Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

Main Menu

· Home
· Contacts
· Data System
· Documents
· Events Calendar
· Forums
· Job M@RKET
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Weekly News Bulletin
· Wiki
· Worldconference


Last 3 Job opportunities View latest job opportunities RSS feed

>> Go to Job M@RKET

Last 2 forum posts View MarBEF Forum RSS feed

 Field course on sharks in South Africa (June 2011)
 training opportunity in basic taxonomy

>> Go to forums


Who's Online

Currently 35 guest(s) online
Currently 0 member(s) online





MarBEF Open Archive (MOA)

MarBEF OA logo
Introduction | Search

[ report an error in this record ]basket (0): add | show Printer-friendly version

Comparing biodiversity effects among ecosystem engineers of contrasting strength: macrofauna diversity in Zostera noltii and Spartina anglica vegetations
Bouma, T.J.; Ortells, V.; Ysebaert, T.J. (2009). Comparing biodiversity effects among ecosystem engineers of contrasting strength: macrofauna diversity in Zostera noltii and Spartina anglica vegetations. Helgol. Mar. Res. 63(1): 3-18.
In: Helgoland Marine Research. Springer: Berlin; Heidelberg. ISSN 1438-387X
Peer reviewed article  

Available in  Authors 
    Vlaams Instituut voor de Zee: Open Repository 144408 [ download pdf ]

    Biodiversity; Complexity; Ecosystem management; Habitats; Interactions; Intertidal flats; Macrobenthos; Productivity; Spartina anglica C.E. Hubbard [WoRMS]; Zostera (Zosterella) noltei Hornemann [WoRMS]; Marine
Author keywords
    Ecosystem engineering; Zostera noltii; Spartina anglica; Benthicmacrofauna; Plant-benthos interaction; Intertidal flats; Habitatmodification; Invasion; Habitat complexity; Productivity; Diversity

Authors  Top 
  • Bouma, T.J.
  • Ortells, V.
  • Ysebaert, T.J.

    Whereas it is well known that ecosystem engineers can have a large influence on biodiversity, underlying mechanisms are still not fully clear. We try to enhance insight by comparing biodiversity effects of two neighboring intertidal, clonal, ecosystem engineering plant species that modify the physical environmental parameters in a similar way, but with a different magnitude. Macrobenthic assemblages were compared between meadows of the seagrass Zostera noltii, small patches (≤0.5 m Ø) and large areas (≫5 m Ø) of the emergent halophyte Spartina anglica and the surrounding bare tidal mudflat (control). Multivariate analyses revealed that the mudflat benthic assemblage and Zostera meadow assemblage showed highest similarities, whereas the Spartina marsh assemblage showed the highest dissimilarity with these two areas. Whereas the descriptive nature of our study limits interpretation of the data, some clear patterns were observed. For all vegetated areas, species diversity was lower compared to the unvegetated mudflat, and we observed a strong shift from endo- towards epibenthic species, suggesting that increased above-ground habitat complexity may be a main driving process in our system. As there were no clear patterns related to feeding types, food availability/productivity appeared to be of minor importance in structuring the benthic assemblages. Nevertheless, animals were in general smaller in vegetated areas. Patchiness had a distinct positive effect on biodiversity.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors