been able to consult

6
ars, G. sp.?, Cecognathia Sarsii, C. (Gnathia) stygia
: O. S.). is, vide Milne-Edwards. E.: Ueber die Beziehungen d. zehnfüss. Isopodenattungen Anceus u. Praniza zu einander; 41 Jahres er. d. $\stackrel{-65 .}{H}$,H. J.: Malacostraca Groenlandix occ.; Vid. Meddel raturh. Foren. Kbhvn. 1887 (1888) (G. cristata).
L: Revis. Austral. Isop.; Proc. Linn. Soc. N. S. Wale ol. 9, 1884, pt. 3, p. 1005 (G. ferox). C.: Carcinolog. Beiträge zur Fauna d. Adriat. Ieeres; Verh. K. K
ol. 16, 1866, p. 733.

```
E.: Mém. sur la
```

mncées; Comptes Rendus de l'Acad. de Sci., vol. 46 858, p. 568 , (a short report on Hesse l. c. 1863-1864) Tém. sur les Pranizés et les Ancées; Ann. Sci. Nat., Zool., ser. 4, vol. 9, 1863, p. 93-99 (a copy of Hesse
864, but without descriptions of the species and gures).
Iém. sur les Pranizés et les Ancées et sur les moyens urieux à l'aide desquels certains Crust. parasites ssurent la conservation de leur espèce; Acad. des \{ciences, Savants Etrangers, Paris, vol. 18,1864, p. 1-
4,5 Pl.s (A. asciaterus, A. brivatensis, A. erythrinus, 4, 5 Pl.s (A. asciaterus, A. brivatensis, A. erythrinus, vax, A. scarites, A. trigli, A. verrucosus).
?ranizés et Ancées nouveaux; Ann. Sci. Nat., Zool., er. 5, vol. 19, 1874, 29 p. p., Pl. 21-22 (A. balani, 4. cotti bubali, A. platyrhynchus, A. scombri, A. sur nuleti, A. uncifera).
eescript. de un nouvel Ancée, l'Ancée du Congre, An-
rengeri, faite sur des individus vivants; Revue Jcient. Nat., vol. 4, 1875, p. 449-69, 1 Pl. Yrust. rares ou nouveaux des Côtes de France, 36.
Article, Descript. d'un nouvel Ancée Anceus Danidii: Article, Descript. d'un nouvel Ancée, Anceus Danielii;
Ann. Sci. Nat., Zool., ser. 6, vol. 17, 1884, No. 5-6, Ann. Sci. Nat.,
11 pp., Pl. 18 .
JN: Crust.; „Southern-Crosss-Exped. 1902 (G. polaris Hodg. $=$ G. anturctica Studer).
Isop.; National Antarct. Exped. 1901-04, Natural Hist., London, vol. 5, 1910 (Euneogn. gigas Beddard, Gn. antarctica Studer). Nat. Hist., London, vol. 5, 1832, p. 520-22, fio. p. 521 felt u. Heider: Lehrbuch d. vergleich. Entwicklungsgesch., Spec. Theil, 2. Heft, 1892, p. 489. ANN, R.: Zoolog. Ergebn. einer Reise in der Küstenp. 105, Pl. 8 fig. 1-6 (G. rhinobatis).

R, H.: Grønlands Amfipoder; Kgl. Danske Vid. Selsk. naturvid. math. Afhandl., vol. 7, 1838, p. 301 (73), Pl. 4, fig. 20 (Praniza Reinhardi). vol. 2, 1847, p. 388 (G. (A.) elongata).
Crust.: Gaimard, Voyage en Scand. (1849). (G. (A.) elongata).

Lilujeborg, W.: Om Hafs-Crustaceer vid Kullaberg i Skåne Ofvers. Kgl. Svenska Vet. Akad. Förh., Argang 12 No. 3, 1852 (1855), p. 132 (G. oxyurraa, P. coeruleata), s: Hist. Nat. des Animaux artic. de l'Algérie, vol. 1,
1849, p. 87 , No. 150 bis, No. 150 ter (G. mauritanica, 184.9, p. 87 , No. 150 bis, No. 150 ter (G. mauritanica,
G. obesa). G.obesa).
Observations sur quelques espèces nouvelles de Crust, Observations sur quelques espèces
du Nord de le Afrique; Ann. Soc. Entomol. France, ser. 2, vol. 7, 1849, p. 463,
obesa, G. vorax). ne-Edwards: Hist
rapax).
$--\quad$ Atlas
Atlas du Règne animal de Cuvier, Crust., 1849(?) (G. (A.) rapax).
atag, G :
Descript
agu, G.: Descript. of several marine animals found on
the south coast of Devonshire; Transact. Linn. Soc London, Zool., vol. 9, 1808, p. 81-114, 7 Pl. (G. maxillaris).
Norman, A. \& Scott, Th.: The Crust. of Devon and CornOhins, A. Arctic Crust (G. maxillaris, G. oxyurrea).

Exped. 1898-99, 1, Leptost., Isop., Cumac.; Bihang Kgl. Svenska Vet. Akad., vol. 26, ser. 4, No. 12, 1901 (G. elongata Kr., Bathygn. stygia G. O. Sars).

Otтo: Nova Acta physico-med. Acad. Cæsareo-Leopold. nat Curios., vol. 14, 1828, p. 348, Pl. 22 fig. 1-2 (Praniza
Richardson, H.: Monograph Isop. N.-America; Bull. U. S Nat. Mus., No. 54, 1905, p. 56 (G. cristata H. J. H., G. elongata Kr., G. Cerina Stimpson)

- Isop.; Charcot: Exped. Antarct. Francaise 1903-05
(1907?), p. 3 (G. antarctica Studer=G.polaris Hodgson).
- Some new Gnathiidæ from the Atlantic coast of N. - America; Proc. U. S. Nat. Mus., vol. 35, 1908, p. 483 (G. multtispinis, G. serrata, Bathygn. curvirostris).
- Isop. N. W. Pacific; Proc. U. S. Nat. Mus., vol. 37 1909, p. 75. (G. tuberaulatata).
Crust. Isop du Travaillerr et
Crust. Isop. du Travailleur et du Talisman; Bull. Mus.
d'Hist. Nat. Paris, 1911 No 7 (G. cecan G
Risso, A.: Hist. Nat. des Crust. des environs de Nice, 1816
(G. forficularis).

Hist. Nat. de l'Europ. Méridionale, 1826, p. 82-83, Pl. 5, fig. 2 (Praniza mesasoma, P. plumosa, P. ventricosa;? Zuphea sparicola)
Sars, G. O. Undersgg. over Christianiafjordens Dybvands fauna, 1869 (G. oxyurrcea Lilljeb. p. 49),
Undersgo over Hardangerfjodens Fauna; Christiania Vid. Selsk. Fork., 1871, p. 32 (G. dentata, G. abyssorum) - Prodromus descript. Crust.; Archiv f. Math. og Natur vid., Christiania, vol 2 1877 (G. (Crecorn.) stygia, G. hirsuta).

- Crust. et Pyenog. nova; Archiv f. Math. og Naturvid. Christiania, vol. 4, 1879 (G. robusta).
Norske Nordhavs-Exp., Crust. pt. 1, 1885, p. 85-95 Pl. 8 (G. (Ccecogn.) styyia, G. hirsuta, G. robusta). - Account of the Crust. of Norway, vol. 2, 1899 Isop. G. dentata, G. elongata, G. abyssorum).

Schoenichen, W.: Gnathia aldabrensis n. sp.; Reise in Ost afrika von A. Voeltzkow, vol. 2, Stuttgart 1908, p 193-98.
Smith, Geof.: Metamorphosis and Life-hist. of Gnathia max -79, Pl. 18.

Stebbing: A History of Recent Crust.; Internat. Sci. Ser., vol. 74, 1893, p. 335.

- Crust. brought by Dr. Willey from the South Seas: Isopoda Zoological Research, Mt. 5 , 1901 (G. auloneola). fsheries, vol. 4, ceylon; Report Ceylon pearl oyster Isher. Porcupine-Exped.; Transact Zol. 9 (190 . vol. 20, pt. 4, 1913, p. 432 Transact. Zool. Soc. London, London 1912, p. 42) p. 432 (Abstract in Proc. Zool. Soc. niza sp.).
stmpson: Marine Invert. Grand-Manan; Smithson. Contrib. to Knowledge, vol. 6, 1853, p. 42 (Praniza cerina $=$ Anceus americanus).
Studer: Isop. nGazellees; Anhang Abhandl. Akad. Wiss. Berlin, 1883 (1884) (G. antarctica).
Tattersall: Isop.; Nord. Plankton, Lief. 14, 1911, vol. 6 P. 192 (G. maxillaris Mont., G. oxyurrca Lilljeb.). ment des Ancées; Bull. Acad. Imp. St. Pétersbourg vol. 10, 1866, p. $497-502$.
Valter, A.: Anceus (Praniza) Torpedinis n. sp. aus Ceylon, p. 445-51, Pl. 15
- p. A5 O, M. 15. oon, J.O.. Extrait de recherches sur les Crust. du genre Praniza de Leach; Ann. Sci. Nat., Zool., vol. 27, 1832, p. 316-32, Pl. 6 (P. maculata Westw., P. marina labber, P. coervuleata Mont., P. Montagui Westw., P.

List of the genera and species.

(Key to the genera Dollfus 1901, p. 243)

1. gen. Cæcognathia Dollfus 1901, p. 244.
2. C. (Anceus) stygia G. O. Sars 1877, No. 65, p. 348. Gollus Sars 1885, p. 85, Pl. 8, fig. 1-22. 2. C. Sarsii Dollfus 1901, p. 244, fig. 3.
3. gen. Euneognathia Stebbing 1893, p. 338. Euneog., Dollfus 1901, p. 240.
4. E. (Anceus) gigas Beddard, Proc. Zool. Soc. 1886 pt. 1, p. 120. - Beddard, Challenger Report 1886 p. 137, Pl. 18, fig. 8-10. - Hodgson 1910, p. 15 (ubi lit.). Pl. 1 fig. 3.
5. gen. Bathygnathia Dollfus 1901, p. 240
6. B. (Anceus) bathybia Beddard, Proc. Zool. Soc 1886, pt. 1, p. 119. - Beddard, Challenger Report 1886, p. 135, Pl. 18 fig. 1-7.
. B. curvirostris Richardson 1908, p. 483, fig. 1-3 4. gen. Akidognathia Stebbing 1912, p. 42.

Akidogn. Stebbing1912, p.42.-Stebbing 1913, p. 235 . A. ædipus Stebbing 1912, p. 42. - Stebbing 1913 p. 235, Pl. 25.
5. gen. Gnathia Leach.
(Literature see Stebbing 1913, p. 232)
The species are enumerated in alphabetical order G. (A.) abyssorum G. O. Sars. 1871, p. 34. - G. O. Sars 1899, p. 56, Pl. 23 fig. 2.
2. G. aldabrensis Schoenichen 1908, p. 193-98, with figs. (a Praniza)
[G. (A.) americana Stimpson 1853, p. $42=A$ cerina Stimpson].
G. (A.) antarctica Studer 1883 (1884) p. 4. - Ri chardson 1907, p. 3. - Hodgson 1910, p. 11 (ub lit.), Pl. 1, fig. 2. - G. polaris Hodgson 1902, p.
. G. (A.) ascifera Hesse 1864, p. 48, Pl. 2, fig. 2 Pl. 3 fig. 12.
5. G. aureola Stebbing 1901, p. 627, Pl. 66, fig. A, Pl. 74, fig. E.
6. G. (A.) balani Hesse 1874, p. 8, Pl. 21 fig. 1-19 7. G. (A.) branchialis Otto 1828, p. 328, Pl. 22 fig. 1-2. - Westwood 1832, p. 327.
8. G. (A.) brivatensis Hesse 1864, p. 42, Pl. 1 fig. $22-$ 25, Pl. 2 fig. 17, 18, 32, 33, Pl. 3 fig. 8-11.
9. G. cæca Richardson 1911, p. 519.
10. G. (P.) cerina (+ A. americanus) Stimpson 1853 p. 42, Pl. 3 fig. 31. - Richardson 1905, p. 59 (ubi lit. et syn.), fig. 43-46.
11. G. (A.) cotti bubali Hesse 1874, p. 16, Pl. 22 fig 1-5.
12. G. (A.) congeri Hesse 1875, p. $445, \mathrm{Pl} 1$.
13. G. cristata H. J. Hansen 1887 (1888), p. 182, Pl. 7 fig. 2. - H. Richardson 1905, p. 56 fig. 41.
14. G. cristatipes Stebbing 1912, p. 42. - Stebbing 1913, p. 232, Pl. 24 fig. A.
15. G. (A.) Danielii Hesse 1884, p. 1-11, Pl. 18
16. G. (A.) dentata G. O. Sars 1871, p. 32. - G. O. Sars 1899, p. 54, Pl. 22 fig. 2.
[G. (P.) Edwardsii Bate $=$ G. oxyurra Lilljeborg].
17. G. (A.) elongata Krøyer 1847, p. 388 . - Kroyer 1846 (1849?), Pl. 30 fig. 3. - G. O. Sars 1899, p. 55, Pl. 23 fig. 1. - H. Richardson 1905, p. 58 (ubi lit. et syn.), fig. 42.
18. G. (A.) erythrina Hesse 1864, p. 50, Pl. 2 fig. 3 Pl. 3 fig. 13.
19. G. (A.) falcaria Hesse 1864, p. 52, Pl. 1 fig. 19, Pl. 2 fig. 4, Pl. 3 fig. 14
20. G. (A.) ferox Haswell 1884, p. 1005, Pl. 52 fig. $1-5$. 21. G. (A.) forficularis Risso 1816, p. 52, Pl. 2 fig. 10. 21. G. (A.) forficularis Risso 1816, p. 52, P1. 2 fig. 10.
22. G. (A.) formica Hesse 1864 , p. 39, Pl. 1 fig. 28 , Pl. 2 fig. 15, Pl. 3 fig. 5-7.
23. G. frontalis Richardson 1911, p. 520. G. furcata Sp. Bate (ubi?; teste Brian 1911).
24. G. (P.) fuscata Johnston 1832, vol. 5, p. 520, fig. p. 521. - Westwood 1832, Pl. 6 fig. 26. - Bate \& Westwood 1868, p. 197.
25. G. Grimaldii Dollfus 1901, p. 240 fig. 1.
26. G. Halidaii Bate \& Westwood 1868, p. 203, fig. Fixation of G. H., Boutan, Comptes Rendus Paris, vol. 153, 1911, p. 639-41.
27. G. (A.) hirsuta G. O. Sars 1877, No. 66. - G. O. sars 1885, p. 92, Pl. 8 fig. 23-24. 28. G. insolita Stebbing 1905, p. 9, Pl. 12 fig. B.
29. G. (A.) latidens Beddard, Proc. Zool. Soc. London 1886, p. 120. - Beddard, Challenger Report 1886, p. 141, Pl. 18 fig. 11.
30. G. (A.) lupi Hesse 1864, p. 59, Pl. 4 fig. 5-6.
31. G. (P.) maculata Westwood 1832, p. 326, Pl. fig. 4-25. - Bate \& Westwood 1868, p. 199. G. (A.) manticora Hesse 1864, p. 53, Pl. 3 fig. 1516, Pl. 4 fig. 2-4 ($=$? G. maxillaris Mont.) 326, Pl. 6 fig. 1-2. No. 150 bis. - Lucas, Nord d'Afrique 1849, p. 463, Pl. 15 fig. 2.
34. G. (Cancer) maxillaris Montagu. (non G. O. Sars 1899). - Latreille, Ency clopédie méthodique 1817 , Pl. 336, fig. 25. - Bate \& Westwood 1868, p. 187 (ubi lit. et syn.). - G. Smith 1903. - Norman Scott 1906, P
Hesse 1864.
[G. maxillaris G. O. Sars = G. oxyurxa Lilljeb.]. G. (P.) mesasoma Risso 1826, p. 83.
35. G. (P.) mesasoma Risso 1826, p. 83.
36. G. (P.) Montagui Westwood 1832, p. 327
36. G. P.) Montagu 37. G. multispinis Richardson 188, p. 88 , No. 150 ter G. (P.) obs Nord de l'Afrique 1849, p. 463, Pl. 15 fig. 3. G. (A) oxyurea Lilljeborg 1852 (1855), p. 133. G. (A.) oxyuræa Liljeborg 1852 (18 fo), p. 10, Pl. 3 fig. 5 Tattersall 1911, p. 197, fig. 18-30. fig. 1--5. - Tattersall 11 , p. \quad. 52 , Pl. 21, 22 G. maxilar G. Brian 1911. - A. Edwardsii Bate fig. 1. - G. max. Brian 1911. - A. Edword Bate \& 1858, p. 165, Pl. 6 fig. 1-2. - A. Edw. Beraleata Nest prod 1852 (1855) p. 132
G. (A.) platyrhynchus Hesse 1874, p. 23, Pl. 22 fig. 12-15.
41. G. (A.) plumosa Risso 1826, p. 82. [G. polaris Hodgson $=$ G. antarctica Studer].
42. G. propinfua Bonnier 1896, p. 571, Pl. 31 fig. 4.
43. G. (A) rapar Milne-Edwards 1840, p. 196, Pl. 33 fig. 12. - Milne-Edwards 1849, p. 182, Pl. 62 fig. 3. . G. (A.) rapax Hesse 1864, p. 61, Pl. 4 fig. 7-9. 44. G. (A.) rapax Hesse 1864, p. 61, P1. 4
45. G. Richardi Dollfus 1901, p. 242, fig. 2.
45. G. Richardi Dollfus 1901, p. 242, 1ig. 2. 46. G. (A.) rhinobatis Kossm
Pl. 8 fig. $1-6$ (a Praniza).
47. G. (A.) robusta G. O. Sars 1879, No. 6, p. 432. G. O. Sars 1885, p. 94, Pl. 8 fig. 25--27. - Dollfus 1901, p. 243.
48. G. (A.) scarites Hesse 1864, p. 57, Pl. 3 fig. 15-16. 49. G. schistifrons Stebbing 1912, p. 42. -- Stebbing 1913, p. 233. Pl. 24 fig. B.
G. (A) scombri Hesse 1874, p. 25, Pl. 22 fig. 2224 (a Praniza).
51. G. serrata Richardson 1908, p. 487, fig. 6-7.
G. (Zuphea) sparicola Risso 1826, p. 104 (a Praniza [G. (A.) stygia G. O. Sars - Cæcogra s.].
\qquad p. 19, Pl. 22 fig. 6-11.
53. G. (A., P.) torpedinis Walter 1885, p. 445 (a Praniza) 54. G. (A.) triglx (trigli) Hesse 1864, p. 56, Pl. 4 fig. 12 55. G. tuberculata Richardson 190, p. 5 A. Soc
56. G. (A.) tuberculosus Beddard, Proc. Zoo. Soc. Lon don 1886, pt. 1, p. $120 .-\mathrm{B}$ - 12 Pl 18 fig 12 Report 1886, p. 139, 1874 , 22 Pl 16 - 21 57. G. (A.) uncifera Hesse 1874, p. 20, P1. 22 g. 16 58. G. (A.) ventricosa Risso 1820, 183 , 10 59. G. (A.) verrucosa Hesse 1864, p. 63, P1. 4 fig. 1, 10. 60. G. (A.) vorax Lucas, Nord de l'Afrique 1849, p. 85, Pl. 15 fig. 1 (no descript.). - Heller 1866, p. 749. Praniza sp. Dollfus 1901, p. 243.

- \quad Stebbing 1913, p. 1838, p. 301 (78),

GNATHIA THORI n. sp. (Fig. 1-2).
St. 140. $20-7-1910 . \quad 37^{\circ} 29^{\prime} N ., 12^{\circ} 34^{\prime} \mathrm{E} . \quad 112 \mathrm{~m}$. clay. St. 140.
1 spec., ${ }^{2}$.

Fig. 1. Gnathia Thori.
Despite a careful study of all descriptions and illustrations of the species from the north Atlantic and the Mediterranean, I have not been able to ascribe the specimen from the "Thor" to any hitherto determined
species. It is characteristic, by the way, that practically speaking, none of the more recent writers have
 been able to identify their species with those thors; most of the older thors; most of the older at least as far as I have been able to judge from the works on the subject only been found once only been found once, recognised, which also seems to suggest that the descriptions are bad Only by actual examinOnly by actual examinspecimens from which pecimens from which
the old species were the old species were
named would it seem possible to reduce this difficult genus to order, refer synonyms to their proper species, etc.

There being but one specimen from the "Thor", I can only give figures and descriptions of such features as could be observed without having recourse to dissection.

Length, $5,5 \mathrm{~mm}$
On the whole, the species very much resembles G. maxillaris, G. O. Sars, (1899, Pl. 21). differing, however, by a number of good characteristic features.

The whole surface is smooth, without areolations etc., Cephalosome and oral parts highly calcified, with a consistency resembling that of the Cumacea. Cephal osome almost square, length nearly equal to breadth Eyes usual size. Frontal edge turned slightly downward, teeth somewhat small, the middle tooth especially so. The two pairs of antennæ are of the usual shape, Ant. 1 with 5 joints in the flagellum, of which Nos. 1 and 5 much shorter than the others; Ant. 2 has joints of almost equal length.

