SOME NEW TINTINNIDAE FROM THE PLANKTON OF THE SAN DIEGO REGION

(From the San Diego Marine Biological Laboratory of the University of California.)

BY
CHARLES ATHOOD KOFOID

The following Ciliates belonging to the family Tintinnidue have necurred in the eollections made at the San Diego Marine Biological Laboratory in 1903-1905. They appear to be as yet molescribed and are of considerable interest in several instances owing to the lighly specialized nature of the external shells or lorieae which these simple unicellnlar animals have formed in adaptation to a pelagic life.

I am indebted to Mr. R. D. Williams and Mr. John F. Borard, assistants at the San Diego Laboratory, for some of the observations reeorded and several of the sketches utilized in this paper.

Tintinnus serratus sp. nov.

$$
\text { Pl. XXVJ. Fig. } 1 .
$$

The lorica of this species is tubular, with slightly flaring ends. Its length is about twelve times its least diameter which is near the aboral end. It gradually enlarges anteriorly, attaining just hehind the anterior flare a diameter one and ohe half times that in front of the posterior flare. Both ends are open, the diameter of the aboral aperture being three-fifths of the oral. Within a short distance of each the wall of the lorica flares
gradually in a regular eurve, approximately 30° from the axis, inereasing the diameter about 20%. The aboral margin is perfectly smooth but the oral is deeply and regularly incised, forming a serrate margin of twenty erect, aeute teeth.

The wall is unusually thin and hyaline even for this thinwalled genus and shows only the faintest traces of structure.

The animal has not been found in the lorica.
The number of adoral eiliary plates in the genus Tintiunus is stated by Daday ('87) to be 18-20. There are 20 cireumoral teeth in the lorica of this speeies, a fact which indicates that there is some correlation between the structure of the adoral apparatus and the formation of the serrate oral margin of the lorica.

This species belongs to the form-eycle of T. fraknoi Daday, differing from it in the possession of the serrated circumoral margin of the lorica, and in attaining less than one half its size. As figured by Daday ('87) the ends in T. fratinoi flare more gradually and are less differentiated than in T. ssmatus. In the Pacifie plankton, however, I find that T. fraknoi generally has the flare better developed than it is in Daday's figures of the species from the Mediterranean.

Dimensions:-Length, 150μ; diameter inside of flare, anteriorly 18μ, posteriorly 12μ; of oral opening. 25μ; of aboral, 15μ; length of teeth, 4μ.

Taken in the plankton at the surface inside the kelp belt off San Diego in June. The structure of the loriea indieates a eupelagic distribution.

Tintinnopsis reflexa sp. nov.

Pl. XXVI. Fig. 2.
The lorica of this organism is eylindrical, finger-shaped, its length two and one-half times its diameter, with rounded fundus and reflexed oral rim. The sides are straight and at the month the wall is retlexed, forming a broadly rounded oral perimeter, and eontinues aborally parallel to and outside of the eylinder for one-tenth of its length, terminating in a smooth unmodified edge. The wall is thin, translucent and has the primary retieulations deseribed by Biedermann ('93) and Brandt ('96) but
no secondary fenestration. The outer surface of the wall is sparsely strewn with mmerous, small, irregular particles of a more highly refractive charaeter than its own structure.

The animal has the form and structure nsual in Tintimopsis. There are two ellipsoidal nuclei centrally located and in the posterior end a single vacuole whose diameter at diastole equals half that of the Iorica.

A reflexed oral margin is not found in any other species of Tintinuidae. The nearest approach to it appears in the tlaring rims of such species as 1 mphorclla sternstrupi, A. acuta. I'ctalotrichet ampulla. Tintinnopsis mortrnseni. T. bülschlii, and T. campanula. In none of these forms has this flaring rim much greater relative proportions than has the reflexed rim of Tintimnopsis reflexu. An exception to this limitation in extent appears to be presented in the problematical organism described by Cleve ('99) as Fungella arctica and referred by him to the Tintimidac. The significance of this limitation in proportions lies, it seems, in the dependence of this projecting portion of the shell upon the lcngth of the cilia and intercalary cirri of the adoral ciliary plates. In T'. reflexa the distal edge of the lorica is located approximately at the line where the ends of the eirri of the adoral plates would fall when reflexed.

The general form of the loriea of this species approaches most nearly to that of T. nitida. described by Brandt (96) from Karajak-Fjord in Greenland waters. It differs, however, from this species in the posterior reflexion of its more extended rim, in the minnteness and sparseness of the attached particles and in its smaller size.

Dimensions:-Length, 50μ; diameter, 20μ.
Taken in a vertical haul from 70 fathoms to surface off San Diego in July. The structure of the shell is indicative of a. eupelagic distribution.

Tintinnopsis dadayi sp. nov.

Pl. XXVI. Figs. 3-5.
Lorica campanulate with expanded fundus, spreading margin and eylindrical central portion. Its length from apex to primary oral rim is 2 to 2.5 times its central diameter, 1.3 to 1.8
times that of the fundus and 1.1 to 1.35 times that of the oral margin. In some individuals the lorica is continued beyond the primary oral rim by a cylindrical extension whose diamcter is the same as that of the body behind the oral rim as seen in Pl. XXVI, Figs. 4 and 5. A secondary oral rim may appear on the cylindrical extension. No trace of annulation was found in the lorica.

The wall of the lorica is formed by a single hyaline lamella to whose outer surface numerous highly refractive angular particles adhere.

This species is most nearly related to T. bütschlii Daday bnt differs from it in its smaller size, in the absence of anmulations, in the more sharply differentiated and sometimes repeated oral rim and in the swollen fundus.

Dimensions.-Length, $80-108 \mu$; diameter of fundus, 55 65μ, of the cylindrical part, $40-48 \mu$, of the oral rim $60-80 \mu$.

This species was taken frequently in the summer months in shoal waters near shore and evidently belongs to the coastal plankton.

Cyttarocylis quadridens sp, nov.

Pl. XXVII, Figs. 8-11. Pl. XXVIII, Fig. 18.
The lorica is elongated, vase-shaped, tapering abruptly onethird of the distance from the aboral end to a slender attenuately pointed pedicel which bears in its aboral half an expansion armed with four more or less salient tooth-like projections. The oral opening is about one-fifth of the total length in diameter, is squarely truncate, with a thick, very slightly flaring rim. From the mouth the body of the lorica tapers slightly to the sloping shoulders which contract to the slender sub-cylindrical pedicel whose greatest diameter is about one-sixth that of the mouth. The pericel tapers gradually to about one-half its initial diameter and then spreads into a quadrangułar skirtlike expansion which bears the four posteriorly spreading spines on its angles. The diagoual width is here about equal to the initial diameter of the pedicel. From the recessed posterior face of this expansion arises an attenuate terminal spine. The cavity of the lorica is constricted abruptly in the expanded
region of the pedicel and is continued as a slender tube nearly to the tip of the terminal spine.

The wall of the lorica is relatively thick, especially toward the oral margin where it measures 5μ. It grows slightly thinner posteriorly especially in the expanded region of the pedicel and the terminal spine, where it measures only $2-3 \mu$ in thickness.

The wall is composed of minnte subregular prisms mainly hexagonal with occasional pentagonal or irregular ones, placed so that their ends form the inner and outer surfaces of the lorica. Their sides form the coarse subregular hexagonal meshwork which Brandt ('96) has designated as the secondary reticulum. The slightly rounded ends of the prisms form the whole, or at least a part, of the inner and outer lamellae of the wall. U'nder high magnification (Pl. XXVIII. Fig. 18) the outer lamella exhibits a very minnte faint reticulation which Brandt has called the primary one. The diameter of the meshes of this primary reticulum is less than 1μ, and that of the secondary abont 5μ. In the pedicel the secondary reticulnm becomes indistinct and on the expansion and terminal spine it disappears altogether, apparently as a result of the greater thickness in the walls of the prisms.

