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As a result of their plastic body plan, the relationships of the annelid worms

and even the taxonomic makeup of the phylum have long been contentious.

Morphological cladistic analyses have typically recovered a monophyletic

Polychaeta, with the simple-bodied forms assigned to an early-diverging

clade or grade. This is in stark contrast to molecular trees, in which poly-

chaetes are paraphyletic and include clitellates, echiurans and sipunculans.

Cambrian stem group annelid body fossils are complex-bodied polychaetes

that possess well-developed parapodia and paired head appendages

(palps), suggesting that the root of annelids is misplaced in morphological

trees. We present a reinvestigation of the morphology of key fossil taxa

and include them in a comprehensive phylogenetic analysis of annelids.

Analyses using probabilistic methods and both equal- and implied-weights

parsimony recover paraphyletic polychaetes and support the conclusion that

echiurans and clitellates are derived polychaetes. Morphological trees

including fossils depict two main clades of crown-group annelids that are

similar, but not identical, to Errantia and Sedentaria, the fundamental

groupings in transcriptomic analyses. Removing fossils yields trees that

are often less resolved and/or root the tree in greater conflict with molecular

topologies. While there are many topological similarities between the ana-

lyses herein and recent phylogenomic hypotheses, differences include the

exclusion of Sipuncula from Annelida and the taxa forming the deepest

crown-group divergences.

1. Introduction
Rouse & Fauchald [1] introduced many key concepts to polychaete systematics

in the first comprehensive cladistic analysis of annelids. Their tree supported

polychaete monophyly and established three major groupings within

Polychaeta: Scolecida, Canalipalpata and Aciculata. In this scheme, palps

were an important synapomorphy of Palpata, a clade comprising Aciculata

and Canalipalpata, which excluded the more simple-bodied scolecids. While

Aciculata and Canalipalpata and their respective subclades were supported

by numerous synapomorphies, scolecids were united by absences, and it has

long been suspected that they are an artificial group united by multiple inde-

pendent losses [2]. Early molecular studies of Annelida found little resolution

and failed to resolve many polychaete higher taxa recognized by morphologists

as monophyletic [3]. However, these analyses clearly indicated that clitellates

and echiurans, and possibly sipunculans (the latter two traditionally separated

as distinct phyla), are derived subgroups of polychaetes [4–10]. The application

of phylogenomics to annelids has begun to recover topologies that are more

congruent with morphological scenarios. Support has emerged for the
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monophyly of two main polychaete clades. The first is com-

posed of errant polychaetes and is similar in composition

to the clade Aciculata [1]. Early transcriptomic analyses

recovered a monophyletic group containing all the aciculate

taxa considered plus Orbiniidae [11], but later analyses

have instead recovered monophyletic groups composed of

Sipuncula þ Amphinomidae and Phyllodocida þ Eunicida,

with Orbiniidae nested within a clade of sedentary

polychaetes [12,13].

The clade of sedentary polychaetes includes many of the

‘Scolecida’ together with clitellates, echiurans and many of

the taxa originally in ‘Canalipalpata’ such as serpulids and

sabellids, cirratuliforms, terebelliforms and siboglinids

[11,12].

Early classifications of annelids considered the interstitial

‘archiannelids’ to be an early-diverging clade primarily

owing to their small body size and morphological simplicity

[14]. It has since been recognized that the supposedly primi-

tive characters among archiannelids are in fact adaptations to

the interstitium [15] and the assemblage is not a natural

grouping [16,17]. A polyphyletic ‘Archiannelida’ is also sup-

ported by molecular data, which suggest that an interstitial

lifestyle has evolved numerous times within annelids [13,18].

Phylogenomic analyses have recovered a rather hetero-

geneous assemblage of polychaete families forming the

deepest divergences of the annelid tree [12,18]. These

early-branching taxa include Magelonidae, Oweniidae,

Chaetopteridae, Amphinomidae, Sipuncula [12] and Lobato-

cerebridae, as well as Myzostomidae in some analyses

[11,13]. These families present unusual and disparate

morphologies, and consequently it is unclear what they con-

tribute to our understanding of primitive characters for the

phylum. This is represented in the uncertainty in crown

node ancestral state reconstructions for key characters, such

as the morphology of the palps or the presence or absence

of aciculae [12,19]. Incongruence between morphological

and molecular phylogenies has previously been discussed

as a rooting issue [3,20], and numerous placements of the

root of the annelid tree have been proposed and discussed

based on morphological, functional and palaeontological

grounds [2,21–23]. The origin of segmentation has featured

heavily in discussions of the position of the annelid root.

Key competing hypotheses have either advocated a clitel-

late-like ancestor and monophyletic Polychaeta, with

segmentation evolving to compartmentalize the coelom for

hydrostatic burrowing [22], or a placement of clitellates

within the polychaetes, with the evolution of parapodia

and chaetae forming a key step in the origin of segmentation

[16,21]. Positioning the annelid root within the polychaetes is

also supported by a literal reading of the fossil record, with

polychaetes first appearing in the early Cambrian [24–26],

echiurans possibly in the Carboniferous [27] and clitellates

first represented by leech cocoons in the Triassic [28,29].

Palaeontologists and other evolutionary biologists have

long recognized the importance of fossils for inferring phylo-

genies based on morphological data [30,31], as they are more

likely to provide direct evidence of ancestral morphologies

that can be crucial in polarizing morphological characters

and identifying homoplastic characters. In spite of this,

studies that integrate the palaeontological record into studies

of annelid phylogeny have lagged behind the pace of results

using molecular sequence data. Previous cladistic analyses

that have incorporated annelid fossils have focused either

on single exemplary fossils from individual localities [32,33]

or numerous fossils from single localities [34]. Such analyses

have made use of the matrix of Rouse & Fauchald [1] or a

slightly modified version of that matrix. Results have

been mixed, typically resolving a tree identical to that of

Rouse & Fauchald [1], with fossils recovered as primitive

members of major clades [32] or in suspect clades containing

only fossils with no clear synapomorphies [34]. Analyses

aimed at addressing the position of Cambrian taxa have

either used small numbers of characters and terminals

coded at suprafamilial taxonomic rank, some of which are

of dubious monophyly, like ‘Scolecida’ [35,36], or have

offered poor resolution for the taxon of interest [24].

Cambrian taxa are in a critical position in discussions of

early annelid evolution as they may represent primitive and

unusual morphologies [37], and are not readily assigned to

any extant higher annelid taxon [36,37]. Early fossils have

long been regarded as key sources of phylogenetic infor-

mation for reconstructing phylogeny from morphological

data [31], and a recent study of arthropod phylogeny

suggested that inclusion of fossil data improves congruence

of morphological and molecular trees for deep phylogenetic

questions [38]. Consequently, we aim to explore the effects

of including fossil data in cladistic analyses of annelids.

We present analyses of 80 taxa and 192 morphological

characters, including a sample of 62 extant annelids, five out-

groups from within Lophotrochozoa and 16 Palaeozoic fossil

terminals. Fossil taxa include polychaetes, sipunculans and

the ‘halwaxiids’, the latter a problematic (and probably

non-monophyletic) assemblage of lophotrochozoan fossils

that have been interpreted as stem and/or crown-group

representatives of brachiopods, molluscs and annelids

[39,40]. Extant taxa include those resolved at the base of the

tree in phylogenomic analyses [12], namely Oweniidae,

Magelonidae, Chaetopteridae and Sipuncula, including the

Cambrian fossil sipunculans described by Huang et al. [41].

Five interstitial polychaete taxa were included (Mesonerilla,
Protodrilus, Saccocirrus, Protodriloides, Polygordius).

Annelid fossil taxa which are included range in age from

early Cambrian to Pennsylvanian and are from Konservat–

Lagerstätten exhibiting a diversity of taphonomic modes,

including carbonaceous compressions (figure 1a–e), void

fills in carbonate concretions from volcaniclastic sediments

(figure 1f ), three-dimensional pyritization (figure 1g) and

preservation within ironstone concretions (figure 1h–k).