The shape of the mandibles is very characteristic they are fairly narrow, with no dentition on the inne edge: in the broad proximal part, the outer edge is turned upward, a feature which, as far as I have been able to ascertain, does not occur in any other species. With regard to p. 1 (Gnathopoda) there is nothing particular to be said. The remaining pereiopoda are of approximately equal length. The small, but strong teeth shown by Sars (1899, Pl. 23) on the inner side of 3 rd and 4th joints of p. 2 in G. elongata are found in the same shape and number in G. Thori on p. 3-5 on p. 2 and p. 6 these teeth are lacking. The sixth

[^0]segment of the body is almost as long as 4 and 5 together; the seventh is not visible from the dorsal side. The metasome is of the usual shape. The proximal half of the telson is shaped almost identically with that G. maxillaris G. O. Sars (1899, Pl. 21) bu but having no setæ on the dorsal side. Of the uropoda, the exopodite is of approximately the same length as the telson, the endopodite being somewhat longer. The shape and arrangement of setæ may be seen in the figures.

Remarks. This species, which I have named after the ship of the expedition, is very easily distinsuishable from the other species by its mandibles, rontal edge and telson.

Fam. ÆGIDÆ.

Genus ÆGA.

EGA INCISA Schiødte \& Meinert

Ega incisa Schiødte \& Meinert, Monogr. Cymothoarum; Naturh. Tidsskrift, ser. 3, vol. 12, 1879, p. 373, Pl. 4 fig. 13-15.

* - H. Richardson, Isop. N. America; Bull. Mus. U. S. Nat. Mus., vol. 54, 1905, p. 180, fig. 162-64 (ubi lit.)
$\begin{array}{llllll}\text { St. 132. } & 38^{\circ} 57^{\prime} & N, 9^{\circ} 47^{\prime} & E . & 14-7-1910 . & 1227 \mathrm{~m} . \\ \text { St. } 133 . & 38^{\circ} 18^{\prime} & N, \\ 9^{\circ} 59^{\prime} & \mathrm{am} . & 14-7-1910 . & 600 \mathrm{~m} . & 9^{20} \mathrm{pm} .\end{array}$ $00 \mathrm{mt}$. w. 1 spec.
Also found: Mediterranean (Schiödte \& Meinert); Capri (Lo Bianco, Mitt. Zool. Stat. Neapel, vol. 16, 1903, p. 257); Fernandina (Florida); Georgia; St. Augustine (Florida);
$31^{\circ} 57^{\prime} N, 78^{\circ} 18^{\prime} 35^{\prime \prime} W$ (Richardson l. $31^{\circ} 57^{\prime} N, 78^{\circ} 18^{\prime} 35^{\prime \prime} W$. (Richardson 1. c.)

Genus ROCINELA.

ROCINELA DANMONIENSIS Leach

Rocinela danmoniensis Leach, Dict. Sci. Nat., vol. 12, p. 349 (teste G. O. Sars).

Ega rotundicauda Lilljeborg, Norges Crust.; Ofvers. Kgl. Svenska Vet. Akad. Förh., 1851, p. 23.

- nasuta

Norman, in wyille Thomson Depths of the Sea, 1873, p. 127, woodcut.

Rocinela danmoniensis G. O. Sars, Account vol. 2, 1899, p. 65, Pl. 27.
--. Norman, British Isop.; Ann. Mag. Nat. Hist., ser. 7, vol. 14, 1904, p. 436 (ubi lit. et syn.).
Forman \& Scott, Crust. of Devon and Cornwall 1906, p. 38, Pl. 3, fig. 6-8
$\begin{array}{ll}\text { St. 1. } & 49^{\circ} 17^{\prime} N, 4^{\circ} 13^{\prime} W . \\ \text { St. } 41 . & 43^{\circ} 23^{\prime}-11-1908.25 \mathrm{~m} . \mathrm{w} .3 \text { spec. } \\ \text { S. } 2^{\circ} 01^{\prime} W . & 14-6-1906 . \\ 60 \mathrm{~m} . \mathrm{w} . & 3 \text { spec. }\end{array}$
 spec.
There is no doubt of the fact that all the specimens ally belong to this species, which is very apt to be mfused with the closely related R. Dumerilii Lucas ee Norman \& Scott l. c. p. 39, Pl. 3, fig. 10), Also found: Mediterranean (Carus). Plymouth, Polperro
arman \& Scott). $60^{\circ} 39^{\prime} N$, $3^{\circ} 9^{\prime} W$, 203 fath, and $60^{\circ} 45^{\prime} N$ ' ${ }^{\prime}$ 'W, 250 fath. (W. of Shetland; Norman I.c. 1904). Kattega I. J. Hansen, Danmarks Isop ,chiödte \& Meinert, Cymoth.). The etc. 1909). Færoes : least S. of Trondhjem (Sars, Account; Norman 1. c. 1904)

Genus SYSCENUS.

SYSCENUS INFELIX Harger (Fig. 3)
yscenus infelix Harger, Report U. S. Comm. Fish and Fisheries for 1878, pt. 6, 1880, p. 387.

- Harger, Bull. Mus. Comp. Zool. Harvard Coll., vol. 9, 1883, No. 4, p. 100, Pl. 3, fig. 5, Pl. 4, fig. 3.
 Pl. 2, fig. 1.

Fig. 3. Syscenus infelix.
St. $14: 8 \mathrm{~mm}$.
St. $99: 6 \mathrm{~mm}$. - St. $220: 10 \mathrm{~mm}$

Syscenus infelix Lo Bianco, Mitt. Zool. Stat. Neape vol. 16, 1903, p. 257, Pl. 7, fig. 10 (color. fig.).

* - \quad H. Richardson, Monogr. Isop. N. Am 1905, p. 212 (ubi lit.), fig. 216.
St. 14. $41^{\circ} 24^{\prime} N, 17^{\circ} 15^{\prime}$ E. $\quad 1125 \mathrm{~m} . \quad 21-12-1908.1000$ m. w. $8^{20} \mathrm{am} .1$ spec., 8 mm.
St. $220.36^{\circ} 25^{\prime} N, O^{\circ} 42^{\prime} E . \quad 375 \mathrm{~m} .4-9-1910.25 \mathrm{~m} . \mathrm{w}$.
 $\mathrm{m} . \mathrm{w} .{ }^{10} 0^{30} \mathrm{pm} . \quad 2$ spec., $8-9 \mathrm{~mm}$.
St. $99 . \quad 36^{\circ} 02^{\prime} N, 5^{\circ} 16^{\prime} W . \quad 750 \mathrm{~m} . \quad 23-6-1910 . \quad 300 \mathrm{~m}$. w. ${ }^{11^{25} \mathrm{pm} .} 1 \mathrm{spec} .7 \mathrm{~mm}$.
$\mathrm{St}. 99.36^{\circ} 02^{\prime} N, 5^{\circ} 16^{\prime} W .750 \mathrm{~m} . \quad 23-6-1910.65 \mathrm{~m}$ w.
 $\mathrm{m} . \mathrm{w} .5^{45} \mathrm{am} . \quad 1$ spec., 8 mm .

The specimens taken on board the "Thor" are of considerable interest as showing the transition from the youngest known stage (G. O. Sars' Harponyx pranizoides) to the adult. The smallest specimen from the "Thor" however, (St. 99, 65 m. w.) though of the same size (6 mm) as the young form described by Sars, has already 7 pairs of legs highly developed. In the specimen from St. 14, which, judging by its size (8 mm .) and by the greater number of joints in the antennæ, must be somewhat older, the 3 posterior pairs of pereiopoda especially are considerably longer. In the older individuals, the cephalon is relatively far smaller than in the younger. The telson becomes shorter and broader with increasing age; this feature is, however, subject to considerable variation. It will be noticed, for instance, that in the specimen from the "Thor" taken at St. 220 (10 from the "Thor" taken at St. 220 (10
mm , Fig. 3) the telson has almost the mm , Fig. 3) the telson has almost the
same shape as that shown in Sars' illustration of the adult (Account, Suppl. Pl. 1) whereas the specimen described Pl. 1) whereas the specimen described
by Bovallius, which is more than twice as large (32 mm .) has a far longer, and thus more "youthful" telson. The largest specimen from the "Thor" has conest specimen from the thor in the spirit to such a degree that 1 . abdominal segment is almost entirely hidden.

Also found: East N. America.
N.
Delaware Bay
(Richardson), $50^{\circ} 90^{\prime}$
N,

Rocinela Lilljeborgii Bovallius, A new Isop. from the coast of Sweden; Bihang Kgl. Svenska Vet. Akad. Handl., vol 10, No. 10, 1885, p. 3, Pl. 1-2. O. Sars, Account vol. 2, 1899, p. 67 247, Pl. 28, Suppl. Pl. 1. $7^{\circ} 21^{\prime} W$, 516 fathoms (N . of Hebrides: Norman 1904) Hvitingse and Bekkervig (W. Norway) $80-150$ fathoms. (Sars, Account) Bohuslän, on operculum of a whiting (Bovallius) Skagerak and Kattegat, $23-112$ fathoms (H. J. Hansen, Danmarks Isop. 1909 (1910) p. 203). Capri, (Lo Bianco, Mitt,
Zool. Stat. Neapel, vol. 15,1903) $35^{\circ} 06^{\prime} 05^{\prime \prime} N$, $138^{\circ} 40^{\prime} 20^{\prime \prime}$ E., 211-293 fathoms, fine black sand, (Richardson; Proc.
U. S. Nat. Mus. Vol. 37, 1910, p. 85). As the record of distri-
bution shows, the species has never hitherto been found in the bution shows, the species has never hitherto been found in the "Thor". All the specimens from the "Thor"" were found in a free state, not attached to any other animal serving as host

Genus CIROLANA.

CIROLANA BOREALIS Lilljb.

Cirolana borealis Lilljeborg, Norges Crust.; Öfvers. Kgl. Svenska Vet. Akad. Handl., Kgl. Svenska
1851, p. 23.

- spinipes Bate \& Westwood, British sessileeyed Crust., vol. 2, 1867 , p. 299
- borealis H. J. Hansen, Cirolanidæ; Kgl. Danske Vid. Selsk. Skr., math. natur vid. Afd., vol. 3, 1890, p. 321, Pl. 1, fig. 1 .
- - G. O. Sars, Account vol. 2, 1899, p. 7, P1. 29
- - Norman,British Isop.; Ann. Mag. Nat. Hist., ser. 7, vol. 14, 1904, p. 437. 1905, p. 101 (ubi Isop. N.-Am 1905, p. 101 (ubi lit. et syn.).
St. 104. $54^{\circ} 16^{\prime} N, 6^{\circ} 06^{\prime} E .2-7-1905.41 \mathrm{~m} .1$ spec.
Distribution The works of H. J. Hansen, Norman, R. ardson and Sars quoted above record a great number of finds from the eastern part of N. America, and the western coast of Europe from Norway to the Adriatic.

CIROLANA CRANCHII Leach

Cirolana Cranchii Leach, Cymothoadées; Dict. des Sci. Nat., vol. 12, Paris 1818, p. 347. Nelocira Swainsonii Leach, ibid., p. 347.

Desmarest, Considerations générales sur la classe des Crust.; Isop Paris 1825, p. 302, Pl. 48, fig. 2 Cirolana Cranchii Desmarest, ibid., p. 302.
H. J. Hansen, Cirolanidæ; Kgl.Danske Vid. Selsk. Skr., 6. Række, naturvid. mat. Afd., vol. 3, 1890, p. 341, Pl. 3, fig. 3 (ubi lit et syn.)

Cadiz' Roads, 6 m., among algæ. 24-2-1909, Dredge. spec.

Als o found: From the English Channel to Sardinia and Senegambia (H. J. Hansen l. c., Norman, Ann. Mag. Nat. Hist., ser. 7, vol. 14, 1904, p. 438)

Genus EYRYDICE.

EURYDICE SPINIGERA H. J. Hansen

Eurydice spinigera H. J. Hansen, Cirolanidæ; Kgl. Danske Vid. Selsk. Skr., 6. Række, math.-naturvid. Afd., vol. 3, 1890, p. 367, Pl. 5, fig. 4, Pl. 6, fig. 1.

Eyrydice spinigera Norman, British Isop.; Ann. Mag Nat. Hist., ser. 7, vol. 14, 1904, p. 440.

- H. J. Hansen, Revision Ciro laninæ; Journ. Linn. Soc., London, Zool., vol. 29, 1905, p. 359.
H. Richardson, Monogr. Isop. N. Am. 1905, p. 125, fig. 109.
* - Tattersall, Nord. Plankton, vol. 6 (Lief. 14) 1911, p. 205 (ubi lit.). fig. 37-41.
St. 104. $54^{\circ} 16^{\prime} N, 6^{\circ} 06^{\prime} E .41 \mathrm{~m} . \quad 2-7-1905.1$ spec. Channel Islands, and eastern part of Atlantic. (Tattersall 1911). Atlantic between Denmark and Danish West Indies
(H. J. Hansen l. c. 1905). Is generally found at the surface (H. J. Hansen l. c. 1905). - Is generally found at the surface
of the water, but has occasionally been taken at the bottom of tat water, but
(Tattersall 1911).

EURYDICE TRUNCATA Norman

Cirolana truncata Norman, Ann. Mag. Nat. Hist. ser. 4, vol. 2, 1868, p. 421, Pl. 23, fig. 12- 15.
Eurydice - H. J. Hansen, Isop., Cumac. u. Stomat. d. Plankton-Exp., 1895, p. 13, Pl. 1, fig. 5.

- - Tattersall, Isop.; Fisheries, Ireland, Sci. Invest. 1904, pt. 2 (1905) p. 45 , Pl. 11, fig. $5-8$
* - - Tattersall, Isop.; Nord. Plankton vol. 6 (Lief. 14), 1911, p. 214 (ubi lit.) fig. 72-79.
St. 34. $43^{\circ} 2 y^{\prime} N, 8^{\circ} 16^{\prime} E .23-1-1909 . \quad 200 \mathrm{~m}$. w. 6^{35} am. $1 \begin{aligned} & \text { spec. } \\ & \text { St. }\end{aligned}$ 9^{10} St. $35.43^{\circ} 36^{\prime} N, 7^{\circ} 36^{\prime}$ E. 29-1-1909. $2000 \mathrm{~m} .25 \mathrm{~m} . \mathrm{w}$

 5 spec. ${ }^{\text {St. }} 135.37^{\circ} 17^{\prime} \mathrm{N}, 10^{\circ} 28^{\prime}$ E. 16-7-1910. $200 \mathrm{~m} .25 \mathrm{~m} . \mathrm{w}$.
 1 spec. 140 . 37 N, 230 E. 20-7-1910. 112 m . Dreage. 1 spec. 148. $30^{\circ} 45^{\prime} N$, 19 $9^{\circ} 02^{\prime}$ E. 26-7-1910. 290 m . Dredge

 $8^{40} \mathrm{pm}$. 1 spec.

Als of ound: Copvi, adbetwen Copo Corso and Mona (Lo Bianco, Mitl. Zool. Stat. Neapel, vol. 15, 1903) Shetland (Lo Bianco, Mitl. Zool. Stat. Neapel, vol. 15, 1903) Shetland, Morocco, Mediterranean. "Probably always pelagic, but not found over greater depths than 100 fathoms $(=183 \mathrm{~m}$.) (Tattersall, i.c. 1911). As is evident from the foregoing

Sphæroma curtum Leach; Bate \& Westwood, ibid. p. orrect, since it has been taken by the "Thor" over depth f 290,480 , and even over 2000 m .

EYRYDICE GRIMALDII Dollfus.

Jurydice Grimaldii Dollfus, 3ième campagne de l'Hirondelle 1887; Bull. Soc. Zool. de
France 1888, p. 6, fig. J. Hansen, Cirolanidæ; Kgl.Dan ke Vid. Selsk. Skr., math. na1890, p. 364, Pl. 5, fig. 2.

- Grimaldii Norman, Brit. Isop.; Ann. Mag Nat. Hist. ser. 7, vol. 14, 1904, p. 439 . Tattersall, Iso p. 63 .
H. J. Hansen, Revision Cirolaninæ; Journ. Linn. Soc., Lon-
don, Zool. vol. 29, 1905 , p. 361. don, Zool. vol. 29, 1905, p. 361. attersall, Isop.; Nord. Plankton,
vol. 6 (Lief. 14) 1911, p. 212, fig. 65-71.
St. 82. $51^{\circ} 00^{\prime} \mathrm{N}, 11^{\circ} 43^{\prime} \mathrm{W} .1020-1370 \mathrm{~m} .800 \mathrm{~m} . \mathrm{w}$. 15-6-1905. 1 spec.
(No number) $51^{\circ} 40^{\prime} N, 6^{\circ} W$. Surface. 29-8-1905. 1 spec St. 398. ("Ingolf" 1) $36^{\circ} 48^{\prime} N, 14^{\circ} 22^{\prime} \mathrm{W} . \quad 2600 \mathrm{~m}$ 26-10-1911. $12^{40}-1^{10} \mathrm{am}$. 10 spec and W Ireland SW Iceland, between Iceland and Spars, SW near the Færoes. It is more oceanic than most other species of the genus, and is found both at the surface and at depths of 500 fath. ($=914 \mathrm{~m}$.) (Tattersall, 1911).

Fam. CYMOTHOIDÆ.

St. 61. $740 \mathrm{~m} .35^{\circ} 5 y^{\prime} N, 5^{\circ} 35^{\prime} W$. 21-2-1909. $3^{25} \mathrm{pm}$
 $300 \mathrm{~m} . \mathrm{w} .1$ spec., 5 mm .
These two specimens, which are both young stages I have been unable to classify.

Fam. SPHÆROMIDÆ.
(Literature vide Stebbing, Journ. Linn. Soc. Zool., vol. 31, 1910, p. 222)

Genus CYMODOCEA.

CYMODOCEA TRUNCATA Leach

Cymodocea truncata (Mont.) Leach; Bate \& Westwood, Brit. sessile-eyed Crust., vol. 2, 1868, p. 426 (${ }^{(1)}$.

- emarginata Leach; Bate \& Westwood, ibid. p. 428 (${ }^{\circ}$).

- Prideauxianum Leach; Bate \& Westwood, ibid, p. 415 (o) rsall, Isop.; Fisheries, Ireland, *Cymodoce truncata Tattersall, Isop.; Fisheries, Ireland, p. 6, Pl. 2
* - Norman \& Scott, Crustacea of Devon and Cornwall 1906, p. 44 (ubi syn.), Pl. 4, fig. 3-14.
Sphæroma inerme Tattersall, Report British Assoc. 1904 (1905), p. 601.
 St. 105. $36^{\circ} 43^{\prime} N, 2^{\circ} 08^{\prime} W, \quad 20 \mathrm{~m} . \quad 24-6-1910.1$ spec. spec.
spe.
Als o found: Round British Isles, Mediterranean (Tatterall, 1. c. 1911) "Nordeuropäische Meere" (Thielemann; Isop Ostasiens, Abh. d. 2 Kl. d. Akad. d. Wiss. 2 Suppl.-bd Abth. München, 1912, p. 100). The Zoological Museu at Copenhagen possesses specimens from the British Isles France, and the Mediterranean.

2. Valvifera.

Fam. IDOTEIDÆ.

Genus IDOTEA.

DOTEA METALLICA Bosc (Fig. 4)

Idotea metallica Bosc, Hist. Nat. des Crust., vol. 2, 1802, p. 179, Pl. 15, fig. 6.

- robusta Kroyer, Naturhist Tidsskrift Ny Rok ke, vol. 2, 1846, p. 108.
- - Kroyer, in Gaimard, Voyage en Scand., 1846 (1849?) Pl. 26, fig 3
- - Harger, Report U. S. Comm. Fish an Fisheries, pt. 6, 1880, p. 349, Pl. 6, Fisheries, pt
fig. $30-32$.
* _ metallica Miers, Revis. of Idot.; Journ. Linn. Soc Zool., vol. 16, 1883, p. 35 (ubi lit. et syn.).
- - Dollfus, Les Idot. des côtes de France, Feuille des jeunes Naturalistes, vol. 24,1895, p. 8 , fig. 24.
- - Richardson, Monogr. Isop. N.-Americ 1905, p. 362 (ubi lit. et syn.).
- - Tattersall, Isop.; Nord. Plankton, vol. 6 (Lief 14), 1911, p. 227 (ubi lit. et syn.), fig. 116.
St. 116. $39^{\circ} 2 y^{\prime} N, 5^{\circ} 26^{\prime} E .2860 \mathrm{~m} . \quad 30-6-1910.300 \mathrm{~m} . \mathrm{w}$. St. 171. $41^{30} 07^{\prime} N$.

$10 \mathrm{~m} . \mathrm{w} .3^{350} \mathrm{am} .15 \mathrm{~min} .188$ ờ $18-31 \mathrm{~mm}$. 120 웅 $18-24 \mathrm{~mm}$.
$50 \mathrm{~m} . \mathrm{w} .{ }^{2} 8^{25} \mathrm{am} .15 \mathrm{~min} .606$ ơot $18-29 \mathrm{~mm}$, $100 \mathrm{~m} . \mathrm{w} . \quad 2^{50} \mathrm{am} . \quad 15 \mathrm{~min}$. 94 spec. $\quad 22-28 \mathrm{~mm}$, $40 \mathrm{spec} .3-4 \mathrm{~mm}$.
$600 \mathrm{~m} . \mathrm{w}$. $2^{205} \mathrm{am} .20 \mathrm{~min} .54 \mathrm{spec} .18--27 \mathrm{~mm}$, 6 spec. $3-5 \mathrm{~mm}$.
$65 \mathrm{~m} . \mathrm{w} .1$ o (with egrs) 20 mm .
St. 174. $40^{\circ} 54^{\prime} N, 28^{\circ} 53^{\prime} E . \quad 11-8-1900,120 \mathrm{~mm}$. $11^{59} \mathrm{am}$.
$65 \mathrm{~m} . \mathrm{w} .30 \mathrm{~min} .2$) $09: 19 \mathrm{~mm}$ (with eggs) and 25 65 m. w. 30 min .2 off: 19 mm (with eggs) and 25 $\mathrm{mmm}_{40^{\circ} 48^{\prime} \text { (with young). } 27^{2} 59^{\prime} E \text {. } 11-8-1910 . \quad 1103 \mathrm{~m} .}$
 $\mathrm{mm}, 3$ spec. $4-8 \mathrm{~mm}$.
$35 \mathrm{~m} . \mathrm{w} .10^{15} \mathrm{pm} .15 \mathrm{~min} .1 \mathrm{spec} .6 \mathrm{~mm}$.

176. $100 \mathrm{~m} . \mathrm{w} .10^{\circ} 45^{\prime} N .0^{45} \mathrm{pm} .15 \mathrm{~min} .11$ spec. 3 mm .

30 min, $65 \mathrm{~m} . \mathrm{w} .1$ spec. 4 mm . $\mathrm{m} .4^{00} \mathrm{am}$ $\begin{gathered}30 \mathrm{~min} . \\ 40^{\circ} 16^{\prime} \mathrm{m}, \mathrm{m} . \text { w. } \\ 26^{\circ} 32^{\prime} \mathrm{E} .\end{gathered} \quad 12-8$ spec. $1910 . \quad 68 \mathrm{~mm}$.
$10 \mathrm{~m} . \mathrm{w} .0^{40} \mathrm{pm} .15 \mathrm{~min} .1$ ㅇ (without eggs) 20 mm , $65 \mathrm{~m} . \mathrm{w} .0^{20} \mathrm{pm} .15 \mathrm{~min} .1$ ㅇ (with eggs) 19 mm , St. 208. $40^{\circ} 18^{\prime} \mathrm{spec}, 3^{\circ} 2 \mathrm{~mm}$.
 $28 \mathrm{~m} . \mathrm{w} .1 \mathrm{~d}$ 今, 19 mm .
St. 341. ("Pangan" 3). $34^{\circ} 00^{\prime} N, 26^{\circ} 20^{\prime}$ E. 27-8-1911. $11^{00} \mathrm{pm}$ $28 \mathrm{~m} . \mathrm{w} .1$ \& (with eggs), 14 mm .
The determination of this species proved at first a matter of some difficulty, owing to the fact that all the specimens - with the exception of those from St. 208 and St. 341, which had exactly the same outline as the figure given by Dollfus, l. c. - were far narrower than they should be according to the statements and illustrations published. On closer examination, however, it was found that this character was the only one in which the specimens from the "Thor deviate from the normal, so there can be no doub that all of them actually belong to the species in que stion.

Krøyer I. c. 1846 (1849?) gives some more or less schematic illustrations of a part of the appendages; other writers content themselves with figures of the outline. I have therefore dissected both \hat{o} and ρ, and now give illustrations of all the appendages.

In contrast to most other Idoteidæ, there is but very little difference in outline between individuals of the one sex and those of the other; the mesosome of q is only very slightly broader than that of t. The surface is finely scaled; this character is shown in a detail figure of 2 Ant . The 2. Ant. of o^{*} is only very little longer than that of ρ, and has one joint more in the flagellum (7 and 6 respectively). The pereiopoda are somewhat weaker in ρ than in $\sigma^{\hat{\prime}}$; the only essential difference, however, is that $o t$ has a close covering of
thin, but stiff setre on the inner edge of $2-5$ joints of p. 2. For the rest, reference may be made to my illustrations.

Biology. On comparing the yield of the different hauls made at St. 172, it is here especially noticeable that the species keeps near the surface, which, by the way, as far as can be seen from works on the subject, is also evident from all previous investigations. As by far the greater number of specimens were taken in the waters about the Sea of Marmora and adjacent parts of the Black Sea, the following biological results are based exclusively on individuals from this region (St. 171-178). They may be divided into two groups according to size; $3-4(6-8) \mathrm{mm}$. and $18-31 \mathrm{~mm}$. All the small specimens appear to be newly born young, those found in the marsupia of of being of the same size, as a rule about 3 mm . As, moreover, a large number of of have either ova or young in the marsupion (of the large specimens taken at St. 172, 100 and 600 m. w., abt. 10% were \circ of with ova) it is evident that the egg-laying period falls at the beginning of August, and the ova appear to develop very rapidly into young. In view of the great difference between the sizes of the two groups, it would seem that the larger ones must be about 1 year old, and thus propagate at this age. ổ appear to attain a somewhat larger size than $\circ \circ$ ($18-31 \mathrm{~mm}$. as against $18-24 \mathrm{~mm}$.)
Distribution: The species is apparently cosmopolitan,
being found in almost all seas, and even off the W . coast of being found in almost all seas, and even off the W. coast of Greenland. A synopsis of the distribution will be found in my Conspectus Crust. et Pycnog. Groenlandix (Meddel. om
Gronland vol. 22, 1913) p. 236. The most recent find which I have been able to discover in extant works is from Saldanha Bay, Cape Colony (Tattersall, Transact. R. Soc. Edinburgh, vol. 49, pt. 4 No. 16, 1913, p. 889).

IDOTEA BALTICA Pallas.

Oniscus balticus Pallas, Specilegia Zoologica 1772, p. 67, Pl. 4, fig. 6.
Idothea tricuspidata Desmarest, Dictionaire des Sci. Nat., vol. 28, 1823, p. 373, Pl. 46, fig. 11.

- \quad Dollfus, Les Idot.; Feuille des jeunes Naturalistes, vol. 24, 1895, p. 39, Naturalistes,
fig. 19, p. 55.
-_ marina
Miers, Revision Idot.; Journ. Linn. Soc. London, Zool., vol. 16, 1893, Soc. London, Zool.,
p. 25 (ubi lit. et syn.).
* - baltica G. O. Sars, Account vol. 2, 1899, p. 80, G. O. Sars,
Pl. 32.
- - Richardson, Monograph Isop. N.-America Richardson, Monograph Isop. N.-America
1905, p. 364 (ubi lit. et syn.) fig. 394-95. - Tattersall, Isop.; Nord. Plankton, vol. 6 (Lief. 14), 1911, p. 219, fig. 83-87. St. 41. $39^{\circ} 10^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} E$. On the shore. 2-2-1909. 1 spec.

Also found: Eastern N. America; almost the whole of the European coast from Norway to the Black Sea (G. O. Sars 1. c.).

Genus STENOSOMA

Literature vide Tattersall, Isop.; Nord. Plankton, vol. 6 (Lief. 14) 1911, p. 230. - Dolfus, Les Idotheidæ des côtes de France; Feuille des jeunes Natura listes, ser. 3 , vol. 25 , No. 289, 1894, p. $5,54$.

Of the 4 species belonging to this genus which Dollfus (1. c.) mentions as French, 3 are represented in the material from the "Thor", the fourth, however S. lancifer Leach, is wanting.

There being 2 specimens of 2 of the species from the "Thor", I have dissected one of each in order to investigate the relation to the genus Idotea. The principal difference, apart from the abdomen, seems to be that the protuberance on the upper side of Md is much larger than in the Idotea (vide Sars, Account vol 21899 pl 32) Of the genus Idotea I have had occasion to dissect I metallica (vide supra) In had occasion to dissect I. metallica (vide supra). In in the case of Plp. 1-2, whereas in the two species of Stenosoma dissected, these setæ are not found Plp. 3. This has doubtless some connection with the fact that the 3 first pairs of Plp, in the Idotea are connected in pairs by means of crooked spines at the median edge of the 2 mean orooked spins at the soma, this only applies to the two first pais of Plp. By means of these spines, each pair of the appenda in question will be moved together. Furthermore, the articulation of the exopodite in Plp 3-4 is more distinct in Idotea than in Stenosoma. in Plp 5 , more ticulation of 2 joint is actually complete. The pereio poda of 1 lack the abully seto pay be found in Idoter

STENOSOMA CAPITO Rathke. (Fig. 5 partim, fig. 6)
Leptosoma capito Rathke, Zur Fauna d. Krym; Mém. Acad. St.-Petersbourg, vel. 3, 1837, p. 384, Pl. 6, fig. 7-9.
ucas, Hist. Nat. des Animaux Articulés de l'Algérie; Explorat. cient. de l'Algérie, Zool., vol. 1, 1849, p. 62; vol. 4, Pl. 6, fig. 3.
acuminata var. lanciformis Miers, Idot.; Journ. Linn. Soc., London, Zool., vol. 16, 1883, p. 61.
*Stenosoma capito Dollfus, Feuille de jeunes Naturalistes, vol. $25,1894-95$, p. 5 , fig. 11, p. 54 (ubi lit. et syn.). non - acuminatum Leach, teste Norman, Brit.

Isop.; Ann. Mag. Nat.

Hist., ser. 7, vol. 14, 1904,
St. 17. $3^{37^{\circ}} 49^{\prime} N, 23^{\circ} 27^{\prime}$ E. $55 \mathrm{~m} .30-12-1908.2$ ơoc. $15-$ 17 mm .
The species is easily recognisable from others of the genus by the perpendicular horn between the eyes and the marked sculpture of the back. The two specimens agree on the whole very well with the descrip-

S. capito
${ }^{\mathrm{Fi}}$
S. appendiculatum.
s. capito.
tions given by Rathke and Dollfus; there are, howeve certain deviations. Rathke has overlooked the quite short proximal joint in the peduncle of Ant. 2; the flagellum has 19 short joints. The abdomen is, save for the pointed end, almost cylindrical, and is not, a shown in all the figures above quoted, slightly expanded in front of the point.
There being no analytical figures extant, I have dissected one of the specimens, and give drawings of all the appendages.
Also found: Mediterranean, among algæ; Nice, Ville denes, Marseille, Banyuls, Porto Vecchio (Dollf

STENOSOMA ACUMINATUM Leach

(Fig. 5 partim, fig. 7)

Stenosoma acuminatum Leach, Crustaceology, in Edinburgh Encyclopedia, vol. 7, 1814, 433
Idotea

- Bate \& Westwood, British sessile-eyed Crust., vol. 2, 1868, p. 394, with fig.
- - Miers, Idoteidæ; Journ. Linn Soc., London, Zool., vol. 16 1883, p. 59.
*Stenosoma
- Dolf , Mot.; Feuille des jeu--95, 5 , fgis, vol. 25,1894 - lit.).
* - - Tattersall, Isop.; Nord. Plankton, vol. 6 (Lief. 14), 1911, p. 231, fig.

St. 44. Galita's E. side, on the shore. 5-2-1909. 2 ôot: $11-$
This species is known by its almost cylindrica body, which is nearly devoid of sculpture. The frontal part is slightly domed, but without a projecting horn. The two specimens from the "Thor" agree well enough with the figures and descriptions given by Dollfus and Tattersall, being, however, somewhat broader than Dollfus' figures; the abdomen again, is by no means so sharply pointed. The flagellum of ant. 2 has, in the specimen drawn, 17 short joints (Tattersall gives abt. 10).

Here again, as in the case of the other species, no
analytical figures exist; I have therefore dissected and drawn one of the specimens; it will be noticed that there is a considerable similarity to S. capito, the appen dages being, however, far thicker and heavier.
Als o found: St.Aubins (Jersey, Channel Islands) (Koeh
Far: Faune maritime des Isles Anglo-normandes 1885). ler: Faune maritime des Issles Anglo-normandes 1885).

STENOSOMA APPENDICULATUM Risso
(Fig. 5 partim.)
Leptosoma appendiculata Risso, Hist. Nat. de l'Europe Mirid., vol.5, 1826, p. 107, Pl. 4, fig. 23.

Stenosoma appendiculatum Dollfus, Idot.; Feuill des jeunes Naturalistes, vol. $25,1894-95$, p. 5 fig. 12, p. 54 (ubi lit.)
non Idotea appendiculata ate \& Westwood, British sessile-eyed Crust., vol. 2, 1868, p. 396, fig
st. 1.06. $36^{\circ} 53^{\prime} \mathrm{N}, 2^{\circ} 00^{\prime} W . \quad 24-6-1910 . \quad 1150 \mathrm{~m} . \quad 0^{20} \mathrm{am}$ $1200 \mathrm{~m} . \mathrm{w} .1$ spec., 11 mm .
This species, which, in contrast to the two previ-
The Danish Oecanographical Expedition. I.
ously described, is hyaline and transparent, is easily recognised by its greatly applanated form, its large triangular coxal plates, and the small incision on either side of the proximal end of the abdomen. The specimen from the "Thor", which is unfortunately somew defective is slightly narrower than shown in Dous figure, the abdomen also being less sharply pointed at the hinder end. The specimen here described, despite its having been kept in spirits for 4 years to time of writing is still almost as transpas.
There can be no doubt that Risso's species really the same as Douffus' True Risso's figure (dorsal view) mostly resembles a sort of hybrid form (atwe S. capito and S.appendiculatum Doupus, while his figure and text make no mention of the incision on either side of the abdomen; he does, however, state that it hyaline and pellucid, which woul wo that other the other species.
The colour when alive is said to be a fine green (Risso).
Also found: Mediterranean (rare); Marseilles, among algæ (Dollfus).

Fam.

ARCTURIDÆ=ASTACILLIDÆ.

Literature and key to the species, vide Stebbing, South African Crust. pt. 4 (Ann. S. African Museum, vol. 6, pt. 1, 1908, p. 50-52) and R. Koehler, Arcturdés nouveaux (Bull. Inst. Océanogr. Monaco, No. 214, 1911) p. 1 seq. Koehler points out (1. c. p. 3 seq.) the great systematic importance of the number of marsupial plates (oostégites); vide infra.

Genus ASTACILLA.

Of this genus, of which 15 species are hitherto known, 2 (1) will be found represented among the material from the "Thor". Of these, the one, A. (?) Bonnierii is new to science.

The species hitherto known are:
A. longicornis Sowb., see Sars, Account vol. 2, 1899, p. 88, Pl. 36.
A. arietina G. O. Sars, I. c. 1899, p. 90, Pl. 37, fig. 1. A. affinis G. O. Sars $=$ A. intermedia Goods.; Sars, 1. c. 1899, p. 90, Pl. 37, fig. 2
A. pusilla G. O. Sars, I. c. p. 91, Pl. 37, fig. 3.
A. granulata Harger $=$ A. americana Harger; Richardson, Monogr. Isop. N.-America 1905, p. 324.
A. coeca Benedict; Richardson, ibid. p. 326.
A. Deshayesii Lucas; see later on; p. 20.
A. amblyura Stebbing, Isop.; Ceylon pearl oyster report, vol. 4, 1905, p. 46, Pl. 11, fig. B.
(on p. 3-4) this, however, I can only consider as of slight importance, as the plate on p. 2 would certainly (this is, at any rate, the case with A. longicornis).

With its partial fusion of the head with the first segment of the body, as well as the four pairs of marsupial plates, the present species from the "Thor" resembles Astacilla (Arcturopsis) Giardi, Bonnier (Edriophthalmes du "Caudan"; Ann.Univ.Lyon, vol.16 1896, p. 581, Pl. 32, fig. 3-4). True, Koehler says, in Arcturidés nouveaux (1. c. 1911) p. 6-7, that A. Giardi has in reality only 3 pairs of plates; this statement, however, I must. pass over, having no material of the species in question.

Koehler (1. c. 1911, 'p. 8) takes Astacilla Giardi as belonging to a new genus, Arcturopsis, together with I new species distinguished by himself. For generic diagnosis see Koehler, p. 8

Of the species from the "Thor" we have only 2 ㅇ, no ${ }^{\circ}$; it is thus impossible to determine whether the remarkable copulatory organ referred to by Bonnier (1. c. 1896) and Koehler is also found in the present species. ot can thus not be used for purposes of generic determination. \& does not agree with Koehlers diagnosis of the genus Arcturopsis, the fourth segment of the body not being much broader at the fore end than at the hinder do., but on the contrary, almost cylindrical in form.

Despite the uncertainty of the generic classification, I suggest that the new species should for the present be taken as belonging to the genus Astacilla elucidation of the actual facts of the case must unfortunately be left to the future

ASTACILLA (?) BONNIERII n. sp. (Fig. 8)
St. 66. $36^{\circ} 16^{\prime} N, 6^{\circ} 52^{\prime} W . \quad 735 \mathrm{~m} . \quad 25-2-1909.8^{00}$ am. 2 spec. (\%).
Of all the species of Astacilla described (the des criptions of Ohlin's 2 species however, I have, as already mentioned, been unable to consult) the present species resenbles in externals mostly A. longicornis (Sars, Account, vol. 2, 1899 p. 88, P1. 36) but is altogether some hars' and my figures togither. The on comparing Sars and my hoth the quite small species is almost entirely smooth, the quite small three posterior segmets of the body is distinctly three posterior segments of the body is distincty show in my fig, w, Both the specimen in question a 0 abt 0,5
Bo they are fairly soft long. They are fairly soft. Thave named the specie ate

See also the remarks above as to genus Astacilla

Fig. 8. Astacilla (9) Bonnierii o. $M x=1 . \mathrm{Mx}$.

Fig. 10. Ianirella Bonnierii. Ceph. sculpt. $=$ the sculpture of the cephalon. Ant. 1 is by a misprint called Ant 2 and viee ves
the same form, save that the lacinia mobilis is natually lacking in this. The pereiopoda are wanting entirely, with the exception of 1 . segment. The operculum is, both in ${ }^{\hat{o}}$ and P , somewhat longer than that of I. Nanseni, reaching in both sexes almost out to the point of the pleon. With regard to the uropoda, there is nothing particular to remark. The length is -5 mm ., colour (in alcohol) white.

This new species I have named after the French oologist the late Jules Bonnier, who has given an excellent description of the type species of the genus.

One of the specimens had, attached to the under side of the head or one of the foremost rings, an almost spherical Rhizocephalid; unfortunately, it fell off' at the moment of commencing investigation.

Remarks. Of the two species last described by Miss Richardson, there are, unfortunately, no illustrations available, there being, moreover, only a single specimen of each species, both of these defective.

In the following table, I have attempted to give a brief survey of the species belonging to this genus 1. Lateral processes rounded $\ldots . . .$. . I. lobata. 2. With dorsal spines. I. Nanseni.
2. Smooth backed..
I. Nanseni.
3. Besides the small process at the
basis of the uropoda, the pleon ha
on either side

4 - - \quad. I. Bonnierii
H. \bar{J} Hansen will, $\ldots \ldots . .$. I. abyssicola. Danish Ingolf-Expedition, describe a new, smooth backed species

Genus Ianirella. Sayce has, in Proc. Soc. Victoria, vol. 13, 1900, evidently in ignorance of Bonnier's wor quoted above, formed a new genus with the same name as Bonnier's, in order to include a new
D. elongatum Bonnier, Edriophthalmes du "Caudan" Ann. Univ. Lyon, 1896, p. 605, Pl. 34, fig. 3.
Among the Isop. from the Danish Ingolf-Expedition, which Dr. H. J. Hansen is at present working up, will be found about ten new species.

The specimen from the "Thor" is at the very first glance distinguishable from the species described, by the remarkable shape of p .1 ; in other respects, however, it agrees well with the characterization given by Sars (Account, vol. 2, p. 124) of the genus Desmosoma Having had but a single specimen at my disposal, have not subjected this to dissection, and can therefore furnish no description or illustrations of the oral parts, or of the pleopoda.

The body is somewhat broader in proportion than in the other species, the length being 3 or 4 times the breadth. The cephalon is comparatively narrow; the neck in particular is unusually long (It should be noted that in drawing habitus figure, dorsal view, the animal has not been subjected to pressure from the cover glass). The first segments in the mesosome are of equal length the fourth half as long again; these four segments extend laterally in a pointed process: 1 . seg ment of the respective legs. The thee 7 are segments are longer than the harp-edged, the lateral edges of the oephal 1. ant has only four joints; of these the second is long the three others together, Of 2 ant aly the 4 short proximal segments are preserved . . par pha the 5 th joint bearing a strong spin
 whe the the whe presents the appearance of decapod claw P 2-7 are of the usual shape size decreasing from p. 2 to p. 4. p. 5 - p. 7 are of decreasing from p. 2 to p., p. 5 p. 7 are of aproximately the sane lengh as p. 4. The uropoda have two joints, the second being almo half as long again as the first, an sona phat In a figur showng the 5. segment of the body, I have folds in the sculpture of the body.

Length, $4-5 \mathrm{~mm}$. Colour, (in Alcohol) whitish, semitransparent; very soft

The specimen was found east of the northernmost point of Corsica. This is, as far as I have been abl to see from extant works, the first find of a Desmosoma made in the Mediterranean. It to be the first time any species of this genus has bee taken pelagically, the others having, it seems, bee taken on the bottom

Fam. MUNNOPSIDÆ.