Well preserved specimens of the inhabitant have not been observed within the lorica, though moribund individuals have been found there in a few instances.

This species varies considerably in the prominence and angle of divergence of the four salient spines on the pedicel and in the length of the terminal spine. The four spines are usually symmetrical with respect to each other but instances of asymmetry are oceasionally seen (Pl. XXVII. Fig. 9). It belongs unquestionably to the form-evele of Cyttarocylis treforti. described by Daday ('87) from Naples, which, however, has two lateral apophyses in place of a quadrangular expansion of the pedicel. Similar lateral apophyses also nceur on the spirally striate form described by Cleve (99a) as C. hebe var. apophysata. C. trcforti occurs occasionally in the plankton of the Pacific off San Diego, but it does not appear to intergrade with the form here described as C. quadridens.

Observations on the methed of formation of the lorica in Cyttarocylis are not to be fomd in literature and I have been unable to keep this species alive for prolonged examination in a microaquarium. It seems probable from the form of the lorica that this is built up from the terminal spine anteriorly, and that the quadrangular expansion on the pedicel with its four spines may in some way result from the presence of the four spiral lines of cilia on the body of the animal which pass from the adoral circlet toward the posterior end. They would form the natural lines of transit of substances gathered by the adoral circlet or extruded from the body and utilized in the formation of the lorica. The posterior ends of these lines of cilia may lee regions where the shell-forming substances gather in the form of this quadrangular expansion with its more or less prominent spines. Anterior to this region the spiral conse of the cilia and the greater freedom of movement on the part of the body of the animal would tend to facilitate the more regular distribution of the material and to bring about a transition from the quadrangular to the circular cross section of the shell.

Dimensions.-Total length, $430-450 \mu$; diameter of oral end, $90-100 \mu$; length of terminal spine, $35-50 \mu$; diagonal diameter at the expanded region of the pedicel, $12-18 \mu$.

This species is found generally, though rarely in large numbers, in the summer plankton of the Pacific off San Diego. It has been taken in vertical hauls from 185-35 fathoms to the surface very generally, and less frequently in surface catches. It appears to be a eupelagic species.

Cyttarocylis pulchra sp. nov.
Pl. XXVIII. Figs. 19-23.
This differs from the preceding in its proportions, in the possession of one to three rings abont the anterior part of the lorica and in its very stont pedicel with a four-sided posterior portion. The lorica is vase-shaped, being eylindrical in its anterior third with a very slightly flaring month whose lip diminishes to a sharp edge. This section of the lorica bears one, or two, but more generally three external annulations which
result from a symmetrical increase of the wall to from 2 to 2.5 times its thickness in adjacent regions. The anterior ring is about one-fonrth of the diameter of the mouth behind the rim, the seeond ring three-fourths, and the third a little less than five-fourths. The seeond and third are thus slightly nearer together than the first and second. The total length of the lorica is seven times its diameter between the rings and five times that on the rings.

The lorica tapers very gradually near its middle to the stout perdieel which with its teminal spine forms the posterior half of the total length. This pedicel is about me-third of the diameter of the anterior part measured between the rings, and changes in the posterior third of its length from a eylinder to a rectangular prism from whose flaring end arises the stout terminal spine. The four angles of the pedieel are carried out (on the skirt-like expansion) in projecting points like those of C. quadridens and in addlition one similar point is interealated on each margin of the overhanging ledge midway between the two corners of each face. The width of the faces is about onefourth the diameter of the mouth of the loriea.

The cylindrieal spine projects from the center of the recessed region at the base of the pedicel and ends in an acute tip. Its length is nearly one-half the diameter of the mouth, and its diameter less than one-fifth of its own length.

The cavity of the lorica conforms to the external contow with the exception that there are only very slight annular expansions beneath the rings, and that in the prismatie portion of the pedicel the lumen contracts suddenly to a slender eanal which extends as a straight tube nearly to the end of the terminal spine.

