41)

2 xin 11111

THE

VOYAGE OF H.M.S. CHALLENGER.

$$
\begin{gathered}
\text { ZOOLOGY-VOL. XXI. } \\
\text { TEXT. }
\end{gathered}
$$

R E P O R T

ON THR

SCIENTIFIC RESULTS

OF THE

VOYAGE OF H.M.S. CHALLENGER

DURING TIIE YEARS 1873-76

Under the command of
Cartain GEORGE S. NARES, R.N., F.R.S.
AND THE LNTE
CAPTAIN FRANK TOURLE THOMSON, R.N.

PREPARED UNDER THE SUPERINTENDENCE OF
THE NATE
Sir C. WYVILL.E THOMSON, Knt., F.R.S., \&c.
RKRIUS PROEES5OR OF NATURAL HISTORY TN THE UNIVEKSITV OF MPDNBHRGM
DIRTCTOE OF TIIR CIVILIAN SCHEXTITIC STAVT OS BOARD
ANT Now חE
JOHN MURRAY
ONE GF THE NATIIALISTS OF THH EXPEPITION

Zoology-Vol. XXI. TEXT

1 Publister by Oroer of ber fllafsty's Goberment

PRINTED FOR HER MAJESTY'S STATIONEKY OFPICE
ANESOLD BY
LONDON:-ENRE S SPOTTISWOODE, EAST HARDING STREET, FETTFR LANE
EDINHURGH:-ADAM \& CHARLES BLACK DUHLIN;-HODGES, FIGCIS, \& CQ.

1887

PRINTED HK NELL AND COSDANY, TDLKBUKGH,

CONTENTS.

Report on the Hexactinelima eollected by H.M.S. Challenger duriug the years 1873-1876.

By Dr. F, E. Schelak, Professor of Zoology in the University of Berlin.

TEXT.

EDITORIAL NOTE.

The Report on the Hexactinzlidd, by Professor F. E. Schulze of the University of Berlin, occupies the whole of the present Volume, tlie Text and Plates being bound up in separate parts. This Report forms Part LIII. of the Zoologieal Series of Reports on the Scientific Results of the Expecitition ; it extends to over 500 pages and is illustrated by $10 \pm$ Lithographic Plates and many woodeuts.

Sir C. Wyrille Thomson gave special attention to this group of Sponges during the Expedition, and it was lis intention to describe them in detail in these Official Reports. Owing, however, to ill health and other cireumstances he was never able seriously to commence the work, and at the time of his death there remained only a few Plates which had been prepared under his directions.

It must be regarded as a singularly fortumate cireumstance that I was, in 1882, able to induce so eminent a Spongiologist as Professor Schulze to undertake the examination and deseription of this most characteristic deepsea group of animals, to which he had already given special attention. The result of Professor Selnize's labours is presented in this magnificent Monograph, which will be weleomed ly naturalists in all parts of the world as a substantial and brilliant addition to our scientific knowledge.

Some portions of the German manuseript were translated by Mr. John Rattray, M.A., B.Sc., F.R.S.E., but by far the larger part was transhited by Mr. Arthur Thomson, M.A., F.R.S.E., and the whole was revised by him.

The Manuseript was received by me in instalments between the 10th Angust 1886 and the 30th May 1887.

Joil Mutray.

THE

VOYAGE OF H.M.S. OHALLENGER.

ZOOLOGY.

REpORT on the Hexactinelidas collected by H.M.S. Challenger during the Years 1873-76. By Dr. F. E. Schulze, Professor of Zoology in the University of Berlin.

PREFACE AND HISTORY OF THE WORK.

Abstract

In December 1879, I was asked by Sir Wyville Thomson to examine some specimens of Euplectella asperyillum, which had been procured on the Challenger Expedition, and which had been preserved with special care for histological purposes. The results of my investigation were to be publishod as part of the Report of the Challenger Expeclition. Though at that time engaged in the study of the Adriatic Sponges I did not hesitate to concur with the request, as I was strongly attracted by the prospect of being able to stndy the hitherto almost unknown soft structure of the Hexactinellida. 1 soon teceived, from the Challenger office in Edinburgh, an entire specimen of Euplectella aspergillum (from off Zebn), preservel with its soft parts in methylatal spirit, and six bottles containing fragments of the same speeies preserved in absolute alcohol, or in other preservative media, such as chromic acid, picric acid, acetate of potash, glycerine, \&c.

After the results of my investigation of this, in part, well preserved material had been publislied in the Transactions of the Royal Society of Ediuburgh (1880 , vol, xxis, p. 661, Tab. A), Sir Wyville Thomson asked me to work over with him all the Hexactinellida olitained during the expedition. He was to midertake the study of the skeletal struetures, while the investigation of the soft parts was to be entrusted to me. To this I readily agreed, nud began at once with the examination of some smples, which had heen previously sent to me at Graz. (ZOOL CHALL EXR.-एART LIIL-1886.) GgH 1

This plensant arrangement for joint resenditw, howoce; frustratel by the illness and death of Sir Wyville Thomson. I had, nueordingly, to lay aside the whole work for a prolonged perior, till, in March 1882, Mr. Jolu Muray asked me to undertake the comptete investigation of the Challenger Hexactinellida, and for this parposer, in the first instance, personally to undertake the soparation of the latter from the rich eollection of Squages obtained during the expentition and preserved in Edinburgh. Having conrphetel this in April of the same year, I reecived, in Jume, most of the Hexactinellidu collected by the Challenger Expedition, which were forwarled to the at Guaz in at wellpacked conlition. Subsequently, at my request, a few udditional Heanctinellidn, which were collected before by Sir Wyville Thomson and Mr. John Muray in the eastern part of the Atlantic, during the expeditions of the "Lightuing," "Pormpine," " Kinght Errant," and "Triton," were handed over to me for purposes of comparison, mud ulso a number of microscopic preparations which had been mate by Sir Wyville Thomson.

My material was afterwards very agrecably jucreased by the aequisition of a not umimportant collection of Hexactinellida, partly dry and partly preserved in alcohol, which Dr: Döderlein, Director of the Zoologieal Musema in Strissburg, had accumulated during a prolonged stay in Japam, partly as the resnlt of his own collecting on the small island of Enobhima. This collection he very kindly placed at my disposal for investigation.

At my roquest the Challeuger Commission agreed that Ishould imchede this raluable material in my work on the Challenger Hexactinellida, and approved of what thus necessarily involved an inerease of plates. I therefore accepted the offer of Dr. Doderloin, and that all the more willingly since the inerense of material considerably facilitated the systematie work. On the other hand, I was enabled to compare minutely a collection zealously and systematically made for several years from a definite locality remamably rich in Hexactinellida, with that vollected in the same locality by the Challenger Expedition.

As to the ways and means of acquining this collection, which consisted of about twenty-five dried forms and three bottles of presorved specimens, Dr: Doilerlein commmicated to me the following notes:- " With the exception of a Euplectella (oweni) from Simonoseki on Kinshim, the whole collertion was gathered in Sagami Bay, near Enoshima, Most of the dijed specimens were obtained from a khop in Enoshima, whem they were colleeted for me by the owner. The thece glasses with dqirit coutain apecimons which I mysulf obtainel with a trawling appanatus from depths varyiug from 80 to 240 fathoms, between Enoshima nud Misaki. A few dead quecimens which 1 obtained there have been sent dry, 1 bave added a single specimen of Hyelonema (sieboldii) in which the spouge body is magnificently devoloped, but it is by no means the largest specimen which 1 brought with me."

Professor Oscar Sclimitt of Strasslurg was kind chought to land over to me, for
a prolonged perioh, for purposes of comparison, portions of most of the Hexactinellida which be has describel, and ako a very large mumber of microscopical preparations. From Dr. Marshall of Seiprig 1 bikewise ohtanied the nse of portions and prequrations of all the specimens which formed the basis of his own Hexactinellidan olservations. I have beeu similarly assisted by Hofrath Director A B. Meyer of Dresien, Professor Senyer of Wiizzhurg, Professor von Martens of Berlin, and Professor Moseley of Oxford. In the importunt work of determining forms, a visit which I pail to London was of mach value, since, through the Challenger Expedition Commission, I was emabled to study the origimal specimens of several Hexactincllida described by Owen, Gray; Bowerbank, Carter, and others. During my work in London, not only were the rich treasures of the Musenm made aceessible to me in the most liberal way by Dr. Giinther, Diroctor of the Zoological Department of the British Mtaseam, Dut I was also accommodated with a private work-room in the new bnilding of the British Museum in South Kensington. There I enjoyed the most attentive and friendly assistance of Mr. S O. Ridlloy,

I had valuablo assistance of another kind from Dr. Vosmaer of Naples, who hat the great kinduess to place at my disposal the mamuscript of that portion of his great Spougiological Bibliography (in course of preparation) which denlt with the Hexactinullida.

In the preparation of the numerous plates I have been ably helped by my assistant. Dr: von Milhrenthal, who lms photograpled a number of ubjects, and by Mn. G. Firtsch, one of my students, who hos execnted numerous drawings from my sketches and accorling to my directions.

It is my ploasant duty to return iny best thanks to all the gentlemen whom I have named, but especially to the Director of the Challenger Office, Mr, Johm Murray.

With regarl to the figures given in the phates, I have still to note the following points. From the sciontific papers belonging to Sir Wyville Thomson, sisteen lithogrmphed plates have been hambed over to me, all of which bave been incorponted in the present work, viz, Pls, 1., H., V., VII., VII., IX., X., XI., XXXI, XXXV., XL,. SLL., XLXI, LI., LXVL, and LATII. As these had not yet becu priatel off when I receivel them, I was able to make several corrections, though I have preforred to leave most of them unalterel. Only from Pls. XXXI mud LXVII. a ferr fignes have been removed, which represented squenles not really belonging to the Sponges figured. Every anthority will almine the beatiful mul life-like figures both of the entire Sponges and of the separato preparations which are found in Sir Wyrille Thomson's plates I was not ulite, haweyer, to follow the method illustrated in these plates, since I could not confine myself mardy to the general form of the Sponge, nor to the structure of the skeletal elements, but had also to give rejmesentations of the soft parts. It seomed to me, further, especially deanable to display the internal mechitecture
of the different species in a clear way, so that it might be possible, at a ghane, to survey and compare the different forms. With this view I have not only given figures of the cntiro Sponges, of special fragments, and of the skeletal clements, bat also numerons ideul (luss highly magnified) seetions through the body-wall. In these diagrammatic figures, which are composed from a number of microscopic sections, the skeletal elements are indicated in blue. If I had attempted to copy the individual sections exaetly as they appeared, the essential and typical conld not, as a rule, have been distinguished from the messential and accidental, except, of course, by giving a larger number of illustrations thau seemed justifiable for such a slight passible advantage.

Since I had repeated ocension to restudy the rich material, even after the plates were printed off (i.c., at a time when it was no longer possible to introdnce corrections), thave beon forced several times to indicate a change in my original opinion, by a correction in the text, or by a change in the specific designation of the plates.

GENERAL HISTORIOAL INTRODUCTION.

All siliceons Sponges in which the spicules belong to the triaxial type were, in 1870, designated by Oscar Schmidt "Hexactinellides." This title, which I would only modify into Hexactincllida, since the termination ide should be exclusively reserved for the desiguations of families, soon found general aceeftance, although Wyville Thomson had previonsly established undor the name of Vitrea an order of siliceons Sponges in which the charaeteristic peculiarity was defined by the reference of all the spicnles to the hexradiate type. The older title proposed by Wyville Thomson has not gained currency, since among the representatives of Vitrea cnumerated by him forms oceur in which the skeletal elements are not referable to the hexradiate type, and which accordingly belong to another order.

Confining mysulf at this stage to a short revicw of the historical development of our knowledge of the Hexactinellida in gencral, I purpose sabsequently to preface the deseription of each genus with an accurate account of the relevant literatnre.

First of all, there are a few isolated contributions of comparatively ancient date, which give some account of certain struetures which differed essentially in their peenliar form and siliceous framework from any maxine forms then known, but which, when snbjected to eareful criticism, can be referred to certain now fairly familiar Hexactinellida, Thus Rozier's Journal de Physique for 1780, and a transcript from that work in the Magazin fur das Neneste aus der Physik und Naturgeschichte (pulished by Lichtenberg, Bd. 1, Gotha), 1781, contain a description and a very characteristic representation of a form belonging to the genns Dactylocaly, This contribution, for an acquaintance with which I am indebted to Dr. W. Marshall of Leipzig, is probably the carlicst notice of a Hexactinellid. In the Synopsis of the Contents of the British Musenm for 1832, Gray described a peculiar "glass rope like" structure preserved in the British Musenm. This he named Hyalonema, and described it carefully, though without recognising its real nature as the basal tuft of a Hexactinellid.

In the Voyage de "l'Astrolabe," 1833, Quoy and Gaimard figured and described, under the name dfeyoncellum speciosum, a sponge form which undoubtedly belonged to the Hexactinellida.

Similar imbividual descriptions became gradually move numerous, and up to 1860 the following may be uoted as most important :-Dactylocely.x pumiceus, Stnehbury, ${ }^{1}$ 1841, Euplectella asperyillam, Owen, ${ }^{7}$ 1841. Famea sp. Owen, ${ }^{3}$ 1857, Aphrocellistes

A more proformil stady of the skeletal structurd of Hyalonemu sicboldï was made in 1860 Jy Max Solmitze." He also discovered, in those spienles which did not externally exhibit a crnciate or stellate, but merely a aibple rod-like form, an intersection of the axial canals in a mediam swelling, which indicated the fundamental stellate type of all the spicules. He was also the first to diseover the close aftimity of Byalonemet and Euplectella, which, on acconnt of the common character of the spicular tuft, he united in the gromp "Lophospongire,"

Bowerbank" (1862) was less fortunate in his perception of the affinities of the Hexactinellid genera known to liim, viz, Alcyoncllam (Buplectella, Owen), Quoy and Gaimard, IHyclonema, Gray, Dactylocalyx, Stuchbmry, and Fiorred, Bowerbank, For while he placed the gems Aloyoncellem, Quoy and Gaimard (with Euplectella. Owen, in parenthesis), in his suborder Silicea with spiculo-ructiute shcletons, between Ecioneme, Bowerbank, and Polymastic, Boworbank, he referred the genus Hyctonema, Gray, to another quite different suborder, characterised by spicerlo-rcticulate shotefons, betwen Hetichondria, Flemming, and Isodictya, Bowerbank. Of each of the two genera, Dactylocalyx, Stuchbmy ($=\frac{I}{\text { phiteon, Mus, Paris), and Forrea, Bowerlank, he }}$ made, on the other hand, a special suborder, of which the former was charicterised chiefly by solid siliceo-fitrous, and the second (Farrea) by canaliculated siliceo-filmous skcletons.

In Gray's System of Sponges, which appenred in 1867, the Hexactinclida then known were not yet united into a common gronp. For while Gray placed the family of the Euplectellide, cousisting of Alcyoncellum and the closely allied Euplectelle, with his Esperiadæ and Tethyde, iu the order of the Acanthospongine (with spioules of more then one form or land in the same Sponge) and within the subsection Spiculognongire (with freo spicules), on the other hand lie united the family of the Aphrocalliatide, consisting of the genus Aphrocellistes, with the family of the Dretylocalycidro, ineluding Dectylucaly, Stuchhny, Mytursid, Gray; MacAndrewice, Gray, and Forren, Bowerbank, in in special order, "Corallispongie," witlim the subsection "Dietyospongie" (iw which the skeleton is formed of a contimous siliceons or horny wetwork), The Corallispongie wore characterised by Gray as :-"Hard, coral-like Spongea, cutircly formed of siliceous spicules, anchylosed togother by siliceous matter into an network. Mass covered with a thin cont of sarcode when alive."

${ }^{2}$ Trazak Livih Soe, Lard, vol zxil 1p. 115-184.

${ }^{5}$ Pror, Zoul Soe, Loudi, vol, fa, Ms 3-5.
1 Prour Zool. Sow Lawis, wil xxvi 1p, H4, 113.
" The if yalotumen, 18600_{3} \&

Clans ${ }^{1}$ now pronomed against any close syatematic union of Euplectella and Hywlonema.

On the other hand, in 1868 Wyvill, Thomson first recognised the common relationship of all Hesactincllida, though he was not able to segarate thim sutficiently dhapply from the Lithistida. The charaters of his order Vitwea were given in these words : ${ }^{\text {- }}$ "Sarcode in small quantity, very soft, never containing formed horny matter, either fibrons, membranous or granular. The skeleton consists entircly of siliceous spicules, cither seqarute (in fascicles or seattered) or aunstomosing and combined into a continuous siliceons network. The sarcode contains small spicules of a different charaeter from the general spicules of the akeleton, and of complicated forms. The spicules, whether of the slecieton or of the sarcode, may all bo reforred to the hexradiate stellate type," and in another place (Phil. Trans, 1869, p. 713) =-" Iu all the known genera all the spicules are medifications of the hexradiate stellate type."

In the order Vitra, Wy ville Thomson noted (foc, cit., P. 713) thic following genera and species:-

If we exeept the gemas didreste, whioh, though nameed, has remaitued milescriborl, and even undiagnosed, and further, the above-mentionod Myatonenna loccmi, which is not snfficiontly definch, and finailly the doubtful Dactylordy.e torce, Duch. and Mich., thero are only two of the ahovecited species quoted which we not Hexactimellidu, fur belong to the Lithistida, namcly, Dactylocaly.c prettii, liowerbank, and Dretyloculy.e

[^0]
asorica, Gray. The young forms deseribed by Wyville Thomson in his memoir on Holfenue, are in several points suggestive of Hyalonemu.

Among the numerous siliceo-filrous sponges; which Bowerbank ${ }^{-1}$ described at the same time in the Proceedings of the Zoological Society, there are also many forms, such as Caliapsis cidaris, Bowerbank, Dactylocalyx heteroformis, Bowerbank, Dactylocalyx macoudrowï, Bowerbank, Dactylocalyx prattï̈, Bowerbank, Dactylocalyx masoni, Bowerbank, Dactylocalyx bowerbenkii, Johnson, Dactylocalyx polydiscus, Bowerbank, which belong not to the Hexactinellida, but to the Lithistida. With regard to Bowerbank's remarks on the structure of the Hexactinellida, his description of a special skin or cortical layer with peculiar skeletal elements deserves to be noted.

In addition to further descriptions of some new Hexactinellid species,-such as Eurete simplicissimu, Semper, Euplectella orecui, Herklots and Marshall, Pheronemu annze, Leidy, Semperella schuttsii, Somper, \&e,--protracted disenssions on the systematic position of Hyalonema and Euplectella, and on their mode of attachment, were continued for several years.

Some new genera and species from the Atlantic area were described in 1870 by Oscar Schmidt, ${ }^{?}$ who, after very accurate stridy of the axial relations of the siliceons spicules, was the first, as above noted, sharply to distingmish the Hexactinellida from all other Sponges, and especially from the Lithistida, with which they lad been hitherto more or less united.

While the genera Laniginella and Sympagello, which were then established by 0 . Schmidt, are without doubt true Hexactinellida, I eannot say the same of Placorlictyum снениатia, O . Schmidt. Preparations of the skeleton which exhibit broken plates and bent knotted rods, were kindly given to me for examination by Prof. O. Schmidt himself, and from these I have been able to convince myself that hy the action of acids the elements are dissolved with the liberation of gas, so that they are evidently not of silica, but lime carbonatc. It seems probable, in fact, that we have to deal with a Holothurian-Thyoin -and this supposition is confirmed by the general form of the organism as figured.

By means of mieroscopic examination-which had been hut little applied to the stady of fossil Sponges-certain forms belonging to the genera Scyphin and Veatriculites were indubitally referred by 0 . Schmidt to the Hexactinellida.

About the same time Saxille Kent, ${ }^{3}$, who had found ou the coasts of Spain and Portugal several little known Hexactimelida, including the new genera Asconema, Kent, and Fieldingia, Kont, gave a systematic review of all the then known Hexactinellid genera, and distributed them in two suborders, as follows:-
J. Corabliosposgia, Gay: Sponge body supported by an anastomosing or contimuons retiedate skeleton. Reproductive genmules entirely membranous, aspiculons,

[^1]Genera:-Euplestcllo, Owen, Habrodictyon, Wyville Thomson, Apterocallistrs, Gray, Furred, Bowerhank, Aulodictyon, Kent, MacAndrewia, Gray, Dretylocalys, Stuchbury, Ficldingio, Kent.
II. Callicispoxile, S. Kent. Sponge body supported by an interlacing or isolated spicular skeleton; never ly a reticulate and continnons one. Reproductive gemmoles membranons, furnished with protective spicules.

Genera:-Pheronema, Leidy, Hyalonoma, Gray, Asconema, Kent, Sympagclu, O. Sehmidt, Letruginella, O. Schmidt, Vaselle, Gray.

In his Grundzuge dor Zoologe, Clans maintained the union of the spicules into at firm network to be an important character of all Hexnetincllida (which constitute his subordor of Hyalospongie), while Carter, 1873, like Sasille Kent, only emphasised the differences in the modes of union of the spienles as the main basis of lis classification. Carter ${ }^{1}$ established the three following families:-

I. Vitheohexactixellida.

Spicules held together by silicified fibre.
Duetyloenlys, My/̈usin, Erplectlla aspergillum, Aphrocullistes, Avdodictyon, Feriven, Sympagella.

1. Patulina. Example-Duetyloectlys pemicerss, Gray:
2. Tubulina, Example-Eupleotclla aspergilhem, Owen.
3. Scopnlifera. Example-Aphrocullistes bocouci, Wright.
II. Satconexactinellid.

Spicules held together by amorphous sarcode.
Aseonema, Cruteromorpht, Rossella, Habrorlictyon, Hyatonema, Pheronema, Meycrina.

Lreluding the two gromps

1. Rosettifern Exrmple-Rossclla, Carter, and Crateromorphea meycri, Gray.
2. Birotulifcra. Example-Thydonenae siebotele, Gray; Holtonia, Wyr. Thomson: Moyermia, Gray, nud Laberia, Gray:
III. Sarco-vtrpeohexactinetlion.

Spicules held together in one Iart by vitrified fibre, in the other by amorphous sarcode.
Euplectella cucnmer, Owen.

Thesesiliccons spicules which are mitel into a contimous network, or which form, it rirtue of their large size and mutual appesition, a supporting framework for the entire sponge body, were termed by Carter " skeleton spienles," -in opposition to the far smaller "Ilesh spicules" which are loosely ambedded in the soft tissue. In the new genera Rossello, Carter, and Crutcromorpha, Gray, Cater was able to distinguish several species.

In 1875 Marshall publighed his researches on the skeleton of several sponge forms, some imperfectly known, and others newly discovered, e.fl., the genera Selerothamuris, Marshall, and Periphexcgelle, Marshall. The affinitics of the Hesactindlida were diseussed by Marshall in a special work. To start with, he distinguished Synauloide and Asyanaloide. In the former the entire lattice network is said to be penetrated by a contimots system of axial camals, while in the latter the canals of the spicules which fuse to form the network do not commonieate. To the Synauloidm Marshall referred ouly the genus Selcrothemmus. The Asynauloide lie divided into (1) Monacide, with only one form of sqienle; (2) Pleionacidie with forks and rosettes, in addition to the six-rayed forms; and (3) Pollacide, with numerons distinet forms of spienles, a special demal skeleton, and an inner covering for the gastral cavities. While Marshall placed in the division Monacida only the genns Emete, he assigned to the Pleionacidas the gencra Lenugacello, Schmidt, Asconcmo, Kent, Fearea, Bonvethank, Periphoxegclle, Marshall, Aulodicyon, Kunt, Ficldingit, Kent, and Aphrocallistes, Gray; to the Pollacide, on the other hand, he ascribed the family of the Holteniade with Moltemio, Wys. Thomson, Cioteromarpha, Gray, Rosselle, Canter, Sympagelle, Schmidt, Placodictyom, Schmidt, the family of the Eaplectellidat with Euplectelle, Owen, and Habrodictyom, W. Thomson, aud the family of the Hyalonematida, with Leberric, Gray, Pheronema, Leidy, Sompercllo, Gray, and IIyaloneme, Gray,

In 1877, Sollas ${ }^{1}$ described with great thoroughess a now fossil Hexnctinellid genus with two species. Both in the dernal layor, or "oscular plate" as he termed it, and in the thick body mass, Sollas noted a framework of siliceous strauds intersecting at right angles. The usual axial camls were present, bat the nodes were not penctrated by them, i.c., they did not exhilit any octahedral or lautern-like form. To indicate the systematic position of this new genus, Sollas claborated the following classification of the Vitreohexactimellids, according to the characters of the skeletnl uetwork:-
L. Sextadiate skeloton spicules, ahwaye rectamular. Stauronemata.
(a) Skeletal network, witb simple noles

1. One layer in thickuese, . . . Furroce
2. Several leyers thick, . . . Staurowemu.
(b) Skeletal network laving the nolea complicaterl by the presence of an octahedrad lantern about oach node,

Ventrioultidre, including Myliusia spayi.
${ }^{4}$ Aun. und Mog. Nat. Hift, wen, g, vol. six. p. 1.

```
    11. Sexradiato skeleton spioulec, with rays making any angle
    with each other. Apdinocallistidw, . Aplerocallister, Durlylocalye, If
III. Skeleton spicules, cenientes into laider-like filire. En.
    plectelidia,
    Amplertelli, Sgnapugulla.
```

```
    hileon, Strmmatmiora (Callor
```

