Herbivore-induced resistance in seaweeds – background and bioassays

Gunilla Toth
Tjärnö Marine Biological Laboratory
Department of Marine Ecology
Göteborg University

Terminology

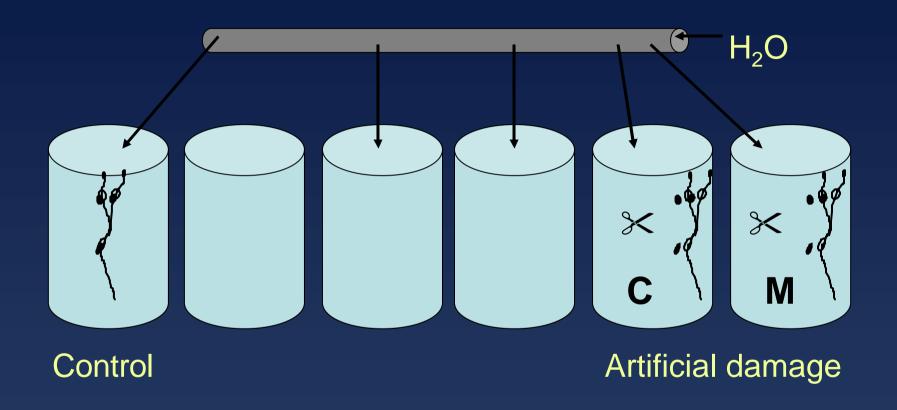
- Constitutive
 - Always present and active
- Inducible
 - Produced in response to a signal/cue (fast or slow)
- Activated
 - In between (precursors constitutive, response inducible)
 (fast)

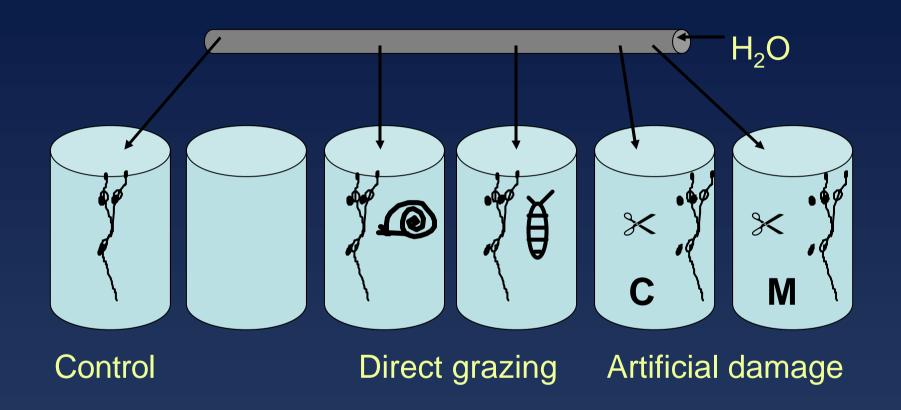
When to expect inducible defenses?

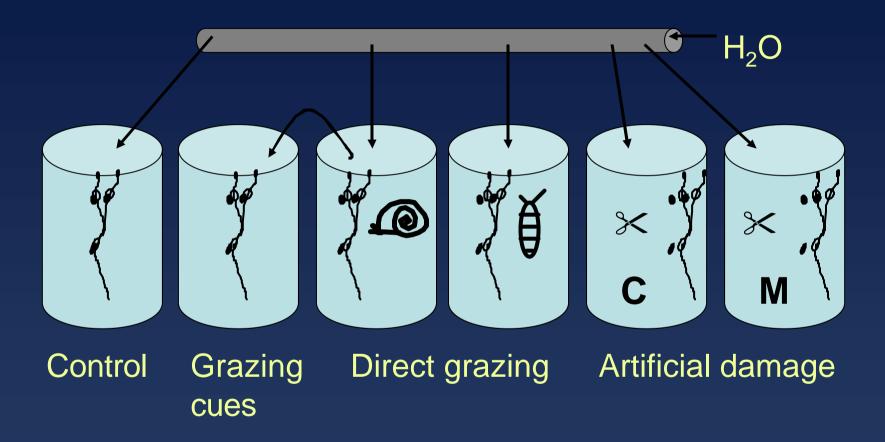
- Evolution of inducible defenses
 - Defenses are costly
 - Presence and activity of consumers is variable and unpredictable
 - Consumers active over temporal and spatial scales that enable inducible defenses to be effective
 - Increased variability in the level of chemical defenses enhance the effectiveness
 - Reliable environmental cues that the plant can sense and respond to

Starting point...