Genus MUNNEURYCOPE

MUNNEURYCOPE TJALFIENSIS K. St. (Fig. 12, 13)

 Munneurycope Tjalfiensis K. Stephensen, Report on the Malac. collected by the Tjalfe-Exped. especially at W.-Greenland; Vid. Meddel.Naturh. Foren. Kbhv., vol. 64, 1913, p. 99, fig. 6-8.St. 62. $50^{\circ} 25^{\prime} N, 12^{\circ} 44^{\prime} W$. $2480-2775 \mathrm{~m} .5-$ St 65. 6-1906. $1500 \mathrm{~m} . \mathrm{w} .1$ 太̊, 2 ot. St. 65. $35^{\circ} 53^{\prime} N, 7^{26} W .1300 \mathrm{~m} .24-8-1909$ St. 74. $49^{\circ} 23^{\prime} N, 12^{\circ} 13^{\prime} \mathrm{W}$. $1245-1298$ (20.6-1906. $2000 \mathrm{~m} . \mathrm{w} .4$ ô, 9 o. St. 76. $49^{\circ} 27^{\prime} N, 13^{\circ} 33^{\prime} W .>2800 \mathrm{~m} .11-6-1906$. St. $180.48^{\circ} 19^{\prime} N$. W. $13^{\circ} 53^{\prime} W, 3$ of undeterm. sex. St. 180. $48^{\circ} 19^{\prime} N, 13^{\circ} 53^{\prime} W$. $4000 \mathrm{~m} .3-9-1906$. St. 181. $49^{\circ} 22^{\prime} N$, $12^{\circ} 52^{\prime} W$ W. 1350 m . 4-9-1906. t. 190, $\begin{aligned} & 1800 \mathrm{~m} . \mathrm{w} .56^{\circ} 30^{\prime} \mathrm{N}^{\prime}, 4 \text { t. } \\ & 4\end{aligned}$ $46^{\circ} 30^{\prime} N$, $y^{\circ} 00^{\prime} W$. $4000 \mathrm{~m} .11-9-1906$.
 sex.
In the Report of the "Tjalfe"-Expedition (I. c.) where I have described this species on the basis of a single specimen (${ }^{1}$) very ill preserved, I have also included some illustrations; the figure and description there, however, are, owing to paucity and badness of material, far from satisfactory. I therefore propose to give a supplementary description here, with new drawings.

Eyes are wanting. Ant. 1 is about half the length of the whole body. In a ${ }^{t}$ having these antennæ in complete preservation, they appear to contain 55 joints. The first segment of the stem is large and thick, far heavier than the second; no. 3 is quite small. Then follows the flagellum with two long joints with a single, quite short one between them (this is not distinctly visible in all specimens) and thereafter, the small, short joints. It should be noted however, that it is not always possible, in the proximal portion of the antennæ, to distinguish with certainty between accidental breaks and true articulation; it is therefore not certain that all the markings shown in the figure as articulate divisions really are such, or that
the two long joints not are combined by many small joints. In all the specimens, the flagellum of ant. 2 has been lost; the four joints which have been preserved are very thick, the third having a small antennal scale on the distal end of its lateral side. This last feature has not, as far as I am aware, hitherto been found in any Munnopsid.
The mandibles resemble very closely those of Munnopsis Murrayi Walker (Tattersall, Isop. Fisheries,

Fig. 12. Munneurycope Tialfensis,

Fig 13. Muneurycope Tjalfiens
the present species; not, as suggested in the "Tjalfe Expedition, also M. oceanica Tattersall and M. longicornis H. J. Hansen. It is closely related to Munnopsis, differing, however, in the following characters:

1. The outline of the body is oblong, without that sudden narrowing of the posterior segments of the body which is characteristic of most of the othe species. 2. There is a small antennal scale (not known in the case of M.Murrayi). 3. Mandibles with cutting edge strongly dentate; setose lobe, and broad molar expansion present (Tattersall). 4. Second joint of p. 2 - p. 4 long, as in Eurycope, not short as in Munnopsis typica. 5. Natatory legs with a distinct dactylus (Tattersall). 6. Uropoda have a small exopodite (not described however in M. Murrayi).
Distribution. The specimen from the "Tjalfe" was
taken near S. Greenland, $60^{\circ} 07^{\prime} N, 48^{\circ} 26^{\prime} W, 2000 \mathrm{~m}$. w. taken near S. Greenland, $60^{\circ} 07^{\prime} N, 48^{\circ} 26^{\prime} W, 2000 \mathrm{~m}$. w. The species thus belongs to the deep Atlantic.

4. Epicarida.

Fam. DAJIDE.

Synopsis of genera and species: K. Stephensen, "Tjalfe«-Exped. Malacostraca; Vid. Meddel. Naturhist. Foren. Kbhv. vol. 64, 1912 (1913), p. 104-07.

Genus HOLOPHRYXUS.

hoLophryxus richardi Koehler

*Holophryxus Richardi Koehler, Isop. nouveaux de la fam. des Dajides; Bull. Inst Océanogr. Monaco, No. 196 1911, p. 23-26, fig. 15-17.

- K. Stephensen, "Tjalfe«-Exped Malacostraca; Vid. Meddel Naturh. Foren. Kbhvn. vol 64, 1912, p. 108, fig. 9-10.
sp. (H. Richardi Koehler?) K. Stephensen, ibid. p. 109, fig. 11-14 St. 88. $48^{\circ} 09^{\prime} N, 8^{\circ} 30^{\prime} W .600-995 \mathrm{~m} .300 \mathrm{~m}$. w. 20-6-1905. 1 spec. (f) without host.
The specimen, which is 8 mm . long, agrees well with my Fig. 9-10 in "Tjalfe" Expedition. The animal was found loose in a glass, not attached to any host, and is considerably shrunken.

After renewed examination of the specimens from the "Tjalfe" I have no longer any doubt that of the fact that H. sp. ("Tjalfe", p. 159) is really the adult H. Richardi.

 The species thus belongs to the plankton of the Atlantio (lives on Sergestes arcticus Kr .).

Genus HETEROPHRYXUS.

 HETEROPHRYXUS APPENDICULATUS G. o. Sars (Fig. 14)Heterophryxus appendiculatus G. O. Sars, Challenger Re port, Zool. vol. 13, Sch zop., 1885, p. 220, Pl. 38 fig. 8.
Giard \& Bonnier, Sur les Epicarides dela fam. de Dajides; Bull. Sci. France et Belgique vol. 20 1889, p. 284-85, textfig 9 (copy of Sars' fig.). Ireland, Sci. Invest 1904, pt. 2 (1905), p. 77 Pl. 11 fig. 1-4
Tattersall, Nord. Plankton, Lief. 14, vol. 6,191 p. 247, fig. 146--49.

Tattersall, Schizop., Stomatop. and non-antarc tic Isop. Scottish Nat. Antarct. Exp.; Transact. Royal Soc. Edinburgh, vol. 49, pt. 4, No 16,191
$14-15$.
St. 66. $36^{\circ} 16^{\prime} N, 6^{\circ} 52^{\prime} W . \quad 25-2-1909.735 \mathrm{~m} .5^{15} \mathrm{am} .600$ m. w. 1 \& with o

The only good illustrated description of this species is that given by Tattersall 1. c. 1904 (1905); a copy translated, is found in Tattersall l. c. 1911. Sars' original figure, which is copied by Giard and Bonnier, is not particularly good, and his original description extremely brief.

The q here in question, which is 5 mm . long (excl p. 5) was, with its attached $\hat{\delta}$, found loose in a glass, not fixed to any host. The highly emarginated lateral parts beyond the epimeral plates indicate the animal as being of an age between those of the specimens drawn by Tattersall and Sars; unfortunately, however, size of the specimens shown. My specimen asfers fro Tattersall's figure in having the cephalon drawn some what back from the anterior edge of the body which appears to be formed by the pronounced projection 1. pair of epimeral plates; the cephalon dees not however, contribute to the formation of this A dark, stripe runs down the centre of the bal fripe anterior segments. As no figure
rom the ventral side, exists showing this species as seen from trinately side, I have made a drawing, but have parts and antennæ. Strange give all details of oral plates number not 5 but 6 , there being one pair situat in front of those belonging to p. 1, this anterior pair, which thus belongs to the gnathopoda, (which I have not been able to find) are of approximately the same shape and size as those belonging to p. 1 , but project only by a narrow edge. The marsupial plates, by the way, overlap but very little, and as they are pressed in to the body, the specimen must be comparatively young, and cannot yet have had ova. P. 5 is long and thin as in Tattersall's fig. (l. c. 1904) differing however, somewhat from extant figures in the shape of the branches

Distribution. This species, which lives on the back of the carapace of various Euphausia-species (see in particular Tattersall, 1. c. 1913) is known from $0^{\circ} 22^{\prime} N, 18^{\circ} 43^{\prime} W$; $6^{\circ} 43^{\prime} N, 25^{\circ} 44^{\prime} W$. (Tattersall 1913) Cape Verde Islands (Sars 1.c.) Mediterranean (Lo Bianco 1903) Bay of Biscay, (Fowler) and W. Ireland (Tattersall 1904)

1904, pl. 2 (1905) p. 24-25, and in Isop. Nordisches Plankton (vol. 6, Lief. 14, 1911) p. 186-87. The species is extremely closely related to M. Murrayi Walker (for references, see "Tjalfe" Exp., p. 99-102), difering however, in the palp of the maxillipeds, the thedis erge j. joint being somewhat concave, and not pointed The broadest towards its termination, indented. In addition, the blackish brown or dark brown colour is doubtless also a specific character. True, neither Walker nor Tattersall make any statement regarding the colour of their specimens; they would, however doubtless have done so had this been so unusual as in the present instance. Furthermore, the metasome of .f Murrayi is stated as having a blunt carina, no trace
a in wible in the specimes her
only comprise Munnopsis Murrayi Walker and

TANAIDACEA.

As the "Thor" was chiefly occupied with the collecting of plankton, and only occasionally using the dredge, it is not to be expected that the yield of Taaidacea should be very great, and as a matter of ct there are but 5 species represented in the material, ncluding 1 n .sp.

Though insignificant in point of quantity, however me material is all the more important in biological respects, a number of specimens having been taken pelagically. A feature of supreme interest is the fact that the pelagic occurrence has been verified as a cerainty, the question being not merely one of biological ut also of zoogeographical importance. H. J. Hansen entions, among the Tanaidacea of the Ingolf Expe ition (The Danish Ingolf Exped, vol. 3, pt. 3, 1913 , p. 4-5) certain species, the occurrence of which is contary to zoogeographical laws, inasmuch as they appear to belong both to the boreal southern and northern rctic ocean deeps off the coast of Greenland. I have myself, in a zoogeographical survey of the Malacostraca and Pycnogonida of Greenland (Meddel. om Grønland, vol. 45, 1912, p. 615) mentioned some Crutaceans, the distribution of which I was then unable to explain. The question has also been subsequently reated in my Conspectus Crust. et Pycnog. Groenandiæ (Medd. om Gronland, vol. 22, 1913) p. 257-60, from the point of view that the geographically doubtful pecies were taken as plankton; I have also (l. c. 1913 p. 259) mentioned 5 Tanaidacea as to which I have ucceeded in finding reliable records of pelagic occurence in extant works. (I need hardly say that it is not my intention to assert that such species always are planktonic, but merely that they may occur as plankton). Dr. H. J. Hansen however, maintains that all Tanaidacea belong to the bottom fauna, despite the fact that the occurrence of the "doubtful" species is very easily explained if they are taken pelagically* We are not justified in supposing that an anima must necessarily have been taken on the bottom because it happens to be found in a dredge; it might very well have been caught while the imple ment was being hauled in. I have myself, in Greenland, frequently found both medusæ and Sagitta in the dredge.

* It should be noted that the specimens taken pelagically by the "Thor" were caught at night ($10^{10} \mathrm{p} . \mathrm{m}$.) It is moreove phenomenon or sise higher in the water during this part of the 24 hours.

As already mentioned, I have in Meddel om Granland, vol. 22, 1913, p. 259, made reference to 5 Ta naidacea which had, according to published statements, been taken pelagically: I have since succeeded in finding the following three instances recorded, besides those from the "Thor".

Apseudes latreillei Southern part of North Sea, exact locality not stated (Bull. Rés. courses periodiques, Année 1904-05, No. 2, Novbr. 1904, p. 87, [cover dated erroneously 1905]; Conseil permanent internat. pour l'exploration de la mer). Also referred to in the Public. de Circonstance of the same institution, (No. 33, 1906, p. 103).

Apseudes spinosus $51^{\circ} 48^{\prime} N, 2^{\circ} 09^{\prime} E, 47,32 \mathrm{~m}$, horiontal net 44 mm (l. c. 1904, p. 87; l. c. 1906, p. 103), Heterotanais crassicornis Siboga Exp. St. 43, PuluSarassa, Postillon Island, vertical net $36-0 \mathrm{~m}, 2$ spec. (Nierstrasz; Siboga-Isop. pt. 1, 1913, p. 40).

In addition, the following two species at least are passively pelagic (living on turtles).

Tanais robustus Moore, (taken by the "Thor" vide infra).

Tanais Dulongi Savigny (Audouin), Van Beneden, Notice sur la tortue franche (Chelonia midas) dans la mer du Nord, ses commensaux et ses parasites; Bull. Acad. Royale de Belgique, ser. 2, vol. 6, No. 1, p. 6, Pl. 1, fig. 1-8. (This important work appears to have mention of it in by all subsequent writers, I fand Nierstrasz, Siboga-Isop. pt. 1, 1913, p. 24, 25 (ubi lit.).

I may here point out that Nierstrasz, in his work above quoted on the Isopoda of the Siboga-Expedition (pl. 1, Isopoda chelifera) gives a complete list of all the Tanaidacea hitherto known, with full bibliographical references. Stebbing has since described a species (Tanais Ohlini) in Proc. Zool. Soc. London, 1914, p. 349, Pl. 1.

Fam. APSEUDIDÆ.
 Genus APSEUDES.

APSEUDES GRACILOIDES n. sp. (Fig. 15). St. 126. $42^{\circ} 43^{\prime} N, 9^{\circ} 50^{\prime} E, 10-7-1910,600-620 \mathrm{~m} .1^{10} \mathrm{pm}$.
 St. 140. material, parts of 2 spec. naterial, parts of 2 spec.
$37^{\circ} 29^{\prime} N, 12^{\prime} 34^{\prime} E, 20-7-1910$, spec.

Fig. 15. Apseudes graciloides.

At the stations mentioned, some more or less defective specimens were taken, belonging to a species of Apseudes very closely related to A. gracilis Norman and Stebbing (Transact. Zool. Soc. London, vol. 12, pl. 4, 1886, p. 95-97, Pl. 20; - H. J. Hansen, Malacotraca 2, Tanaid.; Danish Ingolf Expedition, vol. 3 , pt. 3, 1913, p. 13-15, Pl. 1, fig. 3). None of these specimens is complete, but as all appear to be $\hat{\delta}$, the parts missing in one could be supplied by the others
Seen dorsally, the species is of comparatively slender build, strongly resembling in outline the figure of A.
gracilis given by Norman and Stebbing; the anterior lateral processes, however, are lacking on the second free segment of the body. (What looks like the anterior lateral process on 1 . segment of the body is in reality 1. joint of p. 2). The posterior lateral processes, however, on all free segments of the body, are distinctly curvated, and all segments have a long spiniform pro have a spine on the ventral side, as in A. gracilis. Ant. 1 is somewhat shorter in proportion than that of A. gracilis; the long flagellum is only as long as the
em, and contains about 18 joints. The short flagelm , on the other hand, is long in proportion, being out $3 / 4$ the length of the long one, and containing out 9 joints. Ant. 2 is somewhat longer than the em of ant. 1.; the flagellum has 9 joints. The oral arts resemble in essentials the figures of these appenages as shown by Sars in his Account (vol. 2, Pl. 1) ir A. spinosus. There is a large spine on the labrum: have not, however, been able to find, in the specimen issected, the curvated spines which link the two axillipeds together. As will be seen from my drawings, $.1-$ p. 2 exhibit a striking similarity to the corspponding appendages in A. gracilis; the only essential ifference appears to be that in these two pairs of ppendages, the lower side of the second joint is smooth 1 A. gracilis, whereas in the case of A. graciloides, it furnished with 2 (p. 1) or 3 (p. 2) small but strong rticulated spines. P. 3 - p. 6 differ from the coresponding appendages of A. gracilis only, as far as ygards essentials, in the shorter outermost joint; this 'ould seem, however, to be due the defective condion of my specimens. Pleopoda are entirely lacking 1 all my present specimens. The uropoda have a omparatively short, thick stem; in the specimen rawn, one uropod has a small exopodite, which appears \jmath consist of two joints, the outermost being twice the ength of the proximal. Possibly there may in reality e 3 joints; the articulation however, is very indistinct. he exopodite is lacking in all the specimens. All the specimens appear to be ồ $\hat{0}$. Those in the est state of preservation are 10 mm long; some of he fragments must, however, have belonged to inividuals measuring at least 12 mm . The colour (in lcohol) is white.
Remarks. As will be seen from the foregoing, in onjunction with my figures, this species is thus very losely related to A. gracilis, but is easily distinguished rom this by means of the curvated posterior lateral rocesses on the free segments of the body, and by the pines on the lower edge of the second joint in p. $1-$). 2.

APSEUDES ECHINATUS G. O. Sars.
Apseudes echinatus G. O. Sars, Revision of Gruppen Isopoda chelifera; Archiv f. Math. og Naturvid., vol. 7, 1880 (1881), p. 13.
G. O. Sars, Middelhavets Saxisopoder; ibid. 1886, p. 286, Pl. 4. lunarifrons Norman \& Stebbing, Isop. "Lightning" etc.; Transact. Zool. Soc. p. 89, p. 134, Pl. 17, fig. 2.

Apseudes echinatus Nierstrasz, Siboga-Isop., pt. 1, 1913, p. 11.
St. 140. $3^{\circ} 29^{\prime} N, 12^{\circ} 34^{\prime} E, 20-7-1910.112 \mathrm{~m}$. Dredge. 1 St. 213. $40^{\circ} 14^{\prime} N, 0^{\circ} 54^{\prime} E$. $31-8-1910.75 \mathrm{~m}$. Dredge. $20^{\circ} \overbrace{}^{\circ}$ Sars' and Norman \& Stebbing's species are synonyms. Norman and Stebbing (l. c. p. 89) quote Sars species with a? as a synonym; in a note p. 134, however, "this conclusion of the work, they write that they have "this day" received Sars' publication above referred to on the Tanaidacea of the Mediterranean, that there is only one species, and that the species named by them should thus be cancelled.
Also found: Gulf of Spezia, off Porto Venere, in 2030 fath. (Sars 1. c. 1886) Mediterranean, of the coast of Alge ria, 51-510 fathoms (Norm. \& Stebb.)

APSEUDES GROSSIMANUS Norm. \& Stebbing.
*Apseudes grossimanus Norman \& Stebbing, Isop "Lightning"; Transact. Zool Soc. London, vol. 12, pt. 4 1886, p. 93, Pl. 19
ierstrasz, Isop. Siboga, pt. 1 1913, p. 10, 11, 12 (ubi lit.) St. 126. $42^{\circ} 43^{\prime} N, 9^{\circ} 50^{\prime} E, 600-620 \mathrm{~m} .10-7-1910.10^{10} \mathrm{pm}$

139. $377^{\circ} 57^{\prime} N, 11^{\circ} 54^{\prime}$ E. $680 \mathrm{~m} .20-7-1910$. Dredge. 3 ot Of the specimens from St. 126,7 are 5 mm , the 8th, however 10 mm long. All, including the largest have chelae of exactly the same shape as shown by Nore slightly long than in sparap in bing's figures Than 139 Steb about the same size as the largest one from St 126 about the same size t. 126 to be ${ }^{\circ}$. Also found: Portugal 240 fath. $30^{\circ} 39^{\prime} N, 9^{\circ} 39^{\prime} \mathrm{W}$; ranean; Sidi-Teni, N.Africa; S.Africa 225-448 m. (Nierstrasz 1. c.).

APSEUDES RETUSIFRONS Richardson.
*Apseudes obtusifrons Norman \& Stebbing, Isop."Lightning" etc.; Transact. Zool. Soc. London, vol. 12, pt. 4, 1886 p. 88, P1. 18, fig. II.

- retusifrons Richardson, Proc. U. S. Nat. Mus vol. 42, 1912, p. 584 note.
St. 126. $42^{\circ} 43^{\prime} N, 9^{\circ} 50^{\prime} E .600-620 \mathrm{~m} .10-7-1910.10^{10} \mathrm{pm}$ $25 \mathrm{~m} . \mathrm{w} .4$ ㅇㅇ, 1 or
Chela, strange to say, equally strong in σ^{*} and ρ. Also found: W. of Gibraltar $35^{\circ} 50^{\prime} N, 5^{\circ} 26^{\prime} W, 128$ fath., viously been taken in the Mediterranean.

Fam. TANAIDÆ.

Genus TANAIS.

TANAIS ROBUSTUS Moore

*Tanais robustus Moore, Proc. Acad. Nat. Sci. Phila delphia 1894, p. 90-94, Pl. 5.

- Richardson, Bull. U. S. Nat. Mus., ol. 54, 1905, p. 11, fig. 15 (copy of Moore's description).
- testudinicola Dollfus, Mém. Soc. Zool. France, vol. 11, 1897, p. 37, with figs.
St. 132. $38^{\circ} 57^{\prime \prime} N, 9^{\circ} 47^{\prime \prime} E$. 14-7-1910.
Found between filiform green algæ on the back
of two sea turtles taken at the surface. Abt. 10 spec The specimens are $1-4 \mathrm{~mm}$ long, and agree entirely with the description given by Moore. The colour spirits) is a violet brown (Moore: pale yellow) wit very pale chelæ.

This species has hitherto only been found on turtle (Thalassochelys caretta); the occurrence of the specimens from the "Thor" however, does not quite agre with Moore's statement to the effect that they inhabit "minute tubes in the crevices between the scales of the turtle's (Thalassochelys caretta's) carapace'
Also found: New Jersey (Moore). Mediterranean, be $37^{\circ} 26^{\prime} N, 0^{\circ} 50^{\prime} E$ (Dollfus).

CUMACEA.

Fam. VAUNTHOMPSONIIDÆ.

Genus BATHYCUMA.

? BATHYCUMA LONGICAUDATUM Calman.