2. Characters and character coding
Our matrix was assembled based on the published matrices

of Rouse & Fauchald [1] and Zrzavý et al. [5]. We adopted

a multistate coding following [42], so that absence of a

given character appears only once, with contingent characters

coded for multiple states within a given character.

Of the 192 included characters, 141 have been used pre-

viously in the analyses of Zrzavý et al. [5] and/or Rouse &

Fauchald [1] and Rouse [43] or for ancestral state reconstruc-

tions [11], whereas the remaining characters were defined

and coded from the recent literature (see the electronic

supplementary material).

We adopted a different approach for coding the presence

of palps and palp homologues than in previous morphologi-

cal matrices. Rouse & Fauchald [1] coded the presence of
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Figure 1. Fossil annelids used in this study. (a) Pygocirrus butyricampum MGUH31365; (b) Phragmochaeta canicularis MGUH3088; (c) ROM62927, undescribed
polychaete from Marble Canyon; (d ) Canadia spinosa USNM83929c; (e) Burgessochaeta setigera USNM198705; ( f ) Kenostrychus clementsi OUM C.29544 (top
right), OUM C.29543; (g) Arkonips topororum UMMP 73795; (h) Mazopherusa prinosi; (i) Fossundecima konecniorum ROM47990; ( j ) Esconites zelus ROM47521;
(k) Dryptoscolex matthiesae ROM48542. (a,b) Early Cambrian, Sirius Passet, North Greenland; (c – e) Middle Cambrian, Burgess Shale, British Columbia; ( f ) Silurian
(Wenlock), Herefordshire; (g) Middle Devonian, Arkona Shale, Hungry Hollow, Arkona, Ontario; (h – k) Carboniferous (Pennsylvanian), Mazon Creek, Illinois. Images
( f ) and (g) courtesy of Mark Sutton and Derek Briggs, respectively. (Online version in colour.)
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palps as an absence/presence character, and the various

substates of this character were themselves coded as separate

absence/presence characters. In contrast, Zrzavý et al. [5]

coded the presence and absence of palps and buccal tentacles

as a single multistate character, whereas other aspects of

palp morphology were treated as separate characters (such

as attachment position), this coding being retained in

subsequent revisions of this matrix [11,12]. Both these

approaches treat buccal tentacles as palp homologues, as

taxa possessing buccal tentacles are not scored as absent for

palps. The buccal tentacles in Terebelliformia are not palp

homologues, as they lack the distinct innervation that charac-

terizes true palps [44,45], and there are no palp homologues

in other polychaete taxa that are derived from the buccal

cavity [44].

3. Phylogenetic methods
There is currently a debate on the most appropriate method

for analysing discrete morphological characters, which has

largely focused on simulations of binary character data

[46–48]. Empirical studies directly comparing these methods

and implementations (e.g. maximum-likelihood versus

Bayesian implementation of the mk model) are however com-

paratively rare. Consequently, we analysed our data using

equal weights and under implied weighting under a range

of concavity constants (k ¼ 3, 5 and 10), and using maxi-

mum-likelihood and Bayesian inference. The mkv model

was appropriate for our dataset as the correction of Lewis

[49] accounts for the ascertainment bias, as invariant charac-

ters were not coded during the assembly of our matrix and

autapomorphies were not comprehensively coded. Parsi-

mony analyses were performed using TNT. 1.1 [50],

Bayesian analysis used MRBAYES. 3.2.6 [51] and likelihood

analyses used RAxML 8.2.8 [52].

Parsimony analyses used all the New Technology search

options with the default options in TNT using a driven

search with 1000 initial addition sequences and instructed

to find the optimal topology 10 times. Support values are

symmetric resampling for implied-weights analyses, and

Bremer support and bootstrap replicates for equal weights.