 hileon, Strmmatmiora (Callor
 dirtym,Solla,, i. gon.) tom-
 dirtym,Solla,, i. gon.) tom-
 ematriva.
    ```
    ematriva.
```

Zittel's epoch-making work on fossil Spouges' contains very acemate descriptions, not only of the form of the body and nature of the surfaces, but of the system of canals that penctrate the body, and especially of the fine mieroscopic structure of the siliceons framework. The flesh spictles which lay loosely in the soft tissnes, and were thus, for the most part lost, could not of course le so closely studied.

As the main basis of his classifiention Zittel emphasised the differences iu the modes of mion exhibited by the skelotal spicules, a basis of division which had been already employed by Saville Kent and Carter. He distinguished those fonns "in which the skeletal spicules usmally remain isolated and are only wited by sarcode," from those "in which the skeletal spicules are fused in a regular manmer and form a contimous lattice-work with eubical or polythedral meshes." The former he named Lyssacina, the latter Dietyonina.

That intercommanication of the lumina of the axial cannls throughout all the spienles fused into the lattice-like framework, which had been observed by Mashall in Selerothamnus, was not corroborated hy Zittel, either in any fossil Hexactinellid or even in Sclerothamners itself. It seemed to him, further, that the formation of a speeial group of Monacide, in Marshall's sensc, was unwarranted, at least as regards the division of the Dictyoniue, but he himself formed, within the Lyasicina, from cettain fossil genera, a similar gromp, and ranged alongside of it the Pleionacidet and and Pollacidre.

I will bere cite the fundmental principles of Zittel's Hexactinellid system of 1878 :-

Class Spongia.

Order HEXACTINELLIDA, O. Schmidt.

Siliceons Sponges with six-rayed spicules, isolated or fused into a lattice-work of a hexmatiate pattern. All the siliceous elements exhibit the same fundamental structure, with am axial cross formod by three contral cauals futcssecting at right angles. In addition to the peculiar skeletal needles there are numerons isolated Alesh spicules, mostly vory delicate in form.

[^2]
Suborder I. DICTYONINA, Zittel.

Skeletal spicules fused in such a way that every arm of a six-rayed spicule is applied to the corresponding arm of a nughbouring spicule, so that both become surrounded by a common siliceous covering. The contimuous skeleton cousists of a framework. with cubical or irregular meshes. Flesh spicules present or absent.

Family 1. AstymosposcitD天, Zittel.

Spougo body very thick walled, unstalked, free (occasionally fixed by a broadly expanded base). Water yascular system consisting of radial eamals extending from the sufface to the centre, besides which vertical tubes disposed in radial cows to the number of eight or ten, are gencrally present. Lattice framework tolerably irregular with thick nodes of intersection.

Only fossil forms from the Silurian.

Family 2. Eubetibet,

Fixed sponge bodies beaker-like, cylindrical, top-like or brazehed. Skeleton latticelike; the interscetion nodes of the fused hexradiate spieules non-perforated. Surface naked or protected by a thickening of the outer skeletal layer, sometimes covered with a very delicite network of fused spicules, which, in their form, differ but slightly from those of the rest of the skeleton. This outer dermal meshwork also surrounds the ostia. Structure of the root resembling that of the rest of the sponge body. Flesh spicules absent or present.
(a) Canal system well developed. Ostia of the blind radial canals oceur variably on either surface. In addition to fossil genera belonging to different strata, this sulfamily is represented by the living genus Selerothamnus, Marshall.
(b) Canal system absent or searcely developed. Besides the fossil genus Verrucocalia, the living gencra Farrea, Bowerbank, Eurete, Dtarshall, and Audodictyon, S. Kent.

Family 3. Coscinoporidex, Zittel.
Sponge body beaker-like, stellate or branched, more frequently compressed. Radial eamals very numerous, simple, straight, and blind. Ostia small. Skeleton finely meshed, dense, stony. The numerons radial canals exhibit the regular formation of cubical meshes. The interscetion nodes of the six-rayed spicules are thick and seldom perfonted. Dermal layer usually absent of only formed by a thickening of the outermost skeletal layer.

Examples.-Coscinospora and other fossil genear.

Family 4. Melfittoside, Zittol.

Sponge body branched, squerical or flat. Body-wall completely perforated by numerous tubular water canals, and thus divided into honeycomb-hike cells. Skeletul spieules with thick nodes of intersection. Surface (naked α) coveral by a delicate, meshed or porous, siliceous skin, which also covers the openinge of the cauals. Root tuft absont.

Excomples.-The gems Apdivocallistes, Gray, which is known both in the living and fossil form, the living genus (?) Ficldingia, Saville Kent, and the fossil gonus. Stuwroneme, Sollas.

Emily 5. Venthiculatio, Zittel.

Sponge body simple or polyzoic, beaker-, funnel-, or top-like, eylindrical or brauched. Wall irregulatly folded. Lattice framework with octahedral porforated nodes of intersoction. Conal system usnally well developed. Radial cauals blind. Both surfaces with ostia or longitudinal furrows. Dermal layer seldom absent, and usually formed by thickening of the outer skeletal layer. Roots consisting of prolouged siliceous filres united by transverse bridges and without axial camals,

Eiccomples.-Ventrioulites and other fossil genera.

Family 6. Stauradehmide, Zittel.

Sponge body top- or funnel-like, seldom branched. Lattice skeleton more or less regular: Intersection nodes thick or octabedral, perforated. The outer, or both suffaces of the wall provided with stellate spicules, which differ in form from those of the rest of the skeleton, and are either but loosely cemented to one another, or lie embedded in a continuous siliceous skin.

Examples:-Stcuroderma and other fossil genera.

Family 7. Mafandrospongide, Zittel.

Sponge body cousisting of intricataly labyrinthine and anastomosing thin-walled tubes or folies. Canal system absent or scarcely developed. Intereanalicular system always present. Dermal layer absent or represented by a continuons siliceous superficial shin.

Examples.-Besides Cystispongia and other fossil geucra, the living genea Dectylocalyse, Stuchbury, Periphregelle, Mashall, and Myliusiu, Gray (pro parte).

Family 8, Cablodictyonide, Zittel.

Sponge body beaker-like. Wall consisting of a regular wide-meshed lattice-like framework with octahedral intersection nodes; canal systom absent or confined to the sometimes very thick dermal layer of the lattice-like skeleton.

Examples.-Callodictyon, Zittel, and other fossil genezt.

Family 9. Creloptychtdi天, Zittel.

Sponge body umbol-like, stalked. Wall thin, deeply folded; the central cavity divided into radial chambers. Upper surface shallow on deepened, entirely enveloped by a continuons iermal layer which usually consists of variable coarse and fincly porous strands. Canalientar ostia only on the under side of the umbet, on the backs of the folds, sometimes also on the stalk. Lattice framework with large, regular, cubical meshes. The intersection nodes of the amalgamated sis-rayed spicules octahedral, perforated. The radii of the six-rayed spicules bear thomy and root-like protuberances.

Excimple. -The single fossil genus Culontyelivem.

Snborder II INSSACINA.

The whole skeleton consisting of spicules which are bound together only by sarcode (exceptionally also by a smooth siliceous substance in irregular ways). Flesh spieules nsually present in rich abmudance and mich differentiated.

Family 1. Monacide, Marshall.

Whole spouge body eomposed of similar spicules.
E.comples.-Aeanthospongia, Salt, and Stcuructinalla, Zittel.

Family 2. Pleionacidea, Marshall.

Main portion of the skeleton composed of six-rayed spicules and also of forks and rosettes.

Examples.-The living genera Asconoma, Kent, and Lenuginclla, Schmidt.

Family 3. Polfacide, Marshall.

Form of skeleton and flesh spienles very vaiable. Special dermal skelcton and imner lining of the gastral cavities present. Base usnally forming a root-tuft of long siliceous spicules.

Exomples.-The living gencra Holtendi, Sclmidt, Pheronema, Leidy, Crateromorpha, Gray, Rosselle, Carter, Sympuyelle, Schmidt, Placodictyon, Schmidt, Eup)lectella, Owen, Habrodictym. Wyv. Thomsou, Ledaria, Gray, Semperclle, Mashall (Meycrinct, Gay), Myutonema (Cartcrict), Gray, and ? Acestivi, Rocm, from the Silurian.

In the report which Marshall and Meyer' made in 1877 on the Philippine Hexac-

tincllida, they deacribed, in nddition to aume new species of the genem IMghersin mat Aulotictyon, a new genns Myedocumlus, and gave un explanation of the hollow octahedral nodes which oecar so abumdantly in fussil Hexactinclida, but less frequently in living forms.

To the commmications which Wyville Thomson ${ }^{1}$ male in 1877 on some specially noteworthy Hexactincllisa from the Challenger material,-such as Enplectella suberea. Hyatonemu toxersx, Poliopogon anuadou, Lefioyclla decora, and others,I will refer at greater length when noting the literature of the genera and species in yuestion.

An important addition to our knowledge of tho Hexaetinellida was made in 1850 by O. Schmidt: He gave a deseription of the forms collected by Agissiz in the Gulf of Moxico, and entered into at discussion of their aftinities and othor general questions, without, however, undertaking in independent elaboration of the system.

Schmidt does not deny the merit of Zittel's systematic grouping of all known fossil and living species into genera, families, and orders, but while aimittiug its utility for the practical purposes of the geologist, expresses his douht whether Zittel's system represents even approximately the natural affinitios. He does not therefore feet himself warranted in arranging the genera described in any completely articulated system.

In the living Dictyouina, Schmilt sees only "representatives of the incompletely or altogether unknown fossil Sponges, whose aftinities will for ever remain concented"; the Lyssacina, ou the other hand, are "for the most part so closely related to one another, that the boundaries between the genera may be moved quite arbittarily," The Euplectellida and Hyalonematidra appear to him genuincly natural familics, but he does not give the same credit to Marshall's Holteniadm.

It is a great pity that some of the genera establishod by O. Schmidt have been described from fragments but slightly characteristic, and sometimes so shortly that it is difficnit to obtain any aufficient concoption of their chanacters. This is especially the case with the new genera Diaretala, Cyathella, Diphaoodium, Pachaudidiun, Rhebdostawnidiunt, and Leiobolidiam.

The three genea Fowea, Bowerbank, Eurete, Marshall, and Aulofictyon, Reut, wre united by Schmidt into a news genus Farred, of which he found but one ajecies, Ferree fionadie, represcuted by mumerous and certainly very variable examples. A wew genus, Syringidium, Schmidt is inclined to refor to the Lefroyelle decora, Wyville Thomson, figured and briefly described in W'yville Thomson's Athantic.

Of the gomus Cystispongis, litherto only known in the fossil condition, lee describies a living reprebentative as Cystispougia superstes. The gonus Marguritclla, Schmidt, is supposed to be closely allied to Culoptychiom, but it does not possuss the perforated

[^3]oetahedral nodes. Jormandle, Schmidt, is distingnished by its narrow meshed network and the marked fissures assominted with this chnacter. In one specjes of the new genus Scleroplegma (Scleroplegme leterna) there are jerforated octahedral nodes, while in the other species of the same genus the nodes are solid. In Volunkine sigsher, O . Schmidt, which is distinguishot by the kuotted cords of the siliceous network of beams, Schmidt thinks that he enn prove tho non-fixity of certrin characters of the Dictyoune Inttice-like tissue, characters which bave heen principally used by Zittel in the classification and determination of fossil Hexactivellida: While, mamely, in some parts of the lattice network smoth rays and rough knots pppear, in other regions of the same specimen the rays are also rough. Many specimens of the same species exhibit rough rays and smooth knots, the exact reverse of what has just been stated above. Schmidt has also found that the form of the meshes is very variable and meertain, they are aometimes enbical, sometimes predominantly polyhedral, sometimes quite irregular.

Of Euplectellide Schmidt mentions, besides Euplectelln jovis, which is a species nearly related to Euplectella suberec, Wyy. Thomson, a new genus Regodrella, including the single species Regoutrella phamix, which is devoid of the siliceons tuft and is fixed to the rocky substratum by a lirm base. Though in this form a very constant character of the Lyssacina is evidently absent, it must be noted that other forms oecur which are quite frm and compact benesth, lattice-like in the middle, and loosely constituted ahove, such as, for example, Hertioigite futciformis, Schmidt, and Rhabelopectella tintinnus, Sclmidt, and these were direet trmsitiomsl forms between Dictyonina and Lyssacina.

Of the gems Hyalonema Schmidt has described only fragmentary pieces. The form deseribed by him as Asconemu kentii is certainly a species of Hyalonema.

The then little known structure of the soft boty of the Hoxnetinellidn was, in 1880 , clucidated by my ${ }^{1}$ investigation of some well-preserved specimens of Euplectelle cspergillum, which were given to me by Sir Wyville Thomson from the treasurcs of the Challenger expedition.

In a subseqnent stady of the Hexactinellid material from the Gulf of Mexico, which had been alroady utilised by 0 . Schmidt, lat which was re-examined by Weltner ${ }^{2}$ in 1882, the structure of the peculiar skin and covering layers was especially considered. This had, it is true, been previously deseribed by Zittel in several foscil forms, but in living forms it bad hithorto been insufficiently linown, and had bean investigated, in fact, only in a few cases, snch as in A_{p} morocollistes by Zittol, in Myliusicc by Marshall, and in Dectydecalyx pumicous by Sollas. Weltner was albe to demorstrate the presence of these strucmres in mumerous modern Dictyonina, e.g., in Fervod, Syringidinm, Aphrocullistes, Volvolina, Jocralle, JLargaritelle, Scleroplegme, and Cystispongio. Like Zittel he distinguished "covering layers, dependent and independent of the lattice-

[^4]skeleton." The former are flat thickenings of the lattice-skeleton on those regions where the sponge was in contact with, or lay against some solid looly; while the "independent eovering layers" surromit the external and also the gastml surface, in the form of a skin-like web of fiue free of united spienles.

Tho romatkable rigit Ialls, first olserved by Sarille Kent in lis Fieldingiee leegethoiles, and later hy: O. Schmidt in Cystisponyice superstes, which seemed to bo formed of eondensed portions of the hattice-like network, were olserved by Weltner in several other Dictyonita, such ns Scleroptegma lenterme, Myliusit sittelii, and Mergeritellu caloptychioides.

From the proliminaty reports on the Hesactincllida collected oft the coasts of Eranec and Weat Africa by the Fronch deep-sea expedition of the "Traxailleur" and "Talisman," it appears that not only were most of the species collected by the Challenger discovered in the localities in question, but some new species were addea.

In a popular aceount of the expelitions of the "Travailleur" and "Talisman," La vie au fond des mers, 1885, Filhol nutes some of the Hexnctinellid forms, e:\%., "Euplectella sulherea, WyV. Thomson, qui est largement repandue dans l'Aflantigue nord. Pendant In croisière du Talismua bous les avons draguées ì diverses reprises par des fonds variant entru 900 et 2300 mètres. En certains points elles étaient d'une extre̊me abondance et devaient couvrir dassez vastes espaces."

A new form is reported (los, cit., p. 284), and figured ou pl. viii., viz., "Trichaptelln elegrans, H. Filhol, fixé sur des Coraux (Lophohelia) aur les còtes du Maroe par 865 metres de profondeur. Sa hase est formée de spicules silicenx agglutinges les uns aveo les autres et formant ainsi un réseau d'uno grande solidité. Le restant du corps de Féponge, qui s'élargit dans sa partie moyenue, est souple comme chez les Euplectelles. L'oscule, fermé par un treillnge à mailles grandes et irregulières est cotouré par tune collerotte de longs spicules d'me extreme delicatesse."
"Les Pherouema paraissent être répandus dans tout TAtlantique, flunt elles babitent en certains points de très grandies profondeurs. Communes sur la côte du Portugal, ellos apparaissent encore phas nombreuses au large des côtes du Maroc et du Senegal, en profotuleur te 600 mètres jusquì 2200 mètres."
"Certaines d'entre ollos sont remarquables pur un onorme développewent, alors que diatres, telles que Pheronema Pafniti se font remarquer pai lear trausparence et P'abonce do collerette de spicules autour de l'oscule."
" L'Asconema setubalenso n'avait été trousé, jusqu'tu vuynge du Talisman, que sur les cotes du Portugal. Lors de la campragne de ee dermie batean, noth l'avous recucilli aur les côtes du Maroc, nu voisinage du Cap Bojutor, par 410 métres,"
"Les Aphrocallistes sont communos sur les còtes du Portugul, du Huroc, du Sénégal
 callistes Bocagei constituent, au fond de cortaimes portions ite TAthutique nord, des

colonies quelquefois assez distantes les unes des autres, Nous les avons observéce a des profondeurs bien définies et cela à putir de 860 mètres jusquà 2200 métres."
"Les Asconema ont été tronvées avec les Aphrocallistes; les Hyalonema et les Euplectella étuient presque tousjours associées."

A Catalague of the Fossil Sponges in the Geologieal Department of the British Museum, which appeared in 1883, contains a thorough account, by G. J. Hinde, of the fossil Sponges in the above musenm. The Hexactinellida are thoroughly disenssed, and the whole work closely adheres to Zittel's system. In my general survey 1, may subsequently refer to the fossil Hexactinellids, and shall then rely ou Zittel's pioneer work and on Hiude's excellent memoir.

In 1884^{1} Zittel demonstrated that the family of Astylospongidee (with the genera Astylospongia, F. Remer, Palacomanon, F. Romer, Protachilleum, Zittel, and Eospongia, Billings) belonged not to the Hexactinellida, as had been hitherto supposed, but to the Lithistila, and, in fact, to the group Anomocladina.

In a collection of marine Spouges gathered in Japan by Dr. T. Anderson, Mr. H. T. Carter ${ }^{7}$ botes the occurrence of four Japanese Hexactinclids, namely, Hyalonemu sieboldii, Gray, Farrea occa, Bowerbank, Periphragella elisx, Marshall, and Mexactinclla sentilatrum, new species, Carter. Of these accutate deseriptions are given, hased partly on dried specimens, Especially important in this report, as it appears to me, is a clear and comprehensive description of the skeletal parts of Farrea occa, Bowerbank, accompanied with excellent figures. A definite and reliable conception of this, hitherto somowhat indistinct, species has thus been established.

[^5]
GENERAL REMARKS ON THE FORM AND STRUCTURE OF THE HEXACTINELLIDA.

Althongh the different species of the Hexactindlida vary greatly in form and stracture, they nevertheless exhibit so essential an agreement in the fundamontal features of their organisation, that it is easy to reduce all known forms to a common type. Apart altogether, for the present, from the skeletal portions, this common type rescmbles a simple sac, in which the outer surface is formed of a thin skiu rich in pores (the dermal nembrone), through which water enters into a space (the sabdermal trebecular spuce) crossed by fine trabecule. Within this there is a single layer of closely arranged chambers slaped like the finger of a glove, with wide internal openings, and with fine walls (the membrana reticuleris), supported by an elegant quadrate network, and penetrated by small romed pores (chember pores) for the passage of water. A connecting membraue extends between tho internal openings of the chambers, and is in direct continuation with the walls of the chambers. This membrane generally agrees in structure with that bounding the chambers, and closes internally the clefts and upertures which occur between the latter. Through the pores of the chamber walls and the connecting membrave, the water reaches an inner or subyesticel tivelecular space, which is likewise crossed by fine trabocule, and is separated from the wide gastral cavity by a porous or net-like internal limiting skin, or gastral membrane.

From the exterior inwards the following successive layors occur:-(1) the outer limiting skin or dernal membrano; (2) the outer or subdermal trabecular framorozk; (3) the chambers with their connecting membrane; (4) the inner or sidryastral finameieork; (5) the inuer miting or gastral membrane.

The body of every Hexactincllid is invariably made up of these fixe layers in the same order, but the dosignation of the layers as onter abil imer refers not so much to their relation to the centre of the indivilual sponge, as to the direction of the stream of wates. Thus the dermal nombunc always rufers to that through which the waterenters the sponge body, and the gestral membrene, on the other hama, to that through which it escapes from the body-wall into the gastral space, or direetly to the exterion.

In the attempt to trace the manifold modifications of the numorous species of

Hexaetinellida from the fundamental type, I will begin with those forms which, like Buthydorns fimlniatus, are only slighty removed from the original saceular form, and which by a simple clougation have assumed a tube-like outlins. In a section through the lamelliform smooth nall of Bethydorus fimbriutus, suoh as is somewhat diagrammatically represented in PI. FiYIIL. fig. 2, the only cssential modification of the fundnmental type is a peculiar folding of the chanber layer. This layer exhibits a series of dosely disposed broad protrusions of approximately similar form and equal size, which

raise the smooth external skin in such a way that diverticula, tnversed and dividod by traliecula, extend inwards from the subdermal lacune of the outer trabecular apace. The lanina of the protrasions which open by a wide round iperture into the imner tiabecular spues are at first destitute of a trabecular framework.

In all the aumerous Lyssecinn, whidh, hike Aeanthasens (Pls. LIL-LVII.), Rosselte (PL. LV.), de., rescmble a thick-wallod beaker or cme, the folding of the chamber layer is continned by the formation of shecesaive protrusions, so that bunched efferent passagos of roundish scotion are formed, betweon which corresponding complex incurrent passages penetrate inwards from the outer tribecnlar spaces. This development of a more or leas riohly bramched system of afferent and efficrent passiges, which awe, howevor, eompletely seprarated by the chamber layer; remnins essentinlly unchanged, even with such
complicated foldiag of the chamber layer as oceurs in the very tlick-walled species Pheroneme (Pls. XLII.-NLII.) and Poliopogon (Pls. XLVIL, L.). The efferent emals do not, howerer, by any meuss, always remain free from the trabecular fromework which is so aboundantly developed in the ufferent spaces. This is very freppently illustrated, as, for example, iu Matecosarcuss (Pls. XVIIL. XLX.), Creteromorphu (Pls. LXI.-LXIII.), Hypelonesua (Pls. XXVIL--XLI.), Polylophus (PL. LIV.), Rassella (PI. LV.), and others, where a retienlar lining ponctrates from the sulogastral trabecolar space into the outermost direrticulum of the efferent canal system, without, however, at any time crossing the lumen of the efferent passages, or entering the cavity of the chambers. The gastral membrane extends smoothly over all the (oxeurrent) openings of the efferent camals, in the form of a sieve-like net, and thus forms the boundary of a simple gastral space, as in Rossella (PI. LV.), Pheroneme (Pls, XLIL--XLVI.), \&e. ; or it lines the nicheliki depressions of the wall which may be of simple or complex form, as in Mulacosacers (Ple XVIIL, XLX.); or fimally it passes through the wide exenrent openings of greatly branched efferent eanals whieh open direetly into the gastral apace, and extents within them on to the terminal branches, as in Hyaloneme (Styloculy.e) slequessum (PI. XXXVL. fig. 1) and others.

Further rarintions of the simple saccular form are exhithited by many Hexactincltida in the formation of a terminal sieve polate covering the wido opening at the extromity (Eupdectelle, Pls. I., V. Holascus, Pls. XV.-XVII, Hyalonema sieboldii, PI. XXVII., and others). It many cases, too, the loody wall exbihits a more or less regularly arminged set of gaps, by means of which a direet communiention is ustablished between the gastral ravity and the external medium. While these gaps in the walls of Euplectella (PL. I.) and Teyerve (PI. 171.) are circular, and hounded by an iris-like membrac which is capable of contraution, in Walteria (PI. IX.) they oceur as iregnlarly mugular meshes, like the lattiec-work of a basket. Striking modifications may arise Ly the formation of a stalk, which is, imileel, always in the form of a simple continmetion of the lower portion of the body-wall, from which, however, it often differs widely in diameter. It varies greatly in the length attainod, and is more or less sharply truncated. The saalk is generally quite ronnd sud smooth, but frequently with shmacteristic carvature (Coulophecus elegons, Pl. XXV.), or prominent protuberances (Cruteromorphen murrogy, Pl. I.NIII.), and is sometimes even branchat (Sympayclla nuta. PL. XXII. fig. 4). It is either solid or tubutu, generally the latter in long stalks (Comelophecenk), and its lumen cither opens into the gastral cavity, or is in communication with. and so belougs to the efferont causl zystem. By the expansion of the upper oseular margin many species, e.gn Ahabdocalyptus mollis (PI. I.XIV. fig. 1) and others, acquire a fumel-like shape A furiler widening and flattening lends to the formatiou of a flat stucus-like horly, while a more unilatemal growth msults in an ear or shell-like form (Eingiplegma armiceleris, PI. CII.), or eren in cortim circumstances in it simple perfen-
dicular plate-like form (Chomelesme, Pls. LXXXVII.-XCI.). The wall of the cap may be complieated by thimble-like stceulations, as in Aphrocallistes bocagei (PI. LXXXIII. fig. 1), and, in such cases, the gastral cavity may be separated ly sevemal transverse net-like diaphagms iuto a sories of partitions. If the outer margin of a stalked, originally cup-shaped sponge, becomes folded outwards and downwards through great development of the median portion, a fungoid form arises which, in the genus Cetuloplucus (Pls, XXIV.-XXVI.), exhibits several varictics of outline. In this way then, as the gastral cavity and osculum have thus been lost, what was originally the internal gastral has become the upper and outer smface, so that the water enters the body from below, and escapes ngain from the upper outer wall. In Aulochone (Pls. LXVI., LXVIIL.) the originally apper portion of the gastral membrame has, on accome of the folding of the oscular wall, been turned towards the outside, and thus forms the outer wall of the eylindrical or approximately hemispherical body, whilo the under portion of the gastral cavity along with the lumen of the tule-like stalk connected with it, has remained unchanged.

In many Dictyonina the elougation of the sac-fike body, withont any marked thickeming of the wall, results in the formation of more or less thin-walled tubes in which the lumen remains approximately the same. These tubes often branch in a tree-like fashion, frequently dichotomously (Aphrocallistes ramosus, PI. IXXXTI. fig. 1), while the multiplication aud mion of banches may form an anastomosing network of tubes, from which numerous terminal branches arise, each provided with an osculum. The latter is the state of the case, e.y., in the genera Forrce (Pls. LXXI., IXXII.) and Eurcte (Pls. LXXVII.-LXXIX.). In Farrea the young tube-wall begins on the outermost terminal branches as a very thin plate with a simply folded chamber layer, and the whole wall is gradually somewhat thickoned, with the increasing folling of the chamber layor; while in Eurete the ends of the tubes are continuous outgrowths of the ontire thickness of the wall.

The main tubes in expanding into a frmel-shape sometimes give off lateral branchtubes, whieh have a teudency to branch and anastomose, as in Periqhoagella (PI. LXXX.) and Aulocalyx (PL LX.). In some species, which consist, for the most part, of a netlike system of anastomosing tubes, with terminal and lateral oscular openings, a special covering layer may oceur which envelops the whole borly, and which, as an independent plate, not only spreads out laterally from the oseular walls as a fine porous skin or net-like sieve for the inflowing water, but also extends over the oscula ns a sieve plate, with wider apertures. This remarkable structure, which may be termed a cover, is seen in Aulocystis (Pl. CIV.), and also, though in quite different form, in Semperellat (Pls. 1.1., LII.), where the oscala apperr, not so muck as round apertures, but rather as irregutar longitndinal clefts on the sides of the body. The covers of these genera differ also in this: in Aulocystis the cover appears as a direct contimuation of the entire wall
of the tube (though withont the chambers) ; in Sempercllio, on the ether hand, the corer consists, in that portion which is spread over the afferent passiges, simply of the uplifted external skin, while the sieve plates extending over the oscular elefts appear as a chamberless continuation of the entire wall of the tube.

IIISTOLOGY.

Though the material pheed at my disposal for investigation was not very well suited for histological research, some fuuts of interest were estublished. It ought to be obscrved, in the first place, that the histological strueture is so miform throughout the entire group, that the modifications to lee noted are hardly of an important character.

As I pointed out in my commmication On the Structure and Arrangement of the Soft Parts in Enptectille asperyitlum, ${ }^{1}$ the Hesaetinellida oxhibit, like nll other Sponges, three histological layers, viz, two distinct layers of epithelinm, and an intermediate connective tissue with various substanes enelosed withiu it. As to the delicate single layer of flat epithelum which covers the entire surface exposed to the water, I have not been able to detect the contoms of the cells, lout simply their characteristic, small, clear, spherical nuclei. These, and the small, shining, gramule-like nucleolus, were distiuctly recognisable on well-preserved portions of the suface wheu strongly stained with hematoxytin or picrocarmine. The nuelei are distributed with tolerable uniformity, and project a little above the genemal surface of the cell, as is indisputably demoustrated on profile view, They thas lic in the very outermost portion of the bounding smfnce. This cm bo best seen on the dermal and gastral limiting membranes, but these epithelinl nuelei are also recognisnble as slightly projecting elevations, on the netted strauds of the subdermal and subgastral trabecular spaces, and also on the trabeculæ and membranes extending between the ciliated chambers (PI. IV. fig, S):

A peculiar character, which differs not ineonsidembly from the known relations of other Sponge groups, is exhibited by the epithelium which lines the inner surface of the chambers. One conld not, of course, expect that in these epithelial cells, structures so delicate as the flagellum and collar should be preserved. Although I have takeu every trouble, I have failed to detect these struetures which are so constant in the chamber-eclls of all known Sponges. It cannot be doubted, however, that they mere really prosent. In my variously stained preparations, the chamber-ells appear as small bodirs, projecting for a variable distance into the lumen of the chamber, and provided with small spherical unclei and usually with a single shining mueleolns, which is sometimes of a cylindrical, but usually of a kidncy-shaped roundish form. The remarkably regular disposition of these eells, and their counection by flat latcral lands, which extend over the membranous chamber-wall, are worth noting. Since
${ }^{1}$ Trana. Moy. Soc, Edin., vol. xxix., 1880.
these bands ne disposod in rows, intersocting approximately at right angles, at an average distance of 0.06 mm ., and united further by strongor basnl strubls, a lattice-like pattern results, in wheh the meshes are approximately rectangular or alightly rhombin in form. As to the nature of the somewhat strongly refracting and slightly stained comnecting strands, of which the stronger cross at right angles, while the finer branches are irregularly reticulate (PI . LNIL fig. 8), 1 linve not been able to come to a perfectly clear decision. I have little doubt, however, that we have hore to do with the anastomoses of protoplasmic processes from auljacent cells. Each cell seems to loo comnected with its four neighbours by one main connecting proeess and several fine lateral brauches (PI. LXII. figs. 7, 8),

The conneetive sulstaneo, which forms the main framework of the soft body, does not differ essentially from that of most other siliceous Sponges. In the byaline, sometrhat soft matrix, two kinds of cells can be distinguished, namely, (a simple stellate or spindleshaped comective-tissue cells with little protoplasm, and a small oval nueleus, nud (b) larger cells with clear vesicular nuclens, and with a more or liss abundant aceumulation of refraoting, intensely stanced granules of varions sizes. As a rule, these gramules lie loosely beside one another, and may be included in lappet-like processes of the oell (PL. IV. fig. 8, and Pl. LNII. fig. 8). Sometimes, howerer, they are united in firm clumps. Oceasionally I found them browmish or yellow in colour. As I have previously noted, I regard these bodies as reserve untriment, analogons to fat or starch. Small groupa of round cells oceasionally occur, lnt their import is not known (Pl. LXII. fig. 8).

All the skeletal structures belong exchusively to the comective-tissue. On the surface of the spicules there is a more or less distinet thin layer of hyaline matrix, the so-called spicular sheath, which, on specially thick needles, is seen as a finely fibrom membraue. In the connective substance, fiually, the genital prodnets oecur, the sperm masses and ova, in more or less abundanee, and usually in the same individual. The sperm masses, both in young and mature stages, are exactiy like those of other siliceous Sponges, such as Renierc. In their immatare form the ova are indistinguishahle from comnective-tissne cells. They sulsequently increase in size and develop refracting yolk gramules, amd exhibit a very characteristic aspect owing to the enlargement of the nucleus. It is romarkable that in the adult (03 mm . in dianeter), irregularly roundish ova of Euplectella asperyillum, along with which ripe sperm masses also oecured, the nueleus was situated not in the ovym itself, but lay freely in a superficial depreasion into which it had been squeezed. This expulsion of the pucleus was probably the result of the drastic preservative treatment.

It is curions that I havenever been able to discover any distinct segmentation stages It would uot, however, be justifiable to jump to the conclusion that the ova leave the body of the Sponge as such, and uidergo subsequent development ontaide the mother organism.

As to the developmental history I am only able to commmieate a fow observations.

Some species undergo multiplication ly budding. This process ean be studied extremely well in Polylophise philippineasis, where the same specimen frequently exhibits numerons stages in the development of bads, from small papilla-like elevations to adult individuads ready to be sequated off (PL LIV. fig. 1). After the numerons conical protuberanees of the lateral surface, whirh are apicully equipped with is tuft of slightly divergent needles, have grown out to a greater length, and have been drawn out into nipple-like structures, they become constricted, and the outer portion expands into a pear-like form. The bud continucs to grow gradually larger, expanding especially on its free terminal portion; a roundish opening is formed at the distal pole, while on the laternl surface a number of conieal projecting tufts of needles appear iregularly disposed. The portion connecting the bud with the mother Sponge becomes longer, and at the same time thinner; finally the union between the two is wholly severed, and the bud thus separated is attached ouly by a weak bunde of siliccons needles. Strain and friction soon effect complete separation, and the bud at length falls to the gromed, where it becomes independently attachod by its own tuft of spicules (PI. LIV. fig. 1).

When, in such a process of gemmation, the undeveloped individuals remain attached by an elongated stalk, ramified colonies with terminal individuals result, as for example in Sympugella nux (Pl, XXII, fig. 4).

These young buds are in their young stages almirably suited for investigation, affording a conrenient view of the whole organisation of the form in question. This may be illnstrated by glaneing at fig. 2 on PI. LIII., where a longitudinal section through Polylophis phitippinensis is represented. The relation of the entire chmmber layer to the gencrid canal system and water stream becomes at once distinct. It may be clearly seen that, however much the layer of chambers is folded, it alwiys forms a continuous intermediate layer between the afferent and efferent lachuse or camals, forms in fret a filtering layer, through the pores of which the stream of water has to pass,

The above gemmation which results from proliferations of the sponge-wall, must be of course distinguished from a formation of colonies very frequent among Dietyonina, which occurs, however, as the result of the folding of the exuberant margin of a cmp or tube-like radiment. The dichotomous or more complex tubes, which frequently exhilit lateral branches, in Farrea, Eurete, Periphigragella, Mylizsia, see, result wholly from the folds of the growing portiou becoming gradually closed into complete mbes (PI. LXXII. fig. 3: PI. CIII. figs. 1, 2) as may be rendily demonstrated from a careful comparison of the different stages in the development of the colony.

In some cases, ns for example in the yotng specimens of Lanuginella pupa (P) L111. figs, 4, 5) which were found isolated, I was of the opinion that I had before me very young forms developed from the ovum. I inferred that chiefly from the fact that both the youngest, simply spherical specimen ($2 \cdot 3 \mathrm{~mm}$. in dimmeter) (Pl. LIII. fig. 4), and a
(2OOL CHALL EXP.-1ABT LILL-1886.)
Ggg 4
somewhat larger oval form, were stmoumded by a perfectly contimnons skin, and exhibited no trace of a counectiug stalk. The chamber layer in the former case was still simply a closed sphere, while in the second a rupture had taken place towarils the pointed pole of the oval body, at the print apparently where the osculam would be developed. A beantiful post-embryonal series, with cortain modifications of form, was observed by Wyrille Thomsou ${ }^{1}$ in Pheronema (Holtenie) earpenteri.

Generally speaking, however, no important modification in the form seeme to occur during the development. In those Lyssacina in which the spicules are never soldered together, the growth may apparently continue until the death of the animal; so that giant forms of 30 cm . in diameter and more may arise, as Poliopogon gigas, Malocostcous vastus, \&ic. In many Lyssacina, however, which, as they grow, typically exhibit a soldering of the principal needles, there appears to be a definite limit of growth (e.g. in Euplectelle asperyillum). It is readily intelligible that when the soldering of the weedles has progressed from the median portion of the tube to the basal tuft on the one hand, and to the firm terminal sieve-plate on the other, any further extension of the sponge-borly is really impossible. It is different with the Dietyonina, in which the priweipal needles (Dietyonalia) are immediately after their formation united with one another into a connected framework. Here, however, both on the free margin of the cup- or tube-like body, and on the whole dermal and gastral surface, there is a persistent continuance of growth through the laying down of fresh portions of the framework and simultaneous displacement of the loose dermal and gastral skeleton. It is only when the dermal skeleton becomes itself rigid, throngh the mion of its spicules in a reticulate framework, or by a contimous siliceons membrane, that am absolute check is placed upon any further lateral growth. This seems also to oeemr in individual cases, c.g., in Fieldingia, and with apparent regularity in several fossil forms.

In many specios the whole body dies and falls to pieces at once, while in others dissolution is more graulual and begins at the base. Thus many specimens, especially of Dietyonina, and also many Lyssacina, are dead in their basal portion, which consists simply of a perfectly macerated skeleton, representing cither the loose fibrous taft, as in Poliopogon cmador, or a detul portion of the dictyonal skeleton. The latter case is illustrated in PI. CII. fig. 1, in reference to Euryplegma auricularis, where the lower boundary of the persistent, somewhat darker soft body is sharply markel off. On a large. beautifully developed specimen (40 cm . in height) of Aphrocallistes rastus, which Dr. Gotsche brouglit from Japan, the whole basal portion for about a haud's length has been killed. The siliceons elements rooted in the mud are not, however, always wholly dead. The long tuft weedles of the Hyalonematide and the anchor needles of the Enplectellide undoulitedly rectain their life, being probably nousished throngh the strand of their axial canals.

In all skeletal dements which have been exposed, for a lengthened period after

[^6]death, to the influence of sea-water, one always notices a more or less marked widening of the axial camal. This is due to the faet that the contral siliceous layers are Blighty more soluble than the outer. The time that has clapsed since death ean thus be approsimately estimatod, and the differesees have, of course, no systematic importance us was formerly supposed.

THE SKELETON.

Under the title skecton 1 indude all the solid parts of the Sponge, whether these are bound together into a united framework, or lie isolated in the soft tissues. I would avoid the expressions, "skeletal" and "flesh" spienles, which are much used by Carter, Zittel, and others to distinguish the hard parts into two leading categorics ; sinee, on the one hand, these expressions are ambignonsly used by different authors, and even by one and the same author, and, on the other haud, since they in uo way indicate any essential distinetion. By "spicules of the skeleton" Carter originally understood "large spicules, which are only concerned in the formation of the supporting structure or skeleton," but he subsequently applied the term only to the larger fies spicules, in contrast to the smaller free spioules or "flesh spicules," and to the vitrcous filore of the continnons lattiec framework. Zittel used the phrase "skeletcel spicules," for the most part in reference to the skeletal parts concerned in the formation of a united lattice-like framework, but he occasionally applies it also to the larger free spicules which form the chief support of the solt parts.

Most spicules present a structure similor to those which Max Schultze and Claus first discoveral in the larger spicules of Hyatonema sicholdii and Euplectella aspergillum. A fine central canal, corresponding to the typical axes of the skeletal body, is surrounded by numerous concentrically arranged layers of a solid substance. In its appearance and other plysical properties the latter resembles glass so closely that it has been often, without the least hesitation, spoken of as vitreous filne. For the same reason the citire Hexactincllid group has been designated "vitroous sponges," or more shortly "Vitren." As to the nuture of the soft, finely granular mase composing the axial thread or cord which fills the central canal, but little is as yet known. During the growth of the spicule it appears to be connected with the surrounding soft parts through an opening which is present at the end of every ray: After the ray bad ceased to grow in length, the terminal opening is closed by an expansion of the layers of the glassy substance. That all spicules lane a central canal is very prolahle, but not quite certain, since it has not been possible to recognise it in all cases. Especially in very thin and small spicules it is often very dillicult or impossible to detect it. I lave never found it in lateral priekles, pronge, seales, and the like, nor in the secomlary terminal rays of the rosettes and scoputhe, nor in the shore transverse comecting beams,
the so-called "synapticuln," which stretch so frequently between neighbouring spicules of many Lyssacina, binding them into a solid framework, nor finally in those remarkable lattiee networks which oceur in many Hexactinellida on regions in contact with foreigu bodies, but especially where the Sponge has grown on a solid substratum. In individual cases, as, e.g., in the thickened extremitics of many anchor spicules, the central canal exhibits a brush-like division into several diverging, blind, terminal branches (PI. III. fig. 29 ; PI. XIV. fig. 5).

The innermost layer immediately surrounding the central canal is called by Claus the "axis cylinder." It is generally distinguishable from the nsually many layered outer cortex by its somewhat feebler refractive power and by the absence of lamination. From the behaviour of the spicules when heated, and when examined in polarized light, Mixi Schultze determined that the individual lamellie were scparated from each other by thin layers of an organic sulastance, After cantious heating, fine brown carbon streaks were seen between the adjacent hyaline layers. By the use of the polarising apparatus double refraction could be demonstrated in the thin intermedinte layers, but not in the substance of the lamellie.

Professor Maly of Graz was kind enough to analyse a number of spicules from the root tufts of a Poliopogon amadou, and has summed up the result in the following note, with which he has favoured me:- "The spicules after being placed in a desiccator, and dried at $105^{\prime \prime}$, still contained $7 \cdot 16$ por cent, of water in chemical union. They are, therefore, not silicic acid in the mineralogical sense (quartz substance), but a hydrated silicic acid, and therefore resemble opal, in which the amount of water very frequently varies from 6 to 8 per cent."

In no other group of Sponges is there so great a variety in the form of the skeletal dements as in the Hexactinclidn, yet nowhere are the numerous individual forms of the spicules so readily referable to a common fundamental type.

As was first recognised by Wyville Thomson, and subsequently abundantly confirmed by Oscar Schmidt, Marshall, and others, a system of three equal axes intersecting at right angles is the fundamental structure of the skeletal parts in all Hexactinellida, and that both in regard to the spicules united into a continuous framework, and those which he isolated. Though the disposition of the axes is thus in fundamental agreement with that of the regular crystallographic system, the structure of the spicules is by no means the result of crystallisation. The silicic acid occurs here in an absolutely amorphons condition like that of the opals with which they are, chemically, so closely related. Only in a few fossil specimens does the existence of double refraetion indicate a secondary transformation into the crystallised state.

The axes of the individual skeletal clements are usually quite distinctly indicated by the disposition of the principal rays in relation to the point of intersection, but frequently they can only be demonstrated by examimation of the central canals.

The fundamental form of all the spicules is the simple, regular, six-rayed form. The manifold deviations from this form may lie understood ns the results of the following modifications :-(1) the mequal development of the rays, which may lead to the complete suppression of one or more, so that in extreme cases only a single ray attains full development; (2) division of the rays into terminal branches, varying in number, form, and direetion; (3) the development of loeal thickenings or unilateral swellings in the form of knobs, thorns, prickles, knots, and similar ornamental protuberances; (4) the enrvature of the chief rays or their branches.

The isolated spicules which sometimes occur, in which more than six prineipal rays seem to run out from a nodular point, may be nsually referred to a very deep division of one or several of the principal rays, as the result of which the secondary or terminal rays have been closely approximated to the point of intersection, and thus simulate the principals (PI. XCVII. fig. 3).

In many cases in the continuous frameworks, more than six beams are seen running out from a nodular point, but of these, as is well known, only six belong to one spicule, while the others belong to neighbouring hexacts, and have become fused to the former spicule at the node of intersection.

In our survey of the different forms of spienles which ocem in the Hexactinellida, it will be convenient to divide them into six main groups, according to the number of perfectly developed rays. These six forms may be termed Hexacts, Pentaets, Tetracts, Triacts, Diacts, and Monacts, and they will be treated consecutively in that order.

Hexacts.

Regular Hexucts are all spicules in which the rays lie at right angles to one another, and are of equal length and similar form. One of the most simple and at the same time most frequent of the regular hexacts possesses straight, perfectly round and smooth rays, in which the diameter becomes uniformly less from the point of intersection to the extreme tips (Pl. III. fig. 15; P1. XXIII. fig. 20). Exen in these simple forms, however, there are manifold differences in the size of the radii. Besides the gradual ranning to a point, the rays frequently exhibit an irregular decrease of the diametar towards the outer extremity. The latter may thus be conically sharpened, rounded in various ways, or transversely truncated. The ray may also exhibit a terminal swelling of varying form, a sharply trmeated torminal knols (PL. XCV. figs. 3, 4), or a homispherically arched, transverse, terminal dise provided with marginal prongs (PL XI. fig. 3; PI. LV. fig. 8). In the latter cases there is no manifest decrease in the diameter of the ray from within outwards.

The rays may be roughened by small clevations thickly studded throughout their whole length (PI. LV. fig. 5), or in particular regions (PI. LI1. fig. 5). They are often
also beset with thorns and prongs, varying in form, size, and dircation (PI. LVIII. fig. 6 ; Pl, XI. fig. 2 ; Pl. XXVII. fig. 13; PI. XVI. fig. 8).

In certain cases, as Marshall has shown, individual thorns become greatly developed, are directed obliquely inwards, and unite with the opposite thorns of other rays on the same hexact. This results in the remarkable fornation of octahedral margins round the intersections of the lattice-like framework in many fossil, and also in some living Hexaetinellida (Pl. CIV. fig, 3).

The rays of most regular hexacts are straight, but curved forms often occur. The curvature may be quite irregular and uudulating, but it has in most cases a definite form and direction, varying in different species of Sponges, and in many instances characteristic. The carved rays may be smooth or rough, and are sometimes also beset with prickles (Pl . XXVII. fig. 10). When the rays rum out to a pointed extremity, the name "oxyliexuct" may be applied. When a knob or dise-like thickening is formed at the end of each ray the term " discolexact" may be conveniently used.

In many regnlar hexacts secondary rays appear, either as divorging and similar terminal branches on the principal 1ays, or atranged in a circle or a dise-fike transverse expansion of the latter, or finally they may be uniformly distributed close to one auother. To such hexacts, provided with secoulary or terminal rays, Cautor has applied the term "rosette." The number of terminal rays on each principal is generally constant in one and the same kind of rosette, thongh it may occasionnlly vary in different rays, even on the same rosette, and on differcat rosettes otherwise similar. Variations in the form, direction, and dimensions of the terminal rays result in numerous kinds of rosettes.

The length of the terminal rays is generally in inverse ratio to that of the basal principals, which are, as a rule, cylindrical and smooth, and less frequently rongh or besct with prongs (PI. LXXXVIII. figs. 8,9 ; Pl. XCI. fig. 7). The termibal rays are sometimes smooth, sometimes rongh (P1. XXIV. fig. G), or covered with prongs (Pl. XXV. fig. 6), sometimes struight, sometimes bent in different ways, but usually in such a way that the planes of curvature in all the terminal mays are directed radially towards the axis of the primcipal. If the curvature is simple, either its coneavity or its convexity may be dirceted towards the prineipal axis; if it is S-like the terminal ray loulges in its proximal or inner portion towards the exterior, while the distal outer portion has its convexity turned towards the axis of the primeipal, and bends ontwards like the petal of a lify. The termimal rays ard seldom quite cylindrical, in many cases their diameter decreases towards the free ends, in other cases the converse is observed. The very end may be pointed, truncated, roumded off, or terminated by a sharply truncated terminal expansion of a knol-, cylinder-, dise-, or lell-like form.

As to the abundant rosettes, it is convenient to distinguish in the first place those forms in which the principal rays are wholly or partly divided into two or more miformly
pointed, outwardly directed, and divergent terminals. Such forms I have designated "oryhexasters." All the six priseipal mass are ustally disided into an egual number (two to five or more) of termimats, but the number of the fatter may vary in the different principals even in one and the same oxyhexaster; and it may even happen that individual principals remain undivided. In the extreme case (Pl. LYI. fig. 8), only one of the six principals is forkal, while the other five run ont to simple points. It is noteworthy that, in a division of a principal ray, the divisional planes of the two principals which are direetly opposite to one another, and therefore belong to one axis are mutually disposed at right angles (PL LVI. fig. 7). The terminal rays of the oxyhexaster are usually straight (Pl. III. fig. 1; Pl. XVIL. fig. 8), but slight curvature frequently oecurs. In such cases the rays are either simply convex intermilly or externally (Il. XXI. fig. 6 ; Pl. XIII. fig. 6), or they are S-shaped (PI. LXII. fig. 5), The terminal rays may be sometimes quite irregular and wavy, or clse hook-like (Pl. XIV. fig. 18; PI. XV. fig. 9), or even sharply bent (PI. XXVI. fig. 7).

Striking forms which occur in many Euplectellidæ and here and there in Crateromorpha, may be termed brush-rosettes, "graphiohexasters." The principal rays are much broadened and bear a bundle of long, straight, thin, termimal rays in parallel or slightly diverging disposition (PI. XV. fig. 19; Pl. XII. fig. 5). A closely related form, distinguished, however, by the slightly waved curvature of the delicate terminals, is represented in Pl. CIV. fig. 4. In many rosettes with numerons S-like terminal rays, disposed in concentric circles, there is a certain resemblance between the tuft of rays, and a down-feather or pluma, I have, tharcfore, called these forms "plumicomes." Their individual terminal rays may run to a point at the outer extremity, or beoming gradually thickened townals the curved ends, be rounded off terminally (PL. LJV. figs, 4, 6).

A perfectly uniform increase in the thickness of the straight terminal rays, on to the broad, rounded, free extremity, is exhibited by an unsmally large form of rosette, which is also further characterised by a fringe of strongly bent booklets (PL. LX. fig. 3). Another form, represented in fig. 2 on PL. LXX., is characterised by the sharply trmeated cylindrical thickening of the outer part of the straight torminal rays, which thos exlibit a certain resemblance to the spikes of a Typha.

In the rosettes with rounded terminal knobs, "spharohexosters," the terminal rays occur in varied form. They may be quite straight (II. Cl. fig. 7), simply curved, S-shaped (PL. XCI, fig. 7), or finally irregularly enrved is a wave-like fashion (PI. LXXVHI. fig. 12). Thicy are of equal thickness throughout their whole length.

Where transverse terminal dises are developed in the discohexasters, the stalks seldom retain a cylindrical form (PI. XII. fig. 4), but are its a wule thickoned cither extermally or internally (PI, XII, fig. 8; PI, XIII. fig, 3). The terminal dises are fixed transversely on the corresponding teminal ray by their centre, or they may form an over-
langing expansion of the curved oater end of the ray. In the former case they are radially symmetrical, in the latter bilaterally symmetrical, with a plane of symmetry, indicated by the S -shaped corvature of the torminal ray,

Although the radial terminal dises vary greatly in form, they all agree in this that the outer terminal surface is convexly arched or conical, while the lateral margin is provided with small teeth or longer protuberances. If the marginal teeth are large in relation to the central body of the dise a many toothed anchor form results (PI. XXV. fig. 6). If the middle portion of the anchor, on the other hand, is more strongly developed, the result is a hemispherical form with a tootbed margin, or a campanulate form with long marginal protuberances (PL. XII. fig. 4). The number and form of the marginal teeth varics in different rosettes. It is frequently four, but in other cases six, eight, twelve, or indefinitely more.

To all rosettes in which the secondary rays bear on their ends a transversely directed, radially symmetrical terminal dise, I would apply the term "discolicasasters." Those forms, however, in which S-shaped terminal rays bear ou their ends a bilaterally symmetrical dise-like thickening, I would call "flovicomes"-a term used in reference to the resemblance of the bundle of rays to a flower perianth, and first employed by Bowerbank in the description of Euplectella asperyitlum. In these floricomes the formation of small marginal teeth is nsually confined to the terminal portion of the disclike thickeuing that projects or overhangs externally (PI. III. fig. 11; PI. XIX. fig. 5), so that a hand or claw-like form arises. In other instances small teeth are formed over the whole margin of the dise-like thickening (PI. XVIII. figs. 6, 7).

With these regular hexaets numerons irregnlar forms are contrasted. The latter are characterised by the variable formation of one or more rays; the distinctions are associated with difference in length of ray, or with modification of form. To the first category belong the sword-like lexacts, which are found bencath the skin of many Euplectdlidw, such as Enplectellec aspergillirn, (PI. III. fig. 10), Euplectelle oxassistellate (PI XII. fig. 4), and others. In these the five outer rays are simple, smooth, round, and run out to a point; they are either altogether or almost exactly of equal length, while the sixth my, dirceted inwards, is also smooth, round, and pointed, but is fully twice as long as the others. Frequently, too, besides the ray directed inwards, the outer radius on the same axis is longer than the fangentials, so that the resemblance to a cross-bilted sword may become very obvions, as in Tixgeria pulchea (PI. XI. fig. 5). This lengthening of the rays, in one or in two axes, is quite frequent, e.g., in those bexacts with long thread-like rays, which are foumd so abundantly in the parcuchyma of Mataccosaccus vustus. In this form the two rays on the radial axis are usually shorter than the four tangentials. The inverse relation occurs in the hexacts which lie in the gastral membrane of Asconema setubalense, where the two rays of the radial axis are longer than the four tangentinis (P1. XXI. fig. 5).

The shortening of one of the six otherwise similar rays is very frequent, ned lemds finally to the formation of peatacts,

Much more frequent, however, than mere differences in length, are modifications of form. A ray may, in its entire confignration, more or less markedly differ from its five neighbours. This is the ease, e. $\%$, in many hexacts with fir-tree-like distal rays, pinuli, sueh as oceur in the skin of Aulasces jolcustoni (PI. XXII. fig. 3), Cendoplucens eleguns (Pl. NXV. figs. 4, 5), and many other Asconematide, and also in Aphrocullistes (PL. LNXXTV. fig. 8; PL. LXXXV. fig. 4). Mare frequently, however, the differentiation affects two madial ruys generally on one and the same axis, ats is usually the case in the bexacts which oecur in the skin of the Asconematidee, and are provided with one promment, sealy, fir-tree-like, prouged ray (PI. XXII. fig. 9; PI. XXVL. fig. 9). Similar forms occur also in many Enplectellida (Pl. XII. fig. 3; PI. XIII. fig. 2). Apart from the differences already noted, in regard to the mays of many rosettos, some other hexacts, with secondary mys, exhibit further irregularities. Thus, eg., Aphecollistes beatrix, Gray; is markeilly distingnished by the character of the spienles which lie separately in the soft parts. In these, two of the priweipal rays, not however on the same axis, are elongated and curved, and occasionally divided into four pointed terminals, while the four other principals remain simple and short (PI. LXXXIV. figs. 9, 10).

Pentacts.

In support of the theory that peutacts have phylogenetically arison from hexacts by the atrophy of one ray, the existence of numberless transitional forms, with a more or less mamifest cudiment of the sixth ray, may be addneed; while it ought to be noted that the disposition of the five well-developed rays is in thorough agreement with that of the corresponding rays in hexaets and, finally, that pentacts ocour afmost exclusively close to the bounding layer, where the development of one of the two rays standing at right ungles to the limiting surface, is either fimpeded or specinlly favoured. Either the distal or the proximal my may thus medergo atrophy, with the associnted increase of the other.

The rays may be smooth (PI. LVI. fig. 6), or rough (PI. LV. fig. 3), cylindrical or attenuated rowneds the exterior, and pointed, rounded, or even thickened at the extromity:

The simple ease in which all tho five says are of equal form and size is of frequent occurronec (P1. LV. fig. 3), lint the mprived my nsually differs in sume point from the four others, It may project freely beyond the bounting surface, hearing latoral prickles which overlap ene anothor like seales. The resemhanes to a fir-tree, thus produed, has earned for the entire spieule the desiguation pinatus. Such pinulf, in which

the sixth ray may also appear, ocecr typieally in the two families of the Asconcmatile and Hyalonematido. Further differences between the umpaired fifth ray nad the other four oceasionally ocenr.

As in hexacts, so here eurved rays often oceur, and the ray may be curved throughout its whole length, or only in a particular portion. The curvatmre is feequeutly exhibited only by the four mys which form the cross, and these are usually curved towards the unpaired straight may (PI. LXXIV. figs. 1, 2). In many of the pentacts, which projeet from the sponge-body, this cuvature of the four craciate rays bas been so effected that they have assumed an anchor form, and have, in fact, the function of an mehor (Pl. III. fig. 23 ; Pl. XXXIII. fig. 10).

Peculiar corratures of a different kind are exhibited by the four cruciate and tangential mas of many pentact pimuli, whieh adhere closely to large siliceous beams of hypodermal spicales (PI. LII. fig. 6).

The four rays, which lie at right angles to the two radials, form an acnte angle with each other, and are sharply enrved just at their origin in those large pentacts of Rossella antarctica (PI. LV. fig. 9, 13), which have been protruded from the outer skin of the Jateral wall.

In the fork- or broom-like spicules (scopulte), which frequently possess four outwardly directed teeth in addition to the loug stalk, I was, like O. Schmidt, unable to trace into the teeth the fime axial canals, though their cross of intersection is often very plainly visible just below the forking. It seems to me improbable, therefore, that the teeth can be regarded as principal rays, and all the more since their number is by no means always fowr or five, but sometimes six or more (Pl. XCII. figs. 4, 6 ; Pl. XCIV. fig. 5). I should be more inclined to compare them with the termimal mys of the rosettes. The invariably simple and straight stalk of the scopule either eads in a point, or is truncated, or exhibits a knob-like thickening. It is usually smooth, being bat racely provided, terminally or throughout, with tubereles or transversely directed prongs. The teeth, on the other houd, exhibit manifold variations in number, length, form, and position. They usually arise in whorls from, or just above the knot-like swelling on the stalk which contains the axial cross. They nsually vary in number from four to six, but in individual cases more may be present. Sometimes they diverge but slightly at their point of origin (Pl. LXXXIV. fig. 5), and, in other cases, somewhat widely (Pl. XOVIII. fig. 8). After their original divergonce they may also become parallel to one another, and to the chief axis (PL. XCVIII. fig. 9). They are frequently simple in the gastral part, but exhibit in the dorsal part an S-like curvature (PI. XClI, fig, 6), or are ahapply bent somewhat above their origin, so that the outer portion is considerably divergent (Pl. IXXVII. fig. 10; Pl. XCIV. fig. 5). Some are pointed (PI. LXXVIII. figs. 3, 5), and others truncated (Pl. XCII, figs 5, 7), but most of them bear a knob-like or even spherical terminal swelling, which is usually proviled with numerous fine backwardly
bent prongs (PI. LNXIX. figs. 4,$5 ;$ PI. LXXXIV. fig. 4). These finely pointed prougs often occur over the whole bramch (PL XCII. fig. 5), or on special portions of the same (PI. LXXXTV. figs. 3, 5). I am, on the whole, inclined to regard the scopule not as pentacts, but rather ns dinets or mouacts.

Tetracts.

If two of the six mys of a hexict on the same axis are not fully developed, simple cruciform spicules arise, with four rays in the same plane. Snch regular tetracts oceur in the outer, and in the inner (gastral) membrane of many Rossellide; as also on the lower end of the body of IHyalonome, in the quadrate latticework of the maiu supporting framework in many Euplectellide, and in many other species. Rudiments of the two rays which have not heen fully developed can be detected at the nodes of intersection. Such regular tetracts are either quite smooth, or uniformly rough (P1. LNI. fig. 5), or beset with knobs. Many, however, are only rongh or knobbed terminally. Some are more or less uniformly pointed, while others are truncated, rounded, or provided with a knob-like thickening. The four raysare not always equally long (Pl. III. fig. 28 ; PL. XXXV. fig. 8). In many tetracts they are wholly or partially curved, and that either in the plane of the cross (Pl. IIL. fig. 27 ; PI. XXXI. fig. 15) or in a spherical form (PI. LIV. fig. 7). A few eases oceur, which seem to have arisen, not by the ahortion of two opposite hexact rays, but of two rays at right angles. In such forms only one of the three typical axes is fully developed, and of the two others only one ray of each has remained (PI. III. fig. 20).

Triacts.

The three rays of a triact usually lie in the same plane, and consist of two mys belonging to one axis with a third at right angles to these. They are either straight or slightly bent, quite smooth or terminally rough, besides being frequently swollen and knobbed. While the rays of the main axis are generally equal, the umpaired third ray is usually distinetly shorter (P1. III. figs. 12, 25), and seldom larger (PI. III. fig. 26) than the others. The insertion of this unpared ray is often opposite a prong, which doubtless represents un aboutive fourth ray (PI. III. figs. 19, 28). If the unpaired my is very long, and the two others are bent towards it, a peentine anchor form results, such as may be secn among the prominent lateral, aud basal-tuft spicules of many Hyalonematide, such us Pheronema, Poliopogon, and Sempercllu (P). XLVIII. fig. 14a).

Eurcly it happens that all the rays are markedly curved (PI. XYI. figs. 3, 4), and corrspond in position to three of the edges of a cubc.

Diacts.

The two rays of a diact belong either to the same or to different axes, and may resemble or differ from one another. The two rays usually form together a straight or curved rod. Only very rarely are they disposel at right angles (PI. LIX, fig, 16).

Many diaets show traces of undeveloped rays in the form of knobs (PI. Y. fig. 7), or as a ting-like thickening (PI. X.XI, figs. 7, 8, 10), or in the presence of two or four cauals crossing the main nxial eanal at right angles. In many cases every trace of their derivation from hoxact forms has beeu lost (PI LXIL fig. 6). Where only two knots oceur on the bonndary between the two developed mays, or where two opposite cross canals ocenr, we have to deal with the derivation of the diact from it tetraet form, in which the third axis of the original hexact has been entirely lost.

Many variations oceur in the termimal development of the two mas, which are sometimes simply rounded, sometimes pointed, thickened, or knob-like, and often also provided with button or umbel-like structures of the most diverse kind. The two rays may be uniform, or most variably differentiated. They may be smooth or rough, wholly or partly beset with points, prongs, or spines, varying extremely in umbher, form, size, and direction. The direction of the prongs, with which many diacts me beset all round and throughout their whole length, asually remains the same from one und to the otber (Pl. XLV, fig. 6, and PL. LXXI. fig. 4), but the direction may be reversed on either of the two rays, so that the prongs have their points turned to either end of the diact (P1. XII. fig. 12), or, on the other hand, towards the centre (PL. XL. fig. 5).

The obliquely directed prongs occasiomally nssume a flat form, like certain leaf buds (P1 XL. fig. 8), or the scales of the fir cone (PL, XXXVI. fig. 7).

A very peculiar and typical diact stmeture, characteristic of the whole family of the Hyalonematidre, is found in the so-called "Amphidises," in which a terminal expansion of a dise-like, or spherical form, nlways emved towands the centre, is borne on the end ofeach ray. The dise is prolonged into several (six to twelve) tooth or shovel-like marginal protuberances, which in the peculiarities of their longth, form, and direction, contribute essentially to the characteristic features of the different genera and aprecies.

Among the asymmetrical diacts some forms oceur, which exhibit a certain similarity to the terminal umbels of the Amphidises Certain anchor-like forms eshibit carved, hook-like, more or less flat teeth, which suggest the main rays of a pentact; but the anchors exhibit, at the sume tume, the marginal prongs characteristic of the thickened terminal portion of a diact, which has been pulled out to a great leugth, and ends in: a point or in a simple knols (PL III. fig. 29; PL. SVI. fig. 11). The nachor teeth of such a diact do not, of course, possess any central camal, and the axial cross of the central canal is frequently clearly seen at a consilerable distance from the whole terminal thickening of the anchor stalk (PI. XII. figs. 11, 13).

I have applied the term "Unecinate" to the rod-like forms which run oith to a point at both ends, and aro provided with barbs pointed in the same direction. For such forms Carter has lately suggested the name "Borbule," but this term wouhl hot be genenilly understood. In some species these more or less thickly plawed prongs he close to the body of the rod, while inothers they are obliquely directed. They are sometimes dolicate and narrow, snmetimes broad and seale-fike.

Certain Hexactucllidm families have typical and regular Uroinatu, whilo in others thoy are ahsent. They are usually directed at right augles to the surface, with their external points in thio skin (P). LXXIV. fig. 1, PI. LXXXIV. fig. 1) ; occasionally they lie obliquely to the surface or quite irregularly (PL. LXXVIII. fig. 2; Pl. XCV. fig. 2).

Amoug the aymmetrical diacts a fotm oceus in which one of the two rays bears numerous obliquely and ontwardly directed teeth or scales, whilst the other remains smooth (PL. XN... fig. 7), or exhibits only small knobs (PI. XL. fig. 6).

Feeble, irregular, mblulating curvature is exhibited especially on the frequently numerous tuft-like, long and filionn diacts (Pl. V. fig. 14). The simple are-like form occurs, on the other liand, in shorter and stronger diacts (P). III. fig. 21; P1. LXII. fig. G; II, L.XIII. fig. 4). A spinal cork-serem-like form is illustrated by the diacts of Hyalostylus dices, which are rough on one side (P1. LXX. figs. 5, 8). More marked curvature of both rays in the sane plane is exhibited by small diacts in Molascus stellatus (P], XIV, fig. 12). In other cases the mas are bent towards each other in a hook-like fiashion, but on opposite sides (P1. XVI. figs. 5-7).

Monacts.

While the derived uature of a wonact spicule is in many cases determimble by the presence of rudimentary abortive mays (PL L.XT. fig. 8), or by the persistont intersection of the corresponding axial canals at one end of the spicule; this becones difficult when neither ruliments of other rays, not traces of their axial canals persist. The presence of at knob or dise-like expansion at oue end does not of itself determine the monact clameter of the spicule in question, since, as we have seen in the anchor-shaped diacts. the axial cross of the central camal, which is the decisive claracter, lies at sone distance from the thickened end, and may thus demonstrate the diact cliaracter of tho simple spicule.

It seems to me, however, that those spiculea, called by Carter "Claculw," which run to a point at one end, and bear a knob or terminal toothed umbel at the other (II. LXXI.-1.NXV.) as characterintically aceu in the genus Ferrec, are really monats: although I have, like O. Sehmidt, been umble to detect an axial caual in thete terminal unbel, or in the swollen portion helow. This opinior is, however, the more probable,

[^7]sinee O . Schmidt has discovered and figured such an axial canal cross, just in the middle of four teeth on the little auchor spicntes (of the same genus Farrea), which belong to the same system ns the "Clavula."

Though 1 agree on this point with 0 . Schmidt, 1 cannot accept his opinion that the monact umbel and anchor spicules of Farred are homologons with the terminal mys of certaiu discohexasters to which they have some resemblance. These terminal rays I regard simply as prongs without axinl canals; the umbel and anchor spicales, on the other hand, I regard as true monacts.

Mode of Union of the Spicules.

After this general review of the most important forms of spicules, I pass to describe their modes of mion. In many Hexactinellidn there is no distinct maion between the individual spicules, which either lie quite isolated in the soft tissue, or exhilit only a slight connection or nutual support by being closely disposed side by side, or by being interwoven or cntangled with each other (PI. XVII. fig. 6). In other cases, horever, numerons spicules are bonnd into a firm framerork by a laminated siliceous substance. It may be that paratlel or closely opposed rays become surrounded by a common concentrically layered sheath of siliceous lamellee and so become united into a beam (PI. LXXVI. fig. 5; PI. C. fig. 2), or it may be that the ends of the rays of one spicule are opposed to the intersection nodes of another, and become fixed as if soldered; on further, it may be that the rays of adjoining spicnles crossed in any direction are bound together by lamelle of silex, so laid down that the interspaces are filled by web-like layers of siliceous substance (P1. XX. fig. 3). Smaller hexacts frequently occur in which the end of one ray is soldered transversely to a larger beam (PI. XXVII. fig. 8). If there be no immedinte contact of the adjoining spienles, then boss or coue-like elevations may grow out from the sides of two opposite heams, meet one another, and, biccoming smroumded with laminated siliceous material, form transverse bridges or Symapticule,-which have not, of course, axial camals (PI. XX. figs. 2-4). Fimally; in certain conditions, both adjoining spicules, and the brunches of one and the same spicule, may become comnected by a fine deleate lattice-work, with quadrate or tounded meshes The beams of the network arisc at right angles to the lateral borders of the spicular rays, and always lie in the some plame, while they are further mited by transwerse anastomoses. Here again there is no axial camal (PI. L.XIV. fig. 3). When this latticework is greatly doveloped, the gaps may he quite filled up, so that finally a thin siliecous plate results. It is remarkable that such lattice-work and plates are found only in bounding surfaces which come into contact with solid bodies, esjecially where the Sponge has grown on a solid substratum, but also round abont foreign bodies which have

[^8]penetrated into the Sponge parenchyma, and on the surface of Sponges which are set in eavities of stoncs or are surrounded by sand anil gravel.

Several attempts have been made to utilise for systematic purposes the various modes in which the spicules are more or less united into a framework. Thus, in contrast to the Corcelliospongia, which possess a firmly united spicular framework, Saville Kent has named the Hexactinellida in which spicnles remain disconnected, Cedicispongia, and Carter lias distinguished the following three great groups:-(1) spicules muited by silicified fibre; (2) spicules united by amorphous sarcode ; (3) spicules nnited partly by vitrifiod fibre, and partly by amorphous sarcode,

Nlarshall, on the other haud, maintains that the free or mited condition of the spicules is less significant in the classification of Hexactinellida than the manner in which the umion actually oceurs. His distinction of Syualoidw, with open communica. tion between the axial canals of all dietyonalia, and Asynauloide, without such a union of the axial canals, did not, however, find acceptance, for it was soon shown that there are no Synauloidio in this sense. Zittel accepted Marshall's ideas, however, to this extent, that he also based his classification mainly on the natwre of the union between the dictyonalia, and distinguished two great divisions, Lyssacina and Dictyonina. The Lyssacina of Zittel embrace, besides forms with disconnected spicules, those in which there is simply a cementing of the spicules, that is to say, such an external union that the spicules do not seem to be checked either iu their free arrngement or in their perfect development. In the Dictyonina tho spicules of the latticeframework, the dictyonalia, are, on the other hand, normally fused in such a way that the corresponding rays of neighbouring spicules are closely apposed, and become so completely united by a uniform coating of silex, that their original independenco is revealed only in the presence of two separate but closely approximated axial canals. Zittel hus also drawn attention to the fact, that Dietyonina frequently possess spicules which are apposed and bound together in more irregular ways; and O. Schmidt has confidently maintained the occurence of trausitional forms between Lyssacina and Dictyonina. He insists that this dictyoml character is manifested by many forms, as, eg., in his genus Hertwigie, in the firmly unitel inferior portion, while the loose and irregular union of the spicules in the midille, and the entire absence of fusion in upper and outer portions, relates the form to the Lyssacina.

It seems to me indeed difticult to distinguish, in many cases, whether a form belonge to the Lyssncina or Dietyonina. I have, in fact, found forms in which, in a fex places, regular fusiou was to bo obsorved, while, in other respects, aluost all the spicules were comented together in the imegular way of the Dietyonini. I have, therofore, loug endeavoured to find other characters which might serve as sure points of distiuction between the two groups, but 1 have been able to discover ouly one fact, which might, indeed, justify a separation of the groula, though ouly at best a distinction of degrec,
and ineapmble of practical application in many cases While in the Lyssacina the cementing of the spicules occurs at a relatively very late stage, and generally only after the Sponge lins attained its final form and size, the continuons framework of the Dictyonim is formed at onee in every newly developed portion, and constitutes from the very beginning an important factor.

The spienles of the Lyssucina are, during the entire period of growth, easily separable from one amother; but when they lecome united by the cement into a rigid framework, the growth of the sponge ceases. In the Dictyonina, on the other hand, on account of the early development of the rigid framework, growth can only rontime through increase on the surface or at the ends, but there is as little definite limit to this superficial growth as to the general growth of those Lyssacina in which the spicules are never firmly united.

It seems to me worthy of notice that, in certain divisions of the Lyssacina, as, e.g., in the great family of the Hyalonematide, and in the subfamily of the Holascine, a firm union of the spicoles never ocems. It is certninly no aceidental fact that it is in these very divisions that the largest species occur, such ns Poliopogon gigas, Poliopogon amador, Pheronenia giganteum, Malccosacous vastus.

Position and Arbangement of the Spicules.

The position and arraugement of the spicules now remain to be considered. A definite grouping and naming of the spicules is of obvions advantage for description even in those cases where no sharp distinctions exist between the rarious categories. I would, therefore, eadeavour to complete the elassification and nomenelatare already adopted by Marshall.

Prostalico.

The more or less prominent spicules which ocemr aver the outer surface of the Sponge I call prostatia. They occur only in Lyssacina, and may, from their position, be more intimately defined and differentiated as lorsolico, plewalie, and manginatiou:

Betalia.-The basalia are prominent spicules at the lower end of the Sponge, grouped together like banches of long hairs, and forming the root-tuft which serves for anchoring the animal in the mud. This is one of the chancteristic frmily peculiarities of the Hyalonematidæ, but it also oecns in may Euplectellida mud some Rossellides.

When the knowledge of the Hexactinellida was still limited to a few forms, such as Euplectella aspergillum, IIytonema sieboldiiz, and some Dictyonim, it was proposed to utilise the presence or absence of a root-tuft as a leading principle of classification, and to erect a special group of "Lophospongie." In this, the importance of what is mercly an adaption to the nature of the ground, was over estimated. We now know, in fact,
very closely related forms, perhaps even reforable to the same genus, one of which occurs on soft ground, and possesses a completely developed roat-tuft, while the othor, which

F10: 2-Diagram of the arringement of the Spiettes,
grows on a firm sulbstratum, exhibits no frace of such a stricture, It is, indeed, readily conceivahle that one and the same species might, in different eircumistanees, proluce a root-tuft or not.
(zoot. CItALL. EXP.-FAIT LIm.-1886.)

The elongated spicules which form the root-tuft are either smooth or beset with barks, disposed in various ways. While the upper end, which is concealed in the parenchyma, always runs out to a simple point, the free inferior extremity usually bears an auchor-like structure, which varies greatly in form and morphological significance. A knol-like terminal swelling may occur, from the sides of which a few prongs, arranged in a whori, project obliquely upwards and outwards; or again, four cruciate rays may be present, lying in two typical axes, or rardly two rays in one transverse axis. These rays aro bent upwards in hook-like fachion. Iu the first case we have usually to deal with diacts, in which the axial-canal cross is usually recognisable on the stalk, at some distance atove the amohors, while the anchor-teeth do not exhibit any axial canal (Pl, X1V. fig. 5). In the other cases, however, we have to do with pentacts and triacts, in which four cruciate of two curved transverse rays lic in the same plane, with axial canals usually distinetly recognisable (Pl. III. fig. 23, and Pl, LIV, fig, 9),

The arrangement of the barbs on the anchor-stalk, and the form of the anchor-teeth, are often generically characteristic. In many root-tufts besides the auchor-spicules, simple pointed diacts frequently occur.

Plewralia.-The spicules that projeet markedly from the lateral walls of the Sponge sometimes exhibit an essential similarity to the basalia, from which they cannot, indeed, be sharply separated even in regard to position. In Pheronema giganterm, for instance (Pls. NLV., XLVI.), bundles of long spicules with round swellings are madially distributed, with tolenable regularity, over the whole outer surface; and those directed downwards (basalin) differ from those placed in a more latemal position (pleuralia), only in their greater length, slight curvature, and union in a basal tuft. In the Polylophins philippinensis (PL LIV. fig. 1) numerous pleural spicules assist in the formation of a local tuft, by bending down and becoming approximated to the basalin. The ontermost termination of theso pleuralia exhilit the same nochor-atructures as are present in the basalia of the same form. Thus, both in plematia and basalia, in Phoronema giganteum, for instance, two slightly bent hooks, lying in the same transerse axis, oceur (PL. XLV. fig. 9), and in Polylophins phaitippinensis four intersecting transverse rays with a gentle curvature (Pl. LIV. fig. 9).

In other cases the prominent radial plemalia, which oceur cither in bumilles or isolated, have the form of simple, terminally pointed dinets. This is the case, e.g., in Acenthoscus (PI. LII. fig. 2). In Euplectella subereet the long, slightly bent malial mys of the largo primeipal pentacts of the quadrate lattice-work extend andially beyond the side walls (PL. V. figs. 1, 15). In Rossella relutu, on the other hand, the external end of the large pentact is that at which the four tiugential mays intersect at right angles. All theso pentact pleuralia project for nearly equal distances from the surface, and almost tonch each other laterally, so that a delicate veil is formed, onveloping the whole Sponge.

The pentact pleuralia of Rosselle antarctice (PI. LV, figs. 1, 7, 9) deserve special notice. They arise from small conical elcrations and project radially in bundles from the outer surface of the Sponge, while their four tangential mys, which arise transversely to the radials, extend at toleralily equal distances over the surface of the Sponge. The tangential rays, which are provided with small prongs and a uniformly rough cortical layer, do not intersect at right angles, but are so disposed at acute angles that the four together enclose a right angle (Pl. LV. figs. 9, 13). Between these pentaets, which also form a remarkable veil-like strueture, other longer simple pointed radially projecting diaets ocens.

Meryinalie.-In the oscular margin of numerous Lyssacina there is a circle of more or less widely projecting spicules-marginatia-which usually consist of elongated diacts, in which the axial canal cross, which is often (istinctly recognisable, or even indicated externally by boss-like swellings, usually lies almost in the plane of the outer skin. The projecting distal ray is for the most part thickly beset with outwardly directed prickles and prougs; it is less frequently quite smooth, and usually terminates in a point, though sometimes in a small knob-like thickening (PL. L. fig. 4). The internal, usually much shorter ray of the diact exhibits in some cases small proximally directed prongs (PL. XL. fig. 6), but is usually smooth and uniformly pointed. The marginalia include those spicules which project freely in a cuff-like fashion from the margin of the terminal sicve-plate in many Euplectellide. These differ from the above ehiefly in this, that their four transverse rays are not abortive, but remain more or less long, so that the spicules are not diacts but hexacts. At the oseular aperture of Tagorie a peeulinu form occurs in which the distal rays are specially long and peenliarly bent (PI. VII.).

Dermutia.

As to the spicules of the dermul skeleton, which all deserve the title dermalia, some belong wholly or at least specially to the outer bomding skin, and have their axini cross and transverse nays within the latter, while others lie for the most part umder the dermal mombrune, with a more or loss specially developed proximal may eatending for a variable distance towards the interior, and with the axial eross and transverse rays eiller lying immediately below the iuner side of the dermal membrnne, or even somewhat removed towards the interion. Although these two forms of dermalia are not by any means shaply separable from one another, it may be conrenient to distinguish them by the special designations chutedernatio and kypoternualic, expecially where they oceur close to one another.

As cxamples of antodermalia, which are exclusively confined to the dermal membrane, I may cite the dermal tetracts of Lenuginelle pupu (11). LIII. figs. 4, 5) and

Polytophes phitippinensis (PY. LIV, fig, 2), and also the dermal diacts of Buthydorns buculifer (PI. LIN. fig. 11). A my projecting towards the extoror is found in the pentuet dermal pinuli of all Hyalonematide and may Asconomatide, while a ray extending inwards. occurs in the dermal pentacts of hosselle anteretice (PI, LV. figs 2, 3) and other Rossellido. Autodermalia with mys projecting both iuwards and outwards from the dermat membrane ocem in Belcuites (PL. XXIII. figs. 13, 14), Aulasens (Pl. XXII. figs. 2, 3), and as amphidises in all Hyalonematidre.

As hypodermalia I would note, in the first place, those sword-like bexacts in the Euplectellide, which, with thicir short distal rays, saise the cermal membrane into small peaks, and are nsually surmonnted by an attached floricome. Hypodermalia are well illustrated, too, by those strong pentacts which, in many Hexactinellida, lie with their four tangoutial rays closcly under the dermal mombrane, and bear a greatly prolonged proximul, penetrating like a strong peg at right angles to the surface, more or less deeply into the subjacent parcuchyma. The tendency of these hypoidermal pentacts to grow iuwards may le recognised where the axis cross occurs in the dermal membrane, from the fact that the tangential rays frequently extend obliquely inwards from their points of intersection, and always lic beneath any other dermatia which may be present (PI. XXIV1. fig. 1).

To the dermin skeleton 1 refer finally those spienles which I have noted as clavule and scopule. These forms are disposed at right angles to the outer surfice, have the greater part of their elongated minaxial body embodded in the parenchyma, usually, lowever, reaching the skin or even extending beyond it with their broadened terminal portion, which contains the axial cross of tho central caunl. Here, too, we include those fine raphides which sometimes ocem in bundles close to the radial mays of other dermalia (Pl. XCII. fig. 2 ; Pl. XOIII. fig. 2).

Where the skin is raised above the rest of the parenclyma as an independent plate, the spicules of the demmal skeleton are either confined to this plate without being continued on the outer side of the subjacent parenchyma, e. $\%$, in Somperella schuttzei (PL. LII. fig. 3), and in Hexuelinella late (PL. XCV. figs. 1, 2), or they occur not only on the indepondent skin plate, but also on the outer surface of the parenchyma, which then exhibits a special layer of skin, as in Euyplegma curroulare (P1. C11. fig. 3), and Myliusia zitteliz.

Gustrulia.

Relations similar to the above are exhibited by the gastrul skoletou which supports the gastral surface and imer side of muny efferent canals, and which, in some cases, appears at the osenlar border as a divect, and but slightly altered continuation of the dermal (EL. XXIII, fig. 14; PL, LXVIII. fig. 1). The difference between gastratia and icermalia is, however, ustally distinct enough (PI. XXV. fig. 3), and the boundary
betreen the two is generally slimply defined by the pealiar sientes-marginalin-of the osendar orifice (PI. XXSVIIL. fig. 1),

As in the dermal skeleton, so bere, mider the more superficial, deeper spientes necur. that is, spicules further romovel from the inner bounding surface, and more embeddit in the parenchyma. These are strome liexaete or pentacts with their radial rays disposed at right angles to the imer smernee, and with the fom criciate transverse mys parallet to tho same (PL. XXII. figs. 2, 5). In harmony with the torm liypotermalia, these miny be designated hapogastredic. 1 must, liowever, note that hypogastralia are often wanting where hypodermalia are present, and the same is trae of other typical spicules like floricomes, amphidises, clavole, scopule, \&ce. It may be laid down as a rule that the apiontes of the gastral skeleton resemble the dermalia of the same Sponge in gencral charactors, but not in their special development, dimensions, and the like. Thus, for example, the radial axis in one or two mits in the gastralia is fecqueuty well developed, while it is absent in the dermatia, and so bexnets in the gastral membane ave often contrasted with pentacts in the dermal membaue (PL LTIIL. fig. 2). In other cases the free ray is short and broad in tho dermal pinnli, but long and thin in the gastral (PL. XXV. fig. 3). Where the dermal clavalee exhibit a knot-like extremity, the correapouding gastralia have long anchor-tecth (PI. LXXV, fig. 2). Dermal scopulse with pointed teeth are contrasted with gastral scopula with buttonlike teeth (PI. LXXVII. fig. 2), and so on,

As the dermalin of the outer skin do not nsually pass into the afferent subdermal spaces and canals, so the gastralia do not, as a rule, pass from the imer skin bonnding the gastral cavity into the efferent camals (Pl, XXI. fig. 2; PL. LII. lig. 2). In not: a Luw Hexactinellidu, however, there is a development of peculiar cenalarie, which lie on the inner surface of the efferent cmals, and appear to be a continnation of the gastralia; whether it is that, in the absence of a special coutinuous gastral skin, the efferent caunls open directly with large orifices into the gastral space, and the gastral skeleton simply enters into the efferent pussages (Pl. XXXV. fig. - ; PI. XXXVI. fig. 1), or that in apecial gastral skiu encloses the gastral space with a well-developed gastral skedetou, while the effcrent passages are, in addition, provided with similar spicnles-camalaza (P1. X1.VI. fig. 1). The camalaria mo usually present only in the main stems and large branches of the offerent canal systom, but are not continued into the ultimate blind ender (PI. XIXVIII. fig. 1).

Parcuchymalio.

While in the dermal and gastral skeleton there is always at very distinct and typical agreement in the position and aramgenent of the spicales, this is not the euse everywhere with the parenchymal skeluton. I think, however, that bere abo eertain aluple relations may-he recognised as origiml, from which the less regular have bean scecoudarily developed.

On the supposition that the arrangement of the parenchymalia will be least modified where the original form of the Sponge is a thin-walled sac, and the typieal six-rayed condition of the spicules most distiuctly persist, I will start from such conditions as occur in Holascus and Forrea. Here the chief supporting framework of the parenchyma is formed of large regular hexacts, which are disposed at right angles or parallel to the bomding surfaces. These forms, which may be termed direetalio, simply lie in the one case with their corresponding rays apposed to one another (PI. XVI. fig. 2; PL. XVII. fig. 2), while in the other they are closely united into a rigid framework (Pl, LXXIII. fig. 2; Pl. LXXVL fig. 5).

The invariably six-rayed spicules, which are concerned in the formation of the continuous dictyonal-skeleton, and which I call dictyonalia, are ahways distinctly recognisable as such, for even when they have not become connected into a regular cubical meshisork, but ouly in an irregular manner, they are readily recognised by their axial canals. This is not the case with the spicules indicated as principatia, which form the chief supporting framework of the parenchyma in the Lyssacina, for these, like the dictyonalia, do not retain their typical position, and further, by $n 0$ means always exhibit the six rays, being frequently reduced to pentacts, tetracts, or even indeed to simple diacts, Thus, in Euplectella cspergillum, for exmmple, tetracts ocenr in the formation of the quadrate lattice-work on the inner side (P1. II. figs. 2, 5), while in Euplectella subereu (Pl. V. fig. 15) and in Enplectella norlase (Pl. XIV. fig. 2) pentacts occur for the same purpose and in the same positions; in Crateromorphe, Rhabdocalyptus, and Aulochone, numerous strong diacts are found both in the body and in the stalk.

Closely appased to the strong mys of the principalia slender clongated spicules frequently occur, with two or three rays, but seldom more (PI. XVII. fig. 6). These I would call comitalio. They are sometimes straight and parallel to the corresponding ray of the principal spicule, but they nsually extend in a winding and wave-like manner on or round the cater surface of the principal.

In regard to the praition of the parenchymalia, which are found more or less abmadantly between the dietyonalia or the principalia and their attendant comitalia, few general points can be noted. While elongated spicules of this category frequently run at right angles to the surfuce (as the uncinata of many Dictyonina), or are disposed in any other way with complote regularity, very numerous, small, crowded spicnles often occur, like the small boxacts, the rosettes and their derivatives, which are almost ulways seattered quite irregularly in the parenchyma.

NOMENCLATURE AND TECHNICAL EXPRESSIONS.

Dermal membrene.-The external limiting membrane, through the pores of which the water enters the boily.
Dermal pores-The largo and small pores which perforate the dermal membrane.
Subdermel crabectide. The delicate strands of tissue which form an irregnlar framework extending between the dermal membrame and the chamber layer:
Sibdermal trabecular space.-The space between the dermal membrame and the ehamber layer, and partly traversed by the suldermal trabeenlar framework.
Chamber layer:- The more or less folded hayor of adjucent eiliated chambers.
Connecting membrone. The eontinnation of the chamber wall, stretched between the terminal openings of the ehambers.
Chember pores.-The small roud apertures in the chamber wall.
Gustral nembrenc.-The internat limiting membrane direetly surrounding the gastral space.
Geastrat pores.-The pores of very varied size which perforate the gastral membrane.
Subgastral trabecide.-The delicate strands of tissne whieh are united into an irregular framework, extending between the chamber layer and the gastral membrane, and also frequently into the efferent camals.
Subgustral trabecular squce.-The spaee between the chamber layer and the gastral membraue, which is partly traversed by the subgastral trabecular framework.
Torminal sieve-plate-A sieve-like perforated plate, which extends over the broad terminal opening of many tubular or cup-shaped Hexactinelida.
Parictal gaps.-Apertures aver the whole external wall of the Sponge, through whieh the space within communieates directly with the suronuding medium.
Membrane of the parietal gaps.-An iris-like, cireular membrane stretched aeross the gaps, with eirenlar bands of museular fibres, by means of whieh the orifice may be narrowed or cutirely shat.
Covcring plate--A porous plate whieh surrounds like a capsule the body of some forms with tubular framework, and which is united only to the terminal oseular opening of the tube.
Spiculum,-Every independent aud originally isolated skeletal element.
Principal ray. -The primary may which springs directiy from the central nodal point of a spiculo.
Terminal ray.-The braueh or secondary ray springing from the outer end of a principal.
Hexaet, pentact, tetrect, wiact, diact, monact.-Nouns and adjectives nsed to designute the spieules according to the number of their prineipal rays.

Regular heexcet.- Λ hexaet with six rays at right angles to one another, of equal length and of similar form.
Oxylicxuct.-Hesact with rays running out to a point.
Spharohexcet.-Hexact with spherical terminal kuobs
Discoheruct.-Hexact with a transverse dise at the end of each ray.
Rosette or hearcostex-A bexact with equal terminal rays.
O.ryheccoster:-A rosetto with straight or bent terminal rays, running ont to a poins.
Gruphiohexaster:-A rosette where the ends of the principal rays bear a bundle of long fine terminal rays in a brish-like manner.
Spheroliexaster:-A rosette with spherieal knobs at the ends of the terminal rays.
Diseohexaster:-A rosette with transversely disposed, radinlly symmetrical dises on the outer ends of the terminal rays,
Floricome.-A rosette with S-shaped terminal rays, which are arranged in a whorl like the petals of a lily, and which pass at their outer end into a thickened terminal plate, arched outwards, and provided with external margiaal teeth or claws.
Plumicome-A rosette with mumerous S-shaped terminal rays, whose external curved ends form several tiers, one upon another.
Pinulus.-A pentact or hexact in which one may bears ollique lateral teeth or prickles, presenting a resemblanee to a fir tree or fir cone.
Scopula.-A fork-like spicule with a lony straight stalk passing nt one end into two or more teeth.
Anphicise.-A diact, at each end of which a convex expausion occurs, which bears six or more backwardly bent marginal teeth.
Ancorcu- A rod-like spicule at one end of which two, or several whorled, transverse spikes oceur, which are bent backwards like hooks.
Uncinatum.-A strighlit rod, pointed at both cnds, and beset all over with barhs pointing is the samo direction.
Cloveld.-A rod which bears at one end an clab-shaped or transverse discoidal expansion.
Prostalist-All the larger spicules which project far beyond the outer surface of the body, and which may be readily seen with the naked cye.
Basaliu.-The prostalia which project downwards from the lower eud of the body, and whick form the basal root-tuft by whidh the Sponge is fixod in the mud.
Pleuralic.-The prostalia which project beyond the outer surface of the lateral portion of the bods:
Marginalias-Tho prostalia which project in wreath-like arrangement round the oseular margin.
Dermaliu,-All the spieules which stand in a definite relation to the external skin.

Autotermalia.-Dermalia which lic either completely, or at least with their axial eross, in the dermal membrame.
IIypodermation-Dermalia which lie with their tangential tays more or less elosely beneath the dermal membrane-
Gustrutia-All the spicules which stand in a definite relation to the gastral membrane,
Autogestralia.-Gnstralia which lie either completely, or at least with their axial cross, in the gastrat membrane.
Hypogustrulice-Gastralia which lio with their tangential rays close benenth the gastral membrane.
Cenctario.-Spicules whose axial eross lies in the membrane which lines the efferent canals.
Parmchymulio.-All spicules which are onufingel to the parenchyma of the soft parts, and which bolong neither to the dermal nor to the gastral mombrane.
Dictyonalia.-The parenchymalia which become fused to form the continuous skeletal framework of the Dietyonina.
Principalia.-The more or less strong parenchymalia which, in certain circumstances, berome fused by siliceous matter, and which constitute the supporting framework of the Lyssacina,
Comitutia.-Thin parenchymatia whicb are very closcly npposcd to the principalia.
Intermedio.-Paronchymalia situated between the principalia or dictyoualia.

DESCRIPTION OF GENERA AND SPECIES.

Order HEXACTINELLIDA, O. Schmid; seu TRIAXONIA.

Sponges with very loose soft tissue, in which the spicules are either isolated or united by a siliceous cement into a counected siliceons skeleton. The spienles belong to the triarial type, or are readily derivable from it.

Suborder I. LYSSACINA, Zittel (Pls, 1.-LXX.; Pl. CII.).
Hexactinellida in which the needles cither remain always isolated, or are partly subsequently united in an irregular fashion, often forming strands bound together by siliceous cement, or ladder-like trabecula, by means of numerous synapticula.

Tribe I. hexasteropfolra, F. E. Schnlze (Pls. I.-XXVI.; Pls. LIIL-LXX; PL CII.).
Hexasters are always found in the parenchyma. The chambers are clearly marked off from one another, and are thimble-shaped.

Family 1. Euplecteldide, Gray (Pls. 1.-XX.; Pl. LXX.).

Saccular or tubular Lyssacina, in which the inferior blind extremity is either rooted in the mud by means of a tuft of fibres, or fixed by a compact base on a firm substratum. The relatively thin lateral wall is in some genera perforated by round or irregular apertures or gaps, more or less regnlarly arranged, while in others it is nouperforated. The transversily trubeated or dome-like upper end is genernlly (everywhere?) covered by a perforated sieve-plate, and is bordered by a wreath of freely projecting marginal spicules (marginalia), or by a cuff-like fringe, - The outer surface of the lateral wall-apart from the gaps-is either miformly smooth, or exhibits ridge-like elevatious; sometimes it is richly furnished with madially projecting spictles. On the iuner surface there may be ohserved-apart again from the gaps-furrow-like grooves in more or less regular arrangement.

The parts of the skeleton are cither entirely isoluted, or partly united in an irreguiar
manner into a continuous framework. This fusion is offected lyy a process of cementing (soldering), or by menns of symapticula.

The dermal skeleton is formed of sword-like hypodermal hexacts, of which the prolangel prosimal mass penetrate the parenchyma at right magles to the surfuce, while the shorter distal rays raise the outer skin into a conical point, and cither bear on their tips a protruding florieome, or ne smrounded by several frody projecting pointed diacta. The for tangential rays of the hypodermalia, which stand at right angles to one another, lie just below the sivve-like perforated skin, and form ly rogular apposition of the corresponding rays a quadrate network.

The gastral skeletou is similarly formed of hypogastral hexacts or pentacto. The frolonged distal ray enters the parenchyma at right angles to the gastral surface, while the opposite proximal ray, when fully developed, raises the gastral skin in an internal peint, and also, in some cases, bears on its end a floricome. By the closely apposed tangential rays of the hypoderualia a quadrate lattice-work is formed for the support of the gastral skin.

In the parenchyma of the body, in addition to simple hexacts and their derivatives with a smaller number of rays, numerous rosettes oecur, chiefly oxyhexasters and discohexasters.

The chambers, which lie close to one another in a very much folded single layer, have a simple saceular or hechive form. In their thin walls can be seen the elcgant guadrate network formed from the anastomoses of the ciliated cells, and here and there a romed chamber pore. The delicate trabecular framework, which extends on the one hand between the outer skin and the chamber layer, and on the other, between the latter and the gastral membraue, is abundantly penetrated by the lacmax aud canal-ike spertmes of the incurrent and excurrent canal system ; but besides this, there extends cxerywhere, between the openings of the chamhers, a thin net-like layer, in which numerous oxyhesasters lie embedded.

According to the presuce or absence of parietal gaps, 1 have catablished two sul. families, namely, the Euplectellinio with, and the Ilolascine without gaps,

Subfamily 1. Euplectelinex (Pls. 1.-VI.; P1. Alli.; Pl. XIV. figs. 1-ō).
Euplectellidw, in which the lateral wall is perforated either by more or less regularly arranged eircular gajs, with π membranous margin uni cirenlar muscles, or by iregular angular apertures. The sword-like leexacthypodermalia bear a floticome at the end of their distal rays. The hypognstralia aee, as a rule, simple pentacts without a proximal ray, but here and there bexacthypogastralia also ocenr, with a floricome at the end of the prineipal ray. The contral type and best starting-point for the stady of this sulfamily is the genus Einplectelle.

Genus 1. Erptectella, Owen (Ils. I.-V1.; PL NIII. figs. D-7; PI. XIT. Figos. 1 万),
1841. Owen, Troce. Zool. Som. Lond., vol. ix. ppe 3-5.
1813. Owen, Tratis. Zool. Soc. Lond., vol, iii, (1) Jp, 203-206, talu xiiis
18.15. Tonlimin-Smith, Am, anil Mug. Nat. Hist, aer. 3, vol, $\mathrm{xx}, \mathrm{p}, 176$.

1858. Towerhank, Thil. Trans, vol oxiviii. (2) p. 279.

1862. Howerlinnk, Phil. Tratis, vol cfit (2) p. 747.
1864. Bowerbank, Monogryibl Drit. Spongiadio, voL I
1866. Gray, Ami. aud JFug Nat. Hiot, ear. 3, voL, xviii, pi. 187.
1867. Elowerbank, Proc Zool. Soc. Lond., pr 18, 351.
1867. Gray, Proc, Zool. Sue, Lonil, pu 492.
1867. Semper, Archiv f. Xaturgech. vol. xxxiii, 1, „ 81
1868. Gray, Am. aml Mag. Nat. Nist., aer, 4, vol. i. p. 161.
1868. Gray, Anis and Mag. Nal. HiaL, aet. 4, vol. Hi. 1, 573.

1868 Masahall anl Herkluts, Arclizees Néerlandaises, iii. 1. 435.
1868, Clans, Cebur Eaplectells aspergiliam.
1869. Moore, Anu, and Mag. NaL. Hist., set. 4, vol. iii. p. 196.
1869. Mowerbank, Proce Zool. Soc Lond., p. 66 .
1871. Cartot, Ann and Mog. NaL. Hist, et, t, vol, viii 14.330.
1872. Gray, Ain and Mag. Nat. Hist, ser, t, vol. ix. p. 412; vol. x. p. 134.
1873. Carter, Anna and Mag. NaL. Hish, ser, t, vol. sii. p. 349 ,
1873. Wyvill Thomsom, Good Wonls, Joly, p. 510.
1874. Th. Higgin, Am, and Mag. Nat. Hist, ser. 4, vol, siii. p. H4.
1875. Bowerbank, 1roc ZooL. Soe. Lomi, p. 273.
1875. Marshall, Zeitechr. 1. wiss Zool., B4. Xxv, Suppl, p. 112.

18ī6. Wähmons-Suhm, Zeitsehr R. wiss Zool., Dit, xxvi. p. 1xxiii.
1876. Marshall, Zeitschr. f. wiss, Zool., Dd. axvii. p. 113.
1877. Wy yille Thomson, The Allantie, p. 138.
1878. Clifumo, Nataral History of Eaplectolla aspergillum.
1879. Moseley, Notes hy a Naturatist on the Challenger.
1879. Agassiz, Bull. Muz, Comp. ZooL, vol. vi
1880. O. Schmidt, Spongien des Meerbusens von Dlexioo, vol, ii. p. 60.

1880, F. E. Schulee, Trans. Roy. Boc, Edin., vol. xxix. (2) p. 66I.
1881. Witefieh, Amer Joum. Sci, and Arts, July und Augist.
1881. Mfitne-Elwarls, Couptes reudus, L xciii. pp. $8706,931$.
1881. Waleott, Amer. Journ. Sei, and Arts, vol xxii pli 894,395,
1885. Filhol, Lis vie at fond des mees, p. 282.

History-After a prelininnry commnuication which appeared in $1841,{ }^{1}$ Owen published in 1843 the first aceurate deseription of Euplectella "speryillum. ${ }^{\text {? }}$ In this somewhat brief, but precise aml elear deseription of a well-preserved skeleton from the Philippines, the structure, as seen by the nakod eye, or nuder the magnifying power of a simple Lons, is so thoroughly inveatigated that later observers lave had but little to add to it.

As the most essential differcmee letwoen bis Euplectelle asperyithem and the Aleyoncellum speciosum. Qroy and Gaimard, Owen emphasises the fact chat in Euytectedta

[^9]a transversc, slightly convex sieve-plate closes that end which he regarded as the inferior; while Alcyoneellum speciosum appeared to exhibit a simple inferior extremity. Further, as he had iuadvertently read the worl Alcyoncellam Alcyonellum, he mantained that, even if there was a generic agreement hetween his Sponge and that described by the Erench investigators, yet the mame Alcyouellum must be changed since it had been aircudy bestowed by Lamarek on a Bryozoon. Owen also erred in regarding Aleyonellum yelatinosum, Blainville, as synonymous with Alcyoncellum speciosum. Quoy and Gaimard.

In a paper which appeared in $1857,{ }^{1}$ Owen described it second species of the same genus undor the title Euplectella cuewmer. This bo distingushed from Euplectella nespergillom by its barrel-ike form, by the absence of the oblique sidge and of the cufflike collar at the extremity, which in this species is truncated and closed by a sievephate. The single specimen upon which the description was based was presented to Captain Etheridge by the King of the Seychelles.

The gencric characters of Eupiectelle, which were more definitely formulated in this than in the previons memoir, are as follows: - "A eylindroid hollow form of body, closed at the wider end ly an irregular network, and at the narrow end by the termimal tuft of finer filaments into which the parietal fibres are there resolved. The parietal fibres, or those that constitute the wall of the cylinder, are regularly disposed, and intersect each other at definite and nearly equal distances throughont its extent. They consist of longitudinal, transserse, and oblique fibres, the latter being of two kinds, winding spirally round the cylinder, but in opposite directions. The longitudinal and transverse fibres are the thickest; they are arranged at intervals of from one to two lines, areraging one line and a half aprat, and divide the cylinder wall into square spaces of about the latter diameter. The longitudimal fibres are external to the trausverse ones, to which they are bound by the oblique or spiral fibres; these are, some external, some internal, to the others, and they close by their decussation alternate quadrate intervals between the longitudiual and transverse fibres. The angles of the alternate open squares are intersected by finer and less regular oblique fibses, which reduce their area more or less to a circular form."

The fact that, in the specimens on which the description of Euplectelle ctewmer was based, the tuft of long siliceons spicules included a number of forvign bodics, led Owen to believe that the fixing of this sponge, and also of Eirplectella aspergillum, was not uffected by means of a sicve-plate, lut by the long luai-like tuft; and accordingly, that the natural position was the inverse of what he had formerly described in regard to Euptectella cespergillim.

A treatise by Bowerbank, which mpeared in 1858,? contninel a detailed description of sponge spicules, In this memoir several of the beautiful microscopical spicules which

[^10]lie seattered in the soft tissues of Euplectello aspergillum and Euplectelle oucumer ate described and figured.

In Max Schultze's well-known research, "Ueher Ifyalonema," puhlished in 1860, there are also some observations on Euplectella spienles. It is interesting to note that Schultze regarded Alegoncellum speciosum, Quay and Gaimard, as identical with Euplectella asperyillum, Owen. The same view was hod by Bowerbank, who in 1862, in his third communication On the Anatomy and Physiology of the Spongiade, regarded it as indisputable that the older generic name Aloyoneellum of Quoy and Gaimard should replace the name of Euplectella given by Owen. Ho himself, however, inconsistently employed not the specific designation speciosum but aspergillum. Instead of adopting the generic diaguosis proposed by the French authors, BowerLank preferred the following srmmary of the characters of the genus Alcyoncellum:-"Sponge fistulate; fistula single, elongate, without a massive basc. Skeleton: primary fascieuli radiating from the base in parallel, straight, or slightly spiral lines; secondary fascieuli at right angles to the primary ones. Osenla congregated, with or without a margimal boundary to their area."

In lis British Spongiadæ (1865), Bowerbank figured and described different parts of the skeleton of Aleyonoellum asperyillam, Alcyoncellem corbiculd, and a new but not minutely described species, Aleyoncellum jobustum, Bowerhank (strictly Alcyoncellum robust(t). ${ }^{2}$

In a short historico-critical papar on Vemn' Flower Basket, published in 1868, Gray maintained the identity of Alcyoncellum speciosum, Quoy and Guimard, and Euplectella aspergillum, Owen. ${ }^{3}$ Since the designation Alcyoncellume was first employed as a gencric name for a ealcareous Sponge (Aloyoncellunk gclatinosion, Blainville) by Blainville, Owen's generie name Euplectella might be preferred; but the original specific desiguation speciose of Quoy and Gaimarl should be nestored, so that this beautiful siliceous Sponge should in future be called Euplectelle speciosa, Quoy and Gaimard.

In the following year, 1867, Gray deseribed the structure of the skeleton of a young specimen of the same species. ${ }^{4}$ He refas the bent form of the tubes to the presence of Crnstacea which appear constantly in the interior. Euplectella cucumer, Owen, is not regarded as a distinct species, but ouly as a form-vaticty of Euplectella casporgillum, Owen.

During his stay in the Plilippines Somper had opportunity of examining numerons specimens of Euplectella asperyillum. He questioned the identity of Aleyoncellums speoiosum, Quoy and Gaimard, and Euptectelle asperyillum, Owen, and wished to

[^11]restore the latter designation. ${ }^{1}$ The crustacea that constantly ocour in the large lumen of tho tube, Semper identified as a Pakemonid, aloug with which there froquently oceur an isolated Aege, hamed by him Sege spongiopheito.