The strueture of the loriea is essentially similar to that of C. quadridens. It is eomposed of similar elements having a similar arrangement in all parts but the rings. In C. quadridens the wall is everywhere eomposed of a single layer of prisms lont in C. pulchra the rings, as shown in Pl. XXV1II, Fig. 20, are formed by 2-3 layers of prismatic elements, whieh pass over into the single layer on either side. In the quadrangular see-
tion of the pedicel the prisms which are thin-walled elsewhere become very thick-walled so that their central cavities are almost obliterated, giving a pitted appearance to the wall in this region. This wall is, as before stated, much thickened, but I have found only a single laver of prisms in it. It has a vellowish brown color which is in strong contrast with the hyaline character of the rest of the lorica. The presence of rings on the lorica of this species and the occurrence of loricae having only one or two rings raises an interesting question as to the method and significance of their formation. It seems probable that there occurs during the period of lorica formation a temporary suspension in the factors leading to its elongation without concurrent diminution in the supply of the materials from which the hexagonal prisms are formed, resulting in a local aggregation of the prisms in a ring. This process may, it seems, occur two or three times and at an approximately uniform interval. The structure in these particulars is probably correlated with some phase of activity of profound importance in the animal's economy which is subject to rhythmic repetition. Naturally the suggestion arises that division or possibly conjugation may afford the basis on which these features of shell structure rest. Observations on this point are lacking becanse of the great difficulty of keeping these most delicate pelagic organisms under laboratory conditions.

The animal has not been seen in a normal condition. Noribund individuals have three or more ellipsoidal nuclei.

Dimensions.-Total length, 405μ; diameter of oral end, 70μ; length of terminal spine, 35μ; width of face of pedicel, 20μ; diameter of rings 82μ; thickness of wall, $6-8 \mu$; diameter of prisms, $2-4 \mu$.

This species has been found generally in the plankton of the Pacific off San Diego at all seasons of the year but more frequently in the summer. It is never very common and is more frequent in vertical catches than in those taken at the surface. It appears to be a eupelagic species.

Cyttarocylis torta sp. nov.
Pl. NXVII, Figs. 12-15. 1^. NXVIII, Figs. 16, 17.
This species has many points in common with the preceding. In propertions and form of the lorica, the relations of eylindrical portion and pedicel, and in the form of the expansion and terminal spine the two species are comerparts. C. Torta differs from C. puldira, however, in two prominent details of strmeture which have heen constant in all of the numerons individuals of the species which have come wader my observation. In the first place the ammlation is not formed by 1-3 distinet rings as in C'. puldelra but by a rery broad thickened band whose anterior and posterior margins are somenhat enlarged, a condition which might arise by the thickening of the region between the first and second rings in (". pulchra. The anterior thickening is usually less prominent than the posterior and the intermediate belt is not unformly or symmetrically thickened on all sides, thus presenting a variety of margins as the lorica is rolled about. A second narrowed ring is found in some individuals behind the broad hand, and as in the two ridges in front of it, its anterior face is less abrupt than the posterior one, differing in this particular from the evenly rounded rings on C. pulchure.

The second structural feature differentiating this species from ('. pulctura is the marked torsion of the utudrangular portion of the pedicel, which makes a turn of 90^{-180} from right wer to left (cf. Figs. 14 and 15). The torsion appears in the prominent lines which form the angles of this part of the pedicel and also in the several--usually three-fainter lines distribnted on each face between the angles. These lines in common with those upon the angles, terminate in projecting points along the marwin of the skirt-like expansion. There is some irregularity amoug difterent individuals in the number and distribution of these intermediate lines. The direction of the torsion is uniform in all loricae examined.

The finer structure of the lorica is essentially similar to that of C. pulchra as shown in the figures. The quatrangular portion of the pedicel is thick-walled oceluding the humen to a
slender tube which has, however, au ovoidal expansion just before it enters the terminal spine (Pl. XXVII. Fig. 12).

