Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data System
· Documents
· Events Calendar
· FAQ
· Forums
· Job M@RKET
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Weekly News Bulletin
· Wiki
· Worldconference
 

 

Last 3 Job opportunities View latest job opportunities RSS feed


>> Go to Job M@RKET

Last 2 forum posts View MarBEF Forum RSS feed

 Field course on sharks in South Africa (June 2011)
 training opportunity in basic taxonomy

>> Go to forums

 

 
Who's Online

Currently 23 guest(s) online
Currently 0 member(s) online
 

 
Login

Username

Password

 

MarBEF Open Archive (MOA)

MarBEF OA logo
Introduction | Search

[ report an error in this record ]basket (0): add | show Printer-friendly version

Identifying erroneous data using outlier detection techniques
Zhuang, W.; Zhang, Y.; Grassle, J.F. (2007). Identifying erroneous data using outlier detection techniques, in: Vanden Berghe, E. et al. (Ed.) (2007). Proceedings Ocean Biodiversity Informatics: International Conference on Marine Biodiversity Data Management, Hamburg, Germany 29 November to 1 December, 2004. VLIZ Special Publication, 37: pp. 187-192
In: Vanden Berghe, E. et al. (Ed.) (2007). Proceedings Ocean Biodiversity Informatics: International Conference on Marine Biodiversity Data Management, Hamburg, Germany 29 November to 1 December, 2004. VLIZ Special Publication, 37. BSH/UNESCO/IOC/VLIZ: Paris. VI, 192 pp., more
In: VLIZ Special Publication. Vlaams Instituut voor de Zee (VLIZ): Oostende. ISSN 1377-0950

Available in Authors 
    Vlaams Instituut voor de Zee: Open access 115076 [ download pdf ]
Document type: Conference paper

Keywords
    Clustering; Clustering; Data; Quality assurance; Quality control; Marine

Authors  Top 
  • Zhuang, W.
  • Zhang, Y.
  • Grassle, J.F.

Abstract
    Common data quality problems observed in OBIS are described. BSCAN, a density-based clustering algorithm for large spatial data bases is employed to identify geographical outliers in federated data from a public Web service on the OBIS Portal. The algorithm is shown to be effective and efficient for this purpose. The relationship between outliers and erroneous data points are discussed and the future plan to develop an operational data quality checking tool based on this algorithm is discussed.

 Top | Authors