- Unknown compounds/mechanisms
 - Ecologically relevant herbivores! Herbivores and seaweeds must be present in the same habitat and herbivores must be eating the seaweeds to a certain extent.
 - Is there an unpredictable variation in herbivore density?
- Known compound
 - Is the concentration variable?
 - Are there indications of costs (e.g. negative correlations with growth/reproduction)?



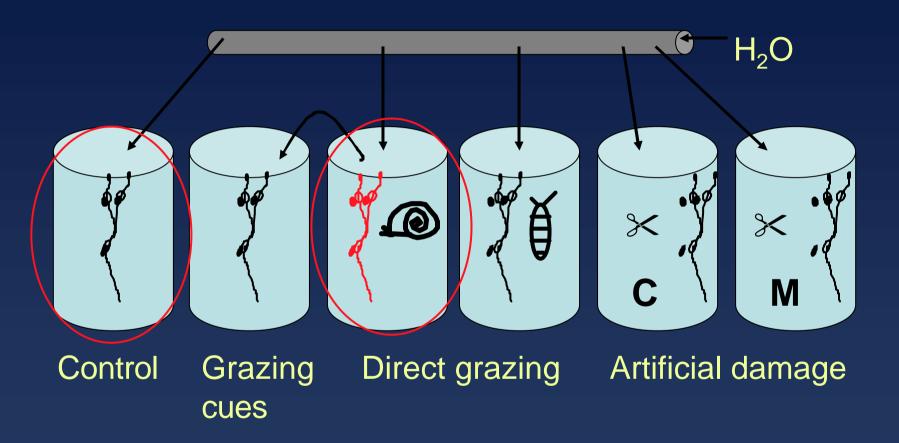




One genetic individual per aquarium! n = 10, 60 aquaria in total Measure weight change or grazing damage!

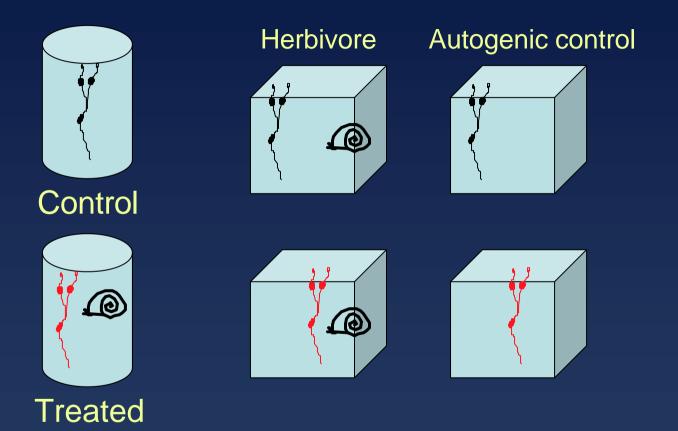
Bioassay?

- No-choice assays
 - Consumption
 - Compensatory feeding responses may results in herbivores feeding more on poor food!
 - Reproduction
- Choice assays
 - Preference
 - 2- or multiple-choice?



One genetic individual per aquarium! n = 10, 60 aquaria in total Measure weight change or grazing damage!