This species belongs to the form-cycle of C. pulchra to which species it is evidently closely related. The existence of two constantly present differential characters in the individnals of this species under my observation leads me, however, to regard it as distinct from C. pulchra. The nearest approach to intergrades appears in oue individual of C. pulchra (Fig. 23) in which the second ring is slightly widened.

The formation of the twisted end of the perlicel in this species may be due to the rotation of the animal during the early period of shell formation. If so, the rotation must be in one direction constantly, or at least nearly so, during this period of formation. In locomotion the Tintinnidac, in common with other free-swimming ciliates, rotate about the long axis. I have not observed C. pulchra in activity, but in other species which I have seen in motion reversals in the direction of this rotation are not infrequent. It is difficult to find an explanation of the difference between the broad anterior band and the smaller posterior ring in C. torta on the supposition made in the case of the rings in C. pulchra, that they are attendant upon the repetition of some phase such as division or conjugation in the life history of the organism.

The structure of the lorica is similar to that of C. pulchra with the exception that there are 2-3, and sometimes as many as 5 larers of prismatic elements in the rings and collar and that the thickened region of the pedicel is relatively longer.

The animal has not been seen in normal condition.
Dimensions.-Total length, 450μ; diameter of mouth, 65μ, on rings, 90μ; of pedicel, $18-25 \mu$; diagonal of pedicel expansiGi, 30μ; thickness of wall. 2 to 4μ; length of terminal spine, 40μ.

This species has been taken sparingly in both summer and winter plankton of the Pacific at San Diego, but more abundantly in vertical than surface catches. It is apparently eupelagic in its distr:bution.

Cyttarocylis fasciata su. nov.

PI. XNVI. Figs. 6, 7.

Lorica elongated, subconical, its length five times its oral diameter. The posterior third contraets more rapidly than the anterior to a blunt, somewhat irregular, apex. The terminal third is curved slightly to one side so that the apex is asymmetrical. Near the mouth the lorica widens a little to a partially and irregularly everted lip.

The wall of the lorica is formed by a band of substance laid in a spiral of about 17 turns from right over to left (leiotropic) from the apex toward the mouth. The width of this band is not uniform : it varies from 0.2 to 0.6 of the oral diameter, being widest in the fourth and fifth turns from the apex, the region of most rapid diminution in calibre, and narrowing abruptly in the three apical turns, and more gradually toward the mouth. The band is placed somewhat obliquely to the trend of the side so that the posterior margin of each tum is set on the inner face of the anterior margin of the turn behind it (Pl. XXVI, Fig. 7). In the last turn at the oral end the width of the band diminishes gradually so that the mouth is squarely trumeate.

The wall is composed of minute prismatie elements of very irregular form, with a varying number (3-6) of sides of irregular and mequal length. As with other species of Cytturocylis here described, the ends of the prismatic elements form the inner and outer faces of the lorica. The irregularity of the pattern which they form in this species stands in strong emtrast with the regular hexagonal type seen in species previously described in this paper.

The inhabitant of the lorica has not been observed.
This form belongs to that group of species of Cyttarocylis in which the material of the shell is laid down in bands as a result of intermittent activity of secretion or of spiral rotation or torsion of the body. Intermittent deposition yields the annulated type of lorica. When the process of extrusion of the prismatic elements or other lorica-forming substances is intermittent only during the latter part of shell formation, such loricae are produced as that of C. umulatu of Ostenfeld and Schmidt ('01)
where the rings are limited to the anterior end. When intermittent deposition eontinnes thronghont the whole of shell formation. the entire lorica is composed of superposed rings of equal or unequal width as in C. ammulate of Daday ('87) and C. fistularis โTintinnus fistularis of Moebius('87)]. Jörgensen is prol)ably eorrect in regarding the latter species as identical with C. helix: (Clap. et Lach.) Jörg. in which the strueture of the lorica is imperfeetly known, but appears from the figure of Claparède and Lachmann ('58-59) and the disenssion of Jörgensen ('99) to consist of an apieal portion, which is formed by a broad band spirally wound, and a superposed oral portion made up of a number of narrower transverse rings.