In the same year (1867), in his attempt to form a general system of the spouges, ${ }^{2}$ Gray creeted am onder of "Acanthospougie" in which "spicnles of more than one form or kind" appear "in the same sponge," and to this he referced, among others, a special family of the Euplectellidet with the following charncteristics:- "Sponge tubular, skeleton composel of longitudinal, transverse, and oblique bundles of spicules, intersecting each other and forming a network. Sarcode mucilaginous, stndded with many rayed stellate spicntes." To this family Gray also refored, in addition to the genns Euplectella, two other new genora, Corbitelle and Heterotella, which differ from Euplectelle chiefly in the absence of the regular longitndinal and circular disposition of the fibrous skeletal strands. The diagnosis of the gents Evplectella is given by Gray* as follows:"The tubes regular, gradually wider nbove, formed of regular longitudinal and transverse bundles of filiform spicules, which ree crossed in an obligue direction with mare slender fascicles or scparate filiform spicules, and strengthened externally with transverse or obliquely raised ridges; the upper ridge forming a fringe at the top of the tubes, between the edge of the tubes and the irregularly netted fid. Sarcode thin, studderl with many rayed stellate spicules, with long simple or trifid rays, or with short rays divided at the end into several converging rays, forming a bell-shaped serics."

As specific examples Euplectelle nsperyillum, Owen, and Euplectella cucroner, Owen, are cited.

In 1868, Claus published a detailed research on the architecture, formation and strncture of the skeleton of Euplectelle aspergillum, Owen. ${ }^{4}$ The different forms of spicules are intimately described, and the fusion of certain gronps by the deposition of silicoous lamello is demonstrated.

In Bowerbank's critique on Gray's arrangement of the Sponges, the separation of the family of the Eaplectellide fivm the "siliceo-fibrous sponges" is eensured, since their skeleton is "truly siliceo-fibrous."

A new Japanese species belonging to the genus Euplectella lins been described by Herklots and Marslall, ${ }^{5}$ under the name of Euplectella oweni. It is charactorised both by its saccular form, which gradually diminishes upwards, and by a peculiar arrangement of the round parietal pores, with which variations in the skeletal structure are associated. In this species there is no cementing of the long siliceous spicules into longitudinal fibrous strands, and in place of the outwardly directed oblique ridges there are downy siliceons hairs covering the suface.

[^12][^13]In an artide on Senyperella (IIyulonema) sehudtaii (1869), Gray also expressed in opinion on the relation of Euplectella cucumer, Owen, and Euplectella arpergillum, ${ }^{1}$ He said :- "The different shape of the body of Euplectelle capreryilluat and of Euplectelle oucumer may indicate that they grow in different situations and circumstances. Einphetelle cuermer most probably grows in the mud, kept in its place by a mooring of stones, as figured in Professor Owen's plate. The carved form of Euplectelle rsperyitham would lead one to believe that it most probably grows on the side of a perpendiedlar rock, but I have no proof that this is the case, except the form. If it grew from a horizontal surface, the top of the tube or cloaca would not be uppormost, and the Euplectelle would not be in the npright position natural to all Sponges and other auimals and plants that live on the bottom of the sea."

With regard to the habitat of Euplectella cospergillum, Owen, a communication published in the same year, 1869, by Thomas J. Moore, ${ }^{2}$ is of interest. He communicates the accomut given by a certain Captain Morgan, who obscrved at Zebn (which is at a distance of three nantical miles from the village of Talisay), the capturing of "Regadera" by the natives. On the two extremities of the transverse bean of a large T-shaped irou apparatus, a long bamboo rod with nuwerons iron hooks is fixed horizontally on each side. This apparatus is let down upon the muddy ground at a depth of 130 or 135 fathoms, and is dragged over the bottom by the boat, which is carried along by the ebbing tide, until the fisherman observes that something has been caught. On pulling it up, some Regaderas are usually found to have been caught by the hooks. These are at first dirty and of a yellow colow, bat after maceration in fresh water they acquire a beautiful appearanee. The root tuft of the Sponge remained in the soft maddy or sandy bottom, while the entire upper tubular portion of the body projected freely, and its trumeated terminal surface "turned itself towards the setting sin." Another verbal communication made by Captain Morgan to Moore is also noteworthy, since, according to it, the natives only eapture the Regadera when the boat is carried onwards in a given direction, but never when it moves in the opposite course.

In the change which Gray ${ }^{2}$ proposed in 1872 upon his above-mentioned Sponge System of 1867, he placed within the order Coralliospongio, and in that section which possesses " hesradiate spines in the sarcode," the family of the Euplectellide, including the single genus Euptectellu, and he referred them to that subdivision in which "the sponge is free, attached to the mad by uumerons elongated filamentons spicules surrounding its base," and has "smnil recurved spines at the end "; the "skeletou being fommed of elongated spicules more or less nuital by siliccous sceretion."

The family; and at the same time the somewhat attered generic characters, are now stated as follows:-"Sponge tubnlar, free, formed of bundles of elongated thread-like

[^14]spicules placed in horizontal, transverse, and oblique directions, often crossing each othor, forming a more or less irrogular network, and oftell closed at tho top by a netted lid formed of shorter spicules; the hase with elongated frce spieules terminating in three or four short spines, by which it is fixed to the mud. The sarcode mucilaginons, stadded with differently shaped spines, some of which are many rayed, stellate, with clavate arms."

In the system which Canter proposed ${ }^{1}$ in 1873 for the Hexactincllida he did not class together the well-known forms hitherto united in the family of the Euplectellider, but referred Eupleetclla asperyithum to one of his three elief divisions, where the "spicules" were "held together ly silicified fibre"; the genus Hubrollictyon, Wrville Thomson, he relegated to the group whose "spicules"were "held together by amorphous sarcode"; while for Owon's Euplectella crawmer, whose spicules are only united in the lower portion of the sponge by being ecmented with silieeous matter inte a rigid framework, while they remain isolated above, he instituted, beeanse of this character, a special third division.

As characteristic of Euplectella aspergillum, he noted that the body wns "tubular, mbrauched, and closed at the extremity." This specific character, however, applies equally well to Euplectelle cucumer, Orren, and to Habrodictyon, Wyville Thomson. The two species of the latter, Mabrotictyon speciosum and Habroctictyon corbicile. although separated by Wyville Thomson, Carter thought it necessary to unite in one species, Habrodictyon or Aloyoncellum speciosum.

In 1874, Higgin ${ }^{2}$ deseribed the skeletal structure of a specimen of Euplectella axperyilluen preserved in the Liverpool Free Musemm, which had already, on an earlier occision, been inspected by Wyville Thomson dming his stay in Liverpool, and was referred to in a letter from the Cliallenger in Good Words, July 1873, p. 510. That communication by Wyville Thomson tan as follows:-"Several samples of Euplectella very elosely allied to the Philippine species, if not identical with it, eame up in the trawI off Cape St. Vincent, and gave us an opportunity for the first time of secing this Sponge alive DF. J. E. Gray writes to the Amuals and Magazine of Natural History that specimens have been received of Eupleotella asperyillum in spirit, and that in these the glassy framework is entirely masked by a soft brown corky coating of sarcole. Our fresh specimens entircly bear out Dr. Gray's description. It would be difficult to imagine that the thick, somewhat elumsy, brown tube, perforated with irregular oponings, containerl any arrangement of support so delicate and symmetrical."
"Althongh the forms of all the spicules, down to the most minnte and complicated, are identical, the wall of the tube in the Enropean spocimens of Euplectella is not coherent as in most of the Plilippine examples. The original spicules of the skeleton remain separate from one another, and do not become soldered together. One would think that this would be at all events a perfect specific distinction, but one or two of the

[^15]specimens of Euplectelle esperyillem, partieularly one in the Museum of Liverpool, are in this condition, and I am not yot prepared to say whether all may not be thus soft at a particular stage of growth."

Higgin found that a rigid, firmly united, siliceons framework was only present on the under portion of the sponge, while the upper part appenred quite pliable. In the inferior portion the skeletal spicules were provided with a siliceons sheath, and were firmly connected by means of this; above, on the other hand, this umion of the spicules was entirely absent.

According to Higgin, large fom-rayed spicules form a fundamental quadrate network. The arms of these spicules tie in exactly longitudinal and transverse directions, and are apposed to one awother. The arms of the cross spieules, which are about 2 cm . long, stretch across three or four meshes, and the longitndinally directed arms are still longer. Close to the four-rayed spicules (and united with their noms in a bundle-like manner), are simple, long, rod-like needles with thorny ends. The long arms of the three-rayed, and less frequently also of the four-or six-riyed spicules, are employed in the formation of the oblique fibrous bauds. In these spicules two approximately equal arms extend in one straight direction, while the third, or the remaining two or four arise transversely, cither straight and at right angles, or slightly bent. The spindle-like swollen extremities of the arms are thickly covered with fine spines. In the deseription of the simple spicules Higgin does not add anything to the researches of Clans and Carter, but corroborates the opinion ahready expressed by Semper, that the entire skeleton of Euplectella asperypithum always consists in the young state of isolated spicules, which, only at a later stage, become partinlly fused, and more or less firmly united by the deposition of layers of siliceous substance. This process of fusion begins in the inferior portion of the latticelike tube.

A communication by Bowerbank ${ }^{-1}$ gives a more minute account of the arrangement of the loose spieules in the tissuc of Euplectella asperyillum. There is here to be noted an important advance in our knowledge of the dermal skeleton. Bowerbank finst recognised that, for the support of the dermal layer, the whole surface is provided with a system of radially directed, floret-like, six-rayed spicules, and that each of the centrally dirceted longest rays of these is apposed to a more deeply seated six-rayed spicule, while the four lateral rays are applied to the corresponding lateral rays of the four adjoining spicules of similar formation, and thus form a regular network of approximately equal quadrate meshes, while the distal ray, which is of about the same length as the laternl mys, projects radially outwards. Each of these frecly projecting, radial, distal rays, bears terminally one of these elegant structures which are designated by Bowerbank "floricomohexradiate spicules." These ippear in no other region of the soft body of this sponge, and are regarded as protective weapons against small worms, \&c. The quadrate mushes

[^16]of the skin skeleton are stid to be completely closed by a thin transparent membrane, and in the latter, groups of small "quadrifureate hexradiate spicules" oceasionally oceur. In the interior of the soft body Bowerbank thonght be could pereeive unmerous "gemmule" surrounded by a simple inembrane.

In Marshall's resenrch on the Hexactinellida, published in 1875, ${ }^{\text {, }}$ there is a detailed account of the Euplectelle orcni, Marshall and Herklots, from Japan, which had been already shortly described by Marshall and Herklots. This species is aceurately compared with the Philippine Euplectella aspergillum, which Marshall bad also the opportunity of studying in a young specimen, with as yet entirels unfused spicules.

While there is a great general resemblance in the forms and position of the spicules, as is particularly obvious in comparing Euplectella oveni with Euplectelle resperyillum, there never ocenrs that fusion of the main spicular hands which oecrus in Euplectelle espergithem when it becomes old, and which leads to the formation of the elegant lattice-like framework. While, moreover, Euplectelle espergillum, which is nlways mich bent, presents an approximately round tube, continually increasing in diameter from the base to the free extremity; and is prorided laterally with ridge-like, oblique, outwardly directed elevations, and at the extremity with a cuff, bounding the terminal sieve-pinte, Euplectella oweni consists of a perfectly straight tube which is oval in trusserse section, and without external ridges or a terminal circular cuff. From the broadest part of the tnbe, which is sitnated about the boundary between the inferior and middle third, the diameter diminishes very gradually upwards. The olosure is effected by a sieve-plate which is somewhat strongly arched outwards.

Sir C. Wyville Thomson ${ }^{2}$ published in 1877, a short description of a new species of Euplectella (Euplectelle suberce, Wyville Thomson), of which threc more or less injured specimens, figured in a woodcut (loc. cit. p. 29), were collected to the west of Gibraltar. It may be well liere to repeat the words of the highly respected leader of the expedition :- "The fine species for which I propose the name Euplectella subcrect, of which three specimens, all unfortunately more or less injured, were taken in the trawl, forms a hollow cylinder abont 25 cm . in length by 5 cm . in diameter. The walls are composed, as in Euplectella aspergillum, of a fundamental, square meshed, siliceons network, bands of spicules rouning longitudinally from end to end of the sponge, and transverse bands intersecting these at right angles. The spicules are in some cases straight and smooth, frequently four projecting knobs ranged romad the centre of the shaft of the spicule show that, in essential form, the spicule is six-rayed, and often one of the side rays is strongly developed and projects to a distance of half an inch or more from the surface of the sponge. The spicules are all free from one another, and those composing the bands can easily be tensed nsundor with a pair of needles. In this species, as in Euplectella ospergillum, the corners of the square meshes are filled up, a pale brown

[^17]corky-looking substanee redueing them to round tube-like holes and rising into spirnily arranged ridges between them ; but the ridges, instead of having a coutinuous glassy skeleton, have their soft substance supported by a multitude of delicate six-rayed separate spicules interspersed with the usual miunte siliceous stars and rosettes. The sponge is lirsite, with sheaves of featherel spicules which projeet from the erests of the spiral ridges, and a serios of like sheaves of great length replace round the mouth tho fretted frill of the Plilippine Iskunds form. The mouth is closed by a very delicate network of a gelatinous substance supported by sheaves of fine needles. The correspondence in form between its ultimato spicales and those of Explectella aspergillum appeared to be so close, that when I first saw this sponge I suspected that it might turn out to be the same thing under different conditions. I am now, bowever, convineed that the tro species are entirely distinct." Of importance, too, is Sir Wyrille Thomson's further obserration :- "No commensal Crustacean has been found in any of the Atantic specimons of Euplectella."

On Euplectella aspergillum, Dr. v. Willemoes-Suhm ${ }^{2}$ also made some notes during the Challeuger Expedition. He writes:-" A single specimen of the water-pot-likesponge was first aceidentally dredged seventy years ago, and this, about thirty years ago (15+1) fell into the hauds of Owen. Higb offers for further speeimens were then made and the second was purehased at a high price. Eight or ten years ago they were still dear, when suddenly the fishermen, induced by this circumstance, discoverod in the immediate vicinity of the city of Zebu, a place from which they eaptured Euplectelle in alundance by means of an apparatus, constructed of bamboo rods and provided with hooks, which was pulled along the sea bottom. The sponge lives at this place at a depth of 100 futhoms in blackish mod. During our stay in Zebu the ship proceeded one day to the place in question for the purpose of procuring specimens. A bamboo apparatus from a fishing boat and a small dredge from the ship were simultaneously lowered. While, Lowever, the former procured an abundant supply, we got nothing, and ouly the foree of one of the large dredges was sufficient to tear up the sponges, which were evidently in great numbers, but very firmly implanted in the mul." A detailed aceount of tho eapture of Euplectella asperyillum by the fishermen of Zobu, and of the apparatus used for the purpose, has been given by Chimmo in a paper ${ }^{2}$ which appeared independenitly, and is accompanied by a plate.

With Chimmo's account, the report given by ALoseleg ${ }^{2}$ of the method and apparatus of capture employed by the fishermen of Zeln, entircly coincides.

Agassiz' mentions a specimen of Euplectella from the collection of Sponges made by the expectition in the Carribean Soa. It is probably the same specimon which Oscar Schmidt ${ }^{8}$

[^18]※ Satmal Hatory of tuplectalla asporgillum, 1578.
1 Ehill. Mua Conk, Zoill, rol, T., $15 \% 2$
described in the following year (1880), as laving been dredged at St. Lucin in 429 fathoms, and at Granada in 416 fathoms, and which he named Euplectello jovis. This species is closely alliod to Wyville Thomson's Eipplectelle subered, hut differs from it in its large prickles, which project freely outwards, and which, to the number of four or five, form a ring round each of the circular parictal pores. It differs further in the possession of a remarkable spicule with a fibula-like double hook. O. Schmidt also desrribes a transversely expanded inferior sieve-plate at the lower ond of the tule, which differs from the superior terminal plate only in being less firm.

To the Euplectellide O. Schmidt also refers his Regadrelle phenax, Herterigit falcifore, and Rhabelopectello tintinuws. In all three the inferior extremity does not, as is the genus Euplectella, run out into a basal tuft, but presents a tolerably firm basal portion, which either consists, as in Regadrelle, of a dense mass growing out into knobs and lobes, or, as in Hertwigid, of irregularly brauched protuberances, or finally, as in Rhabdopectelle, of a simple stalk with a disc-like terminal plate, which is frilled at the margin.

While the siliceous spicules of Regoclrella phernix do not differ essentially is form from those of Euplectella asperyillum, the general shape and the entire arelitecture of the sponge is quite distinct. From the massive base a cup arises which is composed at first of a much perforated plate, and further upwards of a flexible lattice-like network of obliquely intersecting beams with round meshes. On the irregularly shaped upper maxgin of the cup a spicular wreath projects like a cuff. The terminal aperture is, as in Euplectelle, olosed by a sieve-plate. It is remarkable that withiu the cip of older dond specimens younger forms had suttled, so that two, or sometimes even three, individuals appeared as if fixed into one another.

On the branched basis of Ifertwigia falcifera is seated an "irregular labyrinth of eavities with thin membranous walls, which are supported by lattice-like plates of obliquely crossed rods and fibres." On acconnt of the deficient preservation of the obvionsly very brittle upper portion, Oscar Schmidt was not able to obtain any definite idea of the form of the entire sponge. Among the siliceons spienles which lit seattered in the soft parts, there are, besides six- to threc-rayed spienles and the typical Euplectella floricomes, romarkable hexradiate rosettes with four-toothed termimal umbels attached to the individual arms of the rays, and also rosettes with long backwaxlly bent teeth on the terminal umbels, and especially the structures called by O. Schmidt "sickle rosettes," in which each of the six principal rays bears either four simple sickle-like teeth, or a hemispherical terminal dise with sevoral whorls of sickle-fike teeth. Rods oceur here and there with mumerous oblique lateral prongs at one end. O. Schmidt mentions also, delicate silicoous nets on whose exceedingly fine filaments small terminal hooks and terminal umbels are found, but these nets seem to me to be fragments of Radiolaria.

The stalk of Rhabdopectella tintinnus, in older specimens, expauds towards its upper
end into a very irregular notwork with large meshes, so that a labyrinth of hollow spaces is formed. Among the isolated siliceons spicules, in addition to the well-known Euplectello-floricomes, the liranches of whose rays have a very fine basal portion aud an nubent plate with a toothed margin at the extremity, O. Sclumidt found rosettes with fine hook-like tecth, or with terminal mbeds bearing four or more prongs, and other forms in which cach of the six principal rays runs out into five teeth which bear on their extremitics hemispherical dises with mumerous strong, recurved, marginal mys. Of these five leeth with their terminal dises, the middle one is always distinetly smaller than the four surrounding it. A wemarkable spiral bow-shaped spicule with transverse furows is also mentioned by 0 . Schmidt, and fiually the presence of many rayed stars is noted.

A small spouge with similar siliceons parts, but consisting merely of a simple tube open above, with a loose stalk, and a basal plate which resolves itself at the margin into spicules and spicular bumdles, is described by 0 . Schmidt as a young Rhededopectella tintinnus, and he has accordingly conjectured that the larger (older) specimens are ouly the mper portions of similar tubes which had been lost in the dredge.

The first reports of fossil Euplectellidae have been made during the last few years R. P. Witefield 'first drew attention to the fact that the structures which were described from the Chemung group of New York, the Waverley beds of Ohio and of several other places, under the name of Dictyoplyton, and which wore mentioned in the Sixtcenth Report of the State Cabinet of Natural History of New York, p. 84, ns "alge of a peculiar form and mode of growtli," present a certain resemblance to Euplectellid skeletons, since in the wall of the tube longitudinal and transverse bands of fibres are seen to be mited into a petwork with rectangular meshes. Soon after, Witefield ${ }^{\text {confirmed this siow in }}$ grenter detail, and supported it by reference to a U_{1} hantionia dawsoni, which had been described by T. W. Dawsou, pointing out that the beams of the rectangular network consist of "fascicles of slender cylindrical rods or spicules, quite cylindrical and smooth," ind that the "spaces between the bands and threads are covered by as thin fibre, which is alternately elevated or depressed in the adjoining spaces."

By this communication of Witefied, Walcott ${ }^{3}$ was induced after closer cxamination to announce, as a fossil Euplectellid an organism which ho had formerly described, noder the name of Cyathophyous, as a fossil Alga, of a tube-like form, and with an enveloping cont of retiform structure He described "horizoutaI and perpendicnlar series of nazow hands crossing each other at right angles, so as to form a network with rectangular interspaces, the narrow bands being formed of throad-like spicula resting on or one against the other." Of the form described as Cyathophycus, Walcott said:- "The striking reamblance to Euplectella is seen at a glance, ulthough the convex summit of

[^19]the latter genus is absent, mad the margin eurres over and downward on the inside to at considerable distance at least, how far is yet unknown." Mloreover, he crects a species with the name Cyathophyeus subsphatriens, and adds that "each speeies preserves the rounded rim of the eircular aperture at the summit,"

Character of the Grars.-The more or less regularly disposed cirenlar parietal gaps are surrounded by a soft membrane provided with circular musele fibres. The tubular or slightly swollen body runs out into a tuft of siliceons fibres at the narrowed inferior extremity, while the mper, transversely truncated end is elosed by a flat or outwardly convex sieve, and bounded by a thickened border, which is contimed into a wreath of spicules, or into a cuff-like fringe. The larger parenchyma spicules have in the later age a tendency to fuse together, and in adult specimens may unite to form a continnous framework.

The groundwork of the whole skeleton is a system of intersecting longitudinal and circular siliceons strands, which consist of the prolonged rays of strong hexacts, pentacts, or tetracts, and of the apposed thread-like, thin, comital tetracts, triacts, and diacts. The intersections of the fibrous strands form quadrate moshes. The rosettes scattered in the parenchyma arc oxyhexasters. The tarminal plates of the typieal protuberant floricoimes have from six to eight teeth.

1. Euplectella aspergillum, R. Owen (Pls. I.-IV.).

In general form Explectelle aspergillam resembles a thin-walled tube of approximately circular section; the somewhat narrowed lower end is continued downwards into a bundle of longitudinally directed or slightly diverging siliceous fibres, while the superior transversely truncatol extremity is closed by a watch-glass-shaped, outwardly convex sieve-phate. In its upper two-thirds the tube is straight or only slightly bent, while the inferior third usually exhibits a more marked, often almost semicireular curvature (PI. I. figs. 1, 2). If there are two curves, they usually lie in the same plane, but run in opposite directions, so that a form resembling a slightly bent, S -shaped cornucopia results. The length of the full-grown specimens, exclusive of the root-tuft, which measures from 4 to 8 cm , is on an average 24 cm ; the breadth, in the upper portion, varies from 4 to 5 cm .; the lower portion, just above the basal tuft, measmes from 2.5 to 3 cm . The dimensions of the individual specimens vary, however, very considerally.

The whole wall of the tube is perforated by numerous parietal gaps, circular apertures of tolerably regular form, and varying from 1 to 2 mm , in diameter. These gaps lie at the bottom of furrow-like grooves, and each gap is surrounded by a stretched, soft, ivislike, circular membrane, provided with a cireular musele. The arrangement of the parictal pores is such, that two intersecting systems of parallel right and left-handed spicals, aseending at an angle of 45°, may be readily recognised. This regularity,
however, is here and there disturbed by the interpolation of separate gaps, ain it censes immodiately beneath the superior cuff, in the formation of a perfectly circular row.

The distance between two nuljoining parietal apertures in the same row is, in the upper portions of fully-developed specimens, nbout 4 mm ; at the lower end, on the other hand, and in young forms the distance is only 3 mm . or less. In joung grecimens, and on the inforior portious of ohder forms, a slightly arched protuberauce is formed in the middle of every four adjacent gaps. By the fusion of the elevations which lie between two adjacent spimal rows, raised bands are formed, which, by further increase, become prominent ledges or ridgos. The arrangement and devdopmont of these ridges vary greatly on the walls of the lower part of the tube, they are always but feelily developed, but they gradually increase in height towards the upper end. In some specimens they lardly attain a height of 2 or 3 mm .; in other cases, however, they rise to a beight of 10 mm , or more. Though they ron, for the most part, parallel to the spiral rows of gaps, they seldom continue in the same direction, beyond a semirevolution. They often bend round at right angles, just at the end of half a spiral turn, und extend in the opposite direction down the other side of the tube. Sometimes again they assume an angular or undulating courac, and here and there they may even form a meshwork. In specimens bent in an S-like curve, 1 usually observed several parallel ridges extending in an ascending spiral on both sides, from the lower concavity of the tube to the upper coneavity on the opposite side (PI. 1. fig. I).

Among the ridge-like formations must also be ranked that ring-like smooth lelge which borders the torminal sieveplate, and which, though in many cases merely sugrosted, attains in others a height of 10 mm . Usually, however, the "cuff" is not in direct comnection with the rest of the ridge system, but is separated from it by a concave circular zone varying from 5 to 10 mm , in breadth. It is distinguished from the other ridges by being thinner, and by possessing sharper edges.

On the inner surface of the wall of the tabe may be observed a tolerably regular system of circulir and longitudinal ledges, which together form n quadrate lattice-work The circular ledges, howover, extend somewhat further inirards than the longitudinal. The quadrate meshes which are thus formed have a breadth of 3 or 4 mm . They differ essentially from one another, inasmuch as the one series exhibit in their centre the circular paristal gaps already mentioned, with soveral minute grooves at the circumference, while the others ouly show one or more furrow-like grooves of various breadth and depth. The areas which exhibic deep furrows correspond to those ridges which are prominent externally, whito the shallower grooves underlic thes simple elevations that occur between every fow gaps, in those regions which are not provided with ridges. The arragement of the parietai apertures in oblique spiral rows, and the thombic form of the areas ocuring between every fonr atjoming gaps, are conditioned

[^20]G889
by the fact that the perforated meshes altomate (with tolerable regularity) both longitudinally and transversely with those which are closed (Pl. IV. fig. 2).

The number of transverse ridges projecting inwards amounts to sixty or cighty in a full-grown specimen. I have counted thirty longitudinal ridges on the upper portion, and about twenty in the lower, which agrees tolerably well with the numbers given by Marshall. The increase in the number of longitudimal ridges in the upper part of the tube is due to the splitting which here and there oecurs.

The watch-glass-like, arched, terminal sieve-plate consists of a lattice-work of laterally compressed ridges of various thickness, which, though exhibiting no very regular arrangement, yet suggest a wheel-like reticular structure. One can distinguish, at least, three or four main beams which are approximately circular and several which extend radially. These form the primary meshes, which are ngain divided by narrower and less prominent ridges. Here and thore a broader plate is formed in the network, as if by the confluence of the stronger beams.

At the lower end of the body the longitudinal bundles of siliecous fibres gradually emerge on the surface, and breaking up into separate spicules, form the basal tuft. This has a length of from 4 to 8 cm ., is tube-like in its upper portion, but towards the lower end becomes brush-like throngh divergence of the component fibres. This tuft accordingly eneloses a central inversely conical cavity, into which the extreme lower end of the lattice-like skeleton of the tube-wall extends downwards for a variable distance. In all full-grown specimens I found that this extreme end of the tube was dead, and at a distance of soveral centimetres from the termimal opening, which is from 1 to 2 cm . broad, the end of the tube was devoid of all soft tissue, in fact macerated and generally filled with a firm stopper of mud. The younger the specimen examined, the better was the preservation of the lower end of the tube, and the narrower the terminal opening. I was, bowever, unable to discover, in any of the specimens at my command, any "pointed terminal cone, formed from the longitudinal and spiral strauds of the pariotal tissuc." such as Marahall has observed in a very young specimen, and has designated the "inferior sieve-plate."

In uninjured specimens whose soft parts had been well hardened by being preserved in absolnte alcohol, no extermal openings except the parietal gaps conld be seen with the maked cye. The sponge was of a pale yellowish-grey colon. The consistence of the soft tissue which covered the skeletal framowork in a somewhat thin layer resembled that of bread crumbs, while Wyville Thomson in The Allantic, 1. 136, obsorved:"In fresh specimens of Euplectella uspergillum the crystal framework is covored and entirely masked by a layer of grey-brown gelatinous matter."

The porforated dermal mombrane, which is beset with numerous, small, conical protuberances, extends smoothly over the much folded chamber layer, and is connected with it only by the outer trabecular framework, which is much tiddled by the subdermal spaces
and by the incurrent canals (PL. IV. fig. 4). The saceular chambers which lie adjacent to one another lave either grown together laterally, at the points of contact, so ns to form narrow longitudinal strijes, or are conneeted by means of short benms (Pl. IV. figz 4, 6).

The interapaces and canals extending from the ipertures of the outcr trabecular framework, and passing in between the chambers, are terminated by a comecting membrane which is stretehed, as a direet continuation of the chamber walls, betweon the margins of the chamier orificas.

The finer trabecular fimmework, on the other hand, together with the intermal perfornted skin, which is known as the gestrat mendrone, entors the exeurrent camals and lines them as far as the orifices of the ohamhers (PI. 1V. fig. 4).

Without eutering here more minutely into the histologieal relations of the soft parts thus gencrally refercel to, I would merely note, that in some cases I found, both in the inner and in the outcr trabecular framework, mumerous sperm-balls, and also ova of different sizes (up to 0.3 mm . in diametor), filled with round yolk-granules. In all these ova it was pecaliarly remakable that the germinal vesicle which containcal a lurge meleolus was protruded outwards, and lay on the surface in a round hollow pit-like depression of the surface.

The Skeleton.-The filagrec-like lattice framework, which is readily obtained by maecrating older specimens, as also the spicules which fie fiecly in the soft tissue, are so well and so accurately described by such earlier olservers as Owen, Claus, Marshall, and Carter, that I content myself with referring to their excellent works, and will here only briefly note the more important points in connection with the architecture of the skeleton, characterise the different kinds of spionles according to their form and arangement, and disenss, at greater length, some points which bave hitherto been but little noted.

The gromndwork of the entire continuous tube-skelcton consists of two layers of beans crossed at right angles. One of these layers, tho immer, is composed of circular strands of fibres, while those of the outer have a longitudinal direction, Both together form a lattice-work which is more clearly recognisable on the inner side, and which exhibits quadrate meshes, varying from 3 to 5 mm . in breadth. Ontside these two layers of beams, and partly also between them, are two other systems of inturseeting fibres, which run diagonally to the former, and surround the tube in opposito directions in oblique spirals. They are particularly obvious on the outer side of thoso quadrate meshes of the main lattice-work which neither have parictal pores, nor are covered by external ridges. These externally protrinding clevations or fidges are supported by two layers of stecply-sut beams, which lie just beneath the two latomal surfaces, and which, like the opposite rafters of a very steep roof, have their outer ends united at an acute angle corresponding to the sharp edge of the ridges. They are also firmly fusel laterally to one another, and to the strong lattive-work of the tube (IL, IV, fig 3). These rafter-like
beams are crossed on the one hand by long spiral fibres, which rum parallel to the edge of the ridges, and on the other hand by small short beams, which run through the ridges transversely: Tho ridges are donbtless to be regarded as folds of that part of the tube-wall which extends orer those meslios of the inner quadrate lattice-work not occupied by parietal gaps, and which is smpported by spiral fibres crossing one another obliquely. Tho long ridge-fibres running parallet to the margin are to bee looked upon ns a direct continuation of one of the two systems of spiral fibres, which cross one another obliquely, and further, the rafter-like beams which intersect the former at right augles are to be aseribed to the other system of those spizal bands. The latter appear in the ridges as if laid in a fold sharply involuted on the outer extremity (PI. II. fig. 8).

The strong circular and longitndinal fibrous bands, which are so manifest on the imer side of the macerated tube, have for their gronadwork the much drawn-out, strong rays of the regular, simple and cruciform tetracts. These are interwoven in a peculiar mancr, and become sulsequently firmly united by cementing matter and synaptioula. While all the circularly arranged rays of these tetracts run along the imer side of the tube, the longitudinal rays on the other hand fie transversely across the outside, and all the rays extend over several adjacent tetracts, thus producing the interlacing which is suggested in PI. II. fig. 2. The long siliceous filnes which form the basal tuft join the longitudinal beams of the quadrate network externally, from the commencement of the inferior third portion of the tube.

The narrow, much prolonged comital spicules, which are closely applied by the two long rays of their principal axis, partly to the eircular rays and partly to the longitudinal rays of the large tetracts, and which at a hater period become fused together, we for the most part trinets (PI. II. fig. 4 ; PI. III. fig. 12), whose mpaired ray is continued into the oblique spiral bands of the tube-wall, or contributes to the formation of the ridges. More rarely the comital spicules are diacts or irregular tetracts, in which the louger rays lie in one and the same axis, while the two other shorter rays ape ploced at right angles to one another (PI. II. fig. 20).

The oblique spiral bands of fibres which extend over the covered meshes of the quadrate network, and the firm margins of the parietal gaps, are ehiefly composed of the long principal axes of triacts. Here and there irregular tetracts also ocemr, and diacts whose atrophied transverse axes are asually more or less prominent owing to the presence of prongs.

Pentacts and hexacts are less frequently found among the thread-like elongated spicules (PI. III. fig- 17)-

The extromities of all those needles, which are subsequently firmly uvited, exhibit remarkahle modifications, a few of which are figured on PI. III. figs 2-10. The rays seldom run ont to a point, with a gradual decrease of diameter (PI. III. fig. 2) ; in most
cases the extremity is conieal and shapp (PI. III, figs. 3-5) or simply rounded (PI. IH. figs. $7-9$). It is cither smooth or provided with swall knobs. These prongs or kwohs, which projeet obliquely outwards, give the ends the appearanee of elub-liko thickeningo (P]. III. figs. 9, 12, 17, 20, 25), but this may be also exhibited by smooth extremities (Pl. 111. figs. 10, 14).

The tuft of siliceons spicules, rooted in the mud, is formed of two essentially different kinds of spienles, the main difference botween which may be sbortly noted by tho designations "pronged diaets" and "swooth pentacts." Both legin in an upper, pointed, smooth extremity, and run out into an anchor. But, while in the comparatively rare smooth pentacts the intersection of the axial canals lies in the centre of the four anchor tecth, which are always crossed at right angles, and while not only the loug smooth anclior stalk, but also eneh of the four upwardly bent anchor teeth is traversel longitudiually by an axial eanal (PI. III. figs. 22, 23), the intersection of the axial canals in the pronged dinets does not occur in the greatly thickened inferior terminal hnobs but somewhat above this in the spimose stalk (II. III. fig, 29). Inferiorly the axial eamal runs out generally in a penicillate fashion into π variable number of diverging branches. The smooth anchor teeth of the prong-bearing diaets, which fo the number of three to eight or more) stand in a whorl ou the side of the terminal knob, and project outwards or upwards, possess no axial canal (PL. III. fig. 29), and are accordingly to be eonsidered not ns true rays, but ouly as lateral outgrowths like the prongs of the stalk. The tuft spieules may in full-grown specimens attain a length of 10 cm . or more. During growth they projeet downwards and outwards from the longitndinal bundles of fibres in the tube-walls, and spread out in a brush-like manner. A bending hack of the fibres against the lateral walls of the tube does not normally oceur. Predominant among the spicules which form the upper sieve-plate, and which are distinguished by their partieulaly firm uniou, are strong trincts with distorted angles, and dinets whose two rays eithor form a plain areh or an obtuse angle. Regnlar crueiform tetricts, or pentacts and bexacts, seldom oceur here.

In addition to the spieules above referred to, which become for the most part firmly united, there are mumerous jsolated spicules in the parenchyma of the soft parts, as well as in both the limiting membranes. These compose the so-ealled flake-like tissue ("Flockengewebe" of authors). This designation is due to the resemblanee which the heaps of such needles, liberated by maceration and dried, bear to flakes of snoms. As the agc of the sponge increnses some of them become cemented together, while others remain isolated throughont life. Among the former are numerous delieate spicules with a variable mumber of ruys, but for the most part triaets, which in their whole apparauec resemble the long and thin comital spiculcs ahove referred to, but which possess outwarally bent rays not so long as those of the comitalia (PL III. fig 25). The spienles which always remain isolated may be classed in the following fire groups:-(1) parenchyma spiculos, which are distinguishal ly thick, shout, pointed rays, uniformly conieal towards the outside :
(2) hexact hypodermalin ; (3) pentact liypogastralia: ; (4) exyhexasters scattered among the parenchyma; (5) protuberant floricomes.

The spienles which belong to the first eategory, and are provided with thick, short, conical rays, aro scattered in the inner portion of the walls of the tube. They are particularly abudant, and are arranged in a erueiform manner in the circular membrane surrounding the parictal gaps. In this situation pentacts chiefly oceur, in which the umpaired ray penetrates the pareneliyma madially outwands, while the four reetangularly crossed rays of the two other axes lic parallel to the bounding surfice. Often, however, (espectally in the imer thimer marginal portion of the circular membranc), only one of the two latter pairs of rays is fully developed, so that triacts arise whose paired rays, lying in the same axis, extend tangentially to the frec margin of the parictal gaps, while the mpaired ray is directed radially. If, again, the latter remain undeveloped, diacts arise which have been designated by Marshalt "compass-spieules" on account of their resemblance to a compuss needle, being much swollen in the middle. Completely formed hexacts lelonging to this category of spicules are loss frequent; when they ocem they lie in the parenchyma at some distance from the gastral surface, or from the free margins of the parietal gaps. They are usially regulady developed (PL. II. fig. 18), more rarely shortened in one ray (Pl. II. fig. 1, a.b.c.). While in the lattice-like network of the outer skin dermalio proper are absent, regularly arranged hypodermalia occur underncath as slender hexacts of equal form and size, and provided with a greatly prolonged proximal ray, fonr times longer than the other five mys, which are of approsimately equal length, and like the former rim gradually out to a point (Pl. III. fig. $16 ; \mathrm{Pl}$. IV. figs $3,4,5$). The long principal axis is at right angles, the two transverse axes are parallel to the surface of the body.

In well-preservad portions the axial cross of the lypodermalia lies about 0.1 mm . beneath the skin. Their distal ray extends into a point-like elevation of the skin, which it seems to push out. On its outer end it carries a floricome which extends over the skin (PI. IV. fig, 4).

Since the corresponding tangential rays of the neighbouring hypodermalia are apposed to one another laterally for half of their length or even more, quadrate or rectangular meshes are formed, over the centre of which the skin is, as a rule, somewhat depressed (Pl. IV. fig. 4). If this involution extends still further, the skin fually becomes applied closely against the tangential rays of the hypodermalia, and it may even seem as if the latter occurred in the skin. On the smmmit of the outer ridge there is usually a row of particularly strong and long liypodermalia.

To the system of the hexact hypodermalia there corresponds, on the imuer side of the entire Lube and of the large excurrent passages, a system of similar slender pentact hypogastralia with pointel extremities (Pl. III. fig. 13; Pl. IV. fig. 3). These oceupy the same relative position to one another and to the gastral limiting membrane of the
inner trabecular framework as the hypodermalia do to the outside skin. The long unpaired distal ray extends into the parenchyma, while the four short rays of the two other axos form a eross which lies close beneath and parallel to the gastral membrane. Though this system of lypogastral pentacts also extends for a considerahle distance into the excurrent passages, it does not extond as far as their terminal diverticula (Pl. IV. fig. 3).

The ummerons rosettes present in the parenchyma are all oxyhexasters whose short compressed priseipal rays are continned with as slight terminal thickening into the strongly diverging, straight terminal rays which are six times longer. The number of terminal rays belonging to a principal ray varics from two to five, and it is the same in most cases on all the six arms of a rosette, though it may differ in individual armes. The most common case is for every arm to have three terminal rays (P1. 111. fig. 1).

Such oxyhexasters ocenr on the one hand in the outer trabecular framework, with which they are compressed between the convex outer sides of the chambers; and on the other hand, in the inner trabecular framework, with whieh they extend to the final expasions of the excmrent cand system, between and in front of the terminal openings of the chambers. They do not oceur, however, either in the chambers themselves or in their delicate walls. The dermal and gastral membraues are also free from them.

The other rosette, much more striking on account of its elegant form and explosed position-the floricome-is regularly distributed over the whole outer skin, and is seattered on the tips of the comical elevations of the skin into which the distal extremity of a hypodermal hexact extends (Pl. IV. figs. 3, 4, 5).

Each of the six short, narow, principal mys becomes divided into seven or cight terminal rays, which are bent in an S-like mamer, are arranged it a whorl like the petals of a lily, and consist of a rery thin basal portion or stalk, sliglitly bent and convex towards the outside, and of an outer portion which gradually increases in thickness. The latter bends outwards in a stronger curve, and ends in a firm, almost hemippherical plate, whose shatp semicircular outer horder is prolonged into six or eight claw-like prongs (Pl. II. fig. 9 ; PL. III. fig. 11).

Since these terminal rays of the floricome usually project frcely from the pointed elevations of the skin, either entirely or with their claw-bearing extremities, they penetrate any soft body which may come in contact with the sponge. The delicate stalk will then readily brak off, and the terminal portion remain in the foreigu body. In this manner the floricomes of the Euplectelle serve as wonpous of defence against the attarks of soft skinned auimals such as fishes, molluses, worms, and the like.

I observed that most floricomes had one of their axes so appliod to the distal ray of the comesponding hypodermal hexact that they lay at right angles to the surface of the skin. Not unfrequently, howerex, I found them also lying oliquuly as if misplaced. Though floricomes are not to be foumd on many, and espocially on prominent portions of the skin, it may be reasonably supposed that they were origimally prescnt here as well is
in the adjoining and more protected regions, where they ocenr in a perfectly regular arangement. Evea on the outer side of the beams of the sieve-phate I have frequently found them intact over large areas. On the borders of the parietal gaps, as well as on the entire inner surface of the sponge and-the excurrent passages, they are entirely ahsent, nor have 1 found them in the parenchyma.

Among the many examples of this beantiful and interesting apecies which the Challenger Expelition collected from the same locality, numely, wear the island of Zobu, at a depth of 100 fathoms, some young specimens, unfortunately mueh iujured, of which two seemed bound togethor by an oblique tube-like anastomosis, deserve special mention. The larger of these two tubes, which stand almost parallel to oue another at a distnnee of 2.5 cm ., is bent in a hook-like mamer, and just above the connecting bridge, on the side turned towards the other specimen, is somewhat tlattened and partly involuted. Not including the basal tuft, it is 20 cm . long, and from 2.5 to 3 cm . broad. The distance between longitudinsl and transverse spicular bundles is from 2 or 3 mm , the breadth of the tolerably regular parietal gaps is about 1 mm . The outer ridges and the cuff are well developed, and they attain a height of 2 or 3 mm . The terminal sieveplate is remarkalily lighly arched. Somewhat nbove the middle thoo is an acntely angular division of the tube into two similar tubular branehes. The one brauch continues in the dinection of the principal portion to the highly-arched terminal sieveplate with an approximately equal diameter; the other bends obliquely to the side, becomes somewhat narower, and is continued directly into the wall of the second shorter and narrower straight tube, of 10 cm . in length, and 1 to 5 cm . in transyerse diameter. This extends for 2.5 cm . to the iuferior funnel-like narrowed extremity, which runs out into a delicate basal tuft, while the upper very delicate and soft portion is about 6 cm . in longth, and is provided with a terminal sieve-plate. This small specimen was unfortneately much damaged in its delicate uppes part, yet it may still be clearly recognised that lougitudinal lundles of fibres pass orer directly from the larger Euplectelle through the obliquely ascending bridge into the longitudinal strands of the smaller portion, and extend both upwards and downwards. Siuce the portion of the short tube which lies bencath the comecting bridge, nud especially that part towards the larger tube, agrees thoroughly in the character of its wall with the side branch of the larger tube, it appareatly represents a direet continnation of the latter; the upper portion, on the other hand, up to its superior sieve-plate, hecomes gradually narrower in its meshes and enfeebled in all its parts, and is, moroover, manifestly younger than the under portion, so that I do not think we have here to deal with two independent specimens which stood close to one another, and which, at a sulisequent period become anited by a binding-tule, but am mather of opinion that orgimally only the larger existed. A portion of the upper half of its lateral wall was separated from the upper half in such a way that it hung down to the ground in an arch. This arch thereupon
united so as to form a tube, which constituted the present connecting bridge and the under extremity of the small tube, while from its upper convex side a new young tube grew upwards.

Another young speeimen, in which the amalgamation of the spicules has not yet coumenecd, is from 2.5 to 3 cm . broad, poracsses a lighly arched siove-phate, and a very well developed systom of ridges, together with it completaly formed cuff. The ridges have already attained a leight of 3 mm . or more. The inferior extremity is unfortruately absent.

2. Euplectella suberea, Wyville Thomson (PL V.; PL. V1. fig. 3).

Though the Challengor specimens of the new species which Wyville Thomson namerl Euplectelle subercce were not, as a whole, well preserved, the discoverer was still able by combining the various fragments, to obtain so perfect a concoption of the size, form, and structure of the whole sponge that he was able to publish, with the holp of the artist, the restoration presented in P. V. fig. 1. As is evidont indecd from this excellent figure, and from Wyville Thomson's own words, which have been quoted verbatim above on p. 60, the spange in question is a straight, round, slightly swollen tube, varying from 20 to 25 cm . in length, and measuring about 5 cm . in its greatest breadth. Its walls, it is true, present a general similarity to those of Euplectella aspergillum, but it may be readily distinguished from the latter by the greater regularity of its strueture, by the absence of the high external ridges and of the euff, as well as by the mumerous separate projecting radial spicules.

The parictal gaps lie at a distance of 6 to 8 mm . from one another, within trench-like pits, which are comected hy intersecting systems of cxternal, oblique, and spiral furrows, so that the regular spiral arrangement of the parietal aportures becomes all the more manifest. Between every four adjoning parietal gaps there is a rhombic area, bounded by the eonnecting furrows, and provided with a flat, slightly convex, projecting elevation.

The upper transversely truncated extremity of the tube is bordered by a dolicate marginal wreath, from which isolated spicules project upwards and outwards in groups, without forming a continuous fringe. Close beneath the margin there is a wreath of densely placed parietal apertures, while inside the margin a wide-mesberl lattice-like network is spreal out transsersely, the delieate strands of which are arzanged partly in a circular, and partly in a radial manner,

The inferior extremity of the tube, which bas become marrowed to about the half of the greatest transverse diameter, is devoid of soft parts, and ruis out into an incomplotely preservol basal tuft of long, thin, siliceous fibres,

An examination of the inner surfuce of the wall shows that here, is in Eussectella aspergillum, a quadrate, lattice-like network of longitudimal ind circular ridges projects inwards. The meshes are seen to be oceupied alteruately with a parietal gap, and with a
round exhalent orifice of the efferent canal system which lies maderneath every outwardly arched elevntion of the walls of the tube (Pl. V. fig. 12; PL. VI. fig. 3). On the projecting Iedges there are also numerons smaller forrows, and the orifiees of shorter efferent camals, Although the preservation of the soft parts of the specimens handed over to me for examination is not so good as that of many specimens of Euplectelle asperyillum. I have still sueceeded in definitdy determining the essential structural relations.

The much folded layer of saccular chambers is, as in Euplectelle uaperyillum, uuter with the external akin by means of the outer trabecular fromework, and with the gastral membrame by means of the similar internal trabeenles. In this also, the latter is continued into the termimal diverticula of the efferent passages, forming a coutimous intemal lining (PL, V1. fig. 3).

The thickness of the tube-wall amounts, in the arched portions, to about 3 mm , and through the inwardly projecting ledges to between $3: 5 \mathrm{and} 4 \mathrm{~mm}$.

The chief skeletal framework is formed of strong pentacts, in which the four cruciately disposed mays, which vary from 1 to 3 cm . in length, are arranged longitudinally and circularly so that they are closely mposed to each other lougitudinally, or even cross one another transversely, and so that the longitadinal rays always lie externally to the circulas. The breadth of the quadrate meshes thus formed amounts to 3 or 4 mm . The radial unpaired ray, which projects frecly outwards in a straight or slightly curved course, attains a length of 1.5 to 2 cm , and, like the four other rays, runs out to a simple point. A radial ray does not, however, arise from every point of intersection of the longitudinn] and eircular fibrous strands; on the contrary, both is the longitudinal and trausverse directions, a simple point of intersection withont an independent pentact always alternates with one which is oceupial by the intersecting nodes and the radial mays of a pentact (PI. V. fig. 15).

The intersections of these longitudizal and trausverse filres correspond, not to the middle of an clevation lying between four parictal apertures, but to those external furrows which unite the parietal apertures in spiral lines (Pl, V. figs, 1, 12).

The longitudinal, as well as the cirenlar rays of the large pentacts, are closely surrounded by a mantle of delicate comitalia, whose greatly prolonged mye apply themselves cither parallel to, or in gentle windings round the thick round pentact-rays. As a rule the comitalia cousist of triacts, whose unpaired ray stands at right angles to the two long rays which lie in one line, and serves for the support of the adjacent soft parenchyma, Long dinets with central intersecting nodes are also frequent (PI. V. fig. 14). The extreme ends of these comitalia form blant points, and exhibit a slight roughness, while the rest of the ray is smooth. With the comitalia are associrted thase numerons parenchymalia, with from two to six slightly bent or straight rays (Pl. V. figs. 16-20), which serve for the support of the pareuchyma of the soft prats betwem the priscipal strands of fibres. They are somewhat thicker than the comitalia, and theis