Jackknife frequencies were also calculated for equal-weights

trees and are presented in electronic supplementary material,

figures S1a and S3a. All resampling methods used 10 000

replicates.

Maximum-likelihood support values were generated

from 1000 bootstrap replicates. Bayesian analyses were

performed for 10 million generations, sampling every 1000

generations with 25% of trees discarded as burn in, resulting

in a total of 7500 trees. Rate variation was modelled using

a gamma distribution with four discrete gamma categories.

Convergence was assessed using the average deviation of

split frequencies (with convergence achieved at less than

0.01) and using TRACER 1.6, to ensure that the runs had

reached stationarity prior to burn in and that all parameters

had effective sample size (ESS) scores above 200. In order

to assess the effects of including or excluding fossil data, all

analyses were performed identically with and without fossil

terminals.

The morphospace of extant annelids was explored using a

principle coordinate analysis using PAST 3 [53], using Eucli-

dean distances for the character matrix with fossil taxa excluded.

4. Results
The analyses including fossils (figures 2 and 3) all support the

inclusion of Echiura and Clitellata within polychaetes, the

polyphyly of Scolecida, and the monophyly of Aciculata.

Our results support the existence of two main annelid

clades, one consisting of errant polychaetes with aciculae

(composed of Phyllodocida, Eunicida, Amphinomida), the

other a sedentary annelid clade, which includes Echiura and

Clitellata, Cirratuliformia, Terebelliformia, Sabellida (although

not including Oweniidae as in [1]), and various taxa assigned

to ‘Spionida’. This sedentary clade also contains the taxa

that were previously classified as ‘Scolecida’, including

Arenicolidae, Capitellidae, Maldanidae, Opheliidae and Scali-

bregmatidae. Echiurans group with either some (figures 2a
and 3b) or all of these scolecidan taxa (figure 2b), and a

clade of Opheliidae, Capitellidae and Echiura is likewise

recovered from phylogenomic data [12]. Arenicolidae and

Maldanidae are closely related to terebelliforms in equal-

weights and likelihood analyses, a clade that is also supported

by molecular data [12], although at present there are no tran-

scriptomic data available for any maldanid taxon. The

monophyly of the sedentary clade is however not resolved

in equal-weights or maximum-likelihood analyses.

Sampled archiannelid taxa are neither early-branching

crown-group annelids nor a clade within annelids. Our

results suggest multiple independent miniaturization events

within annelids, as similarly indicated by phylogenomic

data [13,18] as well as previous morphological analyses

[5,54]. However, the positions of the sampled ‘archiannelid’

taxa, Mesonerilla and a Protodrilus/Protodriloides/Saccocirrus/
Polygordius clade, within Aciculata or the sedentary clade/

grade are reversed when compared with similar clades in

recent phylogenomic trees [18], although Polygordius is part

of a basal polytomy under implied weighting and Bayesian

inference. At least some members of Nerillidae possess

many of the synapomorphies of errant polychaetes such as

lateral antennae and parapodial cirri [2,54], and compound

chaetae are present in some members of the family [2,54].

The position of the other archiannelid taxa (protodrilids

and Polygordius) within a sedentary polychaete clade closely

approximates previous cladistic analyses [43], in which they

formed a clade or grade within Canalipalpata.

When fossils are excluded, the ‘traditional’ topology with

Echiura and Clitellata forming successive outgroups to a

monophyletic Polychaeta is recovered in a subset of the trees

from parsimony with equal weights. Under implied weighting

and both implementations of the mkv model, taxa in Sabellida

and Chaetopteridae root the tree. The analyses in which fossils

are excluded are highly ambiguous and poorly resolved (equal

weighting; electronic supplementary material, figure S3a),

rerooted with Sedentaria forming a grade (implied weighting,

maximum likelihood; electronic supplementary material,

figure S3b–c and S5) or both (Bayesian inference: electronic

supplementary material, figure S4). In all of these analyses

lacking fossils, the position of the annelid root is strongly in

conflict with molecular phylogenies.