When the deposition of shell material is contimons and attended by torsion we may have the spiral type of banded lorica in the anterior end as in C. claperedi of Daday ('87) and the nearly related if not identical C. chrenbergi var. subanmulata of Jörgensen ('99), or thronghont the whole loriea as in C. pseudanmulata of Jörgensen ('00) and in the speeies here described.

The type of shell structure in C. fasciata suggests the slow rotation of the animal in a constant direction during the deposition of the shell-forming substance (from which the prismatic elements are formed) and the localization and limitation of the recion of its extrusion to a single place upon the animal. It seems desirable that all annulate forms of the Tintimnidae shonld be reinspected carefully for spiral structure.

It is evident that the spiral structure of the shell is of great importance in assisting in the rotation of this structure during active locomotion of the animal and maintaining it during passive movement through the water, as for example during its sinking, and that with the rotation there comes a corresponding increase in the molecular friction and that the flotation of the organism is thus facilitated.

This species is most nearly related to C. helix (Clap, et Lach.) Jörg., from which it differs in its much greater size (length 520μ to $150-200 \mu$ in C. helix), aud in the greater width of the anterior bands which are also plainly spiral, while in C. helix they are probably transverse and are very narrow. The proportions of the two species are also different. (. fasciata is conical,
while C. helix is cylindrical with more or less prononnced eurvature of the tapering apex.

Dimensions-length, 520μ; diameter of mouth, 100μ; at apex, 20μ; width of spiral band, $20-60 \mu$.

This speejes was taken but once, in a vertical hanl from 35 fathoms to surface, \& miles off Pt. Loma in June.

BIBLIOGRAPIY.

Biedermann, R .

1893. Uener die Structur der Tintinnen-Gehaüse. Inaug. Diss, Kiel. 35 pp., 3 Taf.

Claparède, E. et Lachmann, J.
1855-59. Etudes sur les Infusoires et les Rhizopodes. Nem. Inst. Generois, Yol. V-VI, 482 Pp., 24 pls.

Brandt, K.

1896. Zoologische Ergebnisse der ron der Gesellschaft für Erlkunde zu Berlin unter Leitung Dr. von Drygalski's ansgesandten Grönland-Experlition nach Dr. Vanhöffen's Sammlungen bearbeitet. IV. Die Tintinnen. Zoologica, Bd. VIII, pp. 21-72, Taf. 3.

Cleve, P. T.
1899. Plankton collected by the Swedish Expedition to Spitzbergen in 1898. Kongl. Srensk. Vetensk.-Akad. Handl. Bd. 32, No. 3,51 pr., +pls .
1899九. Some Atlantic Tintinnodea. Ofr. Kongl. Vetensk.-Akaı. Förhandl., 1899, pp. 969-976, 12 figs.

Daday, E. von
1897. Monographie der Familie der Tintinnodeen. Mitth. Zool. Sta. Neapel, Bd. VIl, pp. 473-591, Taf. 1S-21.

Jörgensen, E.
1899. Ueber die Tintinnadeen der Norwegischen Westküste. Bergens Nuseums Aarbog, 1899, No. II, 48 pl’., Taf. 1-3.
1900. Protistenplankton aus dem Nordmeere in den Jahren 1897-1900. Tbid 1900, No. VI, 37 pp., Taf. 1-3.
Möbius, K.
1Ssi. Systematische Darstellung der Thiere des Planktons gewonnen in der westlische Ostsee und auf einer Fahrt von Kiel in den atlantischen Ocean bis jenseit der Hebriden. Ber. Comm. wiss. Untersuch. deutsch. Neere, in Kiel, Bd. V., pp. 108-126, Taf. 7-8.