Bathycuma (?) longicaudata Calman, Proc. U. S. Nat Mus. vol. 41, 1912, p. 604 , p. 614, fig. 10-13. Stebbing, Cumac.; Das
longicaudatum Stebbing, Cumac.;
Tierreich 1913, p. 12
St. 132. $38^{\circ} 57^{\prime} N, 9^{\circ} 41^{\prime} E$. $1227 \mathrm{~m} .10-7-1910$. Sifted bottom material; 1 i , abt. 9 mm .
The determination is not absolutely certain, as the specimen was somewhat defective, and could not well be dissected. As far as can be seen, however, it agrees well with Calman's description, save for the fact that the teeth on the dorsal side of the carapace reach almost to its posterior edge.
Also found: "Albatross" St. 4382, off San Diego, Caliornia $642-666$ fathoms (Calman l. c.).

Fam. BODOTRIIDE.

Genus CYCLASPIS.

CYCLASPIS LONGICAUDATA G. O Sars.

Cyclaspis longicaudata G. O. Sars, Vid. Selsk. Forh.
Christiania, 1864 (1865), p. 207
G. O. Sars, Account vol. 3, 1900,
p. 16, Pl. $7-8$.

- Stebbing, Cumac.; Das Tierreich

1913, p. 30 (ubi lit.)
St. 132. $38^{\circ} 57^{\prime} N, 9^{\circ} 47^{\prime} E$. 10-7-1910. 1227 m . Sifted bottom material, 6 spec.

Also found: From N. W. and N. E. Atlantic (N. No way) to Mediterranean; $120-3285 \mathrm{~m}$. (Stebbing 1.

Fam. PLATYSYMPODIDÆ.

Genus PLATYSYMPUS Stebbing = PLATYASPIS G. o. Sars.

PLATYSYMPUS TYPICUS G. o. Sars

Platyaspis typica G. O. Sars, Vid. Selsk. Forh. Christiania 1869 (1870), p. 158.

* - - G. O. Sars, Account vol. 3, 1900, p. 27, Pl. 19-20.

Platysympus typicus Stebbing, Cumac.; Das Tierreich 1913, p. 61 (ubi lit. et syn.).
St. 132. $38^{\circ} 57^{\prime} N, 9^{\circ} 47^{\prime}$ E. 10-7-1910. 1227 m . Sifted bot tom material, 1 spec.
Also found: Norway, northward as far as Lofoten $226-753 \mathrm{~m}$. ; W. of Ireland, $364-728 \mathrm{~m}$.; Capri $750-110 \mathrm{~m}$. (Stebbing 1.c.).

Fam. DIASTYLIDE. Genus DIASTYLIS.

diastulis processifera n. sp. (Fig. 16). St. 139. $37^{\circ} 5 y^{\prime \prime} N, 11^{\circ} 54^{\prime} E$. Abt. 600 m . (?). Dredge. 1 spec, At this station, a specimen (immature of) was taken by the "Thor" of a Cumacean, the determination of which has proved a matter of considerable difficulty Despite the fact that it differs in certain respects, doubt that it belog to la in

Fig. 16. Diastylis processifera 9.
Fig. 16. Diastylis processifera ρ.
The figure below P. 1. presents the sculpture of the surface. Ant. 1 is by a misprint called Ant. 2, and vice versa.
extent assigned by Stebbing, in Cumac. ("Das arreich'") to this genus Unfortunately the specimen is not fully grown, and moreover, not in a very good state of preservation. have therefore only been able to dissect to a slight tent; the figures given however, indicate all that I ve been able to observe in the course of such dissec in as it was possible to make.
In point of habit, the animal greatly resembles cornuta Boeck (Sars, Account, vol. 3, p. 45, Pl. 35; Stebbing, Cumac. Tierreich p. 96 [ubi lit.]) differing, 'wever in various ways.
The whole of the surface exhibits a very finely ticulated sculpture, with a small bud-like protubence in the centre of each mesh; an idea of this may obtained from the detail as shown. The carapace armed with but 3 pairs of spines, lacking all those aller ones which are found in G. cornuta. The 3 . digerous segment has two spines dorsally, the 5 . seg ent 3. This last named segment (5) is drawn ou a point on either side. I am unable to say whethe res are present or no. The telson is about the same ngth as the two adjacent caudal segments together ith apical spines included, it corresponds in length
to the stem of the uropoda and has, in addition to the apical spines, also five spines on the right and seven on the left. The broad part and the narrower portion re as nearly as possible of equal length. Ant. 1 lacks the accessory flagellum; this feature, however, should carcely be considered as of especial importance, having in mind the fact that the specimen is not very well preserved (the distal half of one of the antennæ is wanting entirely); a far more important feature of nt. 1. is, in my opinion, the fact that the proximal portion of 1 . joint extends in a long process ond oue sio (he fived). The the pore hose D. cornuta; the slight dissimilarities may be those of D. The stem of the uropoda is about the same long as the + apical spines; the endopodite is, with its terminal spine, about equal in length to the exopodite without terminal spines, and about half as long as the stem.
Length 9 mm . Colour white. Shell hard, calcareous, brittle.
The specimen is a ρ, but is not fully grown, lacking the marsupion.

Remarks, As will be seen from the foregoing,
the species is closely related to D. cornuta, differing, adjacent caudal segments together; the præ- and posthowever, at the first glance by its less pronounced \mid anal portions are of nearly equal length. There are spinous armour, and longer telson.
(In D. cornuta, the telson is somewhat shorter than the stem of the uropoda). These characters may however, possibly be regarded as peculiar to the younger forms. Far more important is the large process on the first joint of ant. 1, and I cannot but consider this as ample evidence of the fact that we have here to deal with a new species. I therefore suggest that in view of the feature in question the specific name processifera be adopted.

DIASTYLIS STEBBINGI n. sp.

(Fig. 17).

St. 228. $36^{\circ} 02^{\prime} N, 5^{\circ} 06^{\prime} W .>800 \mathrm{~m}$.
this station, an immature
At this station, an immature ${ }^{\hat{0}}$ of the genus Diastylis was taken by the figures, the arrangement the figures, the anangement of spines on the carapace greatly
resembles that of D. capreensis Cemben (Mitt vol. 7, 1906, p. 429 , pl. 28 , fig 44 -45; this Ppecies has stragely lob, by Stebling in sis Cumace enough, been overThe present species is not, however, identical with The present species is not, however, identical with forms differ in bin dissimilarity cannt be attributed merely to the differ dissmilarity (my specim is 1 Colman ence in sex (my specimen is ©, Calman's 9) or size (12.5 and 5.2 min respectively).

The spines of the carapace will be seen from fig. 17. The ocular lobe is somewhat longer than it is broad, The free segments of the with two colourless eyes save for two quite small spines on segm. 2 and thre slightly smaller 4 segments is not so these two soth been able to satisfy myself with certainty as to this The epimeral portion of the 5 certainty as to this. point. The four anterior caudal a couple of spines dorsally; segm. 1 has in addition a thick spine on a larger spine centrally situate on the ventral side. The telson is approximately equal in length to the two

Fig. 17. Diastylis Stebbingi
6 spines on either side; the apical spines have been entirely broken off.

1. pair of antennæ is of the usual shape; 2. pair lie curved up like a hook under the carapace, in the manner shown by Sars (Account, vol. 3, Pl. 42) for the young ot of D. spinulosa. With regard to 3. pair of mathing and the 5 pairs of pereiopoda there the 2 joint in the distal end have a 3 -p. 5 on nterior side the same feature is noticeable on $p 3$ in Calman's figure of D capreensis. On the oxopodite of p. 3 - 4 the matery p. 3 - p. 4, the natl, soft spines. The ro pairs pleopoda are of the cutomary young stage form. The pleopoda are or he comarly yous the en ith telson whout apical spines, the brane are will be seen from my figures

Length 12.5 mm .
Remarks. Despite the fact that the individual is not mature, it would seem impossible to refer it to nev the known species. I have named it atter the
ed for having procured for me works which ld otherwise have been unable to obtain

Genus ADIASTYLIS.

ADIASTYLIS LONGIPES G. O. Sars

 astylis longipes G. O. Sars, Öfvers. Kgl. Svenska Vet Akad. Förhandl., vol. 28, pt. 1, 1871, p. 74.- G. O. Sars, Sv. Vet. Akad. Handl., n. ser., vol. 9, No. 13, 1871, p. 32 , Pl. 13, fig. 65-69
Bonnier, Ann. Univ. Lyon, vol. 26, 1896, p. 550, Pl. 29, fig. 4. 1913, p. 116 (ubi lit. et syn.). 132. $38^{\circ} 57^{\prime \prime} N, 9^{\circ} 47^{\prime \prime}$ E. 10-7-1910. 1227 m . Sifted bot tom material. 1 spec. N. $4^{\circ} 49^{\prime} W, 933 \mathrm{~m} .: 53^{\circ} 41^{\prime} N$ $t^{\prime} W, 838 \mathrm{~m} ; 38^{\circ} 7^{\prime} N, 9^{\circ} 18^{\prime} W, 1036 \mathrm{~m} ; 44^{\circ} 17^{\prime} N, 4^{\circ} 38^{\prime} W$ m . (Stebbing l.c.). The species is thus new for the

Genus MAKROKYLINDRUS.

MAKROKYLINDRUS JOSEPHIN $\not \subset$ G. O. Sars.

 astylis Josephinæ G. O. Sars, Öfvers. Kgl. Svenska Vet. Akad. Förhandl., vol. 28 pt. 1, 1871, p. 77.- - G. O. Sars, Svenska Vet, Akad Handl., n. ser., vol. 9, No. 13
1871, p. 36, Pl 15, fig 72-74 rokylindrus Josephine Stebbing, Cumac.; Tierreich 1913, p. 120 (ubi lit et syn.) 93. $49^{\circ} 25^{\prime} \mathrm{N}, 12^{\circ} 20^{\prime} \mathrm{W} .1270-1180 \mathrm{~m}$. $25-6-1905.2 \mathrm{~s}$. Also found: Off Portugal, $38^{\circ} 10^{\prime} 30^{\prime \prime} N, 9^{\circ} 25^{\prime} W, 1425 \mathrm{~m}$ Also found: Off Portugal, $38^{\circ} 10^{\prime} 30^{\prime \prime} N, 9^{\circ} 25^{\circ} W, 1425 \mathrm{~m}$
of Færø Islands, $48^{\circ} 50^{\prime}-67^{\circ} 07^{\prime} N, 3^{\circ} 6^{\prime}-11^{\circ} 9^{\prime} W, 629-$ 26 m ; off W. of Ireland, $364-699 \mathrm{~m}$. (Stebbing l. c.).

「am. PROCAMPYLASPIDIDÆ.

Genus PROCAMPYLASPIS.

PROCAMPYLASPIS ARMATA Bonnier.

rocampylaspis armata + P.echinata Bonnier, Edrioph
thalmes du "Caudan"; Ann Univ. Lyon, vol. 26, 1896, p 541, p. 544, Pl. 29, fig. 1-2
armata Calman, Mitt. Zool. Stat. Neapel, vol. 17, 1906, p. 419, Pl 27, fig. 13-20.

- Stebbing, Cumac.; Tierreich 1913 p. 186 (ubi lit.).
$\therefore 132.38^{\circ} 57^{\prime} N, 9^{\circ} 41^{\prime} E .1227 \mathrm{~m} .10-7-1910$. Sifted bottom material. 1 spec., immature 9.

Also found: $44^{\circ} 17^{\prime} N, 4^{\circ} 38^{\prime} W, 950 \mathrm{~m}$ (Bonnier); Iris Sea, 50 miles W. N. W. of Cleggan Head, 212 m , and 77 mile
W. N. W. of Achill Head, county Mayo 699 m (Calman, Cumac. Ireland 1905); Capri 200-1100 m (Calman 1. c. 1906)

Fam. CAMPYLASPIDIDÆ.

Genus CAMPYLASPIS.
CAMPYLASPIS VITREA Calman. (Fig. 18).
*Campylaspis vitrea Calman, Mitt. Zool. Stat. Neapel vol. 17, 1906, p. 425 , Pl. 28, fig 28-34.

- Calman, Proc. U. S. Nat. Mus., vol. 41, 1912, p. 628. Stebbing, Cumac.; Tierreich 1913 p. 193.

St. 132. $38^{\circ} 57^{\prime \prime} N$, $9^{\circ} 44^{\prime \prime} E \quad 1227 \mathrm{~m} .10-7-1910$ Sifted bot tom material. 1 spec. immature $\mathrm{o}, 4.5 \mathrm{~mm}$.
There can be no doubt as to the fact that this specimen really belongs to Calman's species. It agrees
 entirely with Calman's description and figures (1. c. 1906), save that the median posterior connecting ridge between the transverse ridges crossing the posterodorsal part of the carapace is not less distinct than the other ridges, as pointed out by Calman in a note (3) pointed out by Calman in a note (3)
l. c. 1912. The same writer's remarks 1. c. 1912 . The same writer's remarks Fig. 18. Campyl (1. c. 1912) as to difference between those from eastern America do not, however, appear to fit in with the features as found in the specimen from the "Thor". Still, the value of such relative characters, as quoted by Calman l. c. 1912 in notes $1-4$ and 6 cannot of course be properly estimated unless by actual comparison with his specimens. Also found: Puritan Exp. St. 18,2639 (Capri) 950 1100 m (Calman 1906), $40^{\circ} 02^{\prime} N, 68^{\circ} 50^{\prime} 30^{\prime \prime} W, 547$ fath., $29^{\circ} \mathrm{F}$. (Calman 1912).
CAMPYLASPIS HORRIDOIDES n. sp. (Fig. 19). St. 132. $38^{\circ} 57^{\prime} N, 9^{\circ} 47^{\prime \prime} E .1227 \mathrm{~m} .10-7-1910$. Sifted bot tom material.
At this station, 8 specimens were taken by the Thor" (4 今r, 4 if) belonging to a Campylaspis species closely related to C. horrida G. O. Sars (Sars, Account vol. 3, 1900, p. 89, Pl. 62; Stebbing, Cumacea, Tiereich 1913, p. 196)
$\hat{\sigma}$ General form of the body similar to that of C. horrida; the carapace here, however, in contrast to what is generally found to be the case with the genus Campylaspis, being equally broad in the anterior and posterior portions. The ocular lobe is small, with no

parent trace of eyes. The carapace is armed with nical spines or protuberances arranged roughly in s longitudinal rows: two down the back, one on ther side, where the back, which is more or less flat, rves down towards the sides of the animal, and one ain on either side slightly above and nearly paralle th the under side of the carapace. Medially situate re protuberances. The whole surface exhibits, moreer, a raised, reticulated pattern with more or less gular hexagonal or octagonal mesh. At every corner, here two meshes meet, there is a small spine. The vo anterior pedigerous segments are, as usual, elevato thin lamelle; the lateral portion of all free ements of the body, especially the anterior ones, tends far out to the side, and is hatchet-shaped at he point. The 5 . (and possibly also 3-4) segment the body has two small protuberances dorsally, as ave also 1-4 caudal segments: in the 5 . caudal segent they are placed far down on the side. The urooda are somewhat longer than the 4 last caudal segents; the stem is about $21 / 2$ times as long as the branhes, and, as usual, furnished on the inner side with liated setæ. The endopodite is as usual, slightly nger than the exopodite, and armed with about 11 spines.
I have figures of all appendices, and everything can thus be seen from these; in the following remarks I mention only such points as appear to me of especial importance. In the ot dissected, mp. 2 exhibits, in the outermost joint, a slight deviation from what according to Sars' figures in the Account appears to be the rule. We find, for instance, in the fig. of mp. 2 in C. rubicunda (Sars, Account vol. 3, Pl. 57) that the small outermost joint has 4 spines, while the penultimate has at the point a single large articulated spine most joint has only a single small spine, the penultimate having at the point two large articulated and one large inarticulate spine. Having had but 4 specimens of either sex at my disposal, I have only dissected one of each, and am therefore unable to say whether the feature inquestion is or is not an accidental pecul-
iarity in the dissected specimen. In the $\&$ dissected, these characters are, as my figures show, but little different from what was found in the $\bar{\delta}$. Mp. 3 differ from that of C. horrida mainly by the strong spine on the edges of 4 . joint. The pereiopoda agree on the whole with Sars' figures of C. horrida. The exopodites have abt. 10 natatory setæ (in the 9 only 6).

Length 6 mm . Colour (in alcohol) white, ch features as mark the usual sexual difference common to the genus. I have not been able to com pletely dissect ant 2 , and cannot therefore give an lustration of this. The caudal segments have dorsal protuberances, but some small ones on th sides. The spines on the edge of 4 joint of mp differ a little from those of the A The four of immature, lacking the incubatory plate

Length 5 mm .
Remarks. The specimens here dealt with strongly resemble C. horrida, differing, however, in the fol lowing points: 1) the carapace is equally broad in the anterior and posterior portions 2) two spines on the posterior margin of the carapace 3) 4 . joint of mp .3 therefore take it for granted that this is really a new species, which I have named, on account of its great resemblance to the species referred to, C. horridoides Calman mentions (Proc. U. S. Nat. Mus., vol. 41 1912, p. 627) a Japanese specimen, which he somewhat doubtfully refers to C. horrida. It differs from Sars figures in the following points: "tubercles on the carapace are slightly smaller and more acutely conical and they show less tendency to run together in con inuous ridges. The distal segments of the thir maxillipeds and first and second legs are noticeabl where slender than in Sars' figures". The peculiarity may with some justification be taken as similarly applying to the specimens from the "Thor": the second distinguishing feature is less applicable, but the distal segment of p. 2 is, as a matter of fact, somewhat more slender in the specimen from the "Thor" than in Sars" figure af C.horrida. It is therefore not impossible that Calman's specimen belongs to C. horridoides.

AMPHIPODA

1. Gammaridea.
 Fam. Lysianasside. Genus TRICHIZOSTOMA.

TRISCHIZOSTOMA NICAEENSE A. Costa
Trischizostoma nicæense Stebbing, Amphip. Gamm., Das Tierreich 1906 , p. 13 (partim).

- phipod genus On the AmZool Soc Lond 1908, p. 375 (ubi lit) Pl. 14-16, pl. 17 fig. $1-12$, Pl 19- fig, 1, Pl. 21, fig. 14.
tebbing, Ann. South African Mus., vol. 6, 1908, p. 60
St. 36. $44^{\circ} 21^{\prime} N, 2^{\circ} 3 \%^{\prime} W$ W. 10-5-1906, 1125-1050 m, 1250
 St. 46. $\stackrel{1}{44^{\circ} 37^{\prime} 7^{\prime}} \underset{ }{5}, 2^{\circ} 17^{\prime} W . \quad 17-5-1906 . \sim 1360 \mathrm{~m} . \quad 300 \mathrm{~m} . \mathrm{w}$.
St. 76. $4_{45^{\circ} 08^{\prime} N,}{ }^{\circ} 5^{\circ} 48^{\prime} W . \quad 10-3-1909 . \quad 1800 \mathrm{~m} . \quad 1600 \mathrm{~m} . \mathrm{w}$.
 300 m . w. 2 spec.
All specimens belong to the species T.nicæense, and not to T. Raschii Boeck, which has previously been considered as identical with the former.
Also found: Mediterranean, near Naples (Della Valle; Gamm. Golf. Neapel 1893). $46^{\circ} 15^{\prime} N$, $7^{\circ} 09^{\prime} W$. $0-3000 \mathrm{~m}$. (Chevreux, Bull. Mus. Oceanogr. Monaco No. 35. 1905, p. 7).
W. and S. W. of Ireland (Sexton, 1. c. 1908).

Genus LYSIANASSA.

LYSIANASSA CERATINA Walker
Lysianassa ceratinus Walker, Proc. Liverpool Biol.
Soc., vol. 3, 1889, p. 200, Pl. 10, fig. 1-8.
Longicornis Ting, Amphip. Gamm., Das Tierreich 1906, p. 39 (partim)
alker, Transact. Linn. Soc. 1909, p. 327 (ubi lit.).
Ghevreux, Mém. Soc. Zool. France, vol. 23, 1910 (1911), p. 158, Pl. 6, fig. 10.

St. 17. $3^{3 \prime} 49^{\prime} N, 23^{\circ} 27^{\prime \prime} E .30-12-1908.55 \mathrm{~m} .3$ spec. St. 41. $39^{\circ} 10^{\prime} N, 9^{\circ} 35^{\prime} E$. $2-2-1909$. Ca. 1 m . 2 spec. St. $105.37^{\circ} 49^{\prime} N, 2^{\circ} 08^{\prime} W .24-6-1910,20 \mathrm{~m} .2$ spec.

With regard to the former confusion of this species with L. longicornis Lucas, special reference may be made to Walker (1.c. 1909) who gives the following characters as most important.
L. lorigicorni
. L. ceratina eyes re
flagella of
antennæ red
telson apically roun-
ded (Che
reux l. c.
fig. 9)
Also found: Coasts of Europe from Great Britain and up in the Mediterranean; Canaria, Senegal, Suakim Harbou (Red Sea), Wasin (Brit. E. Africa) Ceylon (Walker 1. c. 1909 Chevreux l. c. 1910).

Genus ARISTIAS.

ARISTIAS NEGLECTUS H. J. Hansen

Aristias neglectus H. J. Hansen, Vid. Meddel. Naturh
Foren. Kbhvn. 1887 (1888), p. 67

- audouinianus G. O. Sars, Account vol. 1, 1895 p. 48, Pl. 17, fig. 2.
reich 1906, p. 50 (ubi lit. et syn.) St. 142. $35^{\circ} 44^{\prime} N, 15^{\circ} 07^{\prime}$ E. 22-7-1910. 98 m .1 spec. Sea, Skarak and. Arctic Ocean, North Atlantic, North Sea, Skagerak and Kattegat (S.- and W. Scandinavia, She
land Islands); Mediterranean (Stebbing, Tierreich).

Genus ICHNOPUS.