rays are never so much prolonged. Hesaets seldom oceur among tho parenchymal spicules, and like the somewhat mone frequent pentacts are irregularly developed. The numerous tetraets which are present, exhilit, indeed, for the most part, rectangularly intersecting axes, but these seldom lie entirely in a plane, being for the most part miformly bent towards the surface; it may be that the two rays belonging to one axis run ont in the same dircetion and straight, while the two others are somewhat bent, or are disposed at an olituse angle to one another. Sometimes tetracts occur with one of the rays disposed at right angles to the surface of the three others. The majority of these parenchymalia have only two or three rays. Of the triacts the two rays belonging to the same axis are usually bent in a slight curve, from about the middle of the convex or concave side of which the third stmaght ray springs (Pl. V. fig. 16). The diacts are sometimes straight, sometimes slightly bent, poiuted at both ends, or more or less ronuded. They exhibit in the middle of their axial cross, fow, two, or one tubercle, and are frequently ronghened, not only near their ends, but throughout.

Peculiar small, straight, rough diacts, with truncated or rounded extremitios, and with four tubercles projecting markedly from the axial cross and often exhibiting central terminal points (PI. V. fig. 7), oceur abundantly in tho thin circular membrane which surrounds each of the parictal gaps. As a rule, the two rays are equally long, but forms also occur with two long mequal rays, and others which by the very great shortoning of one ray lave become monacts.

Both in the outer and inner trabecular framenork rosettes ocemr, seattered quite irregularly in the form of oxyhexasters, whose short principal rays bear nanally three (Pl. V. fig. 2), seldom four, straight, loug, more or less stout terminal mays. The rosettes represented Ly Wyville Thomson on PI. V. figs. 3, 8, 1 have only discovered in those greatly damaged fragments which were much mixed with the spicules of other Hexactinellida, and which were collected off the coast of Brazil (Station 124). These latter rosettes probably do not belong to Euplectelle suberea, but appear to me to have originated in other Hexactinellida, and to have become accidentally embedded in these specimens. At least in sections of Euplectella suberea (collected to the west of Gibraltar), I have never been able to find such rosettea in situ.

The dermal skeleton consists of a layer of dagger-like delicate hypodermal hexacts with rongh conically pointed extremities, which have their tangential rays so apposed to one auother muder the bounding membrane that a rectangnkar meshwork is formed, while the proximal ray penetrates deeply into the parenchyma, and the distal my, extending to the very tip of every minute tubercle of the skin, beas the somewhat frecly projecting Horicome (P1. VI. fig. 3).

It is noteworthy that on the top of those flat archings which project outwards botweon every four parictal pores, the much prolonged distal ray of a specially large hexact usuilly projects at right angles to the surface, and instead of carrying a floricome
is surmonded by a bundle of diacts, which are provided with prongs ou their pointed extremities (PI. V. fig. 6), and have four conical awellings on the axiat intersection.

Thie floricomes of the outer skiu exhibit a form quite similar to that in Euplectelle asporyillum, but it is important to note that they are almost twice as large. I usually found seven terminal rays on each principal.

The gestial skecten exhibits on the inner side of the quadrate lealge-like network which projects into the large lnmen of the tube the snme slender pentacts which oecur in similar positious in Euplectella espergillum; on the other hand, on the inner side of the diverticula-like chambers which nuderlie the exterual gentle archings, slender dagger-like hexaets oecur, with a prolonged distal ray, and a proximal ray projecting radially into the inner lamen (PL VI. fig. 3), mising the gastral menbrane into pointed tubercles, and bearing on its end a floricome jnst like the similar dermal liexacts. It is interesting, however, that this gastral floricome does not agree either in size or form with the above-mentioned dermal floricome. The number of the terwinal rays belonging to each principal amounts to ten or twelve in the former, but only to seten in the latter. The enp formed by these terminal rays is relatively broader (the diameter of the whole florieome is only half ns large as in the case of the dormal floricome) (P1. V. fig. 4).

Fragments of Euplectelle suberea, Wyville Thomsou, were collected by the Clallenger in three different places:-
(1) In 600 fathoms, lat. $36^{\circ} 25^{\prime} \mathrm{N}$., long. $8^{\circ} 12^{\prime} \mathrm{W}$.; Station IV.; west of Gibraltar.
(2) In 1090 fathoms, lat. $35^{\circ} 47^{\prime}$ N., long. $8^{\circ} 23^{\prime}$ W.; Station V.; west of Gibraltar.
(3) In 1600 fathoms, lat. $10^{\circ} 11^{\prime}$ S., long. $35^{\circ} 22^{\prime}$ W.; Station 124; between Pernambuco and Bahia.

The figure (Pl. V. fig. 1) is reconstrueted from somewhat defective, and yet in some respects adequately preserved, specimens found to the west of Gibraltur (Stations IV., V.).

In a short review of the results of the French "Travaillewr" expedition, MilneEdwards ${ }^{1}$ has noted (1881) that "two fine specimens of Euplectelle suberea were taken off the Berlingues at 3307 metres." And Filhol" adds, "Les Euplectella suberea sont largement répandues dams l'Atlantique nord. Peulant la croisiere du Talisman nous les avons draguées ì diverses toprises par des fonds variants entre 900 et 2300 mètres. En certains points elles étaient d'une extrême abondance et devaient couvrir d'assez vastes eapaces."

3. Euplectclla cucomer, R. Owen.

Since I had the opportunity of sceing the original speeimen of Euplectella cucumer, Owen, which is preserved in the British Museum, and of examining it so far as was possible without injuring the beautiful specimen, I shall here take the opportunity of briefly expressing my opinion in regard to this interesting form.

[^21]In opposition to the opinion which has been expressed by several mathors, e.t/-, Marsliall,' to the effect that Euplectella cucumer is not specifically distinct from Euploctelle asperyiltuem, I must point to the following essontial differences. Whilst Eitpleetellut aspergillinm has the form of a bent tube, which becomes wider towats the upper extronity, Euplectella cucumer consists of a perfectly straight, bellial tule, devoid both of the externally projecting ridges aud of the cuff on the upper margin. The regularity of the arangement of the roumd parietal apertures, which is frequently interfered with in Euplectello cespergithom, is overywhere manifest in Euplectelle cucumes: The fusion of the skeletal spicules which appears in all parts of the tube of Eitplectelle aspergillum soon aftor the attaimment of its full size, has taken phwe in this obviously old specimen of Euplectella cucrmer only to a very limited degree in a few vegious.

It thus appears to me that (on the whole) Euplectella cucumer is more nearly related to Euplectella suberea than to Euplectella asperyillum. From Euplectella suberea, however, it may be distingnished first by the compact sieve-plate, consisting of strong, firmly united spicules, and secondly, by a chanater which Owen noted, and which Carter subsequently annonnced as a distinctive peculiarity,-the possession of strong hexacts, 1 to 2 em . in length, regularly distributed in such a way that one ahways occurs in the middle space between oycry four adjoining parictal gaps, with its strong distal ray projecting freely from the smmmit of the raised arching of the outer wall.

From such considerations I believe I am justified in maintaining that Euplectella cocumer, Owen, is an independent species.

4. Euplectella jovis, Osear Schmidt (PI. VI, figs. 4, 5).

According to Osear Schmidt's account Euplectollo jovis-found in the Gulf of Mexico, in 423 fathoms in the neighbourhood of St. Lucia, and in 416 fathoms in the vicinity of Gramada-agrecs in many points with Euplectella sulecea, Wyville Thomson. The straight tube, which extends to a leugth of $50 \mathrm{~cm}_{\text {, }}$, is provided with a basal tuft and a terminal sicve-plate; but the extermal ridges are absent. A projecting wreath of spicules surrounds the sieve-plate. The round parietal gaps are arranged in spiral rows, though not quite regularly (PI. V1. fig, 4). On the inferior extromity O. Schmidt found a tramsversely placed inforior sieve-plate which divided the inferior conical portion of the tube, which was filled with mud, from the principal vital portion,

As the spicules never become fused the tube remains soft and flexible,
The intascetions of the lougitudiual and transverse strands of filies forming the quadrate lattice-like network are here also principally supported by the mptnally apposed tangoutial rays of the strong pentacts, whose distal madial ray projects frecly outwarkls, for a distance of 1 or 2 cm . beyond the surface. In intersection of the fibrons lattice-work, pro-

[^22]vided with such a pentact and distal ray, always alternates both in the longitudinal and in the transverse dircetion, as in Euydectella suberea, with an intersection without a pentact.

Both the tangential rays and the basnl portion of the distal ray are sumoundea by numerous greatly extended comitnlia which are for the most part triacts. Over the meshes of the lattice-work which are not perforated by parietal gaps, there extend spiral strands of thin, elongated parcuchymalia, which cross cach other obliquely, and which are also for the most part triacts.

In the circular membrane which surromds every parietal gap there oceur near the frec inner margin numerous short blunt monacts of a scentre-like form, whose five reduced rays project at the one end as short rounded stamps or hemispherical knols (PI, VI. fig. 5). The oceurrence of this form has induced 0 . Schmidt to dedieate the species to Jupiter. Besides the fully formed sceptre spicules numerots diacts also oceur with projecting cruciate axial knots, which show very clearly how the sceptres have arison.

More characteristic than those seeptres, which also occur singly in Euplectella suberes, are the clasps or fibule which are seattered with compatative uniformity throughout the whole parenchyma of Euplectelle joris. These exhibit a straight, thick, middle portion with a central node and two curved hook-like terminal rays which run out to fine points (PI. VI. fig. 5). The latter are as a rule clearly marked off from the middle part, but their curves usually lie in different planes, tumed towards opposite sidos, so that when seen in a certnin direction they seem to present the figure of an S. I regard these clasps, which I also mot with in Holuscus fibulatus, as derived from oxyhexasters with bent terminal rays. I do not lerive them from simple hexaets, beeanse on each side a terminal ray springs from the corresponding principal ray. Important also in this respect is the generally very clearly developed median node, on which four lateral tubercles may sometimes be seen. Here and there triacts or tetracts may also be seen whose rays have the snme form as in these diact fibule. This interpretation also harmonises with the fact that in Euplectella jovts the oxyhexasters which are present in all other species of Eipplectelle do not oceur, but are, as might be expected, converted into the clasps.

On the outer surface of the distal ray of the sword-like hoxact-liypodermalia, large floricomes oceur with a small umbler of terminal clans exactly as in Euplectella suberce.
5. Euplectelle owemï, Herklots and Marshall (PI. VI. figs. 1, 2).
1868. Herklofes and Sturshall, Areh NóerL des soi. nat, iii. p 435.
1575. Marshall, Zeitedir. f. wiss Zool, Di. xxx, Supph. p. 142.
1876. Marshall, Zoitschr, f. wiss, Zool., Dd. xxvii, p. 113.

Of that elegant Japancse Euplectelle, which was first deseribed by Herklots and Marshall and uamed Euplectella oxemi, no specimens were brought home hy the Challenger Expedition. There occurs, however, a relatively well-preserved specimen of this species among those Japancse Hexretimellida which were handed over to me by Dr. Döderlein of

Strassburg. Including the basal tuft this form has a longth of 20 cm . The portion which projects freely from the mud is 12 cm . in length, and its cross acetion is oral, the long axis below mensuring 35 mm , but above, just below the dome-like arched sieveplate, only 25 mm ; the short axis beneath mensures 30 mm , and above 22 mm . A comparison of thes figures with those recorded by Marshall for his specimen, shows that we have here to deal with a relatively small, and probably young specimen. In form it agrees throughout with Marahall's sketch and figure, ${ }^{1}$ exhihiting a straight tube whose diameter is greatest somewhat beneath the inforior third part, and diminishing upwards at first very gradually, finally somewhat more rapidly, becoming parromest just beneath the terminal siove-plate. Both cuff and extomal ledges are entirely absent. The inferior extremity is continued with a more gradnal narrowing into the long, soft, hail-like basal tuft.

The arrangement of the round parietal gaps, which are ahmost 1 mm . in diameter, in regular; transverse and longitudinal rows is very manifest. Between these parietal gaps, which lie in put-like depressions, t rectangular latticu-work of transverse and longitudimal clevations projects both in the outer and inner surfaces (PI. VI, fig, 1). A system of rectangularly crossed longitudinal and transverse bands of fibres, of which the latter project most internally, while the former cross them transversely on their outer side, serves for the support of this lattice-work, which forms somowhat narrower meshes at the upper than at the lower end. Transverse fibres also occur, and these become interwoven with the system of longitudinal fibres, sometimes occurring abore, and sometimes beneath the latter. The longitudinal and the transverse bands of fibres do not alwiys form, as in Euplectello uspergillum, simple and compact bundles, but frequently consist of two separate, but parallel bundles which lic close together, or at some distnnce from one another. Marshall describes these double bands of fibres as somewhat oonstant and characteristic of the species. In the specimens before me the division only occms liere and there, and is most marked in the longitudinal bundles (PL. VI. fig. 1). The circular fibrous hauds exhibit this peculiarity only in the upper region of the sponge. I believe, however, that this pecnliar condition of the bands of fibres is of essential importance for the characteristic architecture of the sponge, and especinally for the nature and method of its growth. Since the spienles do not here become firmly bound to each other, the elements of each individual band of fibres may readily become laterully separated. If this occurs in every two parallel bundles by a simple division both of the longitudinat and circular bands, perfectly similar new mows of quadrate meshes become formed, which are arranged strictly in longitudinal and transserse directions. A few patienlarly strong fibres always lie in the axis of eadh of theset longitndinal and transverse bundles of fibres. These are the much protonged rays of those strong tetracts whose asial cross corresponils oxactly to the intersections of the

[^23]bundles. The comitalia, which for the most part compose the fibrous bundles, are, on the other hand, very much prolonged triacts with short transverse rays; more rarely they are diacts or tetracts. Inferiorly and in the outer part of the lougitudinal bands of fibres numerons dincts always ocour with abundant barbs and with inforior nnehors on whose knob-like thickened extremities an indefinite number of anchor teeth form a projecting meath. I liave not fonmd pentact anchors snch as ocenr in the basal tuft of Euplectella aspergillum (P1. III. figs. 23). Between the bundles of longitudinal and transverse fibres, which intersect at right angles, oblique or spiral fibrons bands alone occur. Thiese are, on the whole, ${ }^{1}$ somewhat more loosely compacted than those formed from the tetract principalia just described, and consist almost exelusively of very long thin trincts with short transverse rays, and more ravely in part also of diacts and tetracts. Sometimes some spiral bands also extend over the outer side of the longitudimal and the imer side of the transverse beams, or pass over some longitudinal bauds externally, then along their inner side betweeu the longitudinal and transverse beams for a certain distance, again passing outwards, and so on. Since each of the quadrate principal meshes, which are from 3 to 5 mm . in brendth, encloses a circular parictal gap, the obliquely crossed bands of fibres cannot lie along the dingonal tine of the meshes, but pass close to the parietal formmina, and assist in forming their mangins. In this way a woven meshwork is formed, which-as Marshall has pointed out-somewhat resembles that of our common canc-bottomed chairs. The parenchymalia which lie between the long spicules of the principal bands of fibres are for the most part triacts, pentacts and diacts with slightly bent rays, also small normal hexacts and oxyhexasters less regularly arronged. In general they resemble the corresponding structures of Euplectelle "spergillum so completely that I may refer to the description and figures given for that sqeeics. It is only in the cirenlar membrane, which surrounds the parietal formmina, that the parenchymal spicules-as has also been noted by Marshall-present a somewhat difforent character, since in this locality aud in the neighbourhood of the free margin substantial spindle-like diacts with four or two median tubereles oecur in great numbers. These Marsball ${ }^{2}$ has happily designated compass spicules. Passing from the outer portion of the iris-like circnlar membrame towards the interior, all transitions from the circular hexacts to those peculintly deformed diacts may be observed. While externally greatly prolonged curved diacts occur beside the isolated strong hexacts and the numerous pentacts, further towards the interior it may be seen that tetracts nud triacts of the same strength predominate, while just at the innermost margin compass spicnles are almost exclusively found.

There may also be observed a system of slender dagger-shaped lyppodermalia with

[^24]groatly prolonged proximal rays, and distal rayo which rise the dermal mombrane into pointed clevations, and hear on their extromities somewhat freely projecting flaricomes,

Bundles of very fine raphide-like spicules, which lie close upon the outer ray of the hypodermulia, mpear to me to necim here in greater abundance than in Euplectelle *sporyillum.

The gastralia are slender prentacts with prolonged distal rays, while their atrophicat sistl may often appears as a momded, more or less projecting tubercle.

The composition of the much arched sieve-plate does not differ essentially from thas of Euplectella axpergillum. In the basal root-tuft I found anchor-like structures similar to those of the latter species.

Among the Japanese Hexaetinellida of Dr. Döderlein there ocomrs-in nddition to the specimen of Euptectellet oweri upon whirh the foregoing description is foundeda completely macerated and mach injored, though cobcrent tubular skeleton, which may also with probability be referred to Euplectellic orreni. This forms a tube of 32 cm . in length, somewhat compressed on one side. At the (3 to 5 cm .) wide extremity, the spiculus seom loose, but they are fused below into a firm lattice-work. Since not only the position and arrangement of the bands of fibres, but also the structure of all the larger and smaller spicules which I was able to isolate by tapping, fully agree with those of Euplectelle orevi, I do not doubt that this specimon is simply a very large and old fragment of Einplectelle oweni, in which the usually unfused spienles have at a later stage become soldered togethor.

6. Euplectella crassistellata, n. sp. (Pl. XIII. figs. 5-7).

In the middle of the Pacific (Station 274, lat. $7^{\circ} 25^{\prime} \mathrm{S}$., long. $152^{\circ} 15^{\prime}$ W., depth 2750 fathoms, bottom Radiolaían oaze) there were foumd some plate-fike fragments from 4 to 6 cm , square, and about 1 mm . thiok, along with a narrow tuft of siliceous spicules 6 cm . loug, to which a small part of the plate-like mass was still firmly attached. Round or oval apertures from 1 to 1.5 mm . in diameter occur here and there on the plate.

I must regard these fragments as a new species of Euplectelle, although many characters of this genus are not definitely indicated on account of the insufficient preservation of the fragments.

The principal spicales of the plate are represented by diacts which ram out to a point at both ends, and are usually provided with a node-liko thickening in the middle. These lie soattered without any recognisable regularity of arrangement, somewhat near the inner surface, and parallel to it.

Besides these and some long thin diact comitalia which are applied clasely to the thick puincipalia, onty a few extended spicules are to be found in the parenchyma. Rosettes, however, and a peculiar fom of oxy hexaster occur in surprising abundanes. These oxy-
(zooh, mathe Exi.-Pait Lill.-1886.)
Gigg 11

 , th x+11 it
f ifiyt low

1014 年

 14 in $5+2=0$

 it

 $\square-2 \rightarrow+4$

The most impo whose gratly Prol another in a manne described. The uII There is not, howet lattico-work. An it tudinal and transte

Delicato und to closely apposed to fibres contain nume ing on their inferi (PI. XIN. fig. 5). markod extemally uumerons sticules. seattered rosetter . work Among the fong bundles of V occasionally secu pe sponge I was foreot as very improbablo

The absence of species, is vary stril question is very yr ouly originate it pentacts of Eropler any rate entirely in

In the darmal proximal ray, whit familiar connection jecting distal ray (in Euplectella ary, projecting peculion These diacte me il the sharp pointa on lateral prickles at simple pontacta wi

As eharacterisi
t parts of the qualrate framework consists of strong pentacts, d tangential rays are placed in apposition to, and accoss one milar to that occurring in the species of Euplectellidas alrealy ed ray extends in a radial direction to near the external skin. a. special pentact at each of the intersections of the beams of the action without a pentact in fact usually alternates, in the longilirection, with one which is so provided (Pl. XIV. fig. 2).
extended comitalia, consisting of diaets, triacts, and tetracts, are strong pentact rays. Besides these the longitudinal strands of long diacts equipped with upwardly directed barbs, and cxhibitstremities a knob-like thickened anchor-head with three teeth intersection of the axial canal hies above the latter, and is usually nir barbs arranged in a crweform manner. In addition to the a smaller number of rays, delicate regular hexacts and sparsely moder the parenchymalia which lic outside the quadrate latticettes I found, near the external skin, some lophiohexasters with fine, straight, perfectly parallel terminal rays, and I have also Hy unconnected oxybexasters, but whether these belonged to this leave doubtful, though since then I have been led to regard this

1 oxyhexasters, as are so abundantly present in other Euplectellid and may perhaps be explained by the fact that the specimen in as it seems to me not impossible that certain forms of spicales newhat late period. Such characteristic spienles as the thick asperyilluns, or the compass spicules of Euplectella oveni, are at f from the circular membrane surrounding the parietal apertures. ton the delicate dagger-like hypodermal hexacts with a prolonged (3) so characteristic of the family of Euplectellidæ, exhibit the 1 arrangement, and in most cases bear a floricome on the proIV. fig. 2). The floricome in no way differs from that described hum. On some of these liypodermal hexacts a bundle of freely its may lee observed in place of the floricome (PI. XTV. fig. 2). rished by four prongs which project cross-wise in the middle, by outer and inner ends, and by fine lateral tceth or prickles. These wever, sometimes absent (PI. XIV. figs. 3, 4). The gnstratia are folonged radial distal rays.
eculiarities of this young sponge the following features may be noted :- (1) the liun is of pointed diacts which project freely froon the lateral wall and ane provided with malian nodes; (2) the three-toothed auchors of the longitudinal
fibrous bands, and (3) the lophiohexasters which lie pear the outer surface, but yet underneath the dagger-like bypogastralin. This form perkaps belougs to the gonus Holusets.

Geuns 2. Regradrelle, 0 . Schmidt.

1880. O. Schmidt, Die Spungien des Merbuenn von Mexiku, 1. 61.

Regudrello phanix, O. Schmidt (PL. X11L figs, 1-4).

Although Regadrella phemix, which bas been described by Oscar Schmidt, is in general charaeters closely allied to the genus Euplectelle, remarkable differences oceur which may well suttice for the establislment of the genus. We have here, as in the Euplectclla, to deal with a tube whose walls are much perforated by round apertures, and whose trausversely truncated superior extremity is covered by a wateh-glass-shaped arched sieve-plate, anil bordered by a euff-ike wreath of sjienles. The basal tuft is entirely absent, and the skeletal framework consists not of longitudinal and transverse, but of oblique, irregularly interwoven strands of filres, while the rosettes senttered in the parenchyma are essentially distinct from those of the varions species of Euplectella. The inferior extremity of the tube has become converted into a compact and substantial cup by extensive fusion of the spienles. The cup is fixed by a knobby base on the stony substratum, while towarda the upper end it passes quite gradually into a progressively lonser spienlar framework. After the death of the spouge the part of the skeleton which is not mited by siliceons matter becomes separated from the rest of the lody, but the basal part persists, and so admits of the occurrence observed by O. Schmidt, that several generations encapsule one within the other, the younger forms settling within the remnants of their predecessors.

Without entering upon a detailed description of all the individual forms of spicules, I will confine mysolf to noting the differences between somo. Regodiclla spionles and the corresponding spicules of the genus Euplectella.

The spicules which project freely from the undulating curved margins of the terminal sieve-plate are hexacts, whose prolonged free distal ray is equipped with scaly or pronglike protuberances (Pl. NIII. fig. 2).

All the rosettes which are abumdantly seattered in the parenchyma are distinguished from the corresponding rosettes of Eupleotelle by the fact that their slightly bent terminal rays, three or four of which spring from every short principal ray, do not run out to simple points, but become divided at their narrowed extremities into four transversely directed and cruchately disposed, hook-like, backwarlly bent, fine prickles. These forms should thus be designated not oxybexasters, but rather discohexasters. With regrard to fig. 3 on PL. XIIL, which represents a rosette of this kind from Regadrelles
phomix, I may here note that the representation of the fine transyorsely arranged prickles on the extromities of the terminal may has not been snceessful.

The floricomes which ore attached to the tips of the dagger-shapod hypodermatia differ from those of Euptectello dspergillum in their somewbat greater size and stronger terminal rays, as well as in the longer claws of the termiual plates; they thus more ncarly resemble those of Euplectella suberea (P1. XIII. fig. 4).

Since no specimens of Regatiello phanix oecur among the Hexactinellida collected by the Challenger expedition, I lave figured (PL XIII. fig. L), from a photograph, a specimen which was kindly given to me for examination by Piofessor Oscar Schmidt.

The localities for this speeies, as at present known, are, aecording to Oscar Schmidt, the Barbados, in 221 and 288 futhoms of water, and Santa Cruz, in 248 fathoms, in the Guif of Mexico.

Subfamily 2. Holascine (Pl. XIV, figs 6-13; Pls. XV.-XLI.).
Euplectellide in which the lateral wall is solid, that is, not perforated by parietal gaps. The principal spienles are not fused together, and form with their longitudinal and transverse xays a quadrate network. The hypodermalia are dagger-shaped, and have a somewhat swollen distal say beset with prongs, and frequently extended by apposed pointed diacts, but in other cases probably bearing a floricome. The hypogastralia are either simple pentacts without a proximal ray, or hesacts in which the inward projecting (proximal) ray probably ean bear a floricome.

Genus 1. Holdsers, 11. gen. (PI. XIV, figs. 6-13; Pls. XV.-XVI1.).
Tubular in form, with a compact wall, the onter sufface of which shows no pit-like depressions, while a lattice-work of longitudinal and transverse ledges projects internally, The upper transversely truncated extremity is provided with a thickencl margin which is destitute of a spiculur wreath, and is closed by a compact sieve-plate, while the inferior extromity runs out into a basal tuft. The network of strands which serves for the suppart of the body-wall consists of greatly prolouged, longitudimal and transverse rays of compaet hexacts, pentacts or tetraets, which lie close to onc another, forming a tolerably firm framework, and which are also suromiled by th conting of thin comitalia.

In the parcuchyma, in addition to various other spicules, oxyhesusters occur, or instead of these in other cases fibules.

Thie sword-shaped hypodermalin bear no floricomes, but are externally extended by apposed pointed and narrow diacts.

1. Holuscus stellatus, in. sp. (Pl. NIV. figs. 6-13; Pl. XV. figs. 6-23).

Station 325, cast of Buenos Ayres; lat. $36^{\circ} 44^{\prime}$ S., long. $46^{\circ} 16^{\prime}$ W.; depth, 2650 fithoms; bottom, blne mud.

At the above locality, the specimen fignred in PI. XV. fig. 6 was dredged, as also the greatly injured frugment of a secoud specimen represented in Pl. XV. fig. 14. The two specimens differ, moreover, not only in their size, but also in the individual forms of the spicules, so that notwithstanding the general agreement, we have perhaps to deal with two differcut species.

In the former specimen the almost cylindrical tube, which is slightly widened in the middle (Pl. XV. fig. 6) is 8 cm . long and 13 mm . broad. Upon the upper tramsversely truncated margin, a terminal circular pad projects somewhat outwards, and this supports trausversely the stretcheil retiform sieve-plate which has been figmred by Wyville Thomson (PI. XV. fig, 6), but which is no longer preserved in the object before me. From their inferior extremity, which is only slightly narrowed, there extends, somewhat to the side, a liadly-preserved tuft of fibres about 2 cm . in length. The outer surface of the wall, which is from 1.5 to 2 mm , in thickness, appears to the maided eye to be ronghencd by small tubercles, while, with the help of a lens, mmmerons small pointed elevations showing a uniform distribution and a regular arrangement may be observed in transverse and longitudinal rows. On the inner side pit-like depressions about 1 mm , in breadth likenise occur.

The principalia, which constitute the groundwork of the quadrate lattice-like framework of the tubnlar wall, are hexacts and pentacts with a distal radial ray. The long longitudinal and transverse rays are so applied to each other that the transverse rays come to lie altogether on the inner side of the longitudimally directed rays. According to the figure given by Wyville Thomson (P1. XV. fig. 7) it might be thought that the lattice-like network hes close to the inner side of the wall of the tube, and that it consists of nothing but pentacts. Such, however, is not the casc. It extends, on the other hand, between the inner and middle thind of the thickness of the wall, and consists for the most part of hexacts, between which pentacts with distal sadial rays only here and there appear. Numerons thin comitalia, with a variable nomber of rays, accompany the transverse rays of the principalia. Near the margin of the body, outside the longitndinal strands, long diacts also ocenr, with pointed upper ends, and with anchor-hooks on their inferior extremities. These diacts are, as a rule, quite smooth above, but bear towauds the lower end barbs, which become gralually longer towarls the end where the ray passes into a conical pointed thickening, from which nsually four, seldom more, anchorteeth project obliqnely outwayds and upwards (PL. XV. fig. 13). Projecting freely downwards for a greater or less distance they form the loasal root-tuft.

Among the parenchymalia we unst also mention the long, thin, terminally pointed
diacts, which are cither seattered at xandom, or aggregated in bundles. Several forms of rosettes also oceur, and in grcatest ahundance, simple oxyhexasters witi short princiqal rays, and with two to form straight or book-like, moderately diverging, termimal rays on the extremity of each of the primeipal mys (PI. XIV. fig. 13 ; PL. XV. figs. 9, 11, 12). The number of the terminal rays may vary from one to three on each of the main rays (Pl. XIV. fig. 8; Pl. XV. fig. 11). These remarkable skeletal clements from whose globular centre four, three; or two rays spring, which are greatly bent in one plane, or even spirally twisted, 1 regard as arrested derivatives of oxyhexasters (Pl. XIV. figs. 10-12; Pl. XV. fig. 10). In the outer part of the parenchyma, graphiohexnsters with close bundles of almost parallel fine terminal rnys appear (P1. XV. fig. 19).

Whether the clegant discobexnsters represented in PL. XIV. fig. 9, which are provided with an S-like terminal ray, and with very smull terminal dises, really belong to this species, or are not rather intruded bodies, 1 have lately begum to doubt.

These and similar discohexasters also appear in that fragment of Holascus which is represented in Pl. XV. fig. 14, and the individual spicules are figured after Wyville Thomson in figs. 15 to 23 of the same plate.

The dermal skeleton consists of sword-shaped hypodermalia with greatly prolonged proximal rays which run out to sharp points at the extremities, with a thick scaly or toothed distal ray, and with four transverse rays intersecting at right angles, obliquely pointed at the extremity, and of median length. Upon these, as on the proximal ray, small pointed elevations may often be observed.

The tangential arms of these hyporlermalia always lie somewhat beneath the dermal membrane, which is raised up in a conical clevation by the distal ray. Close to the outer portion of the proximal ray, and over the whole distal ray,-even extending beyond the outer extremity of the latter,-thin diacts are disposed which run out to points at both euds. These may serve as defensive weapons in place of the floricomes which are bere absent (PI. XIV. fig. 6).

The gastral skeleton consists of hexact sword-shaped bypogastralia, in general resembling the liypodermalia, but somewhat more delicate. Thin diacts are here and there apposed to the spicular rays, and are even more delicate than those of the outer skin.

2. Holascus fibulatus, n. sp. (Pl. XV. figs. 1-5; Pl. XVI.).

A species of Holescus, markedly characterised by the possession of numerous doublehooked fibule, is included among the sponges of the Challenger expedition. Three specimens were obtained, one (represented in PI. XV, fig. 1) in a trawling to tho south Australia (Station 160, lat. $42^{\circ} 42^{\prime}$ S., long. $134^{\circ} 10^{\prime}$ E.), at a depth of 2600 fathoms, from a red clay bottom; while the other two were got in a trawling which was made in
a locality halfiway between Kerguelen Island and the Cape of Good Hope-the oue (Pl. N17, Gig. 9) (Station 146, lat. $46^{\circ} 46^{\circ}$ E., long. $45^{\circ} 81^{\prime}$ E.) from a depth of 1375 fathoms nut a bottom of Globigeriua ooze; the other (PI. XVI. fig. 1) (Station 147, Int. $46^{\circ} 16^{\prime}$ S., long, $48^{\circ} 27^{\prime} \mathrm{E}$.) from a deptle of 1600 fathoma, and a bottom of Diatom ooze. Although none of these specimens is wholly uninjured, the combination of all the three affords a dear conception of the form and strmeture of the species. The form can be most clearly recogrised from what is really the most macerated specimen, but which is preserved in its entire length (Pl. XII. fig. 9). This consists of a conical tube, narowed downwards and running out inferiorly into a basal tuft; while the upper traisversely truncated extremity is bounded by a narrow marginal ridge and closed by a sieve-plate which extends within the latter, and is arched slightly outwards in its central portion. The specimen obtained at Station 160 (Pl. XV. fig, 1) represents only the much injured lower end with the basal tuft, while of the deeidedly larger specimen from'Station 147 (Pl. XVI. fig. 1) only the upper portion with the sieve-plate and the relatively well-preserved soft parts persist.

The whole outer surface of the sponge exhilits the fine small points which occurred on Holesous stellutus. Herc also on the inner side of the tube there extends a system of intersecting longitudinal and tronsverse ledges which form quadrate meshes with central pits (PL XVI. fig. 1). The framework of the terminal siere-plate, though not quite regularly constructed, exhibits approximately radial and circular strands of beams, from the intersections and nodes of which small prickles project outwards (PI. XVI. figs. 9, 10).

The principal framework of the wall of the tube lies towards the inner surface, and consists of strong smooth tetracts. The somewhat long longitudinal rays cross the shorter transversals extermally. Numerous comitalia with a variable number of long narrow rays are attached both to the longitudinal and trinsverse rays of the principalia (PI. XV. fig. 2; PL. XVI. fig. 2).

On a transverse section of the samewhat thick wall of the tuthe (of the fragments figured in PI. XVI, fig. 1) a system of rough lexaets is oliservod, with rays disposed in radial, longitudinal, and transversa directions, and apposed to one another to form a framework of beams cuclosing cubical meshes (Pl. XVI. fig. 2). The outermost and innermost of those hexacts correspond in position and diroction with the bexact hypordermalia and pentact hypogastralia, to the long parenchymal ray of which they are symmetrically joincd. The othor irregularly scattered parenchymalia consist of isolated graphiohexasters with bundles of long, very delicate, parallel terminal mays, and of those characteristic fibula, which I am inclined to derive from greatly reduced oxybexasters with bont terminal rays. One emn frequently observe nt some distance from the central nodes and upon each of the two rays a boundary line, at which the straight centrol, thicker segment passes into the thinmer terminnl portion ($\mathrm{PI} . \mathrm{XV}$, fig. 3c, d). 1 regard this straight, inner, thicker portion as corresponding to the principal ray, the bent outer
portion, on the other hand, as equivakent to the terminal. The fact that the fibule are provided with bent terminal rays, insteal of the oxyhexasters which are present so abondantly in other sprecies of Holascus, is also in agrecment with my theory. It has Intely been shown that neither the oxyhexasters, nor the prickly amall diseohexacts, represented in the diugrammatic section (PI. XVL. fig. 2), belong to the species, but hive been accidentally intruded.

The dermial skeleton consists of rough sword-shaped hexact hypodermalia with greatly prolonged proximal rays, and toothed, slightly thickened distale, on which several (frequently four) narrow pointed diacts are disposed, and with their outer extremities extendel for a greater or less distamec beyond the points of the distal ray (PL ST1. fig. 2).

The gustrel membrine is supported by the transverse rays of tho rough pentactlyypogastrilin, whose long distal ray penctrates radially into the parenchyma.

The spicules of the basal tuft of fines consist for the most part of very long diacts, which are smooth on the outer pointed extremities, hut are beset furthor down with barbs, and bear at their inferior estremities a conieal pointed knob, from the side of which three or four strong anehor-teeth project outwards and upwaris. The intersectiou of the axial canat lies, as a rule, at some distance from the inferior extromities, and corresponds usually with the four lateral prongs, which are eruciately arranged (PL. XVI. fig, 11). In some long spicuks which run out to points on both ends, I have also found the axial eross of the central camal in the middle, and the hook-like teeth so direeted on the two sides that their points. were turned away from the centre (PI. XVI. fig. 12).

The skeleton of the tolerally compact terminal sieve-plates chiefly cousists of strong hesacts, which form quadrate moshes by the apposition of the transverse rays. Their distal, freely projecting ray is spindle-shaped, thickened, and sparsely covered with small conical teeth, while the sloort proximal is a simple cone, and ontirely tubereular. (PI. XPI. fig, 8). The four cruciate, long, transverse rays are smooth, and gradually run out to a point. To these transresse rays, but more especially to the outwardly projecting distal, diacts with pointed extremitics are closely affixed (PI. XVL. fig. 8).

Holascus polejuevii, n. sp. (PI. XVII. figs. 1-5).

The single, probably young, specimen figured on P1. XVII, fig. 1, represents a new species of Holescos, which I dedicate to the meritorious investigator of the Calearea and Keratosa, Dr: Poléjaefl: This form was trawled to the south of Austrulia (Station 157, lat. $53^{\circ} 55^{\prime}$ S., long. $108^{\circ} 35^{\prime} \mathrm{E}$.), from a depth of 1950 fathoms, anil a bottom of Diatom ooze. The specimen has been injured at the upper ond, so that both the termmal sieve-plate and the marginal ridge are wanting.

The sack-shaped, somewhat thin-walled body has a length of 10 mm , and a
(zOOL CHID. ESP--FAIT LIL-1886.)
$\mathrm{G}_{\mathrm{g}} 12$
breadth of 4 mm . From the narrowed lower end there arises a basal tuft, 4.5 mm . in length.

The spicules, which prineipally serve for the formation of the quadrate lattice-like network of the parictal skeleton, are simple hexacts with smooth, frequently somewhat bent rays (PI. XVII. fig. 2), to which some comitalia we here and there apposed. Of loose parenchymalia there are present, in addition to some small regular hexaets, simple thin dincts, and three different kinds of resettes. Among the latter the well-known oxyhexaster form, with three long, diverging, torminal rays on each of the moderately short principal rays, is most frequent (PL. XVII. fig. 3); less frequently an exyliexaster occurs, from each of whose strong principal rays, which are expandod outwardly in petaloid fashion, a bunde of eight or more strong, straight, moderately diverging, terminal rays proceeds (Pl. XVII. fig. 4). Graphiohexasters only oceur scattcred through the outer region of the parenchyma, and are provided with long bundles of fine, slightly diverging, terminal raya (PL. XVII. fig. 2).

The sword-shaped hypodermalia have a long, often somerhat bent, proximal ray, a slightly thickened, sealy, pronged distal ray, and four simple, smooth, pointed, transverse tangential rays, Close to the proximal and distal rays, narrow diacts oceur here and there which run to a point on both ends, and exhibit central thickened knots. As in the other species of Holascus, these dincts extend for a considerable distance beyond the extremity of the hypodermalia (Pl. XVII. fig, 5).

The hypogastralia are simple pentacts whose long distal ray may be applied to the corresponding proximal ray of a principal hesact or of one of the hypodermalia (PI. XVII. fig. 2).

Of the basalia only the upper part is preserved, and this does not differ essentially from that of the basalia of Holescus fibuldetis.

4. Holascus rillcyi, n. sp. (PI. XVII. figs. 6-8).

In the neighbourhood of the Philippines (Station 211, lat. $8^{6} 0^{\prime} \mathrm{N}$. , long, $121^{*} 42^{\prime} \mathrm{E}$.). the dredge brought up from a blue mud gromud, and a depth of 2225 fathoms, a portion (about 5 cm . long, and 2 cm . brond) of the lateral wall of a Holesens, the siliceous spicules of which though agreeing indced in some points ivith thoso of Molasous pelejiceriz, are so markedly different in others that it mist he described as a distinct species, I shall name this after Mr. Stuart O. Ridley, the meritorious investigator of the Challenger Monactellida.

The principal skeletal framework consists of substautial, long, smooth-rayed tetracts, forming the quadrate meshes of the side wall, and, closely apposed to the latter, delicate comitalia with a variable nomber of rays (P, XVII, fig, 6).

The intersections of the longitudinal and of the transverse bands of filres, which lie more towards the interior, do not all contain the axial cross of a principal tetract. In
fact, intersections with and without such a cross alternate quite regularly both in the longitudimal and transverse direction.

The parenchyma is richly provided with oxyhexasters, each of the principal rays of which bears fow or three straight diverging terminals (PL. XVII. fig. 8). Here and there I also foum an oxyhexaster form with much curved terminal rays (PI, XVII. fig. 7), though it remains doubtful whether this type really belongs to the sponge. On the other hand, more froguently, and andoubtedly belonging to the sponge, characteristic hexact spicules ocem which, like those of IIolasens polejaceüi represented in PI. XVII. fig. 4, bear on each of the strong principal rays (which are widened and petaloid towards the exterior) a bundlo of eight or more markedly diverging torminals. The terminal expansion of the principal rays is even larger, and more sharply separated from the innor portion than in the abore-mentioned species.

The hypodermalia resomble those of Holescus polejueci, and are, like the latter, extended outwards by the longer apposed, thin, pointed diacts.

The hypognstralia on the other hand are not pentacts but slender hexacts, in which the somerrhat swollen proximal ray, projecting fiedly inwards into the gastral cavity, is beset with small prougs.

Genus 2. Malucosticcus, n. gen. (Pls. XVHI., XIX.).

These sponges are saccular or tubular forms, with a flabby readily pliable wall, whose outer surface appears uniformly even, while ou the inner suface numerous, targer or smaller, round openings of the efferent passages occur in irregular distribntion. The inferior extremity has not been observed, but the superior exhibits a wide opening surrounded by a narrow smooth margin.

The principalia are represented by hexacts with long, thin, flexible rays, which are disposed in radial, longitndinal, nad trasverse directions, becoming apposed to one another, and partly interwoven to form a cabical lattice-work. Oxyhexasters and discohexasters also occur in the parenchyma.

Ou the projecting rays of the sword-shaped bexact hypodermalia and hypogastralin, floricomes oecur. The epidermal floricomes are larger and stronger thun the epigastral.

1. Malacosuccus vastus, it sp. (PL. XVIII).).

In the south of the Indian Occan, at a locility about halfway between the Cape of Good Ilope and Kerguelen (Station 146, lat. $46^{\circ} 46^{\prime}$ S,, long, $45^{\prime \prime} 31^{\prime}$ E.), there was travled, from a depth of 1375 fathoms, and from a bottom of Globigerima ooze, a flabby plate which could be folded like a woollen cloth. Some fragments belonging to the
same form were also oltained. Three sides of this irregularly quadrangular plate, which measured about 1 foot square; exlibited much torn margins, but on the fourth tho natural border was preserved. On the very probable supposition that this border, which is about 40 cm . in length, represents tho upper margin of the spronge, and that no great portion is wanting, the whole form would be that of a snck or cup, whose upper aperture would be abont 13 cm . in diameter. At the much destroyed margin, opposite to the intact lorder, and, therefore, probably the lower, the sponge is as much as 1 cm . in thickness, and decreases gradually from this point to the upper somewhat sharp margin. In order to convey an idea of the claracter of the onter and inner surfaces I have figured a portion from the middle in its foldod position (Pl. XVIII. fig. 1). While the outer surface appears uniformly Hat, and merely exhibits numerons subdermal eavitios of varied size, the inner surface bears nnmerous ronnd exenrrent orifices belonging to the efferent passages, and varying from 3 to 12 mm . in diameter. These are irregulatly distributed, at intervals of 5 to 15 mm ., and show at the bottom that thoy are ramified. Between these wide excurrent orifices a comparatively flat surface is scen, only perforated here and there by small apertures.

The principalia forming the supporting framework of the entire sponge are hexacts with long smooth and flexible rays, ${ }^{1}$ which are accompanied by long, thin, and very flexible comitalia. The parenchyma also contains numerous hexacts, of median aize, with tubercled rays, further small hexacts with smooth rays, nad finally rosettes of two kinds. Among the latter the oxyhexasters, which are present in great abundance, first attract atteution. They bear on each of their short principal rays, which are somewhat expanded ontwardly, four long narrow terminals (PI XVII. fig. 10). The second form of rosette, which belongs to the discohexaster type, is smaller, and bears, on the gently convex transverse terminal disc of each principal ray, a bundle of about thirty delicate terminals which become bronder towards the outer extremities, and which are beset laterally with numerons small barls, and provided terminally with a forr-pronged transverse dise (PI. XVIII. figs. 3, 5).

The hypodermalia of the dermal skeleton lave a slightly spindle-like thickened distal ray with scaly teeth, a long smooth proximal which runs to a point, and four simple, smooth pointer, transyerse rays (PI. XVIII. figs. 2; 8). Whether the large and strongly-developel floricomes whids ocem very almudantly seattered on the outer surface in many regions (PI. XVIII. fig. 4), aro rogulaty attached to the distal mays of the hypodermalia, as in the Euplectelline, I camot definitely asoert, since I have not: found them in this position. It is, however, quite possible that, on account of the great softuess of the whole plate, they have been pushed out of their original position.

The hypogastralia are likevise licsacts with a prolonged parchehymal ray, bat the frecly projecting proximal is not thickened into a spindle, nor scaly and pronged, like
${ }^{1}$ In PI. SVIII. fig. 2, the rays of these hexacts are representel muds too short amt too stright,
the projecting distal of the hypodermalia. All the hypogastralia are somewhat uniformly rough, It has not been determined with cortainty whether the numerons floricomes which are represented on III SVIII. figs, 6, 7, 9, and which appear abundantly on certain portions of the innor sarface, really adhere to the projecting proximals of the hypogastralia. These inner floricomes differ firom the outer, moreover, not only in their smaller size, but also in the fact that the slightly hent terminals, which occur to the number of six or more on crery princigal nay, bear small barbs in addition to the many pronged terminal plate (PI. XVIII. figs. G, 7).

2. Malacosactus unguicultutus, н. sp. (P1. XIX.).

To the sonth of Sicra Leone (Station 348 , lat. $3^{\circ} 10^{\circ} \mathrm{N}$, long. $14^{\circ} 51^{\prime}$ W.) there was collected from a depth of 2450 fatboms, and on grey mind, a saccular sponge, 3 cm . in length and 15 cm . in beadth, with walls mensming from 1 to 2 mm . in thickuess. The inferior extremity was tom off, and the snperior margin only 1 reserved in an injured condition. The outer surface is slightly rough, bat on the whole uniformly even, while the inner surface, on the other band, is perforated by mumerons canalientar orifices of rauried breadth (PI. XIN. fig. 1).

The princisalia of the parencliymal skeleton are represented by slonder hexacts with long, narrow, smooth and flexible rays, which are disposed madially, longitudinally and transversely, and apply themselves by corresponding rays to one another, or to the prolonged parenchymals of the hypodermalin and hypogastralia, so as to form a loose notwork which [ermits of the bending and folding of the whole sponge-wall. The paronchyma also includes mumerous oxyhexasters with slender, straight, or slightly bent terminal rays, of which three occur in most cases on each of the comparatively short principals (PI. XIX. fig. 7). Delicate discohexasters also oecur, with thin terminal rays which are somowhat thickened outwardly, and which bear upon their outer extremities a whorl of four or more backwardly bent, thin, transverse spines (PI. XIN. fig. 3).

The hexact liypodermalia have a thickened distal ray beset with sealy teeth, and a greatly prolonged proximal, which, like the moderately long transverse raye, is seldom quite smooth, but is, as a rule, more or less richly beset with small pronged elevations (PI. XIN. fige. 2, 4).

The hypogastralia are very similar to, but are distinetly more slender than the hypodermalia (PI. XIX. fig, 2).

Floricomes are not found on the outer sunface but appear here and there on the inner. They bear three or four terminals on every principal ray. The thickoned outer extromity of every torminal ray runs out into an overhanging plate with two or three strong terminal claws (PI. XIX. figs. 5, 6).

Although I did not find these floricomes upon the inwardly projecting proximal my of
the hypogastralia, but here and there even lencati the gastral mombane, I am still inelined to belice that here too they have been insorted on the tips of the leypogastral spiculos.

Subfamily 3. Tegeerinee, F. E. Schulze (Pls. VIL-X1.).

The wall of the saceular or tubular body is perforited by apertures of various sizes, irregular in shapo and mrangement. The lattice-like trabecule of the skeleton form for the most part an irregular network of partially cemented principal spicules. The outer end of the distal ray of each dagger-shaped hypodermal hexastur bears a floricome.

Genus 1. Tageria, n. gen.

Tregeria pulchxa, 1. sp. (Pl. VII. ; PI. VIII.; PI. XI, figs. 1-3).
In the neighbourhood of the Fiji Island, Kamdarn (Station 174 c , lat. $19^{\circ} 7^{\prime} 50^{\prime \prime} \mathrm{S}$., long. $178^{\circ} 19^{\prime} 35^{\prime \prime}$ E.), the trawl bronght up, from a depth of 610 fathoms, on a bottom of coral mud, an elegant Euplectellid, which is figured on PI. VII, after the restoration made by Wyrille Thomson from a somewhat damaged specimen.

The thin-walled saccular body, which expands somewhat above the middte to a maximum diameter of 65 cm ., exhibits a cireular section, and has a length of 20 cm . Near the lower blind sack-like end there is a compact, tangled, somewhat lateral, basal prolongation which grows on the firm substratum. The upper extremity bears a cireular opening, 3 cm . in dizmeter, which is surronded by a somewhat firm margin, and overarched by a beautiful corona of long, curved, siliceous spicules which bond towards the centre. The lateral wall of the body is ouly from 2 to 3 mm . in thickness, and is penetrated by numerous irregularly seattered, approximately circular, tolerably lagge parietal apertures, varying from 3 to 4 mm . in diameter. These gaps are disposed at intervals of from 1 to 2 cm . in the median portion of the sponge, but are, above and below, somewhat more widely apart. Between these largor orifices, smaller round pores here and there occmr, vaying from 1 to 2 mm . in diameter. The numerons, light, roundish spots, howerer, which may be observel in the spirit specimen, and also in the figure on PI. VII., occurring on the extermal surface between the above noted apertures, are beither loles nor pits from the outside, but represent pit-like hollowings on the inner surface which do indeed in many cases become, at a later period, artificinliy opened and converted into eamals which pass completely through the watl.

The larger beams of the supporting skeletal framework, together with the deheate comitalia which surround them, are for the most part fused, by cementing matter
and synapticula (PL TII. fig. 6), into a contimous network, which seems to be firmest on the inferior portion of the sack, becoming more and more loose towands the upyer ead. While the principal strands of fibres are ieregularly disposed, for the most part obliquely, on the inferior and middle thirds of the body, the upper thind exhibits a more: regular arrangement of the longitulinal beans and circular transyorse ridges,

The latter lie, ns in all Euplectellides, on the inner side of the former. The strong principalia of the lattice-work ane in the regular upper portion almost exclusively tetracts, in the larger mid mone irregular inferior portion, on the otlier hand, triacts and diacts predominate. The comitalia consist chiefly of trincts and diacts.

Closely disposed spicules, with from six to two raya, also oceur in the parenchyma, viz., somewhat numerous, small, smooth or spinose, regular hexacts, with rays rumme out to fine points (Pl. XI. fig. 2); more rarely small, smooth discohexacts (0.17 mm . in diameter), with from four to six hooks on the mrehel temminal dises, and fimally, disechexastere iregalarly seattered in somewhat lurge numbas (PL. XI. fig. 1; Pl. VII. fig. 4). Most of these discohexasters exhibit the same characters and dimensions sis the discoliexacts, which have just been mentioned. The very short principal mays usually run out into two, less frequently into three, long terminal rays, which are, at their origin, mited in a bowlike manner, and which, narowing in the middle, again increase in strength towards the terminal hemispherical dise, which bears six strong looks (PL VIIL. fig. 4). Hexasters with somewhat longer and narrower terminal rays occur scattored at intervals, and on their transversely tromented extremities, four to six small looks project trausversely. In the neighbonhood of the outer suface graphiohexasters occurwith long tufts of parallel, straight, very delicate, terminal rays (II . VII. fig. 5).

The sword-like hoxact hypodermalia are delicate, and rou out to fine points. To their distal ray a floricome is nhways attached, which does not differ essentially from the wellknown floricome of Eiq)lectellic aspergillum (PI. VIII. fig. 3).

The gastral skeleton consists of somewhat stronger pentucts, in which bath the prolonged distal and the fonr tangentials are either transversely rounded off, or terminate it a knol-like swelling (PI. VIIL fig. 7).

The thickened margin which surrounds the upper terminal opening beats two circularly aranged sorrs of hexacts with strongly developed distal rays. In the spieules of the onter circle the straight distals, which measure from 2 to 3 mm . in length, wre directed obliquely outwards and upwads, while the slightly bent, strong, distal mys of the inmer circle, which are $\frac{1}{2} \mathrm{~cm}$. in length, liend together in dome-like fashion over the opening, 80 that only a central space, about 8 mm . in breadth, remains (Pl. VII.).