Ostenfeld, C. H. og Schmidt, Johs.
1901. Plankton fra det Röde Hav og Adenbugten. Vidensk. Meddel. naturh. Foren. Kbhrn., 1901, pp. 141-182, 30 figs.

EXPLANATION OF PLATE XXVI.

Fig. 1.-Lateral view of lorica of Tintinnus serratus, $\times 615$.
Fig. 2.-Lateral riew of lorica of Tintinnopsis reflexa, $\times 600$.
Fig. 3.-Lateral riew of lorica of Tintinnopsis dadayi, $\times 375$. Individuai with primary oral rim only.

Fig. d.-The same of a second lorica, showing both primary and secondary oral rims, $\times 190$.

Fig. 5.- The same of a third lorica, in which the secondary oral rim is only partially developed, $\times 375$.
Fig. 6. -Lateral riew of lorica of Cyttarocylis fasciata, $\times 490$.
Fig. 7.-Longitudinal optical section through mall of loriea of C. fasciata. $\times 1225$.

ABBREVIATIONS.

$a b . a p,-a b o r a l$ aperture.
f.-fundus.
o. ap.-oral aperture.
o. r.-oral rim.
p. o. r.-primary oral rim.
pr. cl.-prismatic elements.
r. m.-reflexed margin.
s. o. r.-secondary oral rim.
sp.b.-spiral band.
luiv. Cal. Publ. Zool. Yol. I
[Kolwidl PI. XXYI

EXPLANATION OF PLATE XXYII.

Fig. 8. - Lateral view of lorica of Cyttarocylis quadridens, $\times 250$.
Fig. 9.-Lateral niew of posterior ends of lorica of C. quadridens, showing asymmetry and degrees in development of the lateral spines, $\times 250$.
Fig. 10.-Lateral rien of posterior end of lorica of C. quadridens, showing lumen, $\times 1200$.
Fig. 11.-Optical section of wall of lorica of C. quadridens, showing prismatic elements, $\times 1200$.
Fig. 12.-Optical section throngh posterior end of lorica of Cyttarocylis torta, showing lumen, $\times 600$.

Fig. 13.-Anterior end of lorica of C. torta, viewed as a transpareney. Lorica with alditional posterior ring, $\times 320$.

Fig. 14.-Posterior end of lorica of C. torta, showing 90° of torsion, $\times 600$. Fig. 15.-Auother lorica of the same, showing $180^{\circ}, \times 600$.

ABBREVIATIONS.

ang.-angles of quadrangular pedicel. pr. el.-prisuatic elements.
exp.-expansion of pedicel. tiz. exp.-quadrangular expansion of
l.-lumen of lorica.
o. ap.-oral aperture. ped.-pedicel.

EXPLANATION OF PLATE XXVIII.

Fig. 16.-Lateral vien of lorica of Cyttarocylis torta, having no additional ring, $\times 250$.
Fig. 17.-Optical section and inner surface of anterior end of lorica of C. torta, showing prismatic structure, $\times 375$.

Fig. .s.-Sirface of loriea of C. quadridens, showing primary and seeondary reticulations, $\times 1100$.
Fig. 19.-Lateral view of lorica of Cyttarocylis pulchra, having three rings, $\times 250$.
Fig. 20.-Optical section and inner surface of lorica of C. pulchra, showing prismatic structure, $\times 500$.
Fig. 21.-Posterior end of lorica of C. pulchra, $\times 500$.
Fig. 20. Optical section of same, showing lumen, $\times 500$.
Fig. 23.-Anterior end of lorica of C. pulchra, viewed as a transpareney. Lorica with morlified central ring, $\times 250$.

ABBREVIATIONS.

o. ap.-oral aperture.
ped.-pedicel.
prr. el.-prismatic elements.
$p r$. ret.-primary reticulation.
qu. ex.-quadrangular expansion.
r.-rings.
t. s.-terminal spine.
sec. ret.-secondary retieulation.

Iniv. Cal. Publ. Zool. Fol. I