ICHNOPUS SPINICORNIS Boeck

Ichnopus spinicornis Boeck, Forh. 8de Skandinav Naturforsker-Møde 1861, p.645 * - - G. O. Sars, Account vol. 1, 1895 p. 40, Pl. 15.

Stebbing, Amphip. Gamm., Da
Tierreich 1906, p. 52 (ubi lit et syn.).
St. 14. $41^{\circ} 24^{\prime \prime} N, 17^{17} 45^{\prime} E .21-12-1908.1125 \mathrm{~m} .5^{20}$ am
 bottom. 2 spec.
$300 \mathrm{~m} . \mathrm{w} .4$ spec.
62. $35^{\circ} 45^{\prime} \mathrm{N}, 5^{\circ} 59^{\prime} \mathrm{W} .22-2-1909.58 \mathrm{~m} .9^{10} \mathrm{pm} .25$ $\frac{\mathrm{m} . \text { w. }}{825} 12$ spec.

 m. w. 1 spec. Distribution. Arctic Ocean, North Atlantic and North-(West-Norway); Mediterranean; Java Sea ($3^{\circ} \mathrm{S}, 107^{\circ} \mathrm{E}$) bbing 1. c.).

Genus HIPPOMEDON,

HIPPOMEDON TUNISIACUS n. sp. (Fig. 20).

137. $37^{1} 17^{\prime} N, 10^{\circ} 56^{\prime}$ E. 17-7-1910. 190 m . At the bottom. 1 ?.
ㅇ. Body glabrous, compressed; the back evenly alted. Cephalon a little shorter than the two first ments of the mesosome combined, lateral corners in Holboellii, but the accessory flagellum has but oints, of which the first one is twice as long as the next combined. In the flagellum the 1st joint is f as long as the remaining 11 joints combined and a long spine. Ant. 2 is about $31 / 2$ times longer ant. 1; flagellum has 40 joints. The oral parts the same form as in H. denticulatus
The same thing may be said of the coxal plates The same thing may be said of the coxal plates
and narrower; the 7 th joint seems to end with 2 smal teeth. The distal fore corner in the 4 th joint in p . 3-4 and the distal hind corner in p. $5-\mathrm{p} .7$ is not prolonged.

The epimeral plates of metasome 1-3 have about the same form as in H. robustus (Sars, Account vol. 1, Suppl. Pl. III), but ep. 3 is anteriorly more prolonged than in all the other known species. The form of up. 1-3 may be seen in my figures; in up. 1 the exopodite is a little longer than the endopodite; in up. 2-3 exop and endop. have about the same length. Telson has the same form as in H. propinquus (Sars, Account vol. 1, Pl. 21, fig. 1), but has only 1 pair of dorsal spines; in the left apical corner there are 2 spines, in the right only 1.

Remarks. Sars says (Account vol. 1, p. 56) that in this genus the eyes disappear as a rule completely in alcohol.

Even supposing, however, that the specimen in question had eyes, it is none the less certain that it represents a new species. I have in the foregoing touched upon its relation to the four species described in Sars' Account; all these have eyes. Two other species also have eyes, viz. H. bidentatus Chevreux (Bull. Soc. Zool. France, vol. 28, 1903, p. 87, fig. 4) and H. serratus Holmes (Bull. U S. Bureau Fisheries, and H. serratus Holmes (Bull. U. S. Bureau Fisheries,
vol. 24, 1905, p. 473, text fig., Pl. 4, fig. 2); the present

Fig. 20. Hippomedon tunisiacus $\stackrel{\uparrow}{\circ}$
species, however is distinctly and specifically different from these. It differs also from the two known blind species, not only in ep. 3 and telson but also in particular by the foll Stebbing (Challenger Amphip. p. 635, P1. 11) by the 6th joint in p. 1 (Challenger gn. 1) which in H. Geel. is broadest tom (Potamon) longimanus Stebbin
 (Challenger Amphip. p. 643, P.. 13) by the $6 t h$ join of p. 2 (Challenger gn. 2) which in H. long. is as broad as it is long.

The specific designation tunisiacus refers to the fact that the species was found off the coast of Tunis

Genus KATIUS.

KATIUS OBESUS Chevreux

*Katius obesus Chevreux, Descript. d'un Amphip.; Bull. Mus. Océanogr. Monaco, No. 35, 1905, with figs.

- - K Stephensen, Conspectus Crust et Pycnog. Groenlandiæ; Meddel. om Grønland vol. 22, 1913, p. 123 (lit, distrib.).
St. 180. $61^{\circ} 34^{\prime} N, 19^{\circ} 05^{\prime} W .10-7-1904.2160 \mathrm{~m} .1800 \mathrm{~m} . \mathrm{w}$. St. 183. $61^{\circ} 30^{\prime} N$, $17^{\circ} 08^{\prime}$ W. 11-7-1904. ' $1800 \mathrm{~m} . \mathrm{w} .7$ spec. St. 285. $62^{\circ} 49^{\prime} N, 18^{\circ} 46^{\prime} W$. \quad 1-9-1904. 1 spec.
St. 76. $49^{\circ} 27^{\prime} N, 13^{\circ} 33^{\prime} W . \quad 11-6-1906 . \quad>2600 \mathrm{~m} . \quad 2800$
 $300 \mathrm{~m}, \mathrm{w}$
This species is thus, according to the occurrences hitherto recorded (vide my publication cited above, where all finds are noted) known from W. Greenland $28^{\circ} 53^{\prime} \mathrm{W}$ and belons to ditan specimen from St 76 is to its having bored its way into the remains of a Salpo(?), its having bored its way into the remains of a Salpa(?), not quite so deeply bored, however, as Phonima is found (cf. Remarks on Chevreuxiella metopoides, p. 43)

Genus CYPHOCARIS.

CYPHOCARIS ANONYX Boeck
Cyphocaris anonyx Boeck, Amphip. bor. et arct.; Forh. Vid. Selsk. Christiania 1870, p. 104

- - Stebbing, Amphip. Gamm., Das Tier-
reich 1906, p. 29 (ubi lit. et syn.)
- - Chilton, Edinburgh Transact. Royal Soc., vol. 48, pt. 2, 1912, p. 464, Soc.,
figs.

Pycnog. Groenlandiæ; Meddel. om Grønland, vol. 22, 1913, p. 111 (distribution)
St. 36. $44^{\circ} 21^{\prime} N, 2^{\circ} 37^{\prime} W$. 10-5-1906. $1125-1050 \mathrm{~m} .1250$ St. 88. ${ }^{\mathrm{m} . \mathrm{w} . \mathrm{w} .} 48^{\circ} 09^{\prime}{ }_{N}$ spec. $8^{3} 30^{\prime}$ W. $20-6-1905 . \quad 600-995 \mathrm{~m} . \quad 300$ m. w. 4 spec.?

St. 179. $47^{\circ} 20^{\prime} N, 12^{\circ} 23^{\prime} W . \quad 3-9-1906.4000 \mathrm{~m} .300 \mathrm{~m} . \mathrm{w}$.
St. 75. ${ }_{45^{\circ} 37^{\prime} N} N$, $7^{\circ} 03^{\prime} W . \quad 9-3-1909 .>4000 \mathrm{~m} . \quad 1^{45} \mathrm{pm}$. $4300 \mathrm{~m} . \mathrm{w} .1 \mathrm{spec}$. species will be found in my publication quoted above; some
additions should, however be made to this. Chevreux, in Bull. Mus. Océanogr. Monaco, No. 35, 1905, p. 7, records some finds in addition to those mentioned by Richard (ibid.
No. 41, 1905); these do not, however, represent any extenNo. 41,1905$)$; these do not, however, represent any exten-
sion of the area of distribution. A point of more importance is the fact that Chilton, 1. c. 1912, p. 464, records it from "' $10^{\circ} 50^{\prime} S, 20^{\circ} 30^{\prime} \mathrm{W}$. vertical net from surface to 1000 fathoms, 1 spec., 20 mm ." Not only is the specimen here concerned comparatively large, but the area of distribution is thereby so extended as to embrace the Atlantic Ocean from W.Green pedition also records it from the southern Pacific.

CYPHOCARIS ALICEI Chevreux

*Cyphocaris Alicei Chevreux, Bull. Mus. Océanogr. Monaco, No. 27, 1905

- - Walker, Transact. Linn. Soc. London, ser. 2, Zool., vol. 12, 1909, p. 327 .

St. 91. $35^{\circ} 53^{\prime} N$, ${ }^{40} 26^{\prime} W . \quad 18-6-1910 . \quad 1225 \mathrm{~m} . \quad 5^{25} \mathrm{pm}$,
 $25^{\circ} \mathrm{W}, 0-3000 \mathrm{~m}, 5425 \mathrm{~m} ; 32^{\circ} 18^{\prime} N, 25^{\circ} 58^{\prime} \mathrm{W}, 0-2000 \mathrm{~m}$, 5422 m (Chevreux 1. c.). N. W. of Desroches Atoll (Indian Ocean), plankton, $200-300$ fms. (Walker l. c.).

CYPHOCARIS RICHARDI Chevreux (Fig. 21-22)
Cyphocaris Richardi Chevreux, Bull. Mus. Océanogr. Monaco, No. 24, 1905.
St. 75. $45^{\circ} 37^{\prime} N, 7^{\circ} 03^{\prime} W .9-3-1909.4000 \mathrm{~m} .1^{45} \mathrm{pm} .4300$ m. w. 2 spec. (ot)

Two specimens of this species were taken by the Thor" at the above station. Both are ${ }^{\prime \prime}{ }^{7}$, and of a size remarkable in a Cyphocaris, viz. 43 and 26 mm . Chevreux' original specimen measures only 12 mm , and the largest Cyphocaris hitherto known is the Cyph. anonyx mentioned by Chilton (20 mm).

Despite the fact that the two specimens from the "Thor" are so much larger than Chevreux' (12 mm), there is not the slightest doubt as to their belonging to the same species, the dissimilarities being very slight, and only such as would seem attributable to the difference in age. Chevreux' description is very complete, and I will therefore only refer to such fea-

Fig. 21. Cyphocaris Richardi (the little specimen).
in which any differences exist. I have also drawn e appendages which are either not given by Chevr. are not entirely in accordance with his figures. finer structure of the spines etc. about the oral

rts agrees on the whole with the figures given by ebbing for these appendages in C. micronyx $(=C$ ony x) in the Challenger Exp. Pl. 16; I have therece considered it

int in the tex

Ant. 1. lacks its point; the same applies to the cond pair. The accessory flagellum has 7 joints h. gives 4) and is only half of the length of 1 . joint the flagellum; the distal segment is very small and in. Dests they are nevertheless almost as long as eir points, they are nevertheless almost almost entirely
with those of C. anonyx. P. 1-4 resemble completely the figures given by Ch. P. 5-7 however, I have drawn. The second joint of p. 5 differs slightly from Ch.'s figure. The second joint of p. 6-7 is remarkable as having large and small teeth indiscriminately alternating on the posterior edge, this being particularly noticeable in p. 6 . The proximal part of the ultimate joint in p. 7 (not, however, in the other legs) is furnished with a number of quite small teeth, so small indeed, that they do not appear in the figure. The uropoda correspond to Ch.s description; the peduncle of urop. 2, however, projects so far out as to give a length between that of up. 1 and up. 3. (In Fig. 1, Ch. shows this as shorter in up. 2 than up. 1). Up. 3 has also setæ on the distal outer side of the endopodite, the large terminal spine of which, as well as the distal portion of its inner side, is armed with a row of secondary spines (vide fig.). The two halves of the telson are connected by a thinner part, so that they can open wide, as in my figure, or fold in close together, as shown in Ch.'s figure
Distribution. Chevreux records it from St. 1849 $36^{\circ} 17^{\prime} N$, $28^{\circ} 53^{\prime} W$ (Azores), $0-3000 \mathrm{~m}$, depth 3410 m .

Genus METACYPHOCARIS.

METACYPHOCARIS HELG \neq Tattersal

*Metacyphocaris Helgx Tattersall, Pelagic Amphip. the Irish Atlantic Slope; Fisheries, Ireland, Sci. Invest., 1905, pt. 4 (1906), p. 29, Pl. 3 fig. 1, Pl. 4.
K. Stephensen, Malacostraca

Naturh. Foren. Kbhv. vol. 64, 1912 (1913), p. 88.
St. 180. $61^{\circ} 34^{\prime} N, 19^{\circ} 35^{\prime}$ W. 10-7-1904. $2160 \mathrm{~m} .1800 \mathrm{~m} . \mathrm{w}$. St. 183. $61^{9} 30^{\prime} N$, $17^{\circ} 08^{\prime} W .11-7-1904.1800 \mathrm{~m}$. w. 13 spec. St. 76. $49^{\circ} 27^{\prime} N, 13^{\circ} 33^{\prime} W . \quad>2600 \mathrm{~m} . \quad 11-6-1906$. 2800
St. 179. $\begin{aligned} & \mathrm{m} . \mathrm{w} . \\ & 47^{\circ} 20^{\prime} \\ & 1\end{aligned} \frac{1}{N},{ }^{\text {spec. }} 13^{\circ} 20^{\prime}$ W. $4000 \mathrm{~m} .3-9-1906.1800 \mathrm{~m} . \mathrm{w}$. $1 \begin{aligned} & 1 \text { spec. }\end{aligned}$
Distribution. All finds hitherto recorded will be found in the two works quoted above. Tattersall mentions it as
having been taken at four localities off W. coast of Ireland; in my Report of the "Tjalfe"Expedition it is mentioned from 3 places near W. Greenland, $60^{\circ}-64^{\circ} \mathrm{N}$

Genus CRYBELOCEPHALUS.

CRVBELOCEPHALUS MEGALURUS Tattersall

Crybelocephalus megalurus Tattersall, Pelagic Amphip of the Irish Atlantic Slope; Fisheries, Ireland, Sci. Invest. 1905, pt. 4 (1906)
I. 5.

St. 76. $49^{\circ} 27^{\prime} N, 13^{\circ} 33^{\prime} W .>2600 \mathrm{~m} . \quad 11-6-1906 . \quad 2800$ m. w. 1 spec.

Also found: 50 miles N. by W. of Eagle Island, Co May, It is perhaps worth while to note that at this place, the only find which I have been able to discover in extant works, the species was found together with Metacyphocaris Helgee, which also applies to the specimen from the "Thor"

St. $173.61^{\circ} 30^{\prime} N, 17008^{\prime} W .1800 \mathrm{~m}$. w. 11-7-1904. 1 spec This species must, despite some few dissimilarites (hurlher referred later on) nevertheless be taken as
 metopoides (vide infra) and though form egions of the sea otherwise dealt with in the pres gor, of the work, presents such features of interest that
ought best to describe it in this connection.
llowish.
Cephalon is somewhat shorter than 1 . segment of the body, but much deeper. There is no trace of any rostrum. The eyes are comparatively small, but a deep black, with a small accessory eye beneath each. Despite clanfication in xylo, 1 have been unable bring out the lower contour of the cephalon distinctly;
The two pairs of antenn are ofual length, The two pairs of antennæ are of equal length, onts of the the cephal + the eduncle differs. In ant. , thom for or Lysianassidx; instead 1 an middle, there is a pronounced lateral compression on the upper side; the two next joints are of equal length

Fig. 23. Thoriella islandica.
d together somewhat shorter than the first. There no accessory flagellum. The flagellum has 12 joints almost equal length, the first are, however, slightly orter than the remainder. Ant. 2 has 12 joints in I, and is of very characteristic form, being spindle aped, the median joints being almost spherica, but truncated ends. The epistome, with the anterior , is large and prominent, the maxillipeds form a nd of helmet beneath the mouth. The md. has a ticulate palp with 6 teeth at the point: it is fairly oad, the outer joint somewhat longer than the inner. its natural position, as shown in the drawing of the hole mx. 1., the palp forms an angle of 90° with the uface exhibited by the remainder of the $m \mathrm{x}$ and from position of mx. in the oral cavity, the teeth at the oint of the palp make a cutting edge in continuation that of the md . The exop is somewhat broader an the endop., and has five strong spines. The dop has five heavy partly curved pennate setæ. 'he exop. of mx. 2 is somewhat narrower than the he exop. of mx. 2 is somewhat narrower than the ndop., with 3 spines, (these are unfortunately broken); n the endop. of mx. 1. The shape of the posterior p may be seen from fig. 23 .

The maxillipeds are of very peculiar shape, forming, s already mentioned, a kind of helmet about the routh. The inner plate is large and obtusely trianguar, the outer plate acute; the two large plates which orm the greater portion of the "helmet" are the palp. his has a deep incision in the outer edge. The section hus divided off by this incision is not connected by rticulation with the remainder, so that the palp is ingle-jointed; on the dexter side however, the very utermost point is articulated, wh his is strangely enough not the case (vide fig.).

The pereion consists of the usual 7 segments, the wo first somewhat shorter than the remainder. The rack is evenly vaulted and fairly broad; in most of he segments, the posterior portion rises somewhat bove the adjacent segment. The epimeral plates on he pereiopoda are comparatively small; the posterior :orner of the foremost is covered by No. 2; otherwise 1one of the epimeral plates touch each other, being ar smaller than is generally the case with fam. Lysiarassidx. The 2 . joint of p. 1 curves out on the front the customary form for a sianple cidaw. P .2 is of is flat, and ends in a broad mucronate spine (vide fig. 23) P. 3-7 are almost alike in shape, the hinder ones, however, being longest. They terminate in a strong claw, at the foot of which, and turned inward towards it, 2-3 sharp, knife-shaped spines are
placed. The under side of 5-6 joints of p. 5-6 armed with small, fine spines. Besides the gills on p. 2-6 there is on p. 2-5 a somewhat shorter appendage, shaped like a sausage, which appears to be marsupial plate. If this be so, then the animal mus be a O , in which case it must be immature, as the lates are quite undeveloped, and exhibit, in their present state of preservation, exactly the same appear nce as the gills.
The shape of the 3 joints of the metasome, and the pleopoda, may be seen from fig
The urosome consists of the usual 3 segments The two anterior pairs of uropoda are as nearly possible of equal length, with long, pointed branches, of which the exop. is somewhat longer and heavie than the endop. Urop. 3, however, consists of but on joint, quite short, and without any branches at all The telson is entirely lacking.

The specimen in question is a q, if the "marsupial plates" have been rightly interpreted.

Remarks on gen. Thoriella. This genus, of which the foregoing species is the type, I have named after the ship of the expedition, the "Thor". It belongs indubitably to the fam. Lysianassidx, from the shape of p. 2, differing, however, in the lack of accessory flagellum on ant. 1^{*}), and of mandibular palps; in the shape of the maxillipeds. in the small epimeral plates the lack of telson, and the rudimentary 3 pair the lack of telson, and the rudimentary 3. pair of uropoda. The mucronate spines on sixth joint o p. $3-\mathrm{p}$ p.
parasitic.

See also remarks on Chevreuxiella metopoides (next species).

Genus CHEVREUXIELLA n. gen. CHEVREUXIELLA METOPOIDES n.sp. (Fig. 24-25) St. 75. $45^{\circ} 37^{\prime \prime} N, 7^{\circ} 03^{\prime} W$. $9-3-1909.4000 \mathrm{~m} .1^{45} \mathrm{pm} .4300$ $\mathrm{m} . \mathrm{w} .1 \mathrm{spec} . \hat{\mathrm{o}} .24 \mathrm{~mm}$.
The only specimen taken is in many respects so remarkable as to render it very doubtful whether the species can rightfully be considered to belong to the fam. Lysianassidæ (vide infra: Remarks)
3. The cephalon is unusually short, scarcely half as long as the first segment of the mesosome, and has

The accessory flagellum in 1. pair of antenne is also lackin in Lepidepecreum longicorne Bate \& Westwood (Stebbing. Amphip. Gamm., Das Tierreich, 1906, p. 80) and in Crybelocphatus megalurus Tatersall (Fsheries, freland. Sci. hiv 25, pl. 4 (1906) p. 3, Mi. 3, (fg. 2, Pl. 5). In the following oint: Metacyphocaris Helga, Tattersall, (1. c. 1906, p. 29, 1.3, fig.1., Pl.4) and Paracyphocaris precator Chevreux Bull. Mus. Océanogr. Monaco, No. 32, 1905, p. 2, fig. 2 A .

race of any rostrum. It is very deep, however, despite most careful examination, and clarification xylol, I have not been able to discover any coning seam between it and the epistoma. The eye oval, and of a deep black. The two pairs of an x are almost of equal length, despite the fact that spec. is a \hat{o} (in the fam. Lysianassidx, ant. 2 is lys longer than ant. 1 in 0) their length being it that of the cephalon and the 3 first segments of mesosome together. Ant. 1 is a trifle longer than 2. Of the three joints of the stem, the firs omewh thicke ers together. The first joint of the flagellum is an nng oval, with bristles on the median side and of ut the same length as the stem; then follow 24 mer joints, of which the the remainder. All the thin joints of the ellum with the exception of the two last bear eoli. There is no accessory flagellum. In ant. 2, first segment is quite short, the 2 . and 3 . joints three times as long. The flagellum has 26 joint reasing in the thess towar the point, with the eption of the two last, all have calcen. The epi ma with the anterior lip is very large, as deep as front of the cephalon, it is helmet-shaped, with a dian sinus running longitudinally. The mandibles renly faintly weak, wh very poorly developed 1 ony far 1 mas a bi-articulate p what joint Mx. 1 with a biarticuate palp, th termost joint armed with a few spines at the point arks remain to show that there have been at leas mowe than the exopodite and has four long spine the point: only 3 of these howaser, are preserved exol, hy 3 rose, howere, are preserved two branches of max 2 are of equal length, th lodite however, being about 3 times as broad dopodite however, being about 3 times as broad a e exopodite, both have the usual setæ at the point he lower lip I have been unable to draw, this having sparently been lost during it
ave not been able to find it.
The maxillipeds form, as it

The maxillipeds form, as in the case of Thoriella bout the remaining oral parts, and have thus a form which I have been unable to find ane thus a form whing in any Amphipod hitherto described. The ong projection is evidently the inner plate; it is more ifficult however, to explain the other parts. The arge plate with the small appendage must be the ralp, which is thus bi-articulate; the inarticulate proection which is visible just inside must then be the uter plate (Fig. 24 naturally shows only the on naxilliped; both outer plate and inner plate are o sourse paired, as in all Gammaridea)

Nearly all the free segments of body and tail are of equal length measured along the dorsal line: 1 . and 2. segments of the body, however, are considerably shorter. The last caudal segments will be referred to later on. The back is evenly vaulted. All segments save the first one have a very faintly marked carina, with a slight longitudinal groove on either side. This is most distinctly seen in 4-7 segments. The first joint of p. 4 is so large as to project both in front and behind; the size of this joint decreases greatly from p. 4 to p. 1. P. 1 is short, its 7 . joint terminating in an articulated spine; 2 . joint is large and broad. P. 2 has a large foliate gill, as have also the succeeding legs (except p. 7) and are or the usual shape for Lysianassida. The dactylus is as shown in the fig., armed with 3 spines. P. 3 - p. 4 are alike save for 1 . joint, which in p. 4 is not, as is generaly the case with Lysinassida, provided with an incision in the posterior edge so as to accommodate 1. joint of p. 5, instead of his, it projects bound in the Sthor to that found in the Shotho. In p. 3 - p. 7, the under pointed spiss, as in is armed with a pair of sharp mobile (except p.) can be turned inward towards the dactylus. The first joint of p 5 - 6 is very tare first joint of p. 5 - p. 6 is very large, nearly as deep in to a p. 6 - p. 7 has a highly convex posterior joine on p. 7 however the first joint is greatly reduced, on the vals, poda 7. ir, we find a couple of quite small apper dages (not shown in the fig.) which appear to be copudages (not she

The 3 . joints of the metasome are of almost equal length, and have, as already mentioned, a very slight carina down the central dorsal line. The epimeral parts are rounded at the posterior end; slighty oblong, however, on the edg. The pleopo ar the usual structure.