The folded layer of simple sacciform chambers surrounds elefts or short canals, whieh sither open fredy by wide intermal openings, or are arched over by a continuation of the gastral skin (P1, X1. fig. 1). The imner trabeenlar framework oceurs in a thin layer ou the imer side of the effereut passages which leat from the wide openings of the
chambers, while the outer trabecula framework either entircly fills the space between the clambers and the onter skin, or is perforated by the sublermal lacume and afferent camals.

The name of the genns Tayerzie is formed from the family arme of my wife, "Trager."

Genns 2. H゙alterit, n. gen.

Walteria flemmiağï, n. sp. (PI. R.; P1. X.; PI. XI. figs. 4-6).
The fragment of a hitherto unknown Hexactinellid, which is very faithfully represented in its natural size on P1. IX., was collected in the Pacific to the north of the Kermadee Islauds (Station 170A, Lit, $29^{\circ} 45^{\prime} \mathrm{S}$, loug. $178^{\circ} 11^{\prime} \mathrm{W}$.), from a depth of 630 fathoms, on voleanic mud. The sponge appears to be broken across the middle, and to have had nbout double the leugth of the fragment preserved, which is 15 cm . loug by 8 cm . broad, becoming uarrowed towards its extremity into a conical fumelshaped tube only 6 mm . in width. Since the termimal portion is atso broken off at this place it is impossible to determine whether we have before us the inforior extremity by which the sponge was fixed or the free upper end.

The thin wall of the tube consists of a fromework with strmuds of varied strength, scldom more than 1 mm . in thickness, and surrounding polygomal mesles of very diverse size and irregnlar form, which may attain the size of 1 cm . It is only towards the uarowed fumel-like end that the strands arrange themselves in a system of somewhat converging longitadinal and transverse bauds of fibres, which come to lie closer and closer to one another, forming quadrangular meshes, which are ouly crossed by small secomlary beams. Here and there in the expanded main portion of the sponge longitudinal and trausverse beams may also be recognised. Nost of the beams in the lattice-like network are not smooth, but are heset with small kuolis which project extorually, and which ocear sometimes isolated, sometimes in groaped arraugement. Even on examination with the naked eye, bnt more obvionsly by emploring a lens or the microscope, the network strands may be seen to be supported by a firmly mited siliceous framework, which is eovered by a distinet and strongly-developed soft skin. The latter becomes elevated into numerons small short tubed which project oblignely or at right angles to the surface, and are each tenanted ly the hyitrath of a commensal hydroid polype. While the hydrophyton extends into the deeper layer of the rind, the shortlystalked or sessile lydranthes project tronsversely outwands (PI. XI. fig. 4). There can be no doubt that the hydranth, by ita simple presence nat especially by the continual stimulus exercised on the smmounting sponge substance by its expausion and contraction, has cansed the formation of the projecting tubes. I have not observed nnything of the nature of a perisare: The hydroids seem to be entirely naked, and lie
in simple lacure, which are, for the most part, formed by a rupture of the inner trabecular framework, Wherevera hydranth arises, the chamber layer, the outer trabeonlar framework, and the onter wall, become perforated by a canal opening to the exterior.

The chamber layer is but slightly folded, a circumstance which is in barmony with the slight thickness of the whole body-wall.

The principal lattice-like franework of the skeleton consists of long compact spicules with a varied number of rays, but especially triacts and diacts, which, with the more delicate comitalia that suround them, are, for the most part, disposed in bundles, and firmly united by means of numerons synapticula (PI, X. figs. 3, 6). The circular beams lic as before on the inner side of the longitudinal, while the oblique strands are irregularly interwoven throughout the entire lattice-work. In the narrowed funnelshaied terminal portion of the sponge the spicules of the framework are more delicate, shorter, and more amalgamated.

The looser parenchymalia are in part extended spicnles among which diacts seem to predominate, which are provided with conical or romaded rough extremities, and in part small delicate hexacts with fine transverse prickles, and lastly rosettes of two kinds. The one type includes discohexasters with few, usually three, long terminal rays on each of the six short principals. Where the principal ray divides an irregular tubercular thickening oceurs, and from this the somewhat distant, narrow, diverging terminals which separate from one another project outwardly, while the extreme ends bear small dises with from four to six transverscly disposed, inwardly bent, thin hooks or claws (P1. X. fig. 5).

The other rosettes are, it is true, likewise discohexasters, but they may be distinguished from those just described in different respects.

The entire appearance is essentially different sinee, besides the stellate, the spherical form also prevails (PL. X. fig. 1; Pl. XI. fig. 4), on account of the great number of equally long terminal rays which bear hemispherical transverse terminal dises. Each of the six short principal rays passes at first into a discoid expansion, which bears on its arched outer surface numerous (about thirty) terminals, which increase somewhat in strength towards the exterior, aud are disposed in a radiating and divergent fashion. The hemispherical terminal dises of these terminal rays have a sharp-pronged margin which extouds inwards in a somewhat campamulate manner. In some cases the number of the terminal rays on these rosettes is less, each principal ray bearing only about seven terminals. It is noteworthy that the rosettes, which have on the whole a spherical appearance, and are providel with hemispherical terminal dises, always occur only in the neighbourhood of the onter skin (Pl. XI. fig. 4), whereas the stellate forms which are provided with transversely disposed terminal tubercles are, on the other hand, seattered throughont the whole parenchymi.

Whetlier the bundles of very fine rhaphide-like spicules, which I found here and there in the parenchyma in the neighbourhood of the outer surface, are to be regarded as the broken off terminal rays of graphiohevasters or as indepentent groups of apienles, 1 camot

Ggy 13
with certainty determinc, since I was never able to find a completely intact graphiohexaster. I am, however, imelined to the former opiinion, since I have always found a number of these rhaphide bundles together, and in the neighbourhood ustally a small sixruyed cross, with a discoid expansion of the cylindrical principal rays, from which numerous small points projected like the broken emts of fine terminal rays. The whole exactly resenbled the mildle portion of a graphiohesaster whose termimal rays had been broken off.

The sword-like hesaets of the dermal skeleton are distinguished by the strength of the four tangential and of the distal rays, all of which terminate in rounded off extremitics, while the prolonged proximal gradmally decreases in dinmoter towards the extremity, and finally terminates in as conical point. The distal ray eorresponding to the hilf of the strond lears, sometimes in the middle or towards the outer extremity, a elub-like thickening (PI. XI. fig. 6).

On the distal ray of mest of the hypodermatia a floricome oceurs, which is distinguished from those of Euglectella aspergillum by the greater number (fifteen) of the S-like curved terminal mys on cach prineipal, and by the wider cop-like form of each whorl of terminals (Pl. N. fig. 2).

A special gastral skeluton is ahways absent where the large beams of the lattice-work directly form the inner wall. Where this is not the case, it consists of simple hypogastral pentacts, with four equally long intersecting rays, lying on the parouelymal side of the gastral membrane, while the prolonged unpaired fifth Eay penetrates widely into the parenchyna (Pl. X1. fig. 2).

The extremities of all the five rays are simply romoded or slightly knobbed and thickened, ouly the prolonged distal is sometimes unrowed towards the extremity, and may even termimate is a point.

I have namel this memorable sponge in honour of my estecmed friend und colleague Professor Wilter Elemming of Kiel.

Since the single and much damagod specimen of Whateria flemimingii is inhabited by many eomparatively lage commousal lyydroid polypes, which have dontbless produced the peculiar tubules ruming oliliquely or at right angles to the peripleral strands (PI. X. figs. 4, $6 ; \mathrm{Pl}. \mathrm{X7}$. fig. 4), the question arises whether we have here to do with a nomally formed individual, or not mather with one essentially modified. In specimens without these invading polypes, the wide lumen of the parietal gaps may be in great part filled up by the saft portion of the body-rwall, which is here restricted almost exclusively to a cortical layer for the supporting beams:

I know of at least one case in tuother group of sponges, namely, that of a Mygillo, found abundantly near Trieste, which is normally a compact bulbous body, but which when invadel by Stephoseyphus mirabilis becomes bush-like, resembling a tuft of the common heath Calluna valgeris.

The following seven gencra are not yet sufficiently known to enable their systematie position to be determined, but they all appear to belong to the family Euplectellida, and hence are treated of here.

Genus 1. Habradictym, WJville Thomson.
This genis contains only one species, Hedrodictyom speciosum.

Habrudictyon speciosiun (Quoy and Gainand).

$$
\begin{aligned}
& \text { 1833. Quoy and Gaimard, Voyage de V.Lstrolabe, Zool, vol. iv. p. } 302 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1849. Owen, Trane Zool, Sooc. Looda vol, iit. p. } 30 \overline{3} . \\
& \text { 1865. Howethank, British Spongiade, vot. i. p. } 174 . \\
& \text { 1860. Gray, Amn and Nag, Nat. Hist, sor. 3, vol, xviii. p. } 487 . \\
& \text { 1867. Gray, Proc. Zool. Soc. Loml., 1807, p. 530, 531. } \\
& \text { 1868. Wyvillo Thomson, Ame and Mhg. Nat. Tist., ser. 4, vol. i. p. IIt. } \\
& \text { 1869. Dowerbank, Proc. Zool. Soc, Lond., 1869, p. } 323 . \\
& \text { 18it. Gryyn Amm anil Mag, Sal. Hist, see t, vol, is- it } 442 \\
& \text { 1873. Carler, Op, cil. Eer t, vil. xii. } \mathrm{p}, 349 \text {, } \\
& \text { 1873. Guy, Oy. cth., ier. 4, vol. xiil. f. } 284 .
\end{aligned}
$$

Quoy and Gaimard 'gave a description and figure of a form designated Alcyoneellumi speciosum which differed essentially from any sponge then known, The genus Aleyoncellum had heen some years before, 1830 , defined by Blainrille ${ }^{7}$ in the following manner :"Corps fixé, mou, subgelatineus, solidifie par des spicules tricuspidés, phytoide, à branches peu nombreuses, cylindriques, fistulaires, terminées par we oxifice arrondi, ì parois épaisses, compósées de grauules réguliers, polygones alvéoliformes, percés d'un pore a Pestérieure et à Tintéricure,"

The generic definition is followed by this note ${ }^{3}$:- Espece Ealayoneclle spécienx, A. speciosum, Quoy ot Gaimard, Zoologie, Astrolabe, msc." As the following "observation" adds:-"Ce genre a ete§ établi par Mm. Quoy of Gaimarl pour m corps organisé, rapporté dans leur dornier voyage et qu'ils ont biou voulu soumettro à notro observation. Quaique si forme rappele un peu colles des cellaires, il est copendant évident, que éest auprès des aleyons et des éponges, quil doit itre placé. Mais ensuite, pour déterminer, si c'est un alcyon proprement dit out un Spongrairo, il faudrait sivoir, si claque grain celfuliforme contiont un polype; toutefois, comme cela nous parait pen probable, nous nous sommes déterminé ì en faire un fanx alcyon ou un spongiaire."

The description of Alcyonecllum speciostm, Quoy and Gamard, is, on the other hand, just as prblished in 1833 by Quoy ant Gaimard, for the goms (Alcyoncellum) :-

[^25]"Spongiaire, lanclleux, dont la charpente est formée do filets tres déliés, accolés les uns aux autres et entrecroisés de maniere ì former des mailles nombreuses, arrondies, assez regulières et semblables ì celles d'we dentelle," and for the species (Heyoncellum speciosum) :-"Alcyoncellum cylindricum, cavum extremitate rotundum, albom, reticulis Inpidicis elegantissime contextum." "Cette singulière production domant lieu au genre ci-dessus représcnto un cylindre creux de sept ì huit potices d'étendue, en forme, de phallus, arrondi et un peu dilaté à une extrómité, ouvert á lautre, ì parois minces, formées de filets trìs dellés, láchement accolés les uns aux autres, entrecroisés dans tous les sens de maniöre it former des nombreuses mailles arondies, presque regulieres comme cellos de la dentelle ou bien des sieges tissés en rotang. Ce qui fait, que tont la masse est à jour. En voyant l'élégante blancheur et la régularité d'un tel tissu, on a de la peine ì se persuader qu'il est le produit d'me réunion daumatux. On aime mienx en voir mu senl au fond de la mer travailler ì se faire ce logement pour im but quelconque, en tirant de sa propre substance, comme le font certaines chenilles, la matière, qui sc pútriféc anasitót quelle est en contaet arec l'ean. Co zoophyte hmbite, nons at-ou dit, de grandes profondeus d'où il a été amené par une sonde. Les éelats qqu'on semarque ì me de ses extrómités indiquent qu'il doit être fixe. Nous le devons a M. Merkns gonverneur des Mahques, qui s'est plu ì favoriser avec lat plus grande obligeance nos rocherches d'histoire naturelle jendant to temps que nous avons possé dans les iles quil administre."

In Blainville's work, ${ }^{1}$ besides a repetition of the genenc diagnosis of Alcyoncellnm above quoted, which is also contained in the Dict. d. Sci. Nat., ${ }^{2}$ these words also occur :- "Espùec l'Aleyoncelle gedatincux, A. gelatinosum, Quoy et Gaimard," and then Hhere follows the same "observation" which has already been quated above (p. 99) from the Dict. d. Sci. Nat. But the figtres of Aleyoncellum gelatinosum which are given by Blanville ${ }^{2}$ undoubtedly represent a caleareous sponge belonging to the family of Syconcs (Haeckel).

In the second volume of Lamarek's Histoire naturelle des nnimaux sans vertibres, which appeard in 1836, Milne-Edwards stated the characters of the genus Alcyoncellum in the following words:- "Spongiaire lamelleux, dont la charpente est formée de filets trés déliés, accolés les uns aux autres et entreeroisés do mamère ì former des mailles nombrenses arrondies, assez regnlieres, et semblables ì celles d'me dentelle." In this he cvidently refors exclusively to that siliceous skeleton which Quoy and Gainard had figured and described as Alcyoncellom speciosum; withont even mentioning the older species Alcyoncellum gelatinosum, Bhinville.

While Max Schultze, Bowerbank and Gray; as already mentioned, regarded Alcyoncellem speciosum, Quoy and Gaimard, as idontical with Euplectella aspergillum, Owen,

[^26]and while Bowerbank included in lis genns Alcyoncellum, in addition to the well-known species Alcyoncellum esporyillum, the two species desiguated Alcyoncellum corbicula and Alcyoncellum robustum, Gray separated the geuus Alcyoncellum from Euplectelle, and divided it into two genera, Curbitelle and Ifeterotello.

Corbitella, whieh included the single species (figured) Corbitelle speciosa, was characterised thus:-"The tube clavate, rather irregular, rounded at the end, formed of slender fuscicules of open elongate filiform spienles, placed in longitudinal tinusverse and oblique dircctions, forming an irregular network;" the genus IIeterotellu, on the other hand, with the single species Meterotella corbiculd, is defined as follows:- "The tube short, rather irregular, eonical, truncated, irregulanly netted. Skeleton formed of thick bmalles of very ummerous slender spicules, placed in all diroctions, and forming an irregular network, similar to the network of the lid of Eiplectelle."

Soon after this, however, Wyrille Thomson, in his renowned contribution On the Vitreous Sponges, ${ }^{1}$ again united the two genera of Gray, Corbitella and Heterotelle, into one, on accomt of the great similarity of their form, structure, and siliceous spicules, and named the genus Mabrodictyon, His characters for this new genus are as follows:2"Sponge body sabeylindrieal, tubular, nttached by a slightly coutracted base. The walls of the tube composed of a perfectly irregular uetwork of bundles of siliceons needles looscly and irregularly arranged in sheaves crossing one another at low angles, and connected by a small quantity of soft mucilaginous sarcode. The spienles of the skeleton all essentially of the hexradiate form, free and separate from one mather, or ravely connected in groups of two or three. The spicales of the sarcode numerons 'floricomohexpadiate stellate, and various simple and bramehed modifications of the hexradiate type." The two forms IIabrolictyon spcciosum and IItbrodictyon corbicule were examined afresh in respect at least to the skeletons which had already been studied by Bowerbank and Gray, and which are preserved in the Museum of the Jardin des Plantes in Paris. One of these which bears the museum label "Alcyoncellum corbicule, Valencienne, donné par M. Saches 1857," and which was named Heterotella corbiculu. by Gray, exhibits a beaker-like inferiorly anchored tube, 10 cm . in height and 5 cm . broad in the superior part, while its terminal opening is closed by a tronsverse sieve-plate. The lateral wall of the tube cousists of a very irregular network in which the beams form irregular, roundish meshes, and are composed of loosely mited rod-like spicules varying in leugth up to 15 mm . No definite arrangement of the leams of the network in transverse and lougitudinal bands is exhibited, nor is there any indication of externally projecting ridges.

While the long rod-like spienles, which are somewhat thickened and rough at both omds, merely exhibit in the middle four cruciately disposed lateral tubercles, as indicutions of the six-rayed type, numerons well-developed six-rayed syieules also oceur, which are,

[^27]in part, quite regularly formed with six long, smooth, eonical rays, and in part more irregularly with bent and knotted rays. Wysille Thomson descriles ns peculhir "flesh spicules" the small regular hoxraliate forms which cover the skeletal framework and are abundantly seattered throughout the soft parts, and also the elegant structures which were termed "floricomo-hexradiate stellate" by Bowerbank, in which each of the six primeipal rays is continned into a small, ontwardly curved, cichly pronged, terminal plate, and into a petaloid system of small loranches which are bent in an S -shaped manner, and widened at their extremities. The network of fibres forming the terminal sieve-plate, which extends all rond the slarply truncated lip-like upjer walls of the tube, consists of the very same elements as the wall of the tube, but appears more closely woven, and whibits large six-rayed spicules between the rod-like forms, which are in general somewhat short. Besides this completely preserved skeleton, which has been figured by Wyville Thomson from a photograph, the 3tuseum of the Jawdin des Plantes in Paris is snid to contriu a second injured specimen and a fragment of a thind.

As to the other form, designated by Gay Corbitclle speciose-Hulurodictyum speciosem, Quoy and Guimard - Wyville Thomson was able to study only the single specimen contained in the Musemn of the Jardin des Plantes, and labelled'Alcyoncellume conbicula Val tiré par 80 brasses de profondeur dans la rade de St. Denis de Bourhon par M. Leschenanlt 1819." This is probably 'identical with the specimen first described and figured as Alcyoncellum speciostan by Qnoy and Gaimard in their great work. It exlibits a lattice-like tube 19 cm . long; which grathally widens from a bise which, when fully grown, is 32 mm . lurond; to a free upler extremity which is 60 mm . in breadth. 'The lateral wall of the tube does not, as in Heterotella corbiouke, end is a shaply truncated apper margin, nor become closed by a flat trusserse sieveplate, but, without olianging in texture, bonds inwands, and so forms a curved areh which serves to close the tube above. While the rod mad spindle-like spicules which compose the lattice-like fromework, and also the larger six-rajed spicules, resemble the corresponding dements of the other species except in a fow differences in size, and while both the thove-mentioned smadl, stellate six-rayed forms and "floricomo-hoxaradiate stellate spicules " recmr in similar form and size scattered through the soft body, there is further a very aboudant ocemrenco of a flesh spicule, which has not beon cortainly observed in Hebrodictyun corthedle, mamely, a small lexradiate form with its branches divided longitudinally in a forked or trifid manmer. It was the great abundance of this form, which Bowerbank termed a "bifurcate rectangulated hexradiate spicule," which mainly induced Wyrille Thomson to regarl Habrodictyam speciosum, Quoy and Gaimard, in every

[^28]other rezpect closely relatud to Hobvodictyman corbicula, ns at quite diatinct and separate genus from the fatte, and futhes, the fies that in Hebrolictgem apeowsens no termimil siere-plate is present, leal Wyrille Thomsod to oljeet to the opniou which had been expressed by Bowerbank," to the effect that in Euplettello and allied spanges "the upeuings of this lid and those of the tube stand to obe anothur in the relation of oscula and pores." He maintains that on the contrary "each of the large prenings of the wall is occupied by au exhatent oxfifes and that inhalation takes place as usual ly minute pores in the interstioes levtween the spieules of the skeleton."

Carter suys in the treatise On Hoxnetinellidee, " Alcyonellum speciositim and Ilcyovellum corthicula диpean to me to belong to one ant the ame spocies," which opuiba I assent fo.

The genus Habrodetynu probably also inclades Ekelietyum rdegaus, Marshall, which Marchall has brietif deseribed from a hullaw, conal-like form (proserved ith the Dluseno of the Amstendam Zoological Garden), agreeing with Hfaluodictynm specrosinc, Qquoy and Gaimard, in the form and structure of its irregular, lattice-like skeleton, though exhiliting in the interior a looser spicular work (of interatitial connective tissueFlockengetelic). The latter consiots, recording to Marshall, chinity of long (up to 1 um .) roi-like spicules, between which slendec, sword-shimerl bexmdinte forms ocour, leseitios more delicate six-rayed and fire-rayed spincules, with irregularly dereloped prickles, and further, small ccowded farms. With sis, five, four or three rays, which, like the trorayed so-called compass spicules, probably form wrentis round the dermal osfia. Particulaty characteristic are the six-rayed spieules, $0 \% 2$ to $0: 3 \mathrm{~mm}$ in asial length, which bear on the extremity of each rac a disc with seren prongs. Marslifll's bristlelike spicules also-occur, as well as the well-knowi "Horicomo-hexralinte rosettes," whiuh do not differ essentially from those of Eirpestella.

In the menoir which appeared in 18i6, Marshall chameterised be family of the Euplectellidie as follows:- Pollakid Hexactmellidoe of tubular form, monozoic, osculum slosed by a sieve-flate; in the porietal tissue longitudiml, circular and spim bundlos. Dermal zkeleton cliefly formed of herradiate spienlec, between which lie the swaller dermal pores: Large crateriform elccations of the parietal tiseue also ocour. There are also a considemble number of dermal ostia whirh lead directly into the body carity, mul which many be closed by compase spicules. The posertes belung to the "florioomo-lieximithis' type"

In the genus Éyplectella, Harshall notes two species, namely, Eyplectellu asperyillum, Owen, and Euplectella orraf, Marshall and Herklots, and in the genus Babrodictyam, Wyville Thomsom, only the single species Hubrodictymm sproiosmm, Quoy and Gamard. leaving it undecided whether the sponge (Evitietyom clegrass) he had describel, from the Amsterdam Nusuru, is an independent form, of belongs to the Mubroliotynum speciosum.

[^29]Athough I have no specimens of this genns Melvodictyum for special examination, it follows from Wyville Thomson's above quoted (1. 101) generic diagnosis and figures ${ }^{1}$ that the two species distinguished by Wyville Thomson, Habrodictyum corbicule, Valonciennes, and Habrodictynm speciosum, Quoy and Gaimard, are very closely related to Regadrellu phamix, Osear Schmidt. Whether the agreenent goes so far that the two species must be included in a common group I cannot decide, thongh I regard this as by no means improbable. Wyrille Thomson was eertainly right in uniting Gray's two genera Heterotelle and Corbitelle, and in entively dropping the generic name Alcyoncellum, which really referred to a calcareous sponge.

Habrodictyum agrees with Regadrella in this, thant the skeletal framework of the tube-wall is formed of an irregular network of fibrous bundles, which in the upper part are only united by means of the soft parts of the body, but which towards the somewhat diminished inferior extremity become gradually more and more firmly welded together by siliceons matter, and finally pass into a knotted base which grows directly mpon the solid substratnm. The irregular distribution of the parietal apertures is characteristic of both genera. The spicules deseribed and in part figured by Wyville Thomson do not, on the whole, differ much from the spicules of Regadrella. Only the rosettes, which are seattered thronghout the parenchyma, and which in Regadrella are provided with a transverse terminal cross belonging to the terminal rays, exhibit in Пebrodictynm speciosum true oxy hexasters with proportionately long principal rays and shorter pointed terminals.

While in Habrotictyzin corbicule the wall of the tube is affirmed to be sharply separated from the tramsversely disposed terminal sieve-plate by a lip-ike margin, such a separation is entirely wanting in Habrodictyum speciosum, since the lattice-like network of the tube-wall passes directly and without change into the gently arched terminal plate. Whether Habrodictyum corticula contains the parenehymal oxybexasters which are so abundantly present in Ifabrodictyam speciosum, has not been determined with certainty:

Genus 2. Eudictyum, Marshall.

This somewhat doubtful genus contains only a single species, Eudictyum clegans.
Eutictyom clegans, Marslall.
In his investigations into the Hexactinellida ${ }^{2}$ Marshall lins described, under the name Eudictyum elegans, a specimen in the Museum of the Amsterdam Zoological Garden, which is perhaps identical with the above-mentioned Habrodictyum speciosum, of Wyville Thomson, and at any rate, very closely allied to it. According to Marsiall the tissue of the wall of the hollow club-shapel sponge shows longitudinal and trans-

[^30]verse bumiles, which ruu irregulady and usually form anastomoses; the dermal ostia ane usually imegnlarly distributed between them. At the upper end is a strongly injured sieve-like plate whieh is not so distinct from the tissuc of the wall as in Euplectello. This trabeular network seemed to Maishall to consist of unsoldered spicules. The loose mass of spicenles lies on the inner sile of the lattice, and consists of uniaxial spicules I to 10 mm . long, slenter daggers, weak five or six-rayed forms with irvgnlarly developed ray\%, very small spicules with several rays (three to six), spicties with compressed rays and similarly formed dinets which are like a compass neede. Hexactes with axes, from 0.2 to 0.3 mm . long, which bear at the end of each ray an numbel with seven rays, are espeecially characteristic Finally, there were fomd fivemayed spincules and floricomes which could not be distinguished from those of Euplectellu.

Genns 3. Dietyocalyx, th. gen.

This genus contains ouly the one species, Dictyocalyg gracitis.

Dictyocrily. gracilis, n, sp. (P1. XII. figs. 1-7).
The framework of siliceons beams, which is shown in its natural size, from a photograph, in Pl. XII. fig. 1, was trawled in the South Pacitic (lat. $22^{\circ} 21^{\prime} \mathrm{S}$. , long. $150^{\circ} 17^{\prime}$ W.) from a depth of 2385 fathoms, and a red clay bottom (Station 281). From a compact conical basis, which has been attached to some solid body by a basal surface of 5 mm . in breadth, and which is narrowed upwards to a diameter of 3 mm , there arises im iregular retiform framework of beams, resulting in a cup-like form, 25 mm . in length, and about 18 mm . in widh alove. One of the sides appears to have opened inferiorly, and to have been again closed above.

The beans of this frumework, where they spring from the massive base, measure from 2 to 3 mm . in thickness, but become thinner upwards by gradual ramification. They consist of greatly prolonged spicules, which vary in the number of their rays, but which are for the most parts diacts, cemented externally in a quite irregular fashion. In the meshy conical basal portion numerons hexacts oceur, soldered between the larger beams

After a more careful examination of the entire specimen I detected in varions places, but especially at thi points of union of several intersecting beams, small patches of an adherent soft substance which partly covered the beams. Atthough such insignificant remuants of the soft body were no longer available for sections, it was still possible to detach them in small fragments from the lattice-like framework, and to detect in them a number of isolated spicules, which throw at least some light on the true clraracter and systematic position of the sponge.
(zoot chall. exp-part Lill-1886.)
Gig 14

In the fitst place, slenter swori-sliaped hexants necor in great numbers. In these both the prolonged my and the four rectaugularly intersecting transversals are smooth, and terminate in a truseated point, while the sixth ray opposite the former is thickened in its midde portion, and beset with outwardly-tirected prongs. 1 am inclined to believe that these sword-shaperl hexacts represent the hypodermalia of the iermal weleton, and that they bore on their distal ray those floricomes which were fome here and there, though indeed very mech senttered, and which are figured in a fragment in II. XII. fig. 7. This floricome form is distinguished ly the omall number (three to five) of the terminal claws, and by a peonlias mediun outward bending of each of the six terminal tays borne by each príucipal.

Four different forms of rosette also pecus: In the first place, discohexasters in which each principal bears four terminal rays, slightly bent in su S-like manner; these terminal rays increase in thichness towardx the extetior, and bear terminally a large hemispherienl terminal plate, with amall marginal tecth (P1. XII. fig. 2). In the second place, discohexastars with four straight terminal rays, each of which betars on its mithickened extremity a deep campamatate terminal dise whose margins are divided into paralled pointed teeth (Pl. XII. fig. 4); thirdly, diseohexasters half the size of the above, in which ench of the principal rays bears a bundle of from twenty to thirty thin terminals varying in length, and termizating in small forr-pronged transverse dises (FL XII, fig. 6); and fourthly, graphiohexasters with a bonde of very fine sonewhat diverging rhaphides, which are borne on the discoid terminal expausion of each principal my (PL. XII. fig. 5). As somewhat loose parenchymatia, the seattered simple hexacts and diacts with contral intersection nodes are to be unted.

The reforence of this sponge to the Eitplectellide, and to a position somewhere in the neighbourhood of Teyeric, L base upon the character of the main skeletal framework, and on the great abmadance of sward-shaped floricome-bearing leexacts, which doubtless belong to the dermal skeluton.

Perhaps the variety A of Oscar Schmidt's Rheddodietyram delicatum ${ }^{1}$ is identical with my Dictgocaly.e grecilis, as is suggested by the figune? and the short but very apposite description of the framework which Oscar Schmilt has given in the words: ":an airy wall arises from a thick pillar-like base." I would also have aecepted O. Schmidt's designation for this Hexactinellid, lad the name selected by 0 . Schmidt appeared to me to be mure suitable for his rariety B, to which his description (especially of a peculiar rosette) chicfly refers. This marioty B is likewiso ineluded in the Cbaillenger material, and will be immediately described.

[^31]Gemus 4. Rhubrlodictyum, O. Sehmidt:
This gemus contains only one sprecies.

Phabiodictyum delicatum, O. Sclmidt (PI. SX.).

Of the two Hexactimellids \{drodged in the neighbourhood of Bequin from a depth of 1591 fathoms) which Usear Schmidt has distinguished as varieties of one speciesRhabdodictyum dclicatuin-it appeas to me, as atready mentioned, that the variety A is identical with my Dictyocalye grucilis. For the variety B I retain the original uame. O. Schmidt describes this latter form is a "simple or liranched tube with a perfornted wall, formed of interwowen cords. The corls cousist of amalgamated or loosely fused liexradinte spicules. The tays, which are arranged in layers in the longitudinal direction of the cords, are for the most part strikingly prolonged, so that the tissue lias the appearance of being composed of iregnlarly intersecting rods. The free hesradiate spicules are slender, smooth whon quite young, bat subseqnently covered with spines. The rays are very pliable. A beautiful rosette form occasionally occurs, in which each of the six rays is provided with eight intersecting umbels."

Oscar Sohmidt's figure, ${ }^{1}$ and still more his description, lave convineed me that these skeletons dredged by the Challenger in the neighbourhood of the Bermuda 1slands (Station 56), from a depth of 1075 fathoms, and on coral mud, belong to Plicubelodictyum delicatum, 0 . Schmids. They exhilit slender, almost tubular cups, with a length of 6 cm, and mach broken at the upper ends (PI, SN. fig. 1). The hasal portion, which is from 6 to 10 nm . in breadth, is attached ly means of a terminnl expansion to some solid body, and becomes gradually wideued upwards to twice this diameter or more. The wall of the tube, which it the larger gpecimens mensures as much as 4 mm . in thickness, is radially perforated by mmerons ronnd holes. These are from 2 to 4 mm . in width, and become somewhat broaler towards the esterion, at the sanc time increasing in diameter towards the upper end of the sponge. The arrangement of these parietal apertures is tolerably irregular in the inferior portion, but towards the superior extremity дequires more and mons the chazacter of two somewhat steep, intorsecting sparal rows. The siliceons fromework which forms the supporting wall is usually from 1 to 3 mm . broad between those formmina, and consists of the greatly prolonged hexact-iays firmly muited by solflering and symapticula (P1. XX. figa. 2, 3, 4).

Since the three specimens which are at my commad are all incomplete and wholly macerated there is no trace of the soft tissuc nor of the looser spionles of the purenchyma, skiil, or gastud membrame, so that no conesption of the etructare of the ention sponge can be obtaned sufficient to enable us to determine whether we hate hure to deal with a

[^32]Euplectellisl or not. It is not even certain whether the partetal apertures obscreed in the skeleton are really open during life, or whether they are corered by the soft parts.

Geniue 5. Rhabilopectello O. Schmitt.

Only one species has yet been reforred to this genus.

Rheldedopetclla tintinates, O. Sthmidt (PI. XII. figs, 8-12),

Among the Hexactinellida from the Bay of Mexico which lrove been atudied hy Ostar Schnidt, a form occurs represented by several fragments and by one whole young specimen, in which the cop-shape manifest in the young form at least, the method in which the spienles are united by fusion and syaapticula in the basal part, hat more loosely is the upper portion, and further the form of the loose spicules present in the soft parts, justify its roference to the Enplectellide, though we do not know cither the form or stracture of the entire adult sponge. The inferior portion of the maturn Rhabelopectella tintinnus, as figured by O. Schmitt,' presents so firm and stalk-hike a mass that in spite of the muddy character of the ground in question, I am far from accepting the opimion of Osear Schmidt, that a root-tnft mist have been present, for the expanded basil plate of the young specimen by no means exeludes the supposition that the sponge was fixed to some hand body.

The wide-meshed lattice-fike framework of the cup-shaped hody, composed as it is of greatly prolonged hexacts and namerous diacts, may well be compared with that of Regodielle and other firmly sessile. Euplectellide. Of the looser spricules Osear Schmidt has carefully described and figured sevemil noteworthy forms. Among these the florioomes, which agree throughout with Enpleetella floricomes, deserve special attention; further, there aro discolexasters of different kind-first, those with small transversely disposed stelhate plates on the thin extremities of the long scoondary rays, of which two or three are nttathed to every prineipal ray; secondly, those with hemispherical, marginally toothed terminal umbels borne by the thin, but extemally conically thickened terminal rays, of which fowe ocenr on each principal, and in which the S-shaped carvature (Pl. NII. fig. 8) produces a mutnal entanglement; thirdly, a form resombling the latter but with Jong, parallel, marginal prickles which mun back from the hemispherical terminal dise, clase to the axis of the terminal ray; and finally, a very small, on the whole spherical form ill which each of the long, thick, principal rays bears five strong terminals. These five terminals are arranged in a regnlar manner, so that a somenhat shorter straight ray forms the direct extension of the principal, while the four other longer and slightly lent mays are disposed in a eross, and run obliquely outwards. Every terminal ray is provided with a hemispherical

$$
\text { + Lox, cit, pl viii. fige, } \mathrm{n} \text {. }
$$

terminal umbel, from the lateral margin of which about sixteen pointed testh powject. It is remarkable Grat these hemispherical or globular terminal umbels are not of equal size, the central having but about balf the diameter of the form sarmonding it (PI, XII. fig. 11).

In at fragment of this species which Professor Osear Sehmilt had kindly placed at my disposal, 1 found a fes other rosette forms, namely, first, oxyhexasters with tivo diverging thin terminal rays on a very short principal (PI. XII. fig. 9), just like those so freguent in different species of Euphletellec, mul secondly, small diseohexacts in which upon the outer extremitics of every simple islimbtrical primepal ray, a hemispherical hollow terminal dise with marginal prongs was so neljusted that the cavity scemed to be directed not inwards but outwards.

The stars which Oscar Schmilt olserved in Rhabrlopectellot tintinnue, and which he compared to the Tethye-stars, I have likewise seen, aud have figured them in PI. XII. fig. 12. I regard them as oxyhexasters in which the strong terminal mys have at their hase grown together laterally on the very short principal mys.

Finally the rough low-sinured spieules (PL. XII. fig. 10) deserve to be mentioned. The great rescmblance between these forms and those of Buplectelle joris has ahrendy been noted by Osear Schmilt,

Genus 6. Herterigia, O. Schmidt.
This genus inclndes only the single specics mentionied belox:

Hertuigia fatcifera, 0 . Schmilt.

From a knotted and branched basis, according to Oscar Schmislt's representation, there arises an irregular labyrinth of tubes with thin leaf-like walls, supported by a lattice-like framework of obliquely crossed rods and fibres. Owing to the defective preservation of the upter much damaged portion it was not possible to frume any satisfaetory conception of the whole form. Among the looser siliceons spicuics, Oscar Schmidt mentions- (1) hexxadiate spicules and derivative five- and three-rayed forms, which are for the most part sough towarls the point, white othcts exhilhit a fir-tree-like ray with at most very short prickles; (2) rosettes with four intersecting umbel teeth; (3) rosettes with larger teeth on the backwardly hent nargin of the terminal umbel ; (4) the "specifie Euplectella resettes," that is to say, foricomes: and (5) tro kinds of sickle-rosetter, one of which carries on the hemispherical terminal dise of each principal ra) several whorls of sickle-like torminal rays, while in the uther four large sickle-like tecth are inserted on every principal ray: Rods with mumerous oblique lateral prickles at one end are se ttered here and there. Oscar Schmidt ahso mentions defiente
siliceous webs whose threads are frequently pawided with small terminal hooks or umbels. I would venture to suggest that we have here to deal with the retiform xiliceous skelcten of cestain Radiolarians in which terminal hooks or pronged terminal dises frequently oectur quite similar to the hexasters of Hexactincllith.

This form wns found in the neighbourhood of Dominica, on muddy ground, and at a depth of 611 fathoms.

In spite of the chasacteristic floricome described by Osear Selimidt, it must still remain doubtful whether this form really belongs to the Euplectellidie.

Geuus 7. Mycelostylus, n. gem.

This genus contsins only one species, Hycustydus dives.

IIyatostylew itizes, n. sp. (PL LXS).
This Hexactivellid (P1. LXX. fig. 1) was dredged in the Mid South Pacific Ocean, lat. $39^{\prime \prime} 41^{\prime}$ S., long. $131^{\prime \prime} 23^{\prime} \mathrm{W}$. (Station 289), from a red clay ground at a depth of 2550 futhoms. The soft loose body measures 555 cm in length, while from the lower ond there extends a much damnged awh-shaperd stalk, 11 cm . long, and 2 to 1 mm . thick. The whole aponge las lieen apparently so much compressed and distorted in the dredge, that from its present state it is difficult to decide certainly as to the original form of the living organisu, though a reconstruction is, to n certain extent, still possible. In gencral form the borly of the sponge resembles a laterally much-compressed cone, of which one of the narron sides is uniformly rounded and the other mneh foldel. The broader upper end is not transverscly, but obliquely truncated, as the rounded, somewhat S -curved narrow side is rather longer than the other, which exhibits a simple convex contour. The upper surface is contracted in finuel-like fashion, and oxhibits an irregularly folded inftudibular opening. The lower end of the body is not drawn to a point, but is slightly rounded. The stalk springs from the base of the roumdel, infolded narrow side, and heromes gradually slender thoughout its length.

As the sponge was given to me for investigation in an undonbtedly woin atterel form and condition, several questions as to its anatomical strictmre, and these of cssentint importance in determining its systematie position, lave unfortumately to be left unanswered. Thos it must remain doubtful whether tho cup-form of the body represents the original shape, whether the smooth externil surface is really dermal, whather the folded portion of one side is merely a part of the extermil sufface, whether the styliform stalls represents the intact form or only a fraction of the origionl, and so on.

Microseopie examination soou tevealed that the tissue was not sufficiently well preserved to admit of the recognition of the arrangement and structure of the chambers,
dic. My description is therefore neeesarily restrieted t. . the siliceons spicules, which it deliency and variety of form are not surpassed by those of any other sponge.

The spienles of the parenclyma aro long, filiforn, slightly corved, smooth diace: the ends are alway knolbed and beset with fine spines. The midale point is generalls marked by a swollen ring, or hy fiom cruciate, or less frequently, tico opposite bosses (PI. LXX. figs. 6, 7). Between these long dincts which are isolated and disposet in strands, separate, peculiady enrred oxydiacts oceur, and in some situations (e. $\%$, , just below the skin) they itre exen more abundant. They moasure about 0.3 mm . in tongth, and are covered not all round, but on one side, with minure tubucles and wants. Exegit on this side they are smooth. The emvature of these drawn-out spiudles may bo genorally ilescribed as like that of a corkscrew, but both the pointed euds are slightly bent outwards (P) 1.XX. figs. 5, 8), 1 was not alle to detect the axial camal, frobably on account of the roughess of patt of the surface: Besides the above, the pareuchyma contains four differont kinds of rosettes. One extremely tare form exhibits at the end of the comparatively short, simple, principal may, six somevhat markedly-diverging, loug, stiaight termimals, numuged in in corona, The basal half of these terminal rays is very thin and delieate, whilo the onter, terminal half consists of a thicker, eylindrieal, terminally rounded portion, like a Typhee-apike (II. LAX, fig, 2). Auother somewhat common rosetty bears on the short, simple, principal ray a loundle of long S-shaped termimals, with toothed rerminal plates which project outwards (PI. LXN. fig. 3). The fitamentons terminal tays, which are slightly thickened at their outer ends, are arranged like petals, but of unequil length-the median being longer tham the exterual.

A third form of rosette is characterised by the inverted bell-shaped umbels formed by the long terminal rays, sis of which diverge from the end of each of the short simple prineipals. These terminal umbels exhibit on the margin of a simall, flatly convex, transverse dise, at the end of the terminal ray, about eight fine mbel rays, which extent parallel to one another towards the contre of the rosette, and form along with the terminal umbel an inverted bell-shaped structure (PL. LXX. fig. 11). The fourth and most frequent form of rosethe bears at the end of each of the short, simple, primeipal rays it bundle of long, thin, radiately dispozed terminals, which gradually incrense in diameter away from the base, and terminate in small, slightly convex, transvers, dises with toothed margins (PL, LXX, fig. 12). The number of terminal rays on this, often ąpparently spherical, diseohexaster varies greatly: Each prineipal ray umy bear from twenty to forty distinet terminals.

The demal skeleton consists of smooth hexacts, mostly of mediau size. Their strong, freely projecting distal ray is club-shaped, i.e, gradually increases terminatly inton swollen knol, and ocensionally exhilits several tubercles on its onter cut (11. LXX. figs 4, 6), The four tangential rays, which are always disposed at right anglos, are also thickened ferminally, and the conically pointed external end is roughened. The prosimal roy is
uxaally without any, or with only a very slight torminnl swelling, and indeel, as a rule, ends in a usually conical, roughened point. The length of the distal and proximal radial rays varies greatly. The tangentials measure, on an average, 0.2 to 0.3 mm . in length, and the distals are not unfrequently of the same size, but the latter may in some situations, c.g. near the lower cut of the lonly, attain more than double the length of the former. The proximal may exhibits a similar varability, measuring sometimes only 0.1 mm , in length, and in other cases 0.4 to 0.5 or more, while in thickness it always falls considerably below that of the distal.

Here and there, on the exterbal surface, 1 found simple erneform tetracts, with smooth knobled rays, pointed at the extremity (PI. INX. fig. 10). The finct that, for the most part, only a few dumalia were to be found on the external surfice, is probably to be traced to the injuies which the sponge seems to lave suffered by attrition. I found these dermal hexicte most abundantly and in best preservation at the pointed basal extremity of the body, just alove the origin of tho stalk. They were also abandant, though somewhat displacerl, in the deep, folds of the already mentioned plicated side of the body; which, if flattened out, would form part of the external surface.

The stalk is cliietly composed of very long neelles of various thickness, closely arrauged, parallel to the longitudinal axis, and, especially in the inferior portion, frequently bound together by transverse synapticula (PI. LXX. fig. 9). On the external surface, between the longitudinally disposed diacts, I foum forms the asme as those above described as parenchymalia, as well as similar hexacts with club-shaped distal rays, and simple cruciform tetracts, somewhat bent towanls the surface.

I anm not in a position to report so definitely as to the gastral skeletal elements, since 1 was not able to study them in their natural disposition. In the interior of the body, in the numerous septa, hexacts and penfacts occur in abundance, with somerrhat long, smooth rays, which end iu slightly club-shaped thickenings; and it seems to me probable that these function as gastralia, though I was unfortumately unable definitely to determine their disposition.

It is clear that this curions form, obtained from the depths of the South Pacific, at a great distance from land, must occupy a peculiar position in the system of the Sponges. On the one hand, the character of the hexact dermalia with their diverging distal rays would suggest an alliance with the family of the Euplectellide, in which, further, such remarkable twisted oxydiacts alone ocour (in Rhicheloplectelle tintinais, PI. XII. fig. 11); while, on the other hand, all the mieroscopic characters of the body, and the sharjly defined, long, narrow stalk indicate a closer resemblance to such forms as Crateromorpha, Aulochonc, and especially: Caulocalyx (PI. LXIX.), to which we shall have again to refer in detnil.

Family II. Ascoxemattod.

Lyssacina of sack-, tube-, beaker, or mushroom-like form, fixed either directly or by means of a round stalk. The body-wall, which is not perforated, forms a thin soft plate or a compact mass, which represents either the thick wall of a beaker, or the arehed plate of a mushroom-like body. In the latter case the gastral surface has become the convex outer side.

Both dermal and gastral surfaces are densely and miformly beset with bexact and pentact pinuli, in which the freely projecting fir-tree-like ray is prominently developed, while the parenehymal ray is usually small or enticly atrophied. The four transverse rays, which are eruciately disposed, lie embedded in the bounding skin, and the whole spieules are accordingly desiguated autodermalia and autogastralia. Below these pentact hypodermalia and hypogastralia occur.

The rosettes which lie seattered between the diact or hexact principalia are for the most part discohexasters.

Subfamily 1, Asconematix.e.

Sessile sack-, oup-, or tube-like Asconematidæ, with a thin, flabby, pliable wall.

Genus 1. Aseonema, Saville Kent,

1870. 8. Kent, Monthly Micr. Journ., Nor., p. 241 (Ascuprwa setubialense).
1. Gwyn Jeffreys, Proc. Roy. Inst., N. 5t, p. 258.
2. Gray, Amn, and Mag. Nat. Hist,, vol. ix. p. 412 ,
3. Thomson, Depthe of the Sea, p. 429.
4. Carter, Ann. and Mag. Nnt. Hist. vol. xii. p. 349.
5. Gray, Ann, and Mag Nat. Hiat, vol, xiii, ph 284.
6. Marshall, Zeitschr. f. wiss, Zool., Bd. sxv., Suppl., p. 142.
7. Marshall, Zeitschr. f. wiss, ZooL, Hal, xxvii. p. 113.
8. Norman, Ann, and Mag, Nat, Hist., vol vi, p. 430.
9. O. Sclumidt, Spongien des Meerbusens von Mexico, ii. 1 , 65 .
10. Milne-Edwards, Comptes rendus, xeiii. p. 876.
11. Filtiol, la vio au fond des mers, p. 988.

History.-Among the natine Sponges preserved in the Lishon Museum of Natural History, Saville Kent detected in 1870, ${ }^{\text { }}$ on the occasion of the "Norna" expedition, some large, but only partially preserved cup- or suck-shaped specimens of "felt-like consistence, camposed of an interlacement of long filiform siliceous fibres or spientes, nud, interspersed among these, hexradiate spicula of varions sizes and minute multiradiato ones with capitate estremities." For these specimens he erocted a special geuns, Asconeme, and characterised the single representative speeics, Asconcmas setubalense, in the following ${ }^{1}$ Moutaly Mirr. Journ., p 955,1520 .
(800L. emall. FXP:-PART LII.-) 886 .)
Gg 15
words:-"Sponge body, vase- or sack-like, of large dimensions, expanding superiorly, ofton upwards of two feet in height; composed of interlacing fasciculi of lang filiform fibres or spicnla. Individual filiform spicula smooth, fincly canaliculate, varying in diameter from $\frac{0_{0} 0}{}$ th to $\frac{1}{500}$ th of an inch, occasionally possessing a central or excentral inflation, as at plate lxiv. fig. 4. Hexradiate spicula of two types, the one large, with smooth alternate radii, the other of smaller but more varying size, with obtuse extremitics and entircly erectly spinous surfaces. Seattered throngh this sponge there also occasiomally oceur simple alternate spicula, clavate and erectly spined at either extremity (see plate lxiv. fig. 5). Average diameter of the minute multiradiate spicule $\frac{1}{300}$ th of an inch." From the fact that the base was absent in all the specimens, Saville Kent was led to conclude that the lower portion of the cavity, where the sponge is fixed by its base to the sea-bottom, was filled with mud, and that it must thus have been constantly torn off during the process of fishing up the sponge.

Fia 3.-Asonevia schubulense, Sar. Kent, one-eighth the natural size, from Wyville Thomson's Deptlis of the Sea, pi 129.
A giant specimen of this species, with a diameter of 3 feet, was dredged by Gwyu Jeffreys ${ }^{1}$ off Cape St. Vincent on the coast of Portugal, on rocky ground and from a depth of 374 fathoms.

In his Classification of Sponges, ${ }^{2}$ Gray forms Kent's genus Asconema into a special family, the Asconcmatide, with characters essentially similar to those noted by Kent in regard to the genus and the single kuown species A large and comparatively well-

[^33]preserved specimen of Asconema setubalense, which was dredged "in 374 fathoms on rocky ground off Cape St. Vincent, duriug Mr. Gwyn Jeffrcy's cruise in 1870," is described by Wyville Thomson,' and depricted in an excellent woodeut. He calls it "a complete vase of very elegmt form, nearly nincty centimetres in diameter at the top, and about sixty in height. The sponge came up folded together, and hait much the appearance of a piece of coase greyish-coloured blanket. Its minute structure is however very beautiful. It consists, like Holtenia, of two netted layers, an outer and an inner, formed by the symmetrical interlacing of the foor cross branches of five-rayed spienles; and as in Holtenia and Rossella, the sareode is full of extremely minute five and six-rayed spicules, which, however, have a thoronghly distinct character of their own, with here and there a very beautiful rosette-like spicule, another singular modification of the sexradiate type characteristic of the group. Between the two netted surfaces the sponge surface is formed of loose curving meshes of loosely aggregated bundtes of long single filines, sparsely mixed with spicules of other forms. This sponge scems to live fixed to a stone. There are no anchoring spicules, and the bottom of the rase, which in our two specimens is a goor deal coutracted and has a square shape something like an old lrish "mether," has apparently been torn from some attachment."

Carter, in his paper on the Hexactinellida, ${ }^{2}$ bas noted certain agreenents between Asconema and Cruteromorpla. He says- "In Asconema the small sexradiate spicules with short-spined arms (of which the vertical one on one side is often deficient) and formed together in groups, recall to mind the same kind of spicules (which form a rectangularly reticular network) on the surface of Crateromorphat meyeri and Rosselle velata. Indeed, so far as this goes, Asconema might be considered a sessile rase-like representative on the coast of Portugal of the cup-like Iend of Crateromorpha found about the Philippines only."

Some siliceons elements figured by Kent as skeletal spicules of Asconema setubalense," which do not exhibit the hexradiate type, were declared by Carter not to belong to this Hexactinellid but to have been most probably intruded from a Pachastrelle abyssi.

With regard to the affinities of this form among the Hexactinellida, Marshall ${ }^{4}$ conjectures that Asconenst, which be refers as an aberrunt form to his Pleionacide, is closely related to Lamuginelle, Schmidt, that the latter, in fact, is probably a yonng Asconema.

Norman reported" that, during the voyage of the "Travailleur," "a little bunch of the strong coarse spieula of the great Asconema setubalense was dredged in the Bay of Biscay, in about 600 fathoms."

As a second species belonging to the gems Asconema, Kent, Osear Schmidt described ${ }^{6}$ his Asconcma kentai. This was found in from 300 to 1500 fathoms, in the

[^34][^35]neighbourhood of Grenada, Martinigue, Guadeloupe, and Bequia. He spenks of this Hew species as follows :-"It oceurs in two varicties; the one resembles a shallow or but moderately deep eup, which is provided infariorly with a rounded or short, often somewhat irregulady twisted, pointod stalk; the other is sack-like, with an irregular margin, with irregular pocket-like divisions and excavations, which are separated by somewhat thin lappet-like partitions, just like a beggar's sack. The latter forms are a foot in length and seem to be sunk in the mud up to the upper margin." In a netted covering-layer, which is partionlarly well developed in the beaker-like variety, 0 . Schmidt found fir-trec-like spietles. "On the margin of the beaker-like variety the covering-layer usually projects as a plaited fringe, and extends from the outer towards the inner surfice. Above this there projects a dense row of imperfectly developed hexradiate spicnles, and needles with an axiat cross. The whole body is unusually rich in double 'quirls,' which vary greatly in dimensions and in individual form."

Osear Schmidt notes especially that although Asconemu kentii agrees completely in the form, consistence, and especially in the felt-like condition of its walls with Asconema setubulense, Kent, the agreement by no means extends to the spicules.

The dried specimen of this speeies was kindly lent to me by Oscar Selumidt, and is figured in Pl. XXX. fig. 9. That it does not belong to the genus Asconema, but to IIyalonema, will be pointed out in the detailed description of the chanacteristics of the species Hyalonema kentio, which will be given below.

In a short report on the voyages of the French ships "Travailleur" and "Talisman," Filbol ${ }^{2}$ gives a woodeut and the following notices of Asconema setubalense:'L'Asconema setubalense n'avait été trouvé jusqu'au voyage du Talisman que sur les côtes du Portugal, Lors de la campague de ce demier batcau, nous l'avons recueillisur les còtes du Maroc, au voisinage du cap Bojador, par 410 mètres. Les deux exemplaires que nous en avons obtenus vivaient fixés par leur base sur des roches ou sur des coranx (Lophohelia) dont le chalut contenait de nombreux débris." And on p. 289 :-"Les Asconema ont été trouvées avec les Aphrocallistes."

The genus contains only one species.

Asconema setubalense, Saville Kent (Pl. XXI).