No-choice



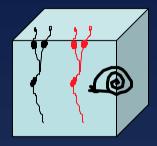
2-factor ANOVA (Treatment, Grazer) Hypothesis - significant interaction

Two-choice

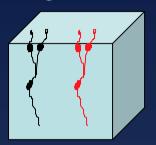


Treated

Herbivore

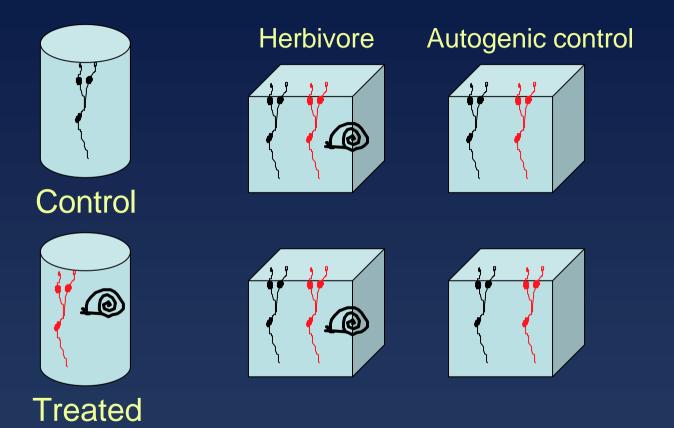


Autogenic control



2-factor ANOVA (Treatment, Grazer) Hypothesis - significant interaction

Two-choice



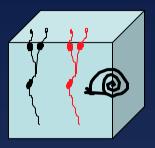
2-factor ANOVA (Treatment, Grazer) Hypothesis - significant interaction Throw away half of the data

Two-choice, one treatment

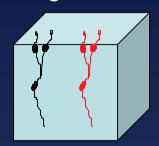
Control

Treated

Herbivore



Autogenic control



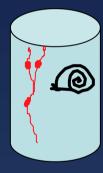
 $wwch_{H1C} = stop-start$ $wwch_{H1T} = stop-start$ $wwch_{AC} = stop-start$ $wwch_{AT} = stop-start$ Difference in wwch:

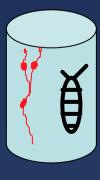
 $D_{H1} = wwch_{H1C}$ - $wwch_{H1T}$

 $D_A = wwch_{AC}$ - $wwch_{AT}$

t-test

Control

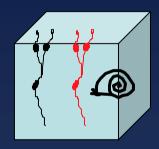




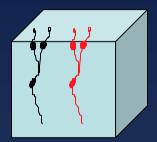
Treated

Two-choice, 2 treatments

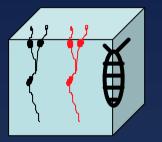
Herbivore 1



AC



Herbivore 2

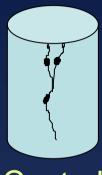


 $wwch_{H1C} = stop-start$ $wwch_{H1T} = stop-start$ $wwch_{AC} = stop-start$ $wwch_{AT} = stop-start$ $wwch_{H2C} = stop-start$ $wwch_{H2T} = stop-start$ Difference in wwch:

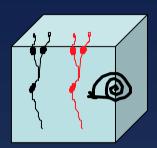
 $D_{H1} = wwch_{H1C}$ - $wwch_{H1T}$ $D_{H2} = wwch_{H2C}$ - $wwch_{H2T}$ $D_A = wwch_{AC}$ - $wwch_{AT}$

One-factor ANOVA!

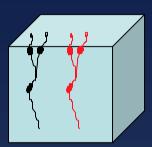
Two-choice, consumption



Herbivore



Autogenic control



If you pair the herbivore and autogenic control seaweed genetically, you will decrease variances due to genetic differences in growth

 $wwch_{HC} = stop-start$

 $wwch_{HT} = stop-start$

 $wwch_{AC} = stop-start$

 $wwch_{AT} = stop-start$

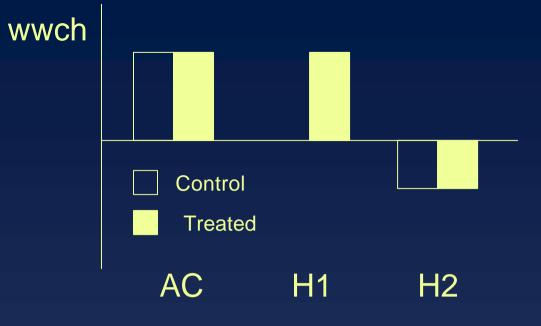
consumption_C = wwch_{AC}- wwch_{HC}

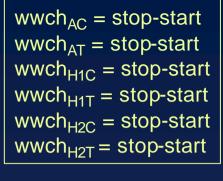
 $consumption_T = wwch_{AT}$ - $wwch_{HT}$