The urosome consists of only 2 segments, with no telson whatever. The first segment is very slightly carinated along the central dorsal line; the lateral portions, however, rise to a height equal to that of the middle of the dorsum. The second segment is third segment, with its corresponding pair of uropoda, and telson, are entirely lacking, and as the second segment exhibits a natural posterior termination, the anus also being of perfectly normal form, this cannot be due to accidental mutilation after death. If it be due to accident at all - which does not appear
to be the case, - then the damage must have occurred during life, and the resultant wound entirely healed Urop. 1--2 are almost alike, projecting almost equally in the second. They are broad and strong, but without any setose covering. The endopodite is scarcely half the length of the exop., and far narrower. The exopodite of urop. 1 terminates in a small hook, turning up towards the back and outwards.
Colour (in alcohol) yellow.
I have named the species metopoides, on account of its resemblance to gen. Metopa, as regards the large plate on p. 4.

Remarks on gen. Cheoreuxiella. This new genus have named after M. Ed.Chevreux, who has published so many valuable works on the Amphipoda from the collections made by the Prince of Monaco in the waters where the "Thor's" material was taken.

The systematic position is doubtful. The most emarkable feature is the lack of posterior segment in the urosome and telson. From the shape of p. 2, it would seem natural to refer the genus to fam. Lysianassidx; it differs, however, from these in the lack of accessory flagellum on ant. 1 (vide note to previous species), in the lack of mandibular palp, in the maxillipeds, the shape of the epimeral plates, and of p. 5 p.6. In these pereiopoda, among the Lysianassidx, it is always the second joint which is most extended whereas in the present genus, this character falls to the first. P.7, also, generally exhibits the most distinct plate formation, whereas in this case, the plate on th second joint is far smaller than on the preceding pereio poda.

Despite the fact that the genus thus appears to differ from the Lysianassidx in essential features which can hardly be attributed to biological causes alone, I prefer, at any rate as long as only this single specimen is extant, to refer the genus to the mentioned fam. on account of the shape of p. 2. Possibly it may later be found more correct to take it as the type of an entirely new family.

Like the previous species, Thoriella islandica, this seems, on account of the mucronate spines on the distal end of 6 . joint in p. $3-$ p. 6 , which can turn inward towards the dactylus, to be of semi-parasitic habits. This theory is further supported by the shap of the oral parts. The mandibles are of approximately the same shape in both genera, with no palp whatever and hardly well adapted to biting. The maxillæ are not very peculiar; the maxillipeds, however, exhibit a very remarkable uniformity in the two genera, though re by no means adapted to biting, but appear, from
the pointed outer plates, to be well suited for purposes of suction. As the two genera otherwise differ so highly in various respects, I am not inclined to consider the more or less similar structure of the maxillipeds as really indicative, of any close relationship, but merely A similar character denoting allied habits of life. and spines on the sixth of in any case some of the pereiopoda is also found in the following bathypelagic Lysianassidx, all of which (with the exception of a single species) are represented in the collection made by the "Thor": Katius obesus Chevreux, Paracyphocaris predator Chevreux, Metacyphocaris Helgæ Tattersall, and Crybelocephalus megalurus Tattersall. Chevreux has, in his description of Paracyphocaris predtator (Bull. Mus. Océanogr. Monaco, No. 32, 1905) advanced the theory that this species should live semi-parasitically, while Tattersall is of the same opinion regarding the two species described by himself. The material from the "Thor" has satisfactorily demonstrated that this applies to Katius obesus. I can therefore only conclude that all 6 species live more or less in the same manner; probably resembling the habits of Phromina. We have here, however, an interesting problem to be solved by future investigation.

Fam. AMPELISCIDÆ.

Genus Ampelisca.

AMPELISCA BREVICORNIS Costa $=$

A. LEVIGATA Lill

Araneops brevicornis Costa, Rend. Soc. Bourbon, ser., vol. 2, 1853, p. 171.
Ampelisca lævigata Lilljeborg, Ofvers. Vet. Aka Förh., vol. 12, 1855, p. 123. G. O. Sars, Account vol. 1, 1895, p. 169, Pl. 59, fig. 1.
brevicornis Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 100 (ubi lit. et syn.)
Stebbing, Ann. South Afric. Mus., vol. 6, pt. 1, 1908, p. 70.
St. 62. $35^{\circ} 45^{\prime} N, 5^{\circ} 59^{\prime} W .21-2-1909.58 \mathrm{~m} .8^{20} \mathrm{pm} .100$
 tom. 1 spec.
Sea and Skacerak (S.- Arctic Ocean, North-Atlantic, Northfoten Isles, British Issles, France); Kattegat, Mediterranean (Stebbing 1. c. 1906). South Africa: Fresh Bay, Roman Rock, depth 245 fath. (Stebhing 1. and 1908) Ceylon (Walker Ceylon Pearl Oyster Report, pt. 2, 1904, p. 253).

AMPELISCA SPINIPES Boeck pelisca spinipes Boeck, Forhandl. 8. Skand. Natur-- forsker-Møde, 1861, p. 653. p. 173, Pl. 60, fig. 2.

- - Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 106 (ubi lit.). 2. $35^{\circ} 45^{\prime} N, 5^{\circ} 59^{\prime} W$. 21-2-1909. $58 \mathrm{~m} .8^{20} \mathrm{pm} .100$ $\mathrm{m} . \mathrm{w},{ }^{6}$, spec.
$81^{\circ} 08^{\prime} N, 1^{\circ} 35^{\prime}$

$$
\text { E. } 13-3-1909.49 \mathrm{~m} .3^{35} \mathrm{pm} .65 \mathrm{~m} . \mathrm{w} .
$$

$$
1 \text { spec. }
$$ Distribution. North-Sea, Skagerak, North-Atlantic Arctic Ocean (S.- and

PELISCA DIADEMA Costa $=$ A. ASSIMILIS Boeck

aneops diadema Costa, Rend. Soc. Bourbon, n. ser. vol. 2, 1853, p. 171
npelisca assimilis Boeck, Forh. Vid. Selsk. Christiania, 1870, p. 222

- G. O. Sars, Account vol. 1, 1895, p. 168, Pl. 58, fig. 2.
 Tiorreich Amhip. Gamm., Das et syn.)
St. 62. $35^{\circ} 45^{\prime} N, 5^{\circ} 59^{\prime} W$. 21-2$1909.58 \mathrm{~m} .8^{20} \mathrm{pm} .100$
 7-1910. 112 m . At the bottom. 6 spec.
The determination of the specimens from St. 140 is not quite certain. True, they agree as regards essentials (dactylus of p. $3-\mathrm{p} .4$, telson) with the fig. given by Sars; the shape of the rostero-lateral angles of the 7. pleon segment, however, and the fact that the carina on pleon segment 4 is almost entirely lacking, gives a. resemblance to A. tenuicornis.

Distribution. From W. Norway to Mediterranean (Stebbing (1. c.).

Genus HAPLOOPS
HAPLOOPS DELLAVALLEI Chevreux (Fig. 26). Iaploops tubicola Della Valle, Fauna Flora Golf. v. Neapel, vol. 20, 1893, .486, Pl. 3, fig. 2 Pl. 37, fig. 1-18.

Haploops Dellavallei Chevreux, Rés. Camp. Monaco, ol. 16, 1900, p. 47

- Stebbing, Amphip. Gamm., Da Tierreich 1906, p. 116, 722.
St. $137.190 \mathrm{~m} .37^{10} 17^{\prime} N, 10^{\circ} 56^{\prime}$ E. 19-7-1910. 1 spec. (아) 9 mm .
The determination is not altogether certain, the endopodite of urop. 1 especially being a little too long and the telson (not shown in the fig.) more rounded than in Della Valle's illustration (Pl. 37, fig. 8). On the whole, however, it agrees well enough with D. V.'s figures, as far as can be seen without dissection. (I have only dissected the appendages shown). In p. 7 in particular the similarity is altogether very close, and joint 5 exhibits the characteristic form as shown by my fig. here given. The 6. joint, however, is in my specimen twice as long as 7 . whereas in D. V. figs., these two joints are of equal length. Both exop. and endop. in urop. 3 have a slightly differen shape in the specimen from the "Thor", being in parti cular more abruptly cut off at the point.

Distribution. Gulf of Naples, $20-40 \mathrm{~m}$ (Della Valle),

Fam. HAUSTORIIDÆ.

Genus UROTHOE.

UROTHOE PULCHELLA Costa
Egidia pulchella Costa, Rend. Soc. Bourbon n. ser. vol. 2, 1853, p. 172.
*Urothoe - Stebbing, Transact. Zool. Soc. Lon don, vol. 13, 1891, p. 11, Pl. 4 fig. A.

- Stebbing, Amphip. Gamm., Das Tier reich 1906, p. 130 (ubi lit. et syn.) St. 135. $3 y^{\circ} 17^{\prime} N, 10^{\circ} 28^{\prime}$ E. $16-7-1910 . \quad 200 \mathrm{~m} . \quad 12^{55} \mathrm{am}$ $25 \mathrm{~m} . \mathrm{w} .1$ spec.
of Naples, West France (Stebbing 1. c. 1906).

Fam. COLOMASTIGIDÆ.

Genus COLOMASTIX.

COLOMASTIX PUSILLUS Grube

Colomastix pusillus Grube, Ausfl. Triest, 1861, p. 137 Della Valle, Fauna Flora Golf. Neapel, vol. 20, 1893, p. 854, Pl. 6, fig. 2, Pl. 61, fig. 23-37.

- Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 207 (ubi lit.). - Pearse, Proc. U. S. Nat. Mus., vol. 43, 1913, p. 370, fig. 2.
St. 142. $35^{\circ} 44^{\prime} N, 15^{\circ} 07^{\prime} E .22-7-1910.98 \mathrm{~m} .2$ spec.
Distribution. North Atlantic (France, Great Britain),

of Missisippi and Cedar Keys, $25-27$ fathoms (Pearse 1. c.). Ceylon (Walker, Ceylon Pearl Oyster Report, pt. 2, 1904,

 p. 299).
Fam. OEDICERATIDE: Genus MONOCULODES.

MONOCULODES CARINATUS Bate

Westwoodea carinata Bate, Report Brit. Assoc. Meet. 25, 1856, p. 58.
*Monoculodes carinatus G. O. Sars, Account vol. 1, 1895, p. 295, Pl. 105.

- Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 261 (ubi it. et syn.)
St. 153. $32^{\circ} 45^{\prime} N, 22^{\circ} 41^{\prime} E .28-7-1910.13 \mathrm{~m} .1$ spec. Distribution. From Norway to Gulf of Naples (Stebbing l. c.).

Fam. CALLIOPIIDÆ Genus STENOPLEURA.

STENOPLEURA ATLANTICA Stebbing (Fig. 27).

*Stenopleura atlantica Stebbing, Challenger-Amphip., 1888, p. 950, Pl. 84.
Acanthozone - Della Valle, Fauna Flora Golf. Neapel vol. 20, 1893, p. 601, Pl. 59, fig. 10 (not fig. 11, as cited in Das Tierreich).

Stenopleura allantica Stebbing, Amphip. Gamm., Da Tierreich, 1906, p. 302.
St. 69. $36^{\circ} 13^{\prime} N, 9^{\circ} 48^{\prime} W . \quad 28-2-1909 .>3500 \mathrm{~m} . \quad 3^{05} \mathrm{pm}$ St. 89. $3^{30} 26^{\circ} 28^{\prime} N, 8^{\circ} 22^{\prime} W$ W. $18-6-1910.1310 \mathrm{~m} .3^{25} \mathrm{am} .300$ m. w. 1 of, 6 mm .

In spite of some slight deviations from Stebbing's description, as will be seen from the following, there mination. As the as the correctness of the deter mination. As the specimen which Stebbing has dissected ancribed somewhat defective, I have myself dissected one of the drawings here by way of supplement to the the driphas here by way supplement to the des cription furnished by Stebbing:
${ }^{5}, 6 \mathrm{~mm}$. The contours of the cephalosome some what different from those given by Stebbing. The rostrum is too large to be properly called "inconspicuous", and the postantennal corners are fairly large (Stebbing says "not produced"). Eyes fairly large, ocelli dark brown. In ant. 1, the flagellum has 37 joints, in ant. 2 likewise 37 (Stebbing gives 33 and 35 respectively); in the first pair, the length correspond to Stebbing's habitus fig., but the second pair are The shape of the anterior and inferior lips will be seen from my fig.; the inferior lip has, as far as I have been able to see from my dissected specimen, very great inner lobes. A fig. of the maxillipeds is also given here, in order

Fig. 27. Stenopleura atlantica 0^{*}.

Apherusa bispinosa Stebbing, Amphip. Gamm., Das
show certain details not apparent from Stebbing's
As all my figs. of p. 1 - p. 7 are drawn to the same ale, the comparative lengths can be seen from these .5 is only slightly longer than p. 4; p. 6 still longer; .7 extends out to the very point of the telson. The lape of the epimeral plates on the metasome will be zen from my fig. here given. The median posterior ortion of the telson is not triangularly pointed, but venly rounded.
of, 8 mm . Closely resembles of, the eyes however, eing somewhat smaller, and the antennæ slightly horter than in δ^{*}. More remarkable is the fact that . 5 -p. 7 especially are long and slender, p. 7 even xtending out to the point of urop. 3 .

As regards colour, both sexes are (in alcohol) semiransparent and colourless.
Distribution. $35^{\circ} 41^{\prime} S, 20^{\circ} 55^{\prime} W$ (off Tristan da Cunha) und $7^{\circ} 47^{\prime} N, 24^{\circ} 26^{\prime} W$, 1850 fath. globigerina ooze, bt. $36^{\circ} 6 \mathrm{~F}$. Challenger). In Das Tierreich, the distribution is given as
jo lat. $2^{\circ}-3^{\circ} N$, long. $8^{\circ} 24^{\prime} W$; I have not, however, been o lat. $2^{\circ}-3^{\circ} N$, long. $8^{\circ} 24^{\prime} W$; I have not, however, been
able to discover from what source. In addition, Chevreux zble to discover from what source. In addition, Chevreux
records it in Bull. Mus. Océanogr. Monaco, No. 35, 1905 , p. 7, from St. 1781 : $31^{\circ} 06^{\prime} N, 24^{\circ} 08^{\prime} 45^{\prime \prime} W, 0-5000 \mathrm{~m}$; St. 1794: $31^{\circ} 46^{\prime} N, 25^{\circ} \mathrm{W}, 0-3000 \mathrm{~m}, 5425 \mathrm{~m}$, and from Funchal, Madeira

Fig. 28. Nototropis vedlomensis ρ from Norway
Genus APHERUSA.

APHERUSA BISPINOSA Bate

Dexamine bispinosa Bate, Ann. Nat. Hist., ser. 2, vol. 19, 1857, p. 142.
*Apherusa - G. O. Sars, Account vol. 1, 1895, p. 439 , Pl. 155 , fig. 1
rerreich 1906, p. 305 (ubi lit et syn.).

- - Sexton, Journ. Mar. Biol. Assoc Plymouth, vol. 9, No. 2, 1911, p. 208, Pl. 3, fig. 9.

St. 94. $36^{\circ} 06^{\prime} N, 6^{\circ} 02^{\prime} W .23-6-1910.65 \mathrm{~m} .0^{35} \mathrm{am} .65$
 $10 \mathrm{~m} . \mathrm{w} ., 10$ spec.; $30 \mathrm{~m} . \mathrm{w} ., 6$ spec.
Distribution. Recorded by Sars (1. c.) from Norway to Algiers. Has also been taken off E. coast of Greenland,
abt. $7 \%{ }^{\circ} N$ (K. Stephensen, Danmark-Exped.; Meddel. om Gronland, vol. 45, 1912, p. 538).

Fam. ATYLIDÆ.

Genus NOTOTROPIS.

NOTOTROPIS (PARATYLUS) VEDLOMENSI

 Bate \& Westwood (Fig. 28)Dexamine vedlomensis Bate et Westwood, Brit. sessileeyed Crust., vol. 1, 1862, p. 242, figs.
*Paratylus - G. O. Sars, Account vol. 1, 1895,

Nototropis - \quad Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 331 (ubi lit. et syn.).
Atylus - Boeck, Skand. og Arkt. Amphipoder 1876, p. 330 (partim), Pl. 9, fig. 9, Pl. 11, fig. 6 (non fig. $61,6 \mathrm{~m}$ [and fig. 6 n ?] $=$ Nototropis guttatus Costa).
St. 62. $35^{\circ} 45^{\prime} N, 5^{\circ} 59^{\prime} W$. $21-2-1909.58 \mathrm{~m} .8^{25} \mathrm{pm} .100$ m. w. 2 spec. ($($), 8 mm , one with eggs.

Further see the next species.
NOTOTROPIS GUTTATUS Costa (Fig. 29—31).
*Nototropis guttatus Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 331 (ubi lit. et syn.).
Atylus vedlomensis Boeck, Skand. og Arkt. Amphipoder 1876, p. 330 (partim), Pl. 11, fig. $6 \mathrm{l}, 6 \mathrm{~m}$ (and fig. 6 n ?). St. 62. $35^{\circ} 45^{\prime} N, 5^{\circ} 59^{\prime} W$. $21-2-1909.58 \mathrm{~m} .8^{25} \mathrm{pm} .100$
 m. w. 1 spec. (o).

Of all the illustrated works quoted by Stebbing, the only one I have been able to obtain is Sowinski's paper in Mém. Soc. Kiew, vol. 4, 1895 (in Russian); I have therefore been obliged to trust almost exclusively to Stebbing's own desciption. There can be

Fig. 29. Nototropis guttatus

Fig. 30. Nototropis guttatus σ°. The pereiopoda
oubt of the fact that my specimens really belong guttatus; they differ, however, in some respects stebbing's description. As moreover almost al recent date, I have thought it best to dissect a

Fig. 31. Nototropis guttatus juv. (o ?), 7 mm , Norway
cimen and draw new figures. The species is very selated to N. vedlomensis, with which it has frequently been confused; I have therefore als sected a specimen of this and give here some figures ich may serve to supplement those given by Sars his Account.
The rostrum is rounded at the point, and evenly inted. The upper lobe of the lateral margin of the halon is sharply defined, but rounded at the point; the specimens of N. vedlom. preserved at our Zool. seum, it is of exactly the same shape, and not angularly pointed, as shown by Sars in the Account a matter of fact, it is impossible to find any rea fference in the cephalon of the two species except form of the eyes. The first joint of the peduncle ant. 1 of N. vedl. has the inferior portion stal end produced out into a not altogether insign cant tooth, which in N. gutt. is either not present 1 or in any case entirely negligible.
The 4 and 5 . joints of p. 3-p. 4 are marginally eset with long setæ and some few spines (N. vedl. has hort spines only); this character is, with the gills, the est distinguishing mark of species which I have been ble to find in the specimens to which I have had iccess. (In a young spec. of N. gutt. from Norway, ?, 6 mm - these long setæ were not present [vide ig. 31]). The hook at the back of 2 . joint in p. 5 .s, in my specimens, of exactly the same shape as in N. vedl. (Stebbing says: "the lower hind corner much less distinctly uncinate than in N. vedl."): this is, as any hesitation with regard to my determination. The second joint of p. 7 is somewhat longer in proportion than that of N. vedl. I append figs. of urop. 1-3 and telson of N.vedl.; these parts, however, are entirely similar to those of N. gutt.