A thin-walled cup in which the wide superior opening is surrounded by a simple, smooth, thin margin, while the narrowed inferior extremity seems to be firmly fixed. Among the sponges of the expedition of H.M.S. "Triton," which were entrusted to me for review, I observed the fragment figured in PI. XXI. fig. 1, and some small specimens of a Hexactinellid, which, after comparison with Kent's original in the

[^36]British Mnsenm, I regard as identical with the sponge named Aseonema selubulense by saville Keut. The specimens in question were trawled at Station 4 of the "Triton" expedition, from a depth of 327 to 430 fathoms, and were preserved in ahsolute alcohol, By means of this fitly selected medium the soft parts were especially well preserved.

The principalia of the parenchyma are strong, smooth diacts, 1 cm . or more in length, pointed at both ends, and usually exhibiting in the middle a small knot-like swelling. They lio parallel to the bounding surface at different levels, and are distributed with comparative irregularity. Every principal ray is surrounded by a layer of thin diact comitalia which extend over its surface in gently undulating curvature.

The parenchyma also contains a rich ahundance of thin rod-tike diacts of small size, separately or in bundles, and disposed in different dircetions. Of these many exhibit a contral swelling (PL. XXI. figs. 7-10), and either terminate in sharp points (PI, XXI. figs. 9,10), or are provided with rongh knob-like swellings on one or at both extremities (PL XXI figs 7, 8).

Between all theso rod-like spicules four different kinds of rosettes oceur in irregular distribution:-bamely (1) simple oxyhexasters with long terminal rays, two or three in number, and ruming out in a diverging manner from the principal (PL XXI. fig. 12); (2) smaller oxyhexasters in which cach of the broad, moderately short priscipal rays bears a bundle of three to twelve fine terminals (PI. XXI. fig. 6) ; (3) quite small discohexasters in which each of the broad principals bears a strongly-developed, diverging brush-like bundle of numerous five terminal rays with terminal knobs (PL NXI. fig. 3); and (4) discohexnsters twice the size of the above, with short principal rays, each of which exhibits six long, thickly barbed, cylindrieal temminals. These are disposed either in a tuft or round a funnel-shaped space, and terminate in an arehed terminal dise with several prongs (PI XXI, fig. 11).

The dermal skeleton is supported by tolerably large, simple, smooth hypodermal pentacts. In the dermal membrane itself lic the four crnciate transverse rays of small pentacts, from each of which a distal radial, as long as the trmsverse, projects outwards, while the proximal radial ray is reduced to a small rounded peg. The five developed rays of these autodermalia are thickly beset with small outwardly directed prongs, while the proximal stump appears to be smooth (P1. XXI. fig. 4).

The gustial skeleton is very similiu. Here also large, smooth, pentact hypordermalia (not introduced into the diagrammatic figure 2) are present. The gastral membrane contains the crueiate transverse-rays of pentacts, in which the proximal ray projects inwards into the gastral cavity, while the radial is rudimentary. The five developed rays, like those of the autodermalia, are beset with prongs. Between the pentact autogastralia, hexacts also occur here and there. In these the distal ray enters into the parencliyma, and has the same length and development as the proximal ray opposite to it (PL. JXI. figs. 2, 5).

Genus 2. Auluseus, и. gen.

This genus only contains one species.

Avicusers jolonstoni, n. sp. (PI. XXII. figs. 1-3).
The loose and readily pliable tube-like fragments which are figured in P1, XXII fig, 1, linve a wall from 2 to 4 mm . in thickness, and were drodged in the southern part of the Indian Occan, nbout halfway between the Cape of Good Hope and the Kerguelen Islands, at Station 145 A (lat. $46^{\circ} 41^{\prime}$ S., long. $38^{\circ} 10^{\prime}$ E.), from a depth of 310 fathoms, and a bottom of voleanic sand. While the inferior portion of both tubes is entirely destroyed, a simple, sharp, smooth margin ocours on the somewhat widened mper portion of one of them. Both the outer and the inner surfaces are eovered by a continuons thin skin, through which irregnlarly scattered eavitics of variable widths (up to 2 mm . in diameter) may be seen.

In the parenchyma the prineipalia consist of moderately large hexacts with rough ends which run out gradually to a point, and of numerous straight or slightly bent diacts, which occur partly in bundles and partly isolated, and are provided with a central thickening and with rough ends running out gradually into points. While the hexacts are usually disposed at right angles to the bounding surfaces, the diacts are for the most part parallel to these or arranged obliquely in different directions.

Between the principalia numerons irregularly scattered rosettes appear. Among these discohexasters predominate, and each of their principal rays is divided into two or three diverging straight terminals. The latter decrease in size towards the exterior, are densely beset with numerous short books, and terminate in a small, slightly arehed, transverse dise which rums out into four or more prongs. In some cases the outer extremitios of the terminal rays are so delicate, and the terminal transverse dise so small, that the latter can only be seen with high maguifying powers, and the whole rosette resembles an oxyhexaster.

The plumicomes (0.05 mm . in diameter), indicated in Pl. XXII. fig. 2, and figured in fig. 6 from another sponge, oecur here and there. The extremity of each of the moderately long, round, principal rays bears a tolerably thick, round, transverse dise, on the convex outer side of which the fine terminal rays, which are bent in an S-shaped manner, arise in concentric circles and together form a cup.

The dermal skeleton is supported by moderately large pentact hypodermalia with rongh ends, which gradually ran ont to fine points. The abortive distal ray is sometimes indicated by a round tuberele. The dermal membrane itself contains the four cruciate transverse rays of the hesact autodermal pinuli, in which the freely projecting distal ray is beset with scaly prongs, like a fir cone, in its larger outer principal portion, while the base remains naked (PI. XXII. fig. 3). The pole-like pointed proximal is
provided, like the similady formed four transverse rays, with fine outwardly direeted prongs, and is amooth only on its inmost portion.

The gastral skeleton is quite similar. Here too pentacts of median size occur as hypogastralia. These have rough pointed extremities and a knob-like rudiment of the sixth ray, while the four cruciate transverse rays of the hexact pinuli, in which the freely projecting proximal ray is covered with sealy prongs like a fir cone, lie in the gastral membrane itself. The distal which is as long as the tramsverse rays, is like the latter beset, except in its inmost portion, with small outwardly directed prominences. They differ from the autodermalia only in this, that the freely projecting fir-cone-like ray is here somewhat more slender, although in both it runs out to a point.

Subfamily 2. Sympagellint.

Ovoid, thick-walled, usually (perhaps always) stalked goblets, with smooth, thin upper margin. Between the principal hexacts small discohexasters and long diacts

Genus 1. Sympragella, O. Schmidt.
1870. O. Schmidt, Grundziige einer Spongienfauna des athant. Gebietes, p. 15.
1872. Gray, Ann, and Mag. Nat. Hist., ser. 4, vol, ix. p. 457.
1873. Carter, Amn. and Mag. Nat, Hist., ser. 4, vol. xi. p. 283.
1873. Carter, Amm. and Mag. Nat. Hist, ser. 4, vol. xii. p. 360.
1875. Marshall, Zeitsohr. f. wise Zool., Suppl, p. 142, 1875.
1876. Marshall, Zeirschs. f. wiss. Zool., Bd. xxvii. p. 127.
1881. Milne-Edwards, Comptes rendus, xeiii. p. 931.

History.-Under the name Sympagella nux, 0 . Schmidt deseribed and figured a Hexactinellid obtained off Florida from a depth of 98 to 123 fathoms; it presented the form either of a single individual with an ellipsoidal body, about 1 cm . high, with a terminal osculum and a simple stalk, or of a branched stem with several terminal iudividuals of similar nature.

In the membrane covering the external surface of the body and lining the gastral cavity U. Schmidt found pentact pinuli with a rudimentary sixth ray, and in the latter situation also "nodular hexacts." In the parenchyma were numerons small hexaets with three harbs situated on the ehd of each ray. In the stalk were long tuberenha united by transverse hour-glass-shaped comectives. It was probably on acconnt of these ladderlike structures that Gray' in 1872 placed Sympatyella along with Farreat in his family Farreade.

In 1873 Carter ${ }^{2}$, liscovered in Sympagella mu.c "rosettes with mys multitultinous, of unequal length, without heads, Hexed outwards and atranged en fleuvic-lis; pappiform."

[^37]Synmagella nux also appears in Milue-Edwards' list, published in 1881, of the specimens colleeted by the "Travailleur" on the eoasts of Spain and Portugal.

This genus contains only one species.

Sympagella uux, O. Schmidt (PI. XXII. figs. 4-9),

The much iujured specimen of Sympagella nux, O. Schmidt, which is figured in PI. XXII. fig. 4, was obtained on coralline mud in the neighbourhood of the island of St. Iago, one of the Cape Verde Islands, from a depth varying from 100 to 128 fathoms. The body is branched like the homs of a stag, and from its round priweipal stem, which is 1.5 mm . in thickness, two somewhat bent more delicate side branches axise on the same side. The upper extremity of the principal stem, which is broken off beneath, forms an oval body, which is 1 cm . long and 6 mm . broad. The stperior transversely truncated extremity of the latter bears the orifice (2 mm . in width) of a simple gastral cavity. The latter is slightly natrowed towards the base of the body, and ends blindly without being continued into the stalk. While the onter surface of the body-wall (which is 2 mm . in thickness) is surrounded by a continnous skin, through which small cavities can be seen only here and there, larger efferent passages appear on the imner surface, and open directly into the gastral cavity. It is indeed possible that the gastral membrane may have been torn or otherwise injured where it extended over the imer openings of the efferent canal system. The upper lateral branch exhibits the lower fragment of a tornoff body.

The principalia of the parenchymal skeleton consist, as in Aulascus, of simple, regular, moderately strong hexacts, with somewhat rough pointed extremities, and of numerous diacts, varying in strength, length, and direction. In these the centre swelling sometimes exhibits four cruciately disposed knobs, sometimes an annular clevation, or sometimes only the merest trace. The diacts are straight or slightly bent, and run out to similar points at both ends. A slight roughess frequently oceurs in the neighbourbood of the terminal points.

With regard to rosettes, discohexasters are particularly abundant in the parenchyma, and are provided with shart principal rays, and long diverging termimals uniformly thin, or slightly thickened towads the outer end. The latter are smooth or very slightly roughened, and terminate in a watch-glass-shaped arched dise, provided with six to eight marginal prongs, Each principal ray bears three, or less frequently four, terminal rays. These are strong at the base, diverge in an arch-like enrve, and then continne in a straight or slightly bent course.

Besides these discohexasters, the plumicomes which are found in Auluseus johnstomi also oceur, but I lave found them only in seattored distribution. Finally, the parenchyma contains here and there peeuliar structures, which Oscar Schmidt ealled "roller stars"
(Walzensterne). Short strong prickles, usually three at each extremity, diverge from both ends, and frequently also from the middlo of a somewhat thick, straight, or slightly bent voller-like body. I regard these roller stars as reduced oxyhexasters, in which only one axis, with the two principal rays and the associated terminals, has attained full development, while the other four rays are either entirely atrophied, or are reduced to short transverse prickles (Pl. NXII. fig. 7, k, b, c).

The dermal skeleton consists of simple, moderately strong, pentact hypodermalia and pentact antodermalia in the form of pinuli. In the latter the fir-tree-likedistal ray, which measures 0.1 mm . in lengtl, is maked at the base, broadest in the middle, and runs out to a point superiorly, while the four transverse rays lying in the dermal membrane bear on their larger outer portion small jeints and irregularities. A small, rounded, smooth peg appears in the place of the atrophied proximal ray (PL. XXII. fig. 8),

The simple pentaet lyypognstralia completely resemble tho hypodermalia, nor do the inwardly projecting gastralia differ minch from the corresponding (inwarlly projecting) dermalin. These are very long, outwardly bent, slender hexacts, in which the narrow prointed proximal ray which projects frocly into the gastral eavity is beset only with short prongs, which run obliquely outwards aud attain a length of 0.5 mm . or more, while the similarly armed pointed distal, which projects into the parenchyma, measures only 0.17 mm . in length, and the sinuilarly formed four conciate transverse rays, are only about 0.1 mm , long (Pl, XXII, figs, 5, 9).

The stalk exhibits the same general structure as the body, except that the hexact principalia fall into the background as compared with the extraordinarily prolonged diacts, which are all artanged parallel to the long axis, and which, as Oscar Schmidt accurately describes, ${ }^{1}$ are firmly united laterally by numerous synapticula. The size of the hypodermalin deercases downwards, and they are, moreover, pronged and rough

Discohexasters, plumicomes, and "roller stars" may lie found in the stalk in almost as great abundanee as in the hody:

Genns 2. Polyshaldus, n. gen.

The gems contains only the one species, Polyrhabdus ociformis.

Polyrhablus oxiformis, n, sp. (PI. XXIII, figs. 1-8).
In the Antaretic Ocean (lat. $62^{\circ} 26^{\prime} \mathrm{S}$, long. $95^{\circ} 44^{\prime}$ E.) there was trawled from a dopth of 1975 fathoms, and a bottom of Diatom ooze, the considerably damaged nod triturated egg-diaped specimen represented in PI. XXIII. fig. 1. It measures 2 cm . in length and

$$
\text { I Lox cit., pl. i. figs. } 10-12
$$

(2006, CHAKL, EXP.-PART LIIL,-1886.)
Ggg 16

12 mm . in its greatest diameter. The narrower upper end bears the circular opening of the simple gastric cavity, whel is 6 mm . in diameter, and 10 mm . in depth. The boilywall, which is inferionly from 3 to 4 mm , in thicknces, becomes very gradually attonuates upwards to the narow smooth border. It is impossible to tell whether this oval hody was fixed upon a stulk, since the inferior extremity is greatly triturated.

Most of the somewhat thickly crowded paronchymal spicules are straight diacts of variable length mud of moderate thickness, They usually exhibit ous either end a slender olive-like thickening, which is beset with small points and prongs. Such irregularities also occur where the thickening is absent, on the simple rounded ends (PL XXIIL fig, 7). la the middto the rods exhibit either four cruciately disposed tubercles (PL XXIII. fig. 6) or n circular wreath. Less froquently the central swelling is insignificant or cutirdy ribsent, and the central portion appears often to be marked only by the intersection of the axial eamals. Between the very irregulady disposed diacts, which lie, however, for the most part parallel to the outer surface, there oceur modarately large, usunlly radially disposed lexacts, whose rays run out to points for a greater or less distance, and are frequently beot with pointed tubercles, either all over or at the extremitics (PI. XXIII. fig, 5).

Besides these principal spicules numerous rosettes occur in the form of discohexasters with six, eight, or more similar thin diverging terminals on every principal cay. The watch-glass-like bent termian dise of every termimal ray runs out into six or more pointed margimal prongs (Pl. NXIII, fig. 3).

The dermal skeleton inclades strong pentact hypodermalia; 1 have not, however, seen either these or the autodermalia in situ. The latter are hexaet pinnli in which the thicker oval distal ray, which resembles a fir cone, is beset all round with sealy prongs, while the prosimal and the four thansverse rays are smooth up to the pointed roughened extremities (PL. XXIIL. fig. 1).

The lyypgastralia resemblo the hypodermatia; the autogastralia differ from the autodermalio in this, that their freely projecting ray is namower and longer than in the latter (PL XXBII, fig. 2).

Genus 3. Betionites, in. gen.
Containing ouly one species, Batenites pipettr.
Balanites pipette, 1. 可. (PI. NXIII figs, 9-14).
The single specimen, which resembles a clay pije or cigar holder, and which is figured in PL. XXIII. fig. 9, was trawled in the Antaretic at Station 157 (Lat. $53^{=} 55^{\prime} \mathrm{S}$., loug. $108^{\circ} 35^{\prime}$ E.), from a depth of 1950 fathoms, and a Diatom ooze bottom. The oval body, which measures 5 cm . in length and 1.5 cm . in thickness, is continued by a
gradually uncrowed inferior portion into the obliquely inserted, round, hollow stalk, which is 3 mm , in diameter, and has heon torn off at a distance of 3 cm . from the body: The upper transversely trmeated extronity of the latter exlibits the circular aperturo (9 mm . in width) of a simple gastral cavity, which is 2 mm . in depth, and cuds benenth in a blind sack-fiko manner. The tolerably compact body-wall is about 5 mm . in thickness beneath, and becomes gradually attemated mpwards to the narow smonth border of the opening. I was not able to observe a direct continnation of the gastral cavity into the eavity of the tubular stalk, though such a connection may be present.

Amoug the principalin of the parenchymal skeleton the strong regular hexacts with simple smooth rays ocoupy the frist phace, Dincts of varinble length, however, with pointed or rounded extremities, occur senttered or in bundles and disposed in different directions. They are for the most part destitute of any central swelling, but the intersection of the axial otuals is frequently recognisable.

Between these large parenehymal spienles numerous small regular hexacts occur, with strong rays which decrease in diameter towarls the extremitics, which are beset with small thorns and bear at the very tip a small arehed terminal dise with six or more bent marginal prongs. Sometimes, too, one or other my may be fotud to be divided almost to the middle into two or three diverging braches. These exceptional forms lead to a rosette which oceurs here and there, and is figurod in PI. XXIII. fig. 12. Here four to six strong diverging temminals, half the longth of the principals, stimd ou each extremity of the proportionally long, smooth or slightly tuberculated, principal rays. Those straight or slightly bent thin terminal rays are provided with lateral thoras, and hear on each of their extremities a traussorse dise provided with seycral marginal prongs. Another rosette which is figurod in the smme plate (figs. 10, 1I) oocurs far more abundantly than the form mentioned. This consists of long smooth principal rays which are terminated by a small discoid expansion. The that outer surface of the dise bears a tuft of short dulieate terminal rays provided with pronged terminal dises. The outermost circle of terminals, are bent in an S-like manner.

The essential agreement between the dormal and gastral skeletou is here particnlarly manifest. The transition from the one to the other ocems quite imperceptibly on the rounded margin of the largo oscular opening (PI. XXIII. fig. 14).

Both hypodermalia and leypogastialia are strong and tolombly large pentacts, in which each of the strong radial principals is beset on its middle portion with isolated spines, while the four transverse rays are smooth throughemit.

The autodermalia are hexact pisuli with broad, sealy, pronged, oval, fr-cone-liko distal rays, while their moderately long proximals, like the somerwat louger teansverse rays, remain quite smooth (PI. XXIII, fig. 13) up to the conically barrowed, rongh or pronged, terminal portion. The autogastralia differ from the autodermalia only it their smaller breadth, and in the more slender, smooth hasit portion of the fiecly projecting scaly ray:

Subfamily 3. Caulophacines.
Fungiform, with a long cylindrical tulular stalk.

Genus 1. Caulophacus, n. gen.
Fungiform, with a long tube-fike stalk. The gastral surface of the body has become convexly arehed by eversion. The dermal surface bas either remained convex or has become concave by a turning orer of the marginal portion.

Cruloplacus latus, n. sp. (Pl. AXIV.).
About halfway between the Cape of Good Hope and the Kerguelen Islands (Station 147, lat. $46^{\circ} 16^{\prime}$ S., long. $48^{\prime \prime} 27^{\prime}$ E.), from a Nepth of 1600 fathoms and Diatom ooze ground, a Hexactinellid was trawled, which exhibited in its external form a marked resemblance to a flat mushroom. The body is a circular disc, 15.5 cm . in breadth, with a thickened median portion continned downwards by means of a couical neek into the rounded hollow stalk. The latter is 5 mm . in thickness, and is bent obliquely to the side in its upper portion, whieh is alone preserved. While a shallow depression occurs in the middle of the upper sufface, the gradually narrowed marginal portion, which finally terminates in a narrow smooth horder, is bent slightly downwards (P1. XXIV, fig. 1). On makiug a section at right angles to the surfaee (Pl, XXIV. fig. 1), the afferent and efferent cannls are clearly reoognisable, and they may exen be detected throngh the minjured dermal aud gastral membranes. These cannls are disposed at right angles to the bounding surface. The cavity of the tubular stalk, which is 2 mm . in midth, is continued upwards into the efferent system of lactine in the median part of the dise (Pl. XXIV, fig. 1).

Since the upper usually slightly convex smface of the body; which exhibits only in the middle a shallow depression, corresponds to the gastral surface, it is only natural that all the chambera of the richly folded chamber layer should have their wide excurrent openings tarned towarda this convex surface, and their blind sack-like extremities on the other hand directed towards the concave dermal region. Here, too, as in all other cases, the water enters through the dermal membrane, and passes through the sieve-like network of the chamber walls in flowing from the outside inwards.

The principal parenchymalia are moderately strong, simple, regular liexacts, with smooth rays, each of which rums out to a sharp point, and smooth diacts varying in breadth and length, and provided on both sides with a rough romded terminal portion. Between these there is an abundant though seattered occurrence of small prickly hexacts (0.25 mm . in diameter) with arehed and marginally prouged transverse terminal dises
(PI. XXIV. fig. 7) exactly like those which we have already notel in Belenites, Simple oxyhexasters also oceur with short principal rays, and long, frequently somewhat rough, terminals. The division of one or several principal rays often does not tuke place, so that, as in PL. XXIV. fig. 8, some rays become divided into two or three terminal rays, while others which remain undivided are straight and run out to a sharp point.

Rosettes are represented only by the form figured in PL XXIV. firs. 4 and 6. Each of the six smooth and moderately long principals passes into a marrovi conjeal tnft of cight or more almost similar, straight, fine terminal rays, each of which is somewhat rough towards the extrenity and is provided with a small, conrex, marginally pronged, terminal plate. Here and there, abnormally, one or other of the secondary rays does not oceur on the extremity of the prineipal ray lut laterally, and is inserted more or less close to the axial node as if it lad moved down to this position.

The pentact bypodermalia lave a strong madinl my which is wholly or partially beset with spines, while the four transverse mays which are spreal out heneath the dermal membrane but rarely oxhibit small spines, and usnatly appear somewhat roaghened on their bluntly pointed extremitics.

The autodermalia are hexact pimbli in which each of the froely projecting (usually 0.05 mm . long) distal rays resembles a crowded oval fir cone with a short smooth stalk (Pl. XXIV, fig. 10), or is more rarely narrower and longer (PL. XXIV. fig. 2),

The for slightly conical transverse rays lying in the dermal membrome, nod the somewhat shorter proximal mys, are ofly beset with small prongs on the outer portion.

While the liypogastralia do not differ essentially from the hypotermalia, the autogastralia which project over the wholo convex upper side of the body of the sponge differ essentially from the autodermalia, iussmeh as the freely projecting, and the the same time distally directed may, is very long (1 mm . or more), narrow, drawn out to a fine point, and also beset with relatively short prongs (Pl . XXN. fig. 5). On the other hond, the ray directed towards the parenchymu is greatly reduced, or has entirely disappeaved, so that the majority of autogastralia no longer represent hexacts but pentacts, is which the short, conical, transverse rays are beset with small prongs either on the outer extremities alone or all over.

The difference between the short erowdel hexact autodermalin and the long pointed pentact autogastralia is very clearly indicated on the outer margin of the dise where both border on one another, yet it may also be remdily recognised on the other side by the shorter projesting distal ray and the short preximal ray of the outermost autogastralia. Both are really but different menbers of the same serics,

It is noteworthy that in those autodermalin witit a greatly prolonged distal ray, which oeenr here and there between the short and crowded forms, the inner proximal ray is usually absent (Pl, XXIV. fig. 3).

In the parenchyma of the stalk the prineipal hexacts are in the minority, and the
long diacts with rough rounded extremities are accordingly all the more abundant. These are here, morcover, not so aniformly disposed in a longitudinal direction as in thinner stalks, but oceur with some irregularity, though for the most part longitudinally, These principalia are extensively united into a firm framework by means of symapticula. It is to be regretted that the dermal skeleton of the stalk has been rubbed off, and also that the imer lining of the cavity of the stalk is no longer intact.

Caulophacrs elegans, i. sp. (P1. XXV.; P1. XXVI. figs. 1-3).

A second apecies of Cardophecers was trawled to the east of Japan (Station 241, lat. $35^{\circ} 41^{\prime} \mathrm{N}$., long, $157^{\circ} 42^{\prime} \mathrm{E}$.) from 2300 fathoms, on red clay ground. Three specimens wero collected, two of them small forms with short imperfect stalks. One of these, as figured on PI. XXVI. fig. 1, shows a marked resemblance to Couloplecers letus. The straight, round, bollow stalk, $1 \% \mathrm{~mm}$. in diameter, is contimed by a trumpet-like expansion into the slightly curved superior extremity with a convexo-concave circular dise, with somewhat overhanging margins, In the specimen figured the dinmeter of the dise mensures almost 2 cm , and the greatest thickness 5 mm . Another much injured specimen is someviat smaller. A tolerably distinet form is figured in Pl. XXV. fig. L , from a somewhat larger third specimon. The hollow stalk is somewhat bent at the ond, and though on the whole straight, is slightly curved hore and there in an undulating manner. It measures 3 mm . in diameter, and beas terminally a biconvex lens-shiped dise, 4 cm , in breadth and 1.5 cm . in thickness, with a somewhat downwardly bent margiu. In spite of some superficial irregularities on the upper side and several shallow folds lelow, loth surfaces appear on the whole to be uniformly arched, though the "pper is the more convex. The stalk, thongh broken off below, attains a lougth of 9 cm . I am indined to bedieve that the piece of stalk which was bronght up along with the former, and which exhibits a similar structure and a leugth of 15 cm . (PL XXV. fig. 2), really belonged to the kame specimen, and formed the inferior extremity of the stalk, which would necordingly measure 24 cm . in longth.

As in Curdophacus latus, the prineipalia consist of strong, regnlar, smooth hexacts, and long diacts with rounded, more or less rough, extremities. These lave an isolated or a bundle-like distribution. Each of the rays of the hexacts exhibits a louging swelling in the middle, and a rounded termimal point. The diacts usually exhibit a central axial camal intersection, but ns a rule there are no knol-like protuberances or ring-like smellings to represent the remuants of ubortive rays. Betwoen the principalia the same small regular pronged hexacts, with marginally pronged, arched, terminal plates, occur in great numbers, resembling those which we have alrendy become acquainted with in the other species, sud in Balanites pipette (PI. XXIV. fig. 7). Simple division of a ray, as shown in PI. XXV. fig. 7, may oecasionally be observed. On the other hand,
regularly developed discohexastors are of by no means rare occurrence. These are provided with ummerous (eight or more) proug-bearing, long, terminal mys, which are placed upon the terminal expansion of the short smooth prineipal ray, and do not differ essentially in other respects from the rays of the discohexaets (PL. XXV.' fig. 6). It is remarkable that these many-miyed discohexasters lie almost exclasively under the surface of the dise, amd that seattered between them similar rosettes ocenr, with a fow (often only four or three, or even two) pronged terminal rays on every principal. One umi deted at tolerably contintions series of transitions between the simple pronged hexacts and those nany-myed discohoxnsters.

Sometimes I nlso observed rosettes with numerous fong, smontl, pointed, terninal rays, i.c, oxyllexasters. The termimal rays are insetted on a terminal expansion of the short principal rays like those of the discohexasters.

The slight differences in the numerical proportions of the discohesacts and discohexnsters, in the thickness of the terminal rays and in the directiou of the same, which are discoverable between the smaller fungiform specimens and the larger forms with lemsshaped bodies, I regrard ans insufficicnt for the differentiation of particular apecies,

The dermal skeleton resembles very much that of Ceulophacus latus, Here, ton, the proximal ray of the pentact hypodermalin is usually beset with prongs (PI, XXV. fig. B), and the antodermalia are hexact pimli with broad, short, fir-cone-like outer rays, while their slighty conical transverse rays and the similarly formed proximal ray only exhibit a slight irregnlarity of surface on the torminal portion (PL. N..V. fig. 5).

The gastral skeleton lying on the nonvex urper side diffess from the comesponding skeleton of Coulonhacus latus only in the fact that the autogastralia are not pentact but hesact piubli, in which both the developed proximal, and the four transserse raty, ate smooth and only slightly rough on the extremity, while the fredly projecting, scaly, pronged distal ray is not so narrow and pointed as in the latter, but becomes outwandly broader and more swollen, so as to terminato in a knol-like rounded extremity (PI. XSV. fig. 4).

The parenclyma of the tulie-like stalk contains, just as in Couloplacers latus, somewhat rough, rod-like dinets, which are ronnded at both extremitics. They are greatly increased at the expense of the hexacts, which have disuppeared, and are atmost all approximately parallel to the long axis of the stalk. It is ouly in the inferior portion of the stall that the diacts are firmly united by means of synapticula.

Thie pentact-lypodermalin of the dermal skeleton mere roughened only on the extremity of the proximal, nod of the four transvinso mays.

The antodermalin of the stalk are pentact pimali it which the proximal ray is atrophied to the size of a small tubercle, while the freely projecting distal, on the contrary, has become a squamons pronged ray; 0.75 mm . or more in length. This increases in breadth outwardly, and, like the autugastralia of the diseoid upper sufface terminates in a kooh-like thickening.

Genus 2. Trachycualus, n. gen.
Only one species is referred to this genus.

Truchyeculus gurtitiii, n. sp. (P1, XXVL figs 4-9).
In the middle of the sonthern part of the Pacific (Station 289, lat. $39^{\circ} 41^{\prime} \mathrm{S}$, long. $131^{\prime} 23^{\prime}$ W.) there was trawled from a depth of 2550 fathoms and a red clay ground, the round stalk- 12 cm . in length and 2 to 3 mm . in diameter-which is figured in PI XXVI. fig. 4. At the lower thimner end this stalk is slightly bent; it is otherwise straight, and is at the upper end broken across transversely. The surface of this hollow and tolerably firm stalk is covered with hais. Although nothing remains of the sponge body belonging to the stalk, I cimnot doult from the structure of the fairly well-preserved dermal skeleton that we have to deal with a form closely related to the genus Caulophacus. Nevertheless the presence of a very peculiar rosette, and the absence of a form characteristic of the two known species of Coulophectes, even in the stalk, namely, of the frequent dispersalia, pronged discohexacts and diseohexasters, prevent one from referring this specimen to that gevus.

Greatly prolonged rod-like smooth diacts with rounded rough extremities form a firm lattice or ladder-like framework for the parenchyma, being bound together in parallel longitndinal rows by means of mmerous transverse symapticula. Slender regnlar hexacts with smooth pointed rays oecur in very various positions in the parenchyma, partly as integral parts of the lattice-work, partly only in external connection with it, or else quite freely on its suface.

Especially remarkable, however, on account of their size ($=0.4 \mathrm{~mm}$. in diameter) and singular form are the rosettes with short prineipal rays, upon each of which four loug siekle-like terminal rays are placed. These forms occur seattered in the subdermal spaces between the hexacts which have just been mentioned (PL XXVI, figs, 7, 8). They recall the sickle rosettes of Oscar Schmilt. The imer portion of each termimal my is very thin; outwardly the ray becomes gradually thicker, and bears on its extremity a more or less sharply hooked curve finally terminating in a backward bent point. Great variations occur in the form and size of this hook-shaped terminal portion which is sometimes quite irregalarly bent, or else divided into two or three diverging points. Occasionally the four hooks which bend towards one another maty fuse together.

There is a striking agreement between these forms and the "sickle rosettes " found by Oscar Schmidt in his Merteigia faleifera, and figured by him in his Spongien des Meerbusens von Mexico, Traf. vi. fig. 8.

The dermal skeleton is composed of greatly prolonged hexact autodermal pimili, in which the four transverse rays and the almost equally long proximal ray are simple,
smooth, or at most somewhat rough towards the pointed ends, while the delicate, fredy projecting, fir-tree-fike distal, which is two or three times longer, is besot with obligno outwardly directed prongs, and runs gradually to a point towards the outcr extremity (PI. SXVI. fig. 9).

The specific name 1 have given is in honour of my friend and former colleague in Graz, Professor Gurlitt.

Fomily III. Rossellide (Ple LIII--LXIX.; PL. CII.).

Goblet-or leaker-shaqed, with walla of varying thiekness. Some rest cither directly, or by menns of a longer or shorter cytindrical stalk, upon a solid basis, wthers are rooted in mud by means of a basal mass of spienles. The external surfiee of the body is in some smooth and nakel, in othors armed with promment pleuralia of varying length. The simple wide gastral eavity opens by a simple, round, more or less lmoad, ascnlar aperture, the margin of which is either naked or armed with a horder or circlet of spicules, A special charactenistio of the family is to le found in the fice that the distal my of the dermalia is alucygs abseat. The dermalin oceur as pentacts, tetracts, diacts, or cyen monacts. The gastratia liave nsually no freely projecting prosimal ray, but in some cases they oceur as fully develoged hexacts.

Gomns L. Lemuginclla, O. Schmidt (P1. LII. figs, 3-5).

On a specimen of A_{p} phrocallistes from St. Iago, one of the Cape Verde Islands, Oscar Schuidt foumd in 1870 some small spherical or ellipsoidal sponges of very elastic consistunce, exhibiting a central cavity and a wide superior osculum. The onter surface, apart from spicules projecting here and there, was smooth-just as if varnished. The interior contained, according to O . Sclemidt, prominent, smoath or finely spinose hexacts and simple oxydiacts with intersecting axial cmmals. In the outer layers, between the projecting needles, hexasters oceurred in which each of the short principal rays was soon divided into four or five tuberculatal brauches, with transverse terminal plates. In the external dermal layer, and at the margin of the osculum, numerous sexradiato spicules oceur, hesides quadriradiate forms filling up the interspaces, aud in part provided with sharply cornered knotted extremities. The smoothness of the outer surface secmed to be due to these four-rayed spicules.

Osear Selmidt named the newly diseovered Hexactincllid Lanuginella, because it (zoot. chath Ext,-EAIT tm ,-1886.)
felt in the dried condition like a delieate woollen cocoon, and he added the specifie name pupet on account of the shape alremily noted.

Only one spocies is known, Letutginella papa, 0. Schmidt.

Lanuginellet pupa, O. Schmidt (PI. LIII. figs. 3-5).
In the reseels which contained the spirit specimens collected at Station 192, of Little Ki lstand, I found, along with the lmge Pheronema gigenteum and several specimens of Polylophties phifiguinensis, a numler of oral and spherical structures 2 to 8 cm . in diameter, which onrned out on eloser inspection to be small sponges, Some of them were seen to be representatives of the Lenuginella pupa described by Osear Schmidt, ${ }^{\text {F }}$ While the others were young forms of Polylophes philippinensis which will be again reforred to in the deseription of that form.

Lemuginelle, pupa, which occasionally grows on other Hearetinellida, has the form cithor of a completely elosed smooth sphere, 2 to 3 mm . in diameter, or of a larger oval body with a somewhat flattened basal pole, and a round oscular opening about 1 mm . in brealth at the narow upper end (Pl. L.II. fig. 3u, 6, 4, 5).

On a longitudinal section of the larger ovoid specimen, one observes the central lougitudinal gastal eavity, which is rounded off at the lower und, opening superiorly of course in the already mentioned oscultum. Into this gastral cavity, which is lined by a snbgastral mabecular network, the sack-iike chambers open, either direetly, or by means of canat-like efferent passages, and in this ease the whole ehamber layer is deeply folded. Betweon the smooth external network or dermal membrate and the folded clamber layer, there is an external or subdermal trabecular space, including it subdermal trabecular network ami the subdermal spaces or afferent canals which penetrate the latter (PI. LIII. fig. 5),

The parenchyma of the sponge contains, as Q. Schmidt noted, medium sized oxybexacts with long struight or slightly curved rays usually disposed madially and tangentially: Besides these principal forms, somewhat long, straight, or slightly curved oxydinets oceur, with a central axial cross, over which cruciate tuluercles often project outwards as indications of the undeveloped rays. The disposition of these oxydiacts, which are ofton somewhat roughened terminally, is for the most part perfectly or approximately tangentint, though, in some cases, it may lee more or less divergent (P . LIIII. Hig. 5).

Between these large supporting spicules, we hase to note the irregular seattered oceurrence of small regular oxybexaets with thin mys, and of numerous small discohexasters, in which each of the short, simple, cylindrical priweipals bears throc, four, or five long diverging terminal rays with four to six-toothed, somewhat recurved, trausverse discs at their extremitios (PI. LIV. fig. 3; PI. I.II. fig. 5). Besides these, the

[^38]parcachyma imelades small rosettes in varying nhundance and irregular distribrtion. One of these forms admits of the designation phamicome. Each of the aix simple eytinutrieal principal rays bears a small plano-convex transverse dise, from which sery fine S-shaped terminals arise in concentric rows in ferianth-like fashion, very muels as in the frumicome of Polylophuz phitipminensis ropuesented in PI. LIV. fige. 4, 6. Fimally, there are very minute isolated rosettes, in which the short:simple prineipal rats bear terminal uranserse dises, having a thick brush-like fringe of somewhat long and very thin, madinlly dixposed, knobbed terminale, like those in the rosette of Rossella watarctice, figutel in PL. LV. fig. 6 .

I must füther note that I was not able to find these toro extremely ilclicate and inconspienous forms of spicules in all the specimens which I examinal, bat only in a few.

The hypodermalin are simple smooth oxypentacts in which the unpaired proxinal may is always straight and somewhint long, and penctrates radially, like a anil, far into the parenchyma. The forr tangential rays, intersecting at right angles, extend dose beteath the dermal membrane, correspouling to the curvature of the reneral spouge surface in exhribiting a more or less marked inwad curvature (P). LIII. fig. 5). In the quadrate meshes, which are formed by the apposition of these tangential riys of adjacent hypodermal pentants, smaller pentacts of a similar type oecur, with their tangential rays disposed parallel or diagoually to the tangentials of the larger formse, The dermal membrane itself contains exclusively aumerons erncinte autodernal tetracts in whidh the rays are more or less roughened, somewhat narowed trwards the extremity, and cuding fimally in a conical point or in a slightly bhontal fashion.

It the lower somewhat trmeate basis of the cyg-shaped sponge, the hypodermal oxypeutacts are modified into long mehors by the thickening amil more marked enrvature of the tangentials, and by the decided thickening and elongation of the proximal tangential ray. These anchors are gralually more and more protraved from the sponge body, and may serve for the attachment of the sponge to its soft substratum. It the margin of the oscular aperture, I have sometimes olscerved long, pointed, rod-like needles, projecting radially to a more or less marked extent. These may be fitly regarded as marginalia.

In the evidently much younger and completely dosed spherical specimen, the skin exhibits ouly hypodernal oxypentacts, and simple, strongly developel, exuciate putodermal tetracts. Internally between the simple oxylexacts, modorately fong oxydiacts ocem, with central nodes of intersection. Numerons discohesasters are atso present (PL. LIIL. fig. 4).
ficuts 2. Polylophits, 1. gein.

IIstory.-Among the Hexaetinellida which Dr. A. B. Meyor bronght with him from Zebu (Philippines), Gray fonnd in 1872 a comparatively large speeimen which hore peculiarly disposed projecting tufts of needles on the posterior half, while the anterior extremity exhibited the wide aperture of a spacious gastral cavity, He compared this sponge with Tetille $z^{\text {solyurg, }} \mathbf{O}$. Schmidt, while Carter, to whom it was hauded over, at onee detected a close rehationship between this form and his Rossella centorclica. Gray therefore mamed it Hossella philippinensis. In 1878 Gray received some yomg buds of the same sponge, which were also obtnined from Dr. A. B. Meyer. These were briefly described under the tithe Psetulice globulose, Gray; In 1875. however, Carter published a detnited description with good figures of the form and structure both of the older specimen and the young buds (Psetalia globulonit, Gray). Both the general structure fud the form of the spicules exhibited the olose resemblance which those specimens bore to Carter's Rossella cutarctico. Finally, Marshall and Meyer suljected these rusults to a close serutiny in 1877, and described in detail the form and structure both of the entire sponge and of the variona spicules.

The characteristic anchors found in the root and tuft-spicules wore regarded by Marshall and Meym not ns homologous, but as analogous to the methors in the tuft-spicules of Euplectelle, Sempreella, and Hyalonomac, since the double cross was not found in these hatter gonem in the unchor hend itself but further up in the shaft, so that the anchor teeth could not be looked upon as modified rays of hexradiate spicules. The nine distinet forms of spicules observed were fonnd by Marshall and Meyer to he distrilated as follows :-
A. Appendienlar pieule:;-

1. Root-zpicules of anclar-like farm.
2. Uniaxiul qiicnles of the spicular wnati.
3. Spicules of the derunal akeleton :-
4. Five-rayed apicules.
5. Fous-rayat nixules with tabircles.
C. Spicules of the parintes :-
6. Gustral and facial tive-rayed spicules.
7. Six-rayed upicules
8. Uniaxial spiculer
9. Roactlea:
D. Chatril apicules :-
10. Suail six-rayal apicules

A joung specimen, 5 mm . in diameter, it which the mathor-tufts were tolerably well developed, already showed the same spicular forms in a similar arrangement. A specimen preserved with its aoft parts in spirit was found to be fillod with small green and grey gramiles; some cell-nnclei were seen, and here and there a fragment of
siliccous mattor or a drop of fat. On the outside of tho sponge, in fino tangential sections, the small dermal pores could be detected in the quadrate meshes of the dernal skeleton.

This genus coutains only a single species.

Polylophus philippinensis, (Gay) (PL. LIII. figs. 1. 2; PL. LIV.).

some very young splucrient or egg-shaped specimons of Polylophus (Rosselle, Gray) phitipizincosis, Gray, were proeured, along with Lanuginello pupe, O. Schmidt, near Littlo Ki Islimd (Station 192) from a depth of 129 fathoms. But besides these, numerous aduld forms of the same species were collected near the Philippine Island, Zeba (Station 209, lat. $10^{\circ} 14^{\prime} \mathrm{N}$., long. $123^{\circ} 54^{\prime}$ E.), from a depth of 95 fithoms and a blue mud bottom. Some of these specimens were as large as a man's fist. They agree exactly with the careful description and figure given by Carter ${ }^{1}$ and by Mashall. All the specimens exhibited a short, thick-walled, unp-form, with a wide cotmd upper apening to the simple sack-like gristral envity, futo the latter the efferent camals open with more or less mide round apertures, while the outer surfaee, covered with in fine lattice network, is olevated into numerous mammilla-like papilla. From the summit of caeh of these radially disposed papille, which are especially thick and long on the lower surface of the boty, a thin bunde or tuft of loug linir-like siliceons spicules projeets. On the uppor and lateral surfaces these tufts of uecelles stand out radially, stifl and straight; ou the median and basal papille, however, the aliceous hairs are much lougor, and are mpoosed to one another to form a long, broad, loose root-tuft, by which the sponge is andiored in the mad (Pl. LIV. fig. 1). Very frequently, on the larger specimens, some or most of the papillary elevations are thickened terminally in a clat-shaped fashion, and more or legs markedly constricted it the hase, so as to form pear-shaped appendages represented by a whole series of stages varying greatly in size and differentiation, Each protaleerance begins ns a small couical, subsequently pear-shaped, strneture 2 to 3 mm . in length, and attains the size of a hazel nut. Fully developed forms exhibit lateral midal papillie, and a basal radial tuft, while at the upper pole a circular aperture communicates with the centml cavity. The whole form of a young Potylophtes is thus assumed, and it remains comected to the mother organism merely by a few spicules. These give way of themselves, and a small form is set free which undeniably resembles the mother sponge in all essential points (Pl. LIV, fig. 1). It is noteworthy that almost all tho larger specimens exhibit that tendency to form buds which has been repentedly noted by cartior olservers. Betwcen tho papillo the external skin-covering appears to be as smooth nis the concave interior surface of the gastral cavity; On the simple, somewhat sharp-edged oseular margin, there is no trace of a cuff-like marginal fringe of spienles

[^39]The principal supporting spienles of the loose parenchyma consist of large or mectium sized smooth oxyhesacts, with staight mys, and of straight or slightly curvel oxydincts, which are roughened towards their conically pointed extromities, nad exhibit at their middle point four ennciate transverse tabercles, or m annular swelling, or at least the intersection of asial canals. These oxydinets either lie isolated, or are for the most pant disposed paallel to the surface. The larger and stonter forms are usually accompanied and enstieathed ly a number of long thin oxydiacts or comitalin. As to smaller spionles, the paronehyma includes numerous regular oxyhexacts with more or less roughened rays, and also a large number of oxyhexaster forms which are very characteristic of this genme. It theac the principal rays are comparatively long, simply cylinthical, or narrowed in a slightly eonical fashion, and are always somewhat ronghencd terminally, where they divide into two or three short, diverging, conical terminals (PL. LIV. fig. 5). When only two terminal rays are devoloped at the and of the prineigal, the planes of forking of the two rays in the same axis of the spiunle me at right angles to one another. Finilly, the parenclyma contains peculiar rosette forms, ocouring in regular, but net very nboudant distribution. These belong to the plamicome type, bat are not so minito as those of Letuginclle mupd. They attain to abont the same diameter as the above-described oxybexasters, namely, about 0.1 mm . The short, cylindrical prineipal rays bear terminally a plano-convex transverse dise, from the outer convex sumface of which scveral coneentrie whots of S-shaped terminal mays arise. These go to form a perimeth-like form with several whorls, onclosing a contral funnclstraped spree (PI. LIN. figs. 4, 6). The thinnest portion of these deliente S-shaperl terminals lies near their origin, white the outer eud becomes thickened in a somewhat club-alhayed fashion, oxhiliting, fowover, a slight attenuation at the extremity.

The dermal sheleton consists especinlly of hypodermal axypentacts of variable size, in which the long proximal ray is always straight and radially disposed, while the four tangentials which go to form a quadrato lattice-work are nsually curved gently invands. Like the prosimal ma; the tangentials frequently appear to be roughened near their conical extremitics. Between these substautial pentact byporlermalia, the dermal membrane inclodes small craciate autodermad tetracts in great abundance and in rectangular distribution. In these, the rough eylindrical rays, which are rounded off or even truncated at their ends, are enred slightly inwards, so that the whole spicule appears to be uniformly arched with the eonvexity outsrards (PI, LIV, figs 2, 7). Sometimes, at the point of intersection of the four arms, an finward projecting boss or tabecte persists as an indication of the undeveloped fifth (proximal) ray. In a fow of these dermalia, the fifth ray is actually developed, and exactly resembles the tangentials,

The gastrel sketeton differs strikingly from the dermal. The hypogastral pentacts, as we should natmally expect, are wholly absent. Insteal of them, there are
strongly developed, smooth oxydiacts, with slight curvature or twisting, and on these numerous oxyhexacts, of variable but not very considerable dimensions. In the latter the four tangential rays are tamentially disposed in the gastral membrane, while the intermal, usually longer madial projects fredy into the gastral cavity, and the external radial into the subgastral trabecular space. All the rays of the smaller gastral oxyhexacts run out gradually to a point, and are of approximately equal length, while in the larger gastral oxyliexacts the internal free ray is decidedly longer than the others, so that a dagger-form results. All the efferent camals are clothed internally with small delicate oxyhexaets, in which the imer radial tay projects to a greater or less distanec into the equalicular space (PL, LIV, fig. 2).

The long radially projecting spicules, which arise in a tuft from the terminal pole of each of the nmmerous lateral and basil papille, are smooth oxypentacts. Their interior end rums gradually to a point, while the outer terminates in a four-toothed anchor, in which the four cruciately dispored, strongls developed tecth do indeed at first arise at right augles to the shaft, but become more or less markedly eurved inwaris (PI. LIV, fig. 9).

The basalia forming the root-tuft ouly differ from these lateral madially projeeting $1^{\text {kenalin in their greater strength and length, and also in the fact that many of them, }}$ which have arisen from the earvature of the lower pleuralia, extend no loager quite radially, but are more or less markedly curved dowzwards (PI. LIV. fig. 1).

A good general survey of the strncture of this species ean be ohtained by making seetions of the small, pear-shaped buds. A combined diagram representing this is given in Pl. LIII. fig. 2. It will be seen that the sack-shaperl chambers; taken as a whole, make up a much folded layer, which forms the boundary between the water-passages leading from the external skin and those leading into the comnon gastral eavity: The circular oscular aperture of the gastral eavity appears at a later stage at the lorod distal pole of the pear-shaped bud. The bud at the same time paslies itself outwards on the bundle of pleuralia belonging to the papilla. It forms for itself papille with pleural and hasal tufts of spicules. Fiually it lecomes detached and rooted in the mud.

As in the above-described genns, Lanmyinello, the basalia (and plenralia also) are nothing but long drawn-out and protruded spicules of the hypodermal pentact serice. This may he presumed by comparing the young basalin or pleuralia with the ndjacent hypodermalia, but the faet is distinetly demonstrated by strdying sections of young, spherical or oral specimens, 2 to 5 mm . in diameter (Pl. LIII. figs, le, l) (probably developed from ova), which were found in the same glasses as the Hexactinellids from Station 192, Little Ki Island. At the lower, often somewhat truncato pole, opposite the oscular aperture, between the ordinary liypodermal pentacts, othor forms occur in which the four tangential rays do indeed lie in the dermal membrane, but are bent more markelly inwards than the others, and are beginning to resemble the anchor-teeth of the
hasalia, while others of similar structure mre hent somewhat outwards above the level of the skin, and others, again, especially in somewhat larger sponges, are drawn out into true anchors, which exactly resomble the basalia of the adult specimens.

Ilistory.-Among some Antaretic sponges which were dredged by Captain Sir James Ross during his voyage of discovery and wesearch in the Sonthera and Antaretic region in 1839-43 (lat. $74 \frac{1_{2}^{\circ}}{2}$ S., Jong. (23), and lat. $77 \frac{1}{2}^{\circ}$ S., long. $175^{\circ} \mathbb{W}_{\text {., from a depth of }}$ 300 fathoms), Cartor found, in 1872, two remarkable and litherto unolserved forms of sificcous elements-the one a five-rayed spicule in which the louger ray, measuring nbout 1 cm . in length, ran ont to a fine point at one extremity, but passed at the other into four approsimately cruciate, straight or slightly bent transverse arms, disposed at right angles ; the second, a four-toothed anchor with a long (at least 4 cm .) shaft and crucintely disposed, somewhat stroug, recurved tecth, which rau out into simple points. In some auchors the straight shaft was continued to the other side of the anchor teeth, so that with the projecting point the entire structures became hexradiate

While all parts of the anchors were smooth, the rays of the five-rayed spieules, which are likewise round, were thickly beset with very fine microspines; on the four pointed trunsverse arms, however, numerous larger slightly bent tubercles also oceurred with their free points turned awny from the intersection of the arms. Although the sponge bodies to which these spicnles belonged were not discovered, it seemed certain that the two kinds of spicules belonged to one and the same sponge, which Carter named Rossella antarctica. This procedure certainly seemed at first somewhat rash, and Bowerbank did not fail to declare his disapproval. Further discoveries, however, soon served to justify Carter's opinion.

In the same year, Gray found a scoond species of the same genus anong the sponges

[^40]which A. B. Meyer had sent to the British Museum from Zebu, one of the Philippino [slands, and named it Rosselle philippinensis? It was a fongish oval specimen as large as a walnut; its transversely trmeated upper ond bore the wide round ocifice of a deop central eavity, while, from the inferior half of the otherwise smooth body, a oyfindrical bundle of long silicoous spicules ran out radially at different distances from one another, and then bent downwards into a tuft. That this sponge lelongs to the genus Rosselle was oonfirmed by Cater in a commmication addressed to Gray; the four-armed spicnles of the skin with their somewhat backwardly bent branches were to hin sufficient proof of the fact. Yet, as Carter remarks, this form may be readily distinguished from Rossella antarctica by the fact that the arms of the outer spienles are smooth, and not lieset, as in the latter, with delicate microspines.

Carter las also directed attention to the great similarity between the spicules of Rosselle plalippinensis and those found in the genus Cruteromorpha, Gray.

Wyrille Thomson,' gave an acoomut of a third species of Rosselle, which was drodged in 651 fathoms, to the west of the opening of the Strait of Gibraltar. The oval body of this remakkably clegant sponge, described as Rossella veluta, bears superiorly (as in Pheronema) a single large round osculum, lut instead of forming a cup uniformly lined with a netted mombrane, the oscular cavity divides at the botom into a number of branching passagos as in Pleronema onane described by Leidy.
"A delicate outer veil about a eentimetre from the surface of the sponge is formed by the interlacing of the four secondary rays of largo five-rayed spicules which sond their long shafts from that point vertically into tho sponge body. The surface of the sponge is fommed of a network of large five-radiated spiculos arrangod very mueh as in Pheronenza."