paired t-test

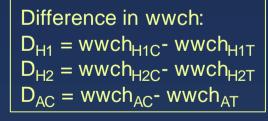
 $wwch_{AC} = stop-start$ $wwch_{AT} = stop-start$ $wwch_{H1C} = stop-start$ $wwch_{H1T} = stop-start$ $wwch_{H2C} = stop-start$ $wwch_{H2T} = stop-start$

$$\begin{aligned} wwch_{AC} &= 2\text{-}1 = 1 \\ wwch_{AT} &= 2\text{-}1 = 1 \\ wwch_{H1C} &= 1\text{-}1 = 0 \\ wwch_{H1T} &= 2\text{-}1 = 1 \\ wwch_{H2C} &= 0.5\text{-}1 = -0.5 \\ wwch_{H2T} &= 0.5\text{-}1 = 0.5 \end{aligned}$$

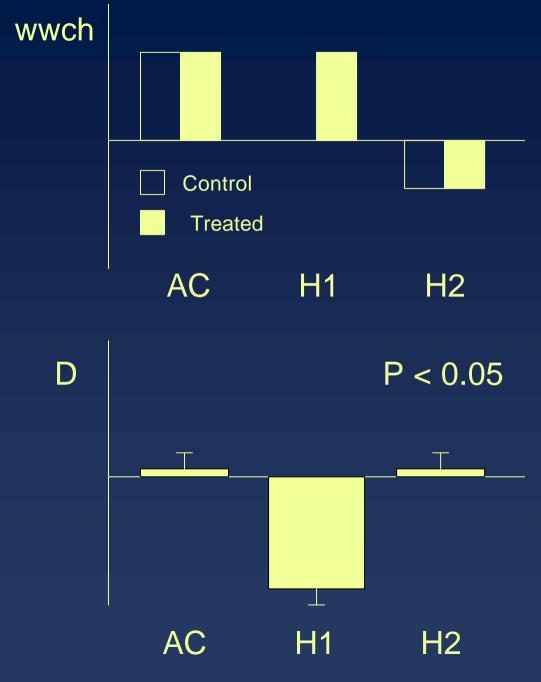




$$\begin{aligned} wwch_{AC} &= 2\text{-}1 = 1 \\ wwch_{AT} &= 2\text{-}1 = 1 \\ wwch_{H1C} &= 1\text{-}1 = 0 \\ wwch_{H1T} &= 2\text{-}1 = 1 \\ wwch_{H2C} &= 0.5\text{-}1 = -0.5 \\ wwch_{H2T} &= 0.5\text{-}1 = 0.5 \end{aligned}$$



Difference in wwch: $D_{AC} = 1-1 = 0$ $D_{H1} = 0-1 = -1$ $D_{H2} = -0.5-(-0.5) = 0$



 $wwch_{AC} = stop\text{-start}$ $wwch_{AT} = stop\text{-start}$ $wwch_{H1C} = stop\text{-start}$ $wwch_{H1T} = stop\text{-start}$ $wwch_{H2C} = stop\text{-start}$ $wwch_{H2T} = stop\text{-start}$

$$wwch_{AC} = 2-1 = 1$$

$$wwch_{AT} = 2-1 = 1$$

$$wwch_{H1C} = 1-1 = 0$$

$$wwch_{H1T} = 2-1 = 1$$

$$wwch_{H2C} = 2-1 = 1$$

$$wwch_{H2T} = 2-1 = 1$$

Difference in wwch: $D_{H1} = wwch_{H1C}$ - $wwch_{H1T}$ $D_{H2} = wwch_{H2C}$ - $wwch_{H2T}$ $D_{AC} = wwch_{AC}$ - $wwch_{AT}$

Difference in wwch: $D_{AC} = 1-1 = 0$ $D_{H1} = 0-1 = -1$ $D_{H2} = -1-(-1) = 0$