The Cambrian fossil annelids are primarily placed outside

of the annelid crown group as previously proposed [35,36]

and in line with the phylogenetic hypothesis outlined in

[37]. In parsimony and Bayesian analyses, the Cambrian

Guanshanchaeta and Pygocirrus are in a polytomy with the

annelid crown group or form successive outgroups to the
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crown group in likelihood analyses (figure 3a). This further

highlights the importance of pygidial cirri, a character present

in these Cambrian taxa, as a synapomorphy of crown-group

annelids (character optimizations shown in electronic

supplementary material, figure S2) [35,36].

Our results consistently do not support the inclusion of

Sipuncula within Annelida but rather a sister group relationship.

This is unsurprising because the cryptic segmental characters in

sipunculans [55,56] and their collagenous cuticle are annelid ple-

siomorphies (or secondary reductions in the case of nervous

system development) and not characters derived within anne-

lids. Consequently, based on the available data, morphological

phylogenetic analyses are unlikely to include sipunculans

nested within annelids. Regardless of their position within or

outside annelids, sipunculans are highly autapomorphic and

contribute little to our understanding of primitive characters

within annelids, and they are placed far outside of annelid taxa

in plots of morphospace (figure 4). While the Chengjiang taxa

have previously been interpreted as crown-group sipunculans

[41], Bayesian and likelihood analyses herein suggest they are

members of the stem group (figure 3a,b). Both the fossil taxa

lack a helically coiled gut, which is therefore a candidate synapo-

morphy of the crown group. This character is apparently

reversed in a single genus of extant sipunculans (Phascolion),

suggesting that the similarities to extant sipunculans suggested

by Huang et al. [41] are the consequence of convergence.

Fossil taxa that are younger than the Cambrian are placed

deeply nested within the annelid crown group, typically in

the clades to which they were originally assigned when they

were described. This suggests that the placement of the fossils
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is driven by phylogenetic signal in the dataset and that the pla-

cement of the Cambrian taxa is not a consequence of character

loss during fossilization and ‘stemward slippage’ [57]. Fossunde-
cima (figure 1i) from the Carboniferous is an exception, as this

fossil was assigned to the Nereidae by Fitzhugh et al. [58], but

is recovered in a polytomy at the base of Phyllodocida in our

analyses (figures 2 and 3). Many of the characters observed in

this fossil may be plesiomorphic for Phyllodocida or one of its

subclades, such as paired lateral jaws and anterior cephalized

‘tentacular’ cirri.

Missing data in fossil taxa range from 40.6% (Canadia
spinosa) to 63% (Arkonips topororum), with a mean of 50%.

While missing data in fossils were previously thought to

hamper phylogenetic analyses based on discrete characters,

the addition of taxa that are only 50% complete can improve

the accuracy of phylogenies where long branch attraction

(such as the misrooting of annelid trees) hinders tree recon-

struction [59]. The distribution of missing data within our

trees suggests that Cambrian taxa are not recovered in the

annelid stem group owing to an abundance of missing data

causing them to be attracted by the root. In contrast, the Cam-

brian fossil polychaetes are the most complete fossil taxa in

our sample, and there is a statistically significant positive cor-

relation between fossil completeness and distance from the

root to tip (electronic supplementary material, tables S1

and S2 and figure S6). While the fossil record is generally

considered to decrease in quality with time, every Cambrian

taxon (except Halkieria, which is known only from a scleri-

tome without soft tissues) has a higher percentage character

completeness than all younger fossils in the matrix, highlight-

ing the capacity for Burgess shale-type preservation to

produce uniquely complete fossils.

Key differences between our analyses and phylogenomics

concern the deepest divergences. Spionidan taxa such as

Magelonidae, resolved with Oweniidae as sister group to all

other annelids [12], Trochochaetidae, Apistobranchidae and

Spionidae are placed in a polytomy with the remainder of

the crown group in equal-weights analyses (figure 2), but

these taxa are nested within the sedentary clade in maxi-

mum-likelihood (figure 3a) and implied-weights analyses.