On going through the material of N. vedl. at the Museum (where, by the way, there was nothing noted as N. gutt.) I found two specimens of N. gutt. together with N. vedl. in a glass marked "Paratylus vedlomensis Sp. Bate; Norveg. occidend. G.O.Sars ded.". In addiion, there were 3 specimens from Denmark, taken by the "Hauch", St. 29, 72 and ? (northern Kattegat, mentioned by Meinert in "Det videnskabelige Udbytte af Kanonbaaden "Hauch's" Togter, 1890, p. 165).

It is evident that Boeck, (1. c. 1876) has confused these two species both in his descriptions and his drawings. In Pl. 11, figs. 61 (p. 3 or p. 4) and 6 m (p.5) at least belong to N.guttatus; possibly also fig. 6 n (p. 7), the 2 . joint being apparently too broad to belong to N. vedlomensis.

It would in any case seem certain that the distribution given by Stebbing for N. gutt. may be extended to embrace the Kattegat and W. Norway.

Fam. EUSIRIDÆ.

Genus EUSIRUS.

EUSIRUS LONGIPES Boeck

Eusirus longipes Boeck, Forhandl. 8. Skandinav. Naturforsker Mode 1861, p. 656.

* turforsker Mode 1861, p. 656. G. O. Sars, Accout vol, 1895, p. 420, pl. 148, fig. 1.
- Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 341 (ubi lit.).
St. $63.35^{\circ} 50^{\prime} N, 6^{\circ} 03^{\prime} W$. $23-2-1909.490 \mathrm{~m} .1^{45} \mathrm{am} .600$ St. 140. $\stackrel{\text { m. w. }}{37^{\circ} 29^{\prime}} \stackrel{5}{N}, 12^{\circ} 34^{\prime}$ spec. W. 20-7-1910. 112 m . At the bottom. 1 spec.
Distribution. Arctic Ocean, North Atlantic, North Sea and Skagerrak (Norway, depth 56-188 m; Shetland Isles; Firth of Clyde; France); Adriatic (Stebbing 1. c.). E. W. Sexton gives in Proc. Zool Soc. Lond sources.

Fam. GAMMARIDÆ.
 \section*{Genus MÆRA.}

MAERA SCHMIDTII n. sp. (Fig. 32)
St. 126. $42^{\circ} 43^{\prime} N, 9^{\circ} 50^{\prime} E$. $10-7-1910.600-620 \mathrm{~m} .10^{10} \mathrm{pm}$.
 tom. 3 spec. each $10 \mathrm{~mm}, 1$ spec., 12 mm .
St. 140. $37^{2} 29^{\prime} N, 12^{\circ} 34^{\prime} E .27-7-1910.112 \mathrm{~m}$. At the bottom. 1 spec., 10 mm .
In adaition to the 23 species of genus Mæra mentioned by Stebbing in Das Tierreich, Amphip. Gamm. 1906, p. 433 og 732 the following species are known:
M. spinicauda Holmes, Proc. U. S. Nat. Mus., vol. 35, 1908, p. 539, fig. 45.
M. Rathbunæ Pearse, ibid. vol. 34, 1908, p. 29. M. tinkerensis Kunkel, New Haven Transact. Connecticut Acad., vol. 16, 1910, p. 49, figs.
M. prionochira v. d. Brüggen, St. Petersbourg Ann. Mus.

Zool., vol. 11, 1906 (1907), p. 230.
The present species is not, however, identical with any previously described.

The following description is based on a dissected specimen (3^{3}) 10 mm long. True, we have in the material parts of one or two larger individuals, (abt. 12 mm) but these are not complete, and therefore unsuitable for purposes of description. Moreover, the differences are, at any rate, as far as it was possible to see without dissection, so slight as to render smaller specimens equally adapted for the purpose.

The species in question is a typical Mæra, so there can be no doubt of the fact that it does not belong to any of the related species. It is not particularly slender, resembling in this respect N. othonis. The cephalosome is about the length of the two first segments of the body together. Lateral lobes rounded, the lower corner almost rectangular. The eyes light, of medium size, slightly broader in the lower part than in the upper. The whole of the dorsum is entirely glabrous; with regard to the segments of the body, to asome, and urome fire is nothin to note save that the first segment of the urosome

The Danish Oceanographical Expedition II.
rans hump, and that the epimeral parts of the 3. segment in the metasome have their posterior portion without the slightest indication of marginal dentition, there are two spines, however, close to the portion of the lower edge.
The antennæ are comparatively short. In ant. 1, the flagellum has 16 joints, of which the last is very small. The accessory flagellum is about the length of the first joint of the antenna, and consists of four joints, of which No. 3 in the longest. In ant. 2, the flagellum has only 7 short joints, these making up together about $1 / 3 \mathrm{rd}$ of the length of the antenna.

The oral parts correspond on the whole to Sars' fig. of those in M. othonis (Account, vol. 1, Pl. 182). The labrum I have not drawn, as it entirely resembles Sars' fig. (Pl. 182, 1 L.). In the mandibles, the palps are only very slightly beset with setæ, the molar expansion is extraordinarily broad, (across the longitudinal axis of the mandibles) and has its proximal margin furnished with a long, downward pointing, pennate spine. With regard to the maxillæ, there is nothing particular to remark, save that the outer plate appears to have but 6 spines, not 10 , as Stebbing says (Tierreich, p. 433). On the inner plate of the maxillipeds I have only been able to find two spine teeth (on the median and lateral corners) not three (Stebbing 1. c. p. 433). The inner lobe of the labrum appears to be slightly smaller than shown by Sars in N. othonis (Account, vol. 1, Pl. 182) ; however in several distinct features. The first nt of p. 1 is pointed at the anterior end and has teeth the more or less regularly distributed over e whole of the lower edge. On p. 2, the first joint s 3 teeth below, (that in the anterior corner not luded); the 5. joint is somewhat longer in proporm than in $\hat{\sigma}$ of M. othonis, and the dactylus is only ry slightly curved. With regard to p. 3 and p. 4, ere is nothing particular to remark; the arrangement the teeth on the lower edge of 1 . joint will be seen om fig. 32. P. 5-p. 7 also resemble the corresponding ıpendages in M.othonis; the second joint in p.5, wever, is far more slender. These three pairs of sreiopoda have strong spines on the anterior, and eth on the posterior edge of the second joint. The eopoda are slender, the endop. however somewhat nger than the exop. The two feet of each pair are mnected together by means of peculiar dentate spines ride Fig.). The uropoda are very characteristic. rop. 1 is almost as long as urop. 3, and has, on the uter side of the stem, a little in front of the centre, strong spine, which feature, as far as I can see from tant works, distinguishes this species from all others. rop. 2 and urop. 3 are of about equal length, but o not, of course project equally far back, being atached in different places. In urop. 3, the branches re slender and pointed, with only a single thin spine the point, fixed in a small notch, The outer margins If the telson are convex; there are two comparatively ong and thick spines at the point.
In accordance with the above, this species can, in ontrast to the others, be characterised by a combinaion of the following features: the light eyes, the 4 oints in the accessory flagellum, the shape of the coxal plates especially in p. 1 and p. 2, the epimeral part of the 3rd segment in the metasome, the large spine on the outer side of the peduncle in urop. 1, the shape of urop. 3, and the heavy spines at the point of the telson.
I have taken the liberty of naming this species after the leader of the expedition, Dr. Johs. Schmidt.

MAERA GROSSIMANA Mont.

Cancer (Gammarus) grossimanus Montagu, Transact. Linn. Soc. London,
vol. 9, 1808, p. 97 , Pl. 4, fig. 5 .
*Mæra grossimanus (partim) Della Valle, Flora u. Fauna Golf. Neapel, vol. 20, 1893, p. 727, Pl. 2, fig. 10, Pl. 21, fig. 1-16, Pl. 41, fig. 37.

Mæra grossimana Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 435 (ubi lit. et syn.).

St. 105. $3^{77^{\circ}} 43^{\prime} N, 2^{\circ} 08^{\prime} W .24-6-1910 . \quad 20 \mathrm{~m} .8^{15} \mathrm{pm}$. At St. 140. | the bottom. ${ }^{3} 7^{\circ} 29^{\prime} N, 12^{\circ} 34^{\prime}$ spec. |
| :--- |
| . $27-7-1910 . ~$ | 12 m . At the bot St. 207.

bottom. 1 spec. D. $\begin{gathered}\text { Distribution. From } \text {. England and W.-France to }\end{gathered}$ Azores and Mediterranean (Stebbing 1.c.).

Genus GAMMARUS.
 GAMMARUS LOCUSTA L.

Cancer locusta Linné, Systema naturæ, edit. 10, 1758, p. 634.
*Gammarus - G. O. Sars, Account vol. 1, 1895, p. 499, Pl. 1, Pl. 176, fig. 1
Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 476 (ubi lit. et syn.)
St. 58. Valentia Harbour, on the shore. 28-5-1906. 2 spec t. 78. $51^{\circ} 08^{\prime} N, 1^{\circ} 35^{\prime} E .49 \mathrm{~m} .65 \mathrm{~m} . \mathrm{w} .1 \mathrm{spec}$. Piræus, the harbour, between algæ. $0.12 \mathrm{~m} .2-1-1909$? Cadiz, between algæ. $6 \mathrm{~m} .24-2-1909.1$ spec. (de fective)
Distribut
Distribution. Almost cosmopolitan; see K. Stephensen, Conspectus Crust. et Pyenog.
Gronland, vol. 22, 1913, p. 192--94.

Fam. DEXAMINIDFE.

Genus Dexamine.

dexamine spinosa Mont.
Cancer (Gammarus) spinosus Montagu, Transact. Linn Soc. London, vol. 11 1813, p. 3, Pl. 2, fig. 1.

*Dexamine spinosa G. O. Sars, Account vol. 1, 1895 p. 475, Pl. 166, fig. 2, Pl. 167. Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 515 (ubi lit. et | syn.). |
| :---: |
| 2^{\prime}. |

St. 135. $3 y^{\circ} 17^{\prime} N, 10^{\circ} 28^{\prime}$ E. 16-7-1910. $200 \mathrm{~m} .0^{55} \mathrm{am} .25$ St. 281. $\begin{aligned} & \mathrm{m} . \mathrm{w} .1 \\ & \text { Between } \\ & \text { Fpec. } \\ & \text { Faro and St. Agata, } \\ & \text { 1-3-1911. }\end{aligned} 3^{45}-4^{45} \mathrm{pm}$. $30 \mathrm{~m} . \mathrm{w} .1$ spec. In the specimen from St. 1351 . joint in ant. 1 is produce to an acute, not obtuse tooth. In the specimen from St. 281
this tooth is not very acute, but not as obtuse as in Sars' this tooth is not very
figure (Account Pl. 167).
Distribution. From Arctic Ocean to Azores and Black

Fam. TALITRIDÆ.
 Genus HYALE.

Hyale grimaldil Chevreu

*Hyale Grimaldii Chevreux, Bull. Soc. Zool. France vol. 16, 1891, p. 257, fig. 1-5.

- Stebbing, Amphip. Gamm., D

St. 132. $38^{\circ} 3 \%^{\prime} N, 9^{\circ} 47^{\prime \prime} E$. $14-7-1910$. Ca. 10 small spec. Found between green filiform algæ on the back of a couple of sea turtles (Thalassochelys corticata) taken at the
$42^{\circ} \mathrm{N}, 24^{\circ} \mathrm{W}$; $38^{\circ} \mathrm{N}, 64^{\circ} \mathrm{W}$; W Mediterranean. On floating objects and Thalassochelys (Steb bing l. e.).

HYALE PONTICA Rathke

Hyale pontica Rathke, Mém. prés. Ac. St.-Péterbourg, vol. 3, 1837, p. 378, Pl. 5, fig. 20-28 * - lubbockiana G. O. Sars, Account vol. 1, 1895 p. 27, Pl. 11, fig. 2.

- pontica Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 568 (ubi lit. et syn.).
Mentone, between algæ at the shore. 26-1-1909. 1 spec.
Distribution. From West Norway to Algeria (StebDi c) Ceylon (Walker, Ceylon Pearl Oyster Rete bing 1. c..). Ceylon
pt. 2,1904, p. 258).

HYALE SCHMIDTII Heller

Nicæa schmidtii Heller, Denkschr. Akad. Wien, vol. 26, pt. 2, 1866, p. 11, Pl. 1, fig. 31, 32 tebbing, Amphip. Gamm., Das Tier-
\qquad reich 1906, p. 571 (ubi. lit. et syn.).

- camptonyx Chevreux, Rés. Camp. Sci. Monaco vol. 16, 1900, p. 12, Pl. 2, fig. 3 (teste Chevreux l. c. 1910 [1911]).
* - schmidtii Chevreux, Mém. Soc. Zool. France vol. 23, No. 3-4, 1910 [1911], p. 237, Pl. 16, fig. 9-12.

Taormina, on the shore. $7-1-1909$. 1 ot
Distribution. Mediterranean; Adriatic; North-Atlan tic (Portugal) (Stebbing l. c.).
? HYALE CAMPTONYX Heller
Nicra camptonyx Heller, Denkschr. Akad. Wien, vol. 26, pt. 2, 1866, p. 10, Pl. 1 fig. 25-30.
Hyale - Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 570 (ubi lit
et syn.).

* - Chevreux, Mém. Soc. Zool. France, vol. 23, No. 3-4, 1910 (1911), p. 236, Pl. 16, fig. 3-8.
naco, vol. 16, 1900, p. 12, Pl. 2
St. 10. $37^{\circ} 21^{\prime} N, 16^{\circ} 45^{\prime}$ E. 15-12-1908. eggs, 4 mm .
Determination not quite certain; the eyes for instance are very large.
Distribution. Mediterranean; Adriatic; Portugal; Azo-
res. In seaweed and on a floating log (Stebbing 1.c.).

Fam. PHOTIDE.

A defective individual, indeterminable even as to genus, was taken at St. $132,38^{\circ} 57^{\prime} N, 9^{\circ} 47^{\prime}$ E. 14-7-1910, and is only mentioned owing to the fact of its having been found together with various other crustaceans among green filiform alga on the back of a couple of Thalassochelys corticata

Genus PHOTIS.

PHOTIS LONGICAUDATA Bate

Eiscladus longicaudatus Bate and Westwood, British sessile-eyed Crust., vol. 1,
*Photis
1862, p. 412, with figs.
1895, p. 571, Pl. 203, fig, 1
Stebbing, Amphip. Gamm., Das Tierreich 1906, p. 608 (ubi lit. et syn.). St. 140. $37^{\circ} 29^{\prime}$ N, $12^{\circ} 34^{\prime}$ E. 20-7-1910. St. $140.3 y^{2} 9^{\prime} N, 124^{\circ} E .{ }^{20-7}-1910.112 \mathrm{~m} .1$ spec. terranean (Naples) (Stebbing 1. c.). Ceylon (Walker, Ceylon Pearl Oyster Report, pt. 2, 1904, p. 286, Pl. 6, fig. 43).

Genus EURYSTHEUS

EURYSTHEUS sp.

St. 41. $39^{\circ} 10^{\prime} N, 9^{\circ} 35^{\prime}$ E. 2-2-1909. On the shore. 1 spec (defective).

Fam. AMPITHOIDIE

($=$ AMPHITOIDE).

Genus AMPITHOE (=AMPHITHOE).

AMPITHOE VAILLANTII Lucas

Amphithoe vaillantii Lucas, Explor. Algérie, Anim. artic. vol. 1, 1846, p. 54, Crust.
(vol. 4), Pl. 5, fig. 3
Ti 1906 p. Gamm., Das Tierreich 1906, p. 639 (ubi lit.
non -
Chevreux Rés Camp Sci Mo
et syn.). vol. 23, No. 3-4, 1910 (1911), p. 260, Pl. 20, fig. 1-4.

St. 140. $37^{\circ} 29^{\prime} N, 12^{\circ} 34^{\prime} E .20-7-1910.112 \mathrm{~m} .2$ spec. Determination not certain.
Distribution. From Trondhjemsfjord to Black Sea and Azores; United States of America (Stebbing 1.c.).

Genus COROPHIUM.

Fam. COROPHIIDE.

Genus ERICTHONIUS.

? ERICTHONIUS DIFFORMIS M.-Edw.

\qquad turelle, vol. 20, 1830, p. 382. ${ }^{*}$ Erichthonius - G. O. Sars, Account vol. 1, 1895, p. 604, Pl. 216, fig. 1. Ericthonius $\quad-\quad$ Stebbing, Amphip. Gamm., Das et sunn.).

COROPHIUM ROTUNDIROSTRE n. sp. (Fig. 33)

St. $140.3 y^{\circ} 29^{\prime} N, 12^{\circ} 34^{\prime}$ E. 20-7-1910. 112 m . Clay. 2 spec Both specimens (+5.5 mm and 0.4 mm) are unfortunately somewhat defective. The illustrations and description apply to the larger of the two, a 9 , which has been dissected. As far as could be determined without dissection, there appears to be entire uniformity between the sexes in all visible features, both specimens here lacking the most important feature for determination of sex (with the exception of the marsupial plate) there being nothing left of the second

Fig. 33. Corophium rotundirostre.
pair of antennæ beyond the two innermost segments of the stem.

Bradley gives, in University of California publications in Zool., Berkeley, vol. 4, No. 4, 1908, p. 229-30, a list and key of all the known species of genus Corophium; according to this, the present species should be C. volutator Pallas $=$ C. grossipes L., which however, is quite out of the question. Since then, Chevreux has, in Bull. Soc. Zool. France, vol. 33, No. 3-4, 1908 p. 69-73, described 3 species from the Mediterranean (C. aculeatum, C. annulatum and C. aculum) Vanhøffen has also described a brackish-water species (C lacustre) in Sitzungsber. Gesellsch. naturforsch. Freunde, Berlin, 1911, p. 400, and Wundsch a fresh-water species (C devium) in Zool. Anzeiger vol. 39, 1912, p 732
This is all that we have in the way of description and illustration of the Corophium species since Stebbing's Amphip. Gamm in Das Tierreich, the present bing s Amphip. Gamm. Not To correspond to the present hitherto described.

Its general appearance is typical of the genus, and I therefore give no drawing of the whole animal. The species belongs to that group in which the three segments of the urosome are not fused together. The rostrum is rounded, almost semicircular, the ocular lobes are oval, projecting forward about as far as the rostrum. Each eye has $5-6$ black ocelli. Ant. 1 is of the usual form; the first stem-joint, however, has on its median side a spine close to the base. The flagellum consists of 8 joints. Of ant. 2, only the two first segments are preserved, the first one has a pointed process on the median, downturned side. Unfortunately, all the remaining parts of ant. 2 are missing both in $\begin{gathered}t \\ \text { and } 9 \text {. With regard to the oral parts there }\end{gathered}$ is nothing particular to remark save that the first segment of the mandibular palp is produced in a long process, and the maxillipeds far more thickly beset with setæ than in C. grossipes (G. O. Sars, Account, vol. 1, Pl. 219).

In the pereiopoda, the epimeral parts are of the usual form. The 2 . joint of p. 1 has a convexity on the posterior side of the distal end, and the dactylus is somewhat longer than the terminal surface of the preceding segment. In p. 2, the 5th joint is of peculiar shape, being constricted towards the end and thereafter widening out again. The dactylus is comparatively long and thin, without teeth. In p. $3-$ p. 4 the dactylus is longer than the two preceeding joints together, and the 5 . joint is drawn out in the distal end. P. 5 and p. 6 are almost alike, p. 6 however, being slightly longer and with more setæ than p. 5. With regard to p. 7, nothing particular to remark save that here also the dactylus is comparatively long.

The pleopoda are of the usual form; on the inner side of the stem there are two peculiar spines (vide detail fig.). Sars appears (Account, Pl. 218) to have drawn something similar in Siphonoecetes Colletti, not however, in any of the Corophium species. The shape of the somewhat long and slender urop. will be seen from fig.; urop. 3 is linear, with a very slight projection on the median side of the stem. The telson is trilobate, and ro
that of C. grossipes.

On account of the round rostrum I suggest the specific name C. rotundirostre.

2. Caprellidea

Fam. CAPRELLIDÆ.

Genus CAPRELLA

CAPRELLA ACUTIFRONS Latr. form

 ANDRÉÆ \neq P. Mayer.Caprella acutifrons forma Andrex P. Mayer,Caprell.Golf Neapel, Nachtrag; Fauna u. FloraGolf p. 52 , 55 , Pl. 2 , fig 38 , Pl. 4, fig. 56, 70 71.
P. Mayer, Caprell.; Si-boga-Exped., Livr 12 (Monogr. 34)
St. 132. $38^{\circ} 57^{\prime} N, 9^{\circ} 47^{\prime}$ E. 14-7-1910.
From green filiform alge on the back of a couple of sea turtles (Thalassochelys corticata) taken at the surface. A considerable number of specimens, $\widehat{\sigma}$ and o, ($3-) 13 \mathrm{~mm}$; the determination of the smaller individuals is somewhat uncertain, owing to their insignificant size

Distribution. P. Mayer records this variety in the two works quoted with a very wide distribution from the warme parts of both Atlantic and Pacific. He also mentions it from Naples, driven in to the bay on corks and on the trunk of a tree. The variety is pelagic, or more correctly, passively pelagic on floating objects of all kinds, also turtles. It ha (P. Mayer 1. c. 1890, p. 55). Van Beneden has, in Notice sur la tortue franche (Chelonia midas) dans la mer du Nord, ses commensaux et ses parasites (Bull. Acad. Royale de Belgi que, ser. 2, vol. 6, No. 1, p. 10-13, Pl. 1, fig. 9-11), a work which appears to have been overlooked by nearly ath subse Tanais Dulongii Sav. The specimens from the "Thor" were found together with Tanais robustus, Hyale Grimaldi, H camptonyx (?), and Photides fam. (?).

[^0]: The Danish Oceanographical Expedition. I