Under implied weights, Magelonidae are recovered in a polyt-

omy at the base of the crown group, which is similar to recent

phylogenomic results in which Magelona and Owenia are the

sister group of all the remaining annelids [12].

As the fossil record strongly indicates that annelids

evolved from an epibenthic ancestor during the Cambrian,

the inclusion of Magelonidae, Oweniidae and Chaetopteridae

as a grade at the base of annelids would necessitate multiple

independent origins for a sedentary lifestyle among these

groups. Consequently, key characters shared with other

sedentary polychaetes such as uncini would have to be con-

sidered convergent [19]. Chaeopteridae is another group

resolved near the base of Annelida in phylogenomic analyses,

contrary to previous morphological phylogenies, which

allied it with Spionida [1]. In our trees, Chaetopterus is

highly labile, generally allying with other sedentary taxa,

although some analyses without fossils place it as sister

group to all other extant annelids (electronic supplementary

material, figure S3 and S5). This is not a simple consequence

of Chaetopterus behaving as a lone ‘wildcard’ but occurs in

concert with all sedentary taxa becoming unresolved as a

paraphyletic grade relative to Aciculata.

Aciculata is consistently monophyletic in our analyses,

regardless of the inclusion or exclusion of fossils and
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optimality criterion. A sister group relationship between

Amphinomidae and Sipuncula has been proposed based on

molecular data [12], resulting in a suspect clade with no

clear synapomorphies that is strongly contradicted by our

morphological data. However, as sipunculans possess no

shared derived characters with any annelid subclade, any

position of Sipuncula within Annelida would be similarly

contradicted by morphological data. The monophyly of

Aciculata is supported by numerous unique synapomor-

phies, including ventral sensory palps, lateral antennae and

dorsal and ventral cirri (electronic supplementary material,

figure S2).

We do not recover Pleistoannelida (a clade that excludes

Oweniidae, Magelonidae, Chaetopteridae, Amphinomidae

and Sipuncula [12]) in any of our analyses. This proposed

paraphyletic early radiation of annelids is highly disparate

and in our plots of annelid morphospace (figure 4) represents

much of the morphological disparity of Annelida. When

sipunculans are also considered, this basal radiation

encompasses much of the morphological disparity of the pro-

tostome taxa included in the analysis (figure 4). Crucially,

this early morphological diversity is not captured in the

known Cambrian fossil record of annelids, and results of

ancestral state reconstructions based on the phylogeny of

extant taxa are highly uncertain, particularly for the external

morphological characters observable in fossils (such as the

morphology of parapodia and chaetae) [11,12].

We do, however, recover Errantia (a clade of aciculates

that excludes Amphinomida) sensu Weigert et al. [12]

in implied-weights, maximum-likelihood and Bayesian

analyses. This group shares several characters such as

compound chaetae [60] and jaws. It is not clear, however,

whether the jaws of the two groups are homologous, or

even whether the diverse jaws of the various taxa within

Phyllodocida have a single origin.

5. Conclusion
Conflict between morphological and molecular trees for anne-

lids is partly a consequence of misrooting owing to extensive

secondary reduction of key characters such as parapodia, chae-

tae and head appendages in clitellates and echiurans. We have

demonstrated that with an expanded sample of characters and

fossil taxa, morphological data support the inclusion of these

groups within a paraphyletic grade of polychaetes, in line

with hypotheses from molecular data. While key differences

persist between phylogenomic trees and the morphology-

based trees presented herein, our results bolster an emerging

consensus on annelid relationships and how the diversity of

the extant groups was assembled. Our results suggest that

the annelid ancestor was a macroscopic, epibenthic animal

with paired palps and prominent parapodial lobes with

numerous capillary chaetae. Secondary reduction of this com-

plex body plan is widespread in numerous distantly related

groups, which has confounded attempts to resolve annelid

phylogeny using morphological data from extant taxa alone.
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