In a paper on Sarcohexactinellidan Sponges, ${ }^{\text {a }}$ Carter has noted that in Rossella velute and Rossella phizippinensis "the minute equi-armed hoxradinte spicules pass from the oqui-armed hexacts with bifurcated and pointed extremities to the same with capitate extremitios, and lastly into an undescribed form where the ends of the amms are terminated by a small conical tuberculatod inflation presenting a short straight spine on the apex, which spiue is surrounded by almost innumerable linear filaments rising each from one of tho tuborcles, attaining varions heights and bending outwart like the expanded potals of a tubular flower, forming one of the most exquisite objects in nature. It might bo named 'puppiform ' flexed and simple in contradistinction to another kind in which the filaments aro straight and capitate."

The gencric diagnosis of Rossella was given by Cautor in his Reviow of the Hosactinellida ${ }^{4}$ in the following words :- "Rosette fow- or manj-rayod : maye fer of equal length straight and pointed or spinocapitate; or multitndinous, of unequal length,

[^41](2000 , CHALL, TXP --FART LIM,- 1886 .)
without heads, floxed outwards and arauged en Alen-de-lis: pappiform, of sometimes many-rayed with mays straight and capitate. Auchoring spicules all smooth, stont and terminatiug respectively in lieads of form equally stout reeured spines or hooks."

In 1875 Carter liappened to discover among the treasures of the British Museum " n glass jar containing two small specimens of the reritable Rosselle onterctice dredged up lyy Sir J. Ross in 300 fathoms $74 \frac{1^{*}}{}{ }^{*}$ S. lat.," longitule not giren.

- The general form of this sessile or fixed sponge was sack-like (compressed) with the upper end trmated and open and the lower one conical and dosed. Extermal surface uniformly cribellate and monticular, covered by a thin layer of spicular lattice-work and sumounded by thre forms of projecting spicules :-viz, (1) stout linear smooth nearly straight fusiform acerate spicules, finely pointed at each end, constituting an erect beard round the aperture; (2) anchoring spicules whieh increase in number, size, and length towards the lower or conical end; (3) ertcially headed or veil spicules projecting cliefly from the monticules over every part of the external surface but the apertare, consisting of a slaft whose pointed or inner end is fixed in the sareode of the body; and whose free or outcr: one is terminated by four long arms spread out horizontally so as to intercross with those of its neighbous, and thus form a general veil-like covering separated from the body by the length of the shafts between the body and their heads respectively; shaft smooth or only microtuberenlate over the imbedded end, arms more or less flextous, fine-pointed, parting from the head of the sbaft at different angles, covered almost throughout with minute spicules closely approximated, amongst which bere and there is a much larger spine curved and inclinel ontwards or from the head of the shaft."

Among the seven other forms of spieules which Carter has deseribed from the body of the sponge the following are especially noteworthy: -
" (1) Very minute sexradiate rosettes with numerous straight capitate rays, and (2) sexradiate rosettes with thick sparsely spined arms, whose inflated ends support four or more indistinctly capitate rays; rays microspined, thick at first, then becoming firely attenuated and terminating in a hardly perceptible capitate inflation; rays at first straight and parallel like the prongs of a dimer-fork, becoming more or less divergent towants their extremities,"

In his systematic review published in the year $1875,{ }^{1}$ Carter placed the genus Rossell α along with Crateromorpha in a group called the Rosettifera within his family of the Sarcohexactinclidiæ.

The chauacteristics which Marshall ${ }^{2}$ in 1876 assigned to the genus Rossello ran thus: -"Monozoic, root-tufts springing from papilla-like hillocks on the parietes, dermal skeleton composed of five-rayed spicules. In Rosselle antarctica a peristomal spicular wreath (whether present in the other species is doubtful)."

Charucter of the Genus.-Thick-walled, ovoid or eask-shaped goblets, with a superior,
${ }^{1}$ Amm. mid Mug. Na', Ifist, ser, 4, vol. svi. p, 190
: Zituchtr. f. wisa, Zool., Bd, xvil. p. 1 IR.
circular, smooth-margined opening to the deep saceular gastral cavity. A group of diact and pentact pletralia, whose tangential rays form a kind of veil, project mdially from each of a number of small, regularly disposed, romiled derations of the surface. In the neighbourhood of the simple umarmed oscular wall a number of stroug isolated diacts project upwards. Between the dermal layer and the sieve-like gastral layer which stamds above it the soft parts form a deeply folded plate with altermating inbalent and exlialent radial funnel-shaped canals.

The parenchyma contains oxylicxasters with very short main rays and varions discohexasters. The spicules of the dermal mombrane are ahoost exclusively pentacts.

1. Ronselle cuiterctice, Carter (PI LV.).

Of the two species of Rosselln hitherto known, viz, Rosselle untareticu, Carter, and Rossella celate, Wyville Thomson, the former is represcnted in the Challenger vollection by numerous specimons, which vary considenably in size, and were collected it four different stations.

Several specimens, from $2 t 0.4 \mathrm{~cm}$. in height, growing on small fingments of bivalve shells and similar objects, were dredged to the south-east of Irince Edward Island (Station 145 , lat. $46^{\circ} 48^{\prime} 0^{\prime \prime} \mathrm{S}$., long. $38^{\circ} 4^{\prime} 30^{\prime \prime}$ E.), from a depth of $L 40$ fathoms, and volamic sand ground. Numerous specimens of very various dimeusions, up to 30 cm . in longth and 15 cm . in breadth, were dredgen to the south of the Kerguelen
 a coarse gravel ground. Other forms of almost equal dimensions were obtaneal in Christmas Harbour, Kerguelen, at various depths, from voleanic mud ground. All these more or less well-preserved spirit specimens were attached at their base to stoncs, cither direetly or ly means of small processes. Finally, several specimens, attaining a length of 20 cm ., were trawled to the east of Buenos Ayres (Station 320, lat. $37^{\circ} 17^{\prime} \mathrm{S}$. long. $53^{\circ} 52^{\prime}$ W.), from a depth of 600 fathoms, aud a green sand ground. These also were attacheil, either directly or by means of small proecsses and prolongations, to stones or other solid boties.

The general form of this sponge may be described as barrel- or keg-like, or else as resembling an clongated pear: The lower, sometimes somewhat narrowed, solid end is cither attached over its entire lreadth to some large solid body, or is fastenct by short lateral processes of irregular form to various smaller objects. I have never found the peculiar loose root-tuft which Carter represents in his diagrammatic figure; ${ }^{1}$ but I have noticed such a structure on one of the two original specimens preserved in the British Museum, and it is quite possible that this modification, as

[^42]present on one of the specimens examined by Carter, is eonditioned by the somenhat looser nature of the substratum.

On the middle of the upper end there is a sharp cormered, round, oscular aperture, lending directly into the equally wide, deep, gastral cavity, which has a cylindrical form, and is rounded off in the blind lower portion. The envity occupies about a third of the entire diameter of the body (PI. LV. fig. 1). The whole extermat surface of the body is beset with ummerous regulaty distributed, but somowhat undefined, papilia-like elevations, which attain a height of 2 to 4 mm ., and oceur, aocording to the sizo of the sponge, at variable distances of 2 to 10 mm . or more. From each of these papille at tuft of ralially directed plemralia projects, Of these spicules some rmu ont to a point, while others, at a distance of 3 to 8 mm ., give off transversely diaposed tangentinds, which go to form a veil over the surface of the sponge. Near the oscular opening the papilla become less conspienous and more crowded, but cease nltogether close to the oscular margin. Instead of them, a large number of isolated pointed radial spicules ocear, which form a sort of marginal friuge, not round the shaup eltge of the osculum, however, but at a slight distance further out. Nor do they form a shaply-defined, eufflike fringe. I observed similar prostatia round the osenlar margin of the original specimens describal by Carter, Iout besides these some more transversely directed needles, forming a aort of flat collar, which I did not find developed on the Challenger specimens In the uniformly eveu, but fine velvet-like sieve-nctwork of the gastral mombiane, mumerous round apertuxs conld lve seen. These measure about 2 mm . in dinmeter, and occur in uuiform distribution at intervals of 2 to 3 mm . orer the whole gastral surface of the sponge. They represont the main efferont canale, which alternate with the afferent passages, and are miformly disposed at right angles to the lateral wall. In cross sections the pruenelyma is seen as a deeply folded layer (P1. LV. figs, 1, 7).

The principul supporting spicules of the loose parenchymn consist of longer or short, stright or gently curved ,liacts, which vary in strength, and are either isolated, or are irregularly disposed in strands throughout the body; A strongly-dereloped beam is usually enslieathed by a layer of thin comitalia. Most of these diactsare smooth exeept at the extremitics, which are rough or tubercled, and either end in conical points or are somewhat rounded off nul occasionally cinb-sbaped. The contral portion usually exbibits an annular thickening, or four cruciately diaposed tubercles. Even when the middle is quite smooth and without projection, a trice of the axial cross is ofton apparent. Between the strands of diacts, there is here and there a tolcrably abundant oecurreuce of rongh or even spinose regular hexacts of leso than medium size. Nnmerous minute, rough, regular hexaots also oceur. There is a vory abmelant ocomrenee of small rough oxylexasters with a varying number of mays divided into terminals. Frequently only one may is thus split, but usually three or four, and rarcly all the sis. The forking of the principal may nlways takes place at a slight distance from the frognently thickened node of inter-
section, so that the whole spieule comes sometimes to look like a many-rayed star. The principal ray is usually divided only iuto two, but not unfrequently thec diverging termimats are thus producod, and less frequently more than three. Besides thesen oxyhexasters, there is a very abundant occurrenee of various discohexaster forms, which ne in part somewhat smaller than the oxyhexasters just described, but in part larger. These also exhbit short simple principal rays, and compaatively long divergent. terminals, with small fou- to six-toothed, tansverse and somewhat recurved terminal plates. The number of termimal rays varies very considorably in the smallor torms; there are usually three to six or even more on each principal may (PI. LV. figs. 6, 15).

In the larger discohexasters, which are also rather divergent in form, the simple eslindrical principals are somewlat longer, and divide into from three to six S-shaped thin terminalo, whiel are grouped together in as alender perinuth-like bundle (II. LV. fig. 14). Carter lins already noted this peculiar form of rosette as characteristic of the species. Of quite isolated and exceptional oceurrence in the paronchyma is the smail simple discohoxact, figured in Pl. LV. fig. 8. It may possibly not belong to this sponge, but have originated as an intrasion from without.

The dermal skelcton includes, in the first place, medium-sized hypodermal oxypentacts, in which the rays are for the most part smooth, and ouly roughened at the conically pointed ends. The four crueiate tangential mays are rarely disposed exactly in the dermal membrane, but are uanally somewhat below it, or pushed out beyond, though in both eases parallel. In some cases the fonr tangential mays do not intersect at right angles, but are all pushed together to one side, as we shall afterwards have to note in regard to the pleamil prostalia. In much closer comectiou with the dermal membrano are the small, finely spinose, antodermal pentacts. In these the four cylindrical tangential mys, which ure tolerably straight, and at most gently ineurved, with rounded or somewhat conically pointed ends, form arectangular meshork within the dermal membrine. The proximal radial ray, which has approximatoly equal length and similar characters, projects into the subdermal space (PL LV. figs. 2, 3). The undereloped sixth distal nudial ray is alnost always represented by a rounded taberele or knob. In rare cases, especially neax the hase, I found, between the pentacts, isolated craciate tetracts of similar form and equal size (PL. IV, fig, 4).

The gastral skeleton, which lines the inmer surface of the gastral cavity, essentially resembles the dermal, but differs in this, that the fincly spinous gastulia, whose taugential may extend within the gastral mombrane, are not pentacts, but woll-developed hexacts (PI. L.V. fig, 5) in which the internal radial ray projeets into the grastral cavity; and gives the intermil surface that peceliar velvety apesrance which we notel above.

The radial tufts of pleural prostalia, which project from the papille over the whole oxternal surfaee of the body, consist of four to eight spicules which project for 1 to 2 cm .

The strong, smooth, prineipal madial ray, which is always pointed towarls the interior of the sponge-body, is either simply pointed at the outer extremity, so that simple oxydiact forms result, or gives origin to forr exactly tangential rays (6 to 10 mm , in length), which do not, however, intersect at right angles, but form with one another three acute angles of 40° to 50°, so that the two outermost rays together form an angle of 100° to 150°, rarcly of 180° (Pl. LV. figs 9, 13). As from three to five of these pentacts are grouped together in a tuft, and so disposed that the points of the tangential rays meet at an augle, a most beantiful veil is formed, which spreads over the sponge at a distance of 5 to 12 mm . from the surface. Besides these peenliar peatacts, each tuft of parictal prostalia includes several of the above-mentioned radial diacts, which project freely for 3 to 6 mm . beyond the surface of the pentact-veil. Near the oscular margin the pentact prostalia disappear, and the oxydinets become more prominent. The latter are sometimes so numerons and closely grouped that they form a thick wreath of externally directed and pointed spicules (P]. LV. figs. 1, 7). The long, smooth, radial ray of the pleural pentacts, is, as regards its sufface, in marked contrast to the four tangentials which spring from its outer extremity, aud ron out in a straight or slightly curvel course to a gradually narrowed point. As Carter has carefnlly deseribed, the whole surface of these tangentials is so thickly and uniformly beset with fine pointed tnbercles that it presents a thoroughly rough appearance. Between these small tubercles, bat at greater intervals, strongly developed spines project abliquely outwards like the prickles of a rose. They oecur with tolerable uniformity, but withont recognisable law, and gradually decrease in licight towards the marrowed end (PL. LV. figs. 9, 13).

The spienles of Rossello catenctice modergo peculiar modification at the base, where the sponge is either attached directly to some solid body, or fixed by means of processes to various smaller objects. The parenchyma contains, in the first place, very abundant small discohexasters, like those represented in P1. LV, fig. 6, but with more numerons. and shorter terminals rising from comparatively broad basal dises.

We have also to note that here all the longer spicules, and especially the long diacte, oxhibit terminally a club-shaped thickening with large tubereles, instead of the small points or ronghnesses which ocemr elsewhere. Finally, in the region where the sponge comes into contact with the substratum, manifold modifications occur in the form of outgrowths, fusions, and not unfrequently irrogular reticulations, similar to those represented in Pl. LXIV. fig. 3, from Rhctudocalyptus mollis, Such modifications only occur where some irritation is exerted on the sponge through contact with foreign bodies.

Whether the spicnle figured in PL. LV. fig. 12, which I found isolated in the basal portion of a Rossclle antarctica (Station 320), really belongs to the sponge or is a foreign intrusion, 1 cannot determine.
2. Rosselle velute, Wyville Thomson.

A beautiful specios of Rossella was dredged by Dr. Gwyn Jeffreys in the Athatic, off the mouth of the Strait of Gibraltar, from a depth of 651 fathoms, and is figured

Fic. 4.-Roasclla vetata, Wyville Thomson.
and shortly described by Wyville Thomson. ${ }^{\text {t }}$ Of this form the Clallenger Expedition procured no specimen, but I obtained for investigation a specimen dredged by Wyrille
${ }^{1}$ Depthis of the Soa, pe. 418, 410

Thomson on the "Porempine" expelition, off the Strait of Gibraltar, and very probably the same form as wnas figured in the Depths of the Sea, p. 419. To this dried specimen the following description refers,

In contrast to the eylindrical or barrel-like shape of most of the specimens of Rossella antarctica, Earter, the form of Rossella velate, Wyville Thomson, is perfectly ovoid, 65 cm . long, by 4.5 broad. The superior pole exhibits a circular, sharp-edred apertire, 1.6 cm . in diameter,-the opening of the equally broad, cylindrical, gastral cacity (4 cm . in deptli) into which the efferent cannls open. The romdish npertures of the latter are especially wide in the blind basal portion of the cavity, and become gradnally nomower towards the upper ent. The external surface of the body is not umiformly smooth, nor beset merely with minute, sharply-defined papille, as in Rossello autarctica, but is rather to be described as hillocky, with numerous gently convex protuberances, from 5 to 6 mm . in breadth, and not sharply defined from the reticulate, comected, intervening depressions. They are distributed over the whole surfaee, with some regdarity, at intervals of about 10 mm . between the summits. The network of beams, which extemds radially in relation to these projecting eminences, is doubtless covered during life by the fine rectangular lattice-work of the smatler dermalia. The whole esternal surface of the sponge is covered by the greatlydeveloped system of most beautiful prostalin, which project radially, in small groups, from the apices of the hillocky elevations. These tufts of plouralia consist of simple pointed diacts and pentacts, in which the fom tangential rays arise at right angles to the radial ray, at a distance of abont 10 mm . from the surface of the body. They intersect, not at acute angles, but in a perfect cruciform fashion; thing are also directed mutnally at right angles. At the upper end of the sponge, near the oseular margin, only the radially disposed, long oxydiacts persist, forming a niarginal fringe, which attains the conspicuous length of 3 to 4 cm . At the lower pole of the sponge-body, on a flut surface measuring 6 to 7 square cm , thick tufts of spicales arise from the apices of hillocly elevations. The tufts bear twenty or more lasnlin, 5 to 8 cm . in length, and taken together form a loose lasal tuft. On most of these long basalia one can recognise, even with the naked eye, at the outer extremity, a sunll four-rayed anchor.

The parenchyma contains, as in Rossella antarctica, medium-sized oxyhexacts and oxydiacts, which are frequently roughened towards the pointed extremities. The middle portions of the oxydiacts are either smooth, or provided with an annular swelling or with four cruciate projections-traces of the nndeveloped rays. Small oxyhexasters with short principal rays, each bearing two long divergent terminals, are very abumdant. Between these there is a somethat abundant, but locally variable occurrence of discohexasters similar to the above, but with toothed, somewhat inourved, trinsserse dises at the ends of the terminal rays, and also of discohexasters in which the
short, somewhat termimally expanded principal rays, bear several (three, four, of more) long terminals with toothod transverse terninal discs, The rosettes with slender groups of S-shaped terminals, whieh oceur ahmudantly in Rossella contarotice (PI. LV. fig. 14), are absent in this species, anil their place is taken by small plumicomes, in which the short principal rays bear broad, plano-eonvex, transverse dises, from the conves externat surfice of which several whorls of fine S-shaped terminals arise in perimeth-like fashion, as in the plumicomes of Polyloplius philippinensis (PI, LIV, figs. 4, 6).

The dermal skeleton contains, besides simple modium-sized hypodermal oxypentacts, strong rough or toothed pentacts with romuded or truncated, straight, eylindical rays, such as oceur in Rossella cuitaretica. In those forms there is a very constant ocomrence of a knob-like or hemisplicrical projection at the distal side of the point of intersectionthe evident rudiment of a sixth distal radial ray.

The grastral skeleton does not differ essentially from that of Rosselle centarcticos.
The long lasalin, which are always smooth inside the boly, but sometimes have lateral barbs ontside the body, bear on their extremities four markedly reenrved, simply pointed anchor-teeth, in which the central caml cau be detected.

Genus 4. Accenthascus, n. gen. (Pls. LV1., LVHI.).

Thick-walled goblet-shuped forms firmly attached at their base. The deep simple gastral cavity opens superiorly in a round, smooth-margined osculum. From the external surface of the body isolated, or more rarely grouped oxydiact pleuralin project malially: The parenchymn contains oxybexnsters with short principal rays, and rarions diseohexisters. The dermalia are small roughened tetracts and pentaets.

1. Acenthascus grossularia, il sp. (PL LVI.).

In the vicinity of Possession Island (Station 148, lat. $46^{\prime \prime} 47^{\prime}$ S. long. $51^{*} 37^{\prime}$ E.), from a depth of 210 fathoms, on a hard ground of gravol and sholls, an egg-shaped sponge was dredged, which in size and form resembled a large gooseberry. The lawer pole had been broken off. At the superior pole there is a eivoular, smooth-murgined osenlar aperture, leading into a sacenlar gastral cavity 2.5 cm . in depth. Through the smooth internal skin of the cavity the efferent camals can be seen, 1 to 2 mm . in width; the larger afferent canals were, in the same way; visible through the external skin. From the outer surface, which is on the whole uniformly arched and smooth, mumerons simple smooth and pointed needles, irregularly distributed, project obliquely outwards and upwards, and attain a length of 5 to 10 mm . Near the osenlar opening these prostalia are
especially long and strongly developed, and have nn approximately perpendicular disposition (Pl. LVI. figs. 1, 2).

The principal spicules of the parenchyma are large and medium-sized oxydiacts of varying length, which are tubereled towards the pointed ends, and are in the middle either smooth or provided with an aumular swelling, or with four projecting bosses or ray-rudiments. They ocemr either in isolated distribution or in strands which vary in direction. They are, for the most part, parallel to the outer and inner bounding surface, or disposed radially to the same. Some especially large and thick diacts lie longitudimally near the gastral surface. I have lardly ever observed large hexacts, thongh here and there isolated medium-sized regular oxyhexacts oceur, with slightly spinons rays. Small hexact forms also oecur with smooth rays. On the other hand, all through the parenchyma, in tolerahly unform though seattered distribution, oxyhexasters oceur with short prineipal rays, and with a varying number of long divergent smooth terminals, two of which are usually borue at the end of each principal ray (PI. LVI. fig, 7). Besides these, we have to note the less abmant occurrence of small discobexasters with forr or more long, tolerably straight terminals, each provided with a small four-toothed, terminal, transverse dise (PI. LNI. fig. 9). Not unfrequently, also, somewhat larger discoliexasters ocem, in which each of the ahort simple prineipals bears from three to six or more slightly S -shaped terminals. These are united in a usually somewhat slender, perianth-like bundle, and are terminally rougheued ou their outer extremities, which always bear a four-toothed dise (PI. LVI. figs. 3, 4). In quite isolated distribution small discohexnsters oecur, with moderately short principal mays terminally expanded into a disc, which bears on its onter convex surface a large number of delicate diverging terminals, forming a brush-like tuft, and bearing on their extremities minute four-toothed dises (PI. IVI. figs. 10, 11).

In the dermal skeleton, medium-sized, smooth hypodermal oxypentacts oceur, in which the proximal may is radially disposed, while tho four long tangentials, intersecting at right angles, follow the superficial carvature of the spouge in being slightly eurved inwards.

In the large rectangular meshes of these pentact hypodermalia, numerons autodermal pentacts and tetracts ocour in the dermal membrane. They agree exactly with the small rough dermalia in the genus Rosselle. It has to be noted, however, that the number of tetracts exhibiting a simple right-angled intersection of rays (PI. LVI. fig. 5) is in proportion to that of the otherwise very similar pentacts (PI. LVI. fig. 6) decidedly greater in this Acanthascus than in Rosselle (PI. LDI. fig. 2). These rough dermal pentacts when compared with those of the genus Rosoelle exhibit a slight divergence in this, that there is no boss- or knob-like rudiment of the sixth distal ray. The tetraets are also without any such rudimentary ray (P1. LY1. figs. 5, 6).

On the inner side of the body-wall, the special gastral skeleton is represented by a
sheath of fincly spinous oxyliexacts (PI. LVI. fig. 12), in which the radial ray, directel towards the centre, projects into the lumen of the gastrat space, while the opposite rudial ray intrudes iuto the subgnstral space, and the tangential rays, intersocting at right angles, lie in the gastral membrane (PI, LVI. fig, 2),

The medinm-sized oxydiacts, which project freely from 3 to 5 mm . outwards and upwards boyond the externin surface, are unfortumately for the most part broken. They oceur somowhat irregularly and are not very numerous, being probably to a large extent lost. I have not diseovered any pentact prostalin similar to those which occured in Rossella, and must therefore conclnde that they are ahsent.

2. Acanthuscus clubius, 11. sp. (II. LVII. figs. 8-13).

To the south of Puerta Bueno, in Patagouia (Statiou 310, Lat. $51^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{S}$, long. $74^{\circ} 3^{\prime} \mathrm{W}$), from a depth of 400 fathoms and a blue mud gromed, a Hexactinclid was trawled, of which unfortunately only the basal part, which had grown on the ramifications of a colony of Lophohelai, was preserved, and that imperfectly. What remains is nhout the size of a man's fist, and represents the basal portiou of a cup-shaped sponge, which in its entirety must bave becu about four times as long. The remnants of the external surface still preserved seem to he ipproximately smooth, but it is impossible to decide as to the presence or absence of elevations with freely projecting spicales. On the interior gastral sufface of the wall (2 to 3 cm . in thickness), there are large round aportures, 3 to 8 mm . and more in diameter,-the openings of the efferent canals into the gastral cavity. The latter must have bem at least 5 cm . wide.

The tissues are a good deal macorated, so that the skeleton is somewhat loose, nul would have altogether fallen to pieces were it not that the larger spicules of the parenchyma are thoroughly bound together by means of syuapticula and sificeous cementing masses, The somewhat thick parenchymal skeleton cousists of aumerons oxydiacts, either isolated or in strands, and often bound together ns above noted. They sary in length, but attain no considerable thickness. Especially in the lower portions of the sponge which had grown ou the Lopholiclis, the parallel, straight, rod-like spicules are very thoroughily bound together by numerous transverse symapticula (PI. LVII. fig. 12). The terminal portions of these spicules are usually tuberculated or rongh, and are either gradually uarrowed or comically pointed, orelse roumded off, and sometimes even somewhat slabbed. The regalar oxyhexacts which occar here and there betwoen the numerous long diacts, are under medium size, cither spinous or smooth, and in rare instanecs exhibit thickened or tubereled central nodes (Pl. LVII. fig. 13). Here and there smail smoath oxyhexacts oecur, with stender, straight 1ays, which do not exeeed in size the numerous rosettes about to be described. Among these there is a special abundance of oxythexasters
with very short principals, and comparatively strong and long divergent terminals, which rary in aumber from two to four, thongh they are gencrally three (PI. LVII. fig. 8). By the extreme shortening of the principals, these terminal rays are often drawn so near to the centrad node, which is usually thickened in such eases, that the whole spicule appears as a many-rayed star romed the central node. Were there not countless transitional forms of hexasters with six distinet principals, leading up to the many-rayed stellate form, there might be real doulit as to the nature of the latter. As it is, however, the stars can be without diffienlty traced back to the triaxial type, I observed the isolated ocourrence of discohexasters with shont principal rays, and with a varying number of long terminals. As figured on PL. LVII. figs. 9, 10, 11, their resemblanee to similar structures in Acenthaseus grossularia is evident.

As to the dermal skeleton, 1 have observed some smooth liypordermal oxypentacts of medium size, and numerons smaller dernal pentnets, with straight, wough nays which are conically pointed at their extromitics, or else rounded off mind even truncated. In the latter form there is an almost constant occurrence of a small bass or elention representing the undeveloped sixth distal ray. On the other hand, I have never observed any crnciate tetracts. On the inner gastral surface numeroms hexacts occur, with straight, rongh rays, similar to the above-described dermal pentacts.

The marked resemblance in form, structure, and skeleton between the basal portion of this form, and the corresponding part of Acunthasons grossutervee, secms to justify the assumption that the upper portions must also have been like one another. We would therefore expect the presence of oblique projecting plemal oxydincts and a simple osenlar margin.

3. Aconthascus cuctus, in. 51. (PI. LV11. figs. 1-7).

Among the dried specimens of Japanese sponges which Dr. Dëderlein brought with him from Enosima, there was a pear-shaped, somewhat laterally compressed, thickwalled form, figured in PI. LVII. fig. 1. This Hexaetinellid resembics a sack or benker in form, is 9 cm . long by 5 cm . broad, and 4 cm . thick. By its narrower end directly, and also by means of several basal projections, 3 to 4 mm . in diameter, the sponge is attached to a firm substratum. The superior aperture of the simple gastral cavity, which is about 3 cm . in width, is surrounded by a somewhat shamp-edged smooth margin. On the lower end also, between the basal attaching protrusions, there is an irregulady coutowed apertme about 8 mm . in diameter, but possibly the result of subsequent damage.

The external surface of the body is beset with conical olevations varying in height ip to 8 mm . They are largest in the middle of the sponge, and decrease in height towards the oscular margin. They oceur at intervals of 1 to 2 cm , and bear on their
upex a tuft of divergent pointed spicules, which project freely for 2 cm , or more. The general form of the body, and the occurrence of these spherical clevations at approximately equal interrats on the outcr surface, and especially the tufts of spicules po: jecting from their apices, produce a close resemblanee between this sponge and certain prickly cactuses. I have for this reason given this form the specifir desiguation reotus.

While the whole external surface of the body is covered with a time meshed dermal Hetwork, the simple, smooth internal surface is covered with a firm ghstral membrame, whioh is abundnutly perforated by mumerons romed apertures, ahont 1 mm , in breadth.

The pareneliymal skeleton exlibits numerous thickly distributed oxydiacts in variable disposition. These are, for the most part, smrounded by oxydiact comitalia of but slight development. Near the conically pointed ends theso diacts are usually somewhat rough, but are otherwise smooth. In the middle they are usually guite smooth, though less frequently exhibiting a median thickening, or olse four eruciate or two opposite elevations. Besides the slouder comital oxydiacts, numerous isolated spicules of the same sort occur.

I have not ohserved in the parenchyma my simple hexnots of medimn size, but only small, slender, isolated oxyhexacts, resembling in size the rosettes about to be deseribed.

There is an abundant oceurrenee of the familiar oxylexaster forms with short prineipal rays, and long, smooth, diverging tominals, which are liere somewhat strongly developed (PI. IVII. fig. 3). Between these, spicules ocenr of similar size and structure with six undivided rays, each of which exhibits, at the same distance from the common node of intersection as the point where the prineipals divide in the oxyhexasturs, a sharp flexure, sneceeded by a small eurve, and finally by a straight portion coutimed on to the point. Spicules thus modified may be regarded as reducel derivatives of the above described oxyhexasters.

There is besides a not mfrequent ocenrreuee of irregular resettes, which seem at first sight to be quite distinct from the Hexactincllid type of spieule, since they almost always exhibit eight principal rays. These somewhat thick, but not eaxcotly cylindrical rays, which spring from a thickened eentral node, are often beset with knot-like protrusions. Each beats a bundle of four to eiglit thin straight terminals of equal longth, which diverge slightly from one another, withont being sharply marked off from the principals. Each terminal ray bears on its extremity a minute dise (PI. LYIL figs. 4, 5; cf. Pl. LXV. fig. 3). 1 am of opinion that some of these apparent principals have arisen by the eqlitting of real or primary principal rays. This is suggested, for instance, by the fact that at their base they are not eylindrical, but somewhat convergent and flattened. From the base of one ray a smooth link may be seen passing to the base of
an adjacent my. We have, besides, to note the (sometimes very regular) oceurzence of a protuberance between the bases of the rays, which is oceasionally drawn out into a loug radially projecting spiuc. Or it may be that besides the six principals divided into terminals othor independent rays are present, rumning out into simple points (PI. LVII. fig. 4).

Finally, the parenchyma inchudes a tolerable abundanee of very minute diseohexasters, which are in some regions disposed with especial thiekness below the external and under the gastral skin. Lu these small discohexasters the short simple principals bear broad, plano-conver, transverse terminal dises, from the convex external smface of which numerons deticate divergent terminals arise, which are of equal length, and bear minnte transverse dises like those in the rosettes of other sponges as figured in Pl. LVII. fig. 11, PL. LXI. fig. 7, PL. LXV. fig. 4.

The greater part of the dermal skeleton consists of autodermal tetracts, in which the rays, intersecting at right angles, and inclined slightly inwards, are cylindrically thickead, or even somewhat club-shaped at their romaded extremities, and are beset throughout their entire length with fine apines (PI. LFII. fig. 6). In many places, and especially in the liillocky elevations, from which the radial spines project, besides these autodermal tetracts, pentacts nlso occur in which the four taugential rays are altogether similar to those of the tetracts, while a fifth proximal ray, springing from the node of intersection, projects in a radial directiou imwards (Pl. EVII. fig. 7). Between these tetraets and pentacts isolated smooth tetencts ocenr, double the size of the othere, and with their rays intersecting at right angles.

The gastral skeleton consists of small gastral pentacts, Thich correspond exactly to those of the dermal skeleton. Between these there is a aparse oecurrenee of tetracta also like the dermal forms (PL. LVII, fig. 2).

Genis 5. Bathydoris, n. gen. (Pls. LVIII, LIN.).
Saceular or bladder-shaped forms, with thin loose walls, smooth or spinous external surface, and thin round oscular margin, which is (always?) provided with a cuff-like fringe of projecting spicules. The parenchym contains, besides large dinets and hexacts of varions kinds, oxyhexasters and in some species discohexasters. The dermal skeleton includes, besides the familiar smooth hypodermal oxypentacts, mutodermal oxytetracts, and in some speeies similar dinets or even monaets. In the gastral skeleton, on the other hand, only roughened oxyhexacts ocetr.

1. Bathydorus fimbriutus, n. sp. (PL. LVIII.).

In the North Pacific, at Stations 241 and 248, and from considerable depths, the trawl brought up frigments of a somewhat large, Dladder-shined sponge, which was found to be a Hexactinellid of the very simplest structure.

At Station 248, lat. $37^{\circ} 41^{\prime} \mathrm{N}$., long. $177^{\circ} 4^{\prime} \mathrm{W}$., from a depth of 2900 fathoms and a red clay ground, the somowhat injured, though coherent uper portion of a biladdershaped spouge was trawled. The loose smooth wall is only 1 to 1.5 mm . in thichness, and becomes gradually thimer towaids the sharp oseular margin, which is surromeded by a fringe of long diact marginalin. The diameter of the bag, which is almost cylindrical in its lower region, measured from 4.5 to 5 cm . The lumen is gradually narrowed towards the upper end, measuring only 2.5 cm . is diameter at the superior terminal opening (PL. LVIII. fig. 1). The almost uniformly smooth external surface exhibits minute, regularly distribnted, round holes, of about $\frac{1}{4} \mathrm{~mm}$. in diameter. Somewhat larger round openings may be detected on the internal surface of the gastral membrane, which is also almost uniformly smooth.

An inspection of flattened portions of the wall, or better still, an examination of cross sections at right angles through the wall, reveals distinctly the thimble-like form of the ciliated chambers, which are disposed in a very simple and regularly folded layer between the two reticulate limiting membranes, and supported by the external subdermal and internal subgastral trabecular framework. From the larger, Incunar, subdermal spaces, duct-like diverticula pass between the extermally arched folds of the chamber layer. The lumen of each of thuse cmpola-like folds is free from the trabecular scaffolding, and opens into the lacmar snbgastral spaces; the latter do not, however, open directly into the general gastral cavity, but only into the loose meshwork of the gastral membrame which stretches smoothly over them (Pl LVIII. fig. 2).

The larger parenchymalia consist of slender diacts which vary in length, and do not uxceed 0.08 mm . in thickness. They are rough and rounded off at their ends, and are frequently somerrhat elub-shapel in consequence of thickening. A central swelling or formation of tubercles, which take the form of four cruciate, or two opposite elevations, is present in many cases and absent in others. Between these long supporting spicules, which are almost always disposed quite, or approximately parallel to the surface, mumerous oxyhexasters occur, with a rariable number of long terminal rays, which are either straight or gently curved (Pl, LVIII. figo. 4, 7). This curvature of the long terminal rays frequently assumes an S -shaped form, and results in the formation of miuute, delicate, three or fou-rayed perianth-like whorls at the end of the principal rays (Pl. LVIII. fig. 7).

The dermal skeleton is supported by medinm-sized, smooth, hypodermal oxypentacts, in which the four tangential rays, intersecting at right angles, lie close below the dermal membrane, and are opposed to the corresponding tangentials of adjacent pentacts to
form a quadrate lattice-work. They are usually curved slightly inwards. Opposite the straight proximal radial ray which penctrates almost through the thickness of the bodywall, a small distal protuberance is oceasionally developed, though usnally absent. These pentacts, especially in the veightourhood of the oacular margin, sometimes protrude beyond the surface of the sponge, and form with their tangential rays, as in Rosselle, is sort of veil orer the skin; but this difforentiation occurs only locally and exceptiomally.

The dermal mombrane itself inclndes a large number of small, simple, roughened oxytetracts, in which the arms, intersecting at right angles, seem to be usually somewhat bent inwards (Pl. LVIII, figs. 2, 5).

The gastral skeleton seems wholly destituto of hypogastralia, and consists merdy of the very numerons gastral oxyhexacts, in which pointed nays are thickly beset with fine spines. The ray which projects railially invards into the gastral eavity is usually quite as long as the five others (PI. LWIII. figs 2,6). The marginalia, which project in eufflike form round the superior oscular margin, are smooth oxyliacts, \& to 10 mm . in length, withont ilefinite central swelling or formation of knots, and with simple pointed ends.

At Station 241 (lat. $35^{\circ} 41^{\prime} \mathrm{N}$. , long. $157^{\circ} 42^{\prime} \mathrm{E}$.), from a depth of 2300 fathoms and a red elay ground, the frawl brought up some flat fragments, 1 mm , is thickness, which corresponded in their whole appearance to the above described Bathydorus. They exhilited the same structure as the above, with the single execption of the pareachymal oxyhexasters, in which the long terminal rays were never so thickly disposed in perianth fashion, as was frequently the case in the above-deseribed form. Herc they all diverge more or less, as was indeed occasionally the ense above. The spinous gastral hexacts exhibit somewhat longer radial rays than do those in the form nhready deseribed. 1 do not think, however, that these slight differences justify the exeetion of a distinet species, but believe rather that we have here to deal merely with a local rariety, and therefore refer these fragments without hesitation to Bathydorus fimbriates.
2. Bathydorus stellatus, n. sp. (P1. LTX. figs. 1-5).

In Messier Chamuel, off Patagonin, right in front of Port Grappler (Station 307, lat. $49^{\circ} 24^{\prime} 30^{\prime \prime}$ S., long. $74^{\circ} 23^{\prime} 30^{\prime \prime} \mathrm{W}$.), from a depth of 140 tathoms and a bhe mud ground, the trawl brought up a small inconspicuous sponge form, about 1.5 mm . in length. The thin-walled saceular body was divided superiorly into two terminal tubes, 6 mm . in breadth, with terminal opertures. On the otherwise smooth external suface, some thin pointed spicules project obliquely outwards and upwards for 5 to 6 mm . At the terminal oseular aperture no distinet cromp of marginalia is to be seen, but this is perhaps the result of slight injury:

The parenchymal spicules are long, uarrow, straight or gently curved diacts, with or
without contral noles. The somewhat roughened or tulkecled terminal prortions are rounded off, or not unfrequently slightly club-shaped at their extremitics, Benvem these a large number of oxyliexasters occur with long, stim, lot ronghened torminal rayz which vary considerahly in numher. The prinejpal mys are mush shortened, and thin goes so fir in some hoxasters, that the spicule lias quite theappearance of a simple, manyrayed star (PL. L.LX. fig. 2). A slight irregularity frequently occurs at the lase of these raye, in the becurcuer of a alight umin or something of that bature, whidh aten poins tir the reduction above referred to. The presence of these star-shaped parenchymal spicnles lest me to give this form of Buchydurns the specific title stellictro. Finally, in the parenchyma, I have ohorved the isolated occurrence of minute deliente discolisesasters, in which cach of the six shert principal raya bears, on a termiunt expausion, three to six Iong diverging terminal rays with a foothed terminal portion (PI. LIN. fig, 4),

The demoul skelntou contains medium-sized, smonth, hypodirual oxypentacts, with mough comically pointed cods, and morv or lefs roughened autodermal tetracts, with rounded extromitios, disposed Hatly in the dermal membrme (PL D,IX. Hig. 3). Between these pontact forms occur with uniform proximal ralial rays, add sometimes diacts also with cential noder (P1. 1/X. fig. 5).

The gustmal skeleton, which is uot wefl preserved, consists of rough or नpinous oxyhexacts. Tho pleural prostalia are simple or strongly developed oxydiacts, uthout 1 cm . ith length.

8. Buthydorva xpinosus, u. sp. (PL. LLS. figs. 6-9).

Near Ponguin Island (Statiou 147, Tat, $46^{*} 16^{\prime}$ S., long. $48^{\circ} 27^{\prime}$ E.), Trom a depth of 1600 fathoma and a Diatom oozo ground, the thats brought ip at thin-walled sawk, 6 cm . in length and 3 cm . in greatest diameter, but veduced to 2 cm . in width towards the superior, irregularly contourel terminal ajerture. The smface of the saek exhibited irregularly seattered pointod spienles, projecting for about 6 mm ., while the osoular margin bears a corous of marginatia. It is possible that this sponge form does not represent a distinet specius, but belougs to the above described Bathydorts stellethes, which it resombles in general structure, and expecially in the mature of the sificuons spicules. Thare is, however, a certaill differone about ta be noted, which soems to warrant at least a provisinual separation of the two forms. I have, therefore, regavied the distinction as really specific.

While the loug diacts of the parenchymal skeleton are not in any way essentially different from the long dincts of Bathydomes stellotus, I fine that the abumdant axyhexastors diffor from those of the above species in this, that the principal rays are not nsually so markedly shortenel, even to diseppearatue, as they are in the above; the
(2NOL CHALL. EAP.-PART IML--IS86.)
Ggg 20
terminal rays are, further, for the most part somewhat wavy in their curvature (PI. LLX. fige, 8, 9). I did not discover any small diseohexasters.

The dermal and gastral skeletal doments correspond almost jerfeetly to those of Butliydorits stellatis, though it may be noted that the gastral oxyhexacts ane here very rahied, sometimes rough, sometimes spinons, and rardy yuite smooth, as represented in PI. B.1X. fig. 7. In general, in spite of the larger size of the specimen, the rays of its liesact gastialia are less strongly developed than in the much smaller specimens of Buthydorus stellatus.

The plearal and marginal proatalin are, like those of Buthydorus stellutus, simple smooth oxydiacts, 8 to 10 mm . in length.

1. Bathydorus buchlifer, n. sp, (PI. LX. figs. 10-18).

In the middle of the South Pacific (Station 286, lat. $33^{-2}-29^{\prime} S_{\text {, }}$, long. $133^{\circ} 22^{r^{\prime}}$ W.), from a depth of 2335 fithoms aud a rod chay groumd, the trawl brought up a small fragment of a sponge which apparently belongs to the gemns Bethydorus. The specimen, as figured in PL LIN. fig. 10, is a tolerably smooth, approxiuately scmicircular plate, 2 mm . in thickness. From the smooth surface some isolated simple axydiacts project obliquely for 10 to 20 mm ., while the other surface appears uniformly rough.

The spicules of the parenchyma are long, narrow; smooth diacts, with rough, conically pointed, rounded, or more rardy slightly chb-shaped ends, with or without eentral nodes, exactly as in the other species of Bethydorus. Medium-sized simple hexaets ocur here and there. Between these there if a very abundant occurrence of oxyhexasters with short principal rays and loug straight terminals (Pl. L1N. figs. 12, 13). A few discohoxasters also occur with short principal miys, each of which bears usually three diverging terminals, bent convexly outwards at their base, and carrying on their extremities minute, transverse, four-toothed, somewhat convex dises (PI. LIN. fig. 18).

The ilermal skeleton contains medium-sized lypodermal pentacts, with rough, rounded, or somewhat conical extremities, and small nutodermal dincts or monacts, which are rough all over, are romuded off at their ends, and exhibit at the central point a definite swelling of the axial eanal, or the trace of undeveloped rays, usually in the form of two opposite, or more rarely forr cruciate tubercles (Pl. LSX. figs. 14, 15, 16, 17). The liypodermal pentacts form, by the apposition of their opposite tangentiads, a quadrate lattice-work. The autodermal diacts and monaets oceur in irregular diaposition in the dermal membrane (PI. LIN, fig, 11), In the diaets the two rays belong as a rule to the same axis, but forms occasionally occur, as figured in PL LIN. fig. 16, where the two rays form a right angle. In the monaets, which occur in tolerable abundauce, the end which represents the centre of the origiual six-rayed form, aud which therefore contains the node of intersection of the axial canals, exhibits a club-shaped thickening, and it may
be that three, or less fiequently five, boss-like projections remain, which correspond in their position to the undeveloped rays (PL. LIN. fig. 14).

The gastral skeleton is unfortumately not preservod, mud this fact may make it somewhat donbtful whether I am eorrect in regarding this form ns a thin-watled Bethydoris, and not as a repocsontative of a genus Rhedrlocelyptus, now to be described.

Genis 6. Rhubdecelyptirs, in, gen. (Pls. IXIV., INV).
The body has the form of a moderately thick-wallel cup on sack, with smooth extemal surfice. It is attached by a narrowed base or short stalk to a solia boty, The wide round oscultur opening has a gradnaliy sharpened smooth margin. The interior surface extibits, between the close rotud excurrent npertures of the numerous efferent canal or lacumar passages, an irregular ridged network.

The prineipal parenchymal spicules are more or less long diacts. Besides diseo- and oxyhexasters of varions sorts, eight-rayed rosettes oceur, with several dise-bearing terminal rays borne on the end of each medium-sized prineipal.

The dermal membrane contains either only rough diacts or also rough pentacts, tetracts, and monacts. The gastralia are rough oxyhexacts.

1. Rhatedocclyptux mollis, n. sp. (PI. LANT) :

Among the dried Japanese Hexactinellids which Dr. Döderlein collected near Enoshima, the form figured in PL. LXIV. fig. I (one-third natural size) is conspictous because of its large dimensions, It is a moderately thin-walled, Interally compressed ein, 35 cm . in height and 20 cm , in breadth at the superior nperture. The diameter of the round compact stalk is about 6 cm . The large cup bears on its side a smaller, more elongated form, 15 cm . in length, and 6 cm . in width at its orifice; while beneath the Intter there is a cecal protrusion or boss.

The wall, which measures in its lower portion 4 to 6 mm . in thideness, becomes gradually thinner towards the upper end, and terminates in un undulating or crisped, smooth, slender, ascular margin, without a fringe of spicules. At the lower portion of the cup, just abovo the solid, somewhat tuberenlated lase, there is a round bole, 5 mm , in diameter, which establishes a commnuication between the gastral cavity and the water outside. The stalk is attached to the firm substratum by a slight basal expansion, and includes here and there some intruded materal, especinlly soil debris The lower surface of the stalk, where it is fixed to the substratum, exhibits the familiar thin bit firm reticulated plate, which is deyeloperl in all Hexnetinellids at their point of attactmont to foreign bodies. Tho outer surface of the body is not quite uniformly enrved, The exhibits
gentle clevations and depressious, which may be, howevor, the resnlta of desiceation. The ituer sucface of the wall of the emp exhibits here and there inconspicuons, ridgo-like clevations Mith a thin elge.

The extremely delicate dermal membane, which forms a fine lattice-work is proservel only is a few sholtered portions. The pareuchymal skeleton is represented by a feltwork of spicules, which are disposed in strands 2 to 4 mm . broad, whel onelosing roundish spaces of various sizes. The gastral skiin, which also forms an extremely Whente and fine network, exhibits a feltwork of spienlar strands with meshes somewhat namrower than those in the dermal skeleton.

The subsequent influence of damp has cuased this specimen to fall in, so that the two halves of the wall of the oup have been united. I was therefore unable to diseover anything definite as to the aature of the inner sufface or of the osendar margin. Dr. Döderlein told me, however, that this apecimen, even when still well preserved, "exhibited a marked lateral compression. The imncr wall or cup exhilited nidged elevations. The free upper tuargin had no marked plaiting, and ended in a slender smooth edge withont a fringe of spicules. At the lase of the eup the larger apertures of the efferent canuls were apparent,"

A second smaller specimen of this species, measuring 13 cm . in height and 8 in breadth, agrees closely with the above. It also exhibits a laterally compressed cup-like or saceular shape, with a thin oscular margin, but is attached to the firm sabstratum at several places, over a comparatively broad expansion. Two roundish apertures; +mm . in diameter, occur near the lower emil.

The prineipal portion of the parenchymal skeleton consists of long slender dinets, occmong either isolated or disposel in strands. They exhibit a central nodal thickening, mad the rough ends aro sometimes conicilly pointed, arometimes simply rounded, and orcasionally thickened in a club-shaped froshion. Between these there is a scattered occumence of the familiar oxyliexasters, in which the principal rays ate very short, and frequently almost aborted, while long terminal rays, present in varialie number, are somewhat curved at their base, but otherwise quite straight on to the pointed puter end. Oxylhexacts ocetsionally oceur in which the rays are twisted at a point corresponding to that at which the terminal rays arise from the principals in the oxyhexasters. They are doubtless degenerate oxyleexusters, which are again ahmost reduced to simple oxybexacts, retaining only a trace of their metamorphosis in the twisting at the base.

In certain regions, especially in the subdermal trabecular spaces, there is an abundant uccurrence of large rosettes with teminal rays bearing terminal dises. These spicules lint rarely exhibit the typical number of principal rays, but as a rule eight are present. When only six principals are present, as in the form represented in Pl LATV, fig. 7. they intersect as usnal at right angles in a somewhat thickened node, and are rather thick and eylindrical. At the slightly exponded onter end they divide into three to six straight or somewhat S-shaped terminals, which diverge slightly in a tuft, and attain a
length double that of the procipals, Each terminal hears at itd extremity at small, convex, transverse dise, with recmed marginal teefls (PL. 1.XIV. fig. 7). In these discohexasters the central node is oecasionally much thickened, and provided it the nogle between each two prineipal rays with radial, tubercle-fike rounded processes, which may also be drawn out into simple spines. In other cases, one or two of the prinepals are especially thick, and split up externally into several terminals; and this modifieation appears to me to indicate the way in which the numerons rosettes have arisen, which bear eight principal myn arising at apposimately equal angles from the contenl nowe. The variations in the rays of these rosettes are so mumerons that it is impossible to attempt to describe all the modifieations. I shall ouly note that not unfrequently the ecotral sode heromes swollen into at conspienons sphere, from the surface of which, hesides several broad primipals, numerous terminals also arise, evidently by the basal splitting of the principals. The splifting of a particular portion may thus increase till the whale principal is divided.

Under the skin these peculiar discohexasters oeenr in abmidanee, but in other regions, and especally in the subgastmit trabecular space, pecmiarly modified oxyhexasters, osyhoxnets, and remarkable diacts, derived by reduction from the hatter, oceor abondantly. In ummerons oxyhexasters and oxyhexacts, the curved lasal portion of the otherwise quite straight, gradually pointed tays, bears a coating of fine spines or larbs, directed obliquely inwards. These barbs are very mumerons, and sometimes so long that those of adjacent rnys slmost unite (Pl. LXIV. figs. 8, 9). On these spinous oxybexaets the rays are sometimes carred, and this not unfrequently takes the form of a spiral twistiug of the two mays on the same axis (Pl. LXIV. fig. 10). If it happer, as is by no means unfrequent in these spinous spicules, that the number of rays is reduced, forms result fike those represented in PI. I.XIV, fig. 11, in which a spherical, spinous, central body beas at its two opposite poles two zpinous rays, which are twisted half ronnd in a spiral and then continued in a straight course to end in a simple point, or to be divided inta several pointed termimals. But the mmltiplicity of structure in these mpparently reduced forms is so extremely great, that I will not begin to give a dotniled acoount of the multitudinous modificntions.

The dermal skeleton is supported by medium-sizod liypodermal oxypentacts, in which the long smooth rays sometimes exhibit a simple curvature, but are, as a rule, quite straight. In the dermal mombrane itself, numerons autolermal diacts ocewr, in whioh the rough rays, lying in one axis, end conically or are somewhat ronnded oll. The centre usually exhilits two or four projecting tubercles (PL. LXIV. fig. 5), but these are in other cascs entirely absent (PI. LSIV. fig. 6). There is an isolated oconrence of welldeveloped tetracts with rays ecossed at right angleo, and even pentacto with a ray penctating the parenchyma and resembling that of the diacts. Monacts acenr less frequently than in Bathydorus buculifor, but still in tolerable ubundance. They may
be with, or withont lateral tubercles at the expanded end. Finally, I should mention that here and there small discohexasters ocour with numerous terminal mys on the expanded ends of the principal rays, like the similar structures in Rheledocctyptus roeperi, represented in PI. LXV. fig. 4.

The gastral skeleton consists of strong, rough oxyhexacts, similar to those in the genus Bathydorus.

2. Ifialytocalyptis roperi, n. sp. (PI. L.SV.).

To the aruth of Puerta Buouo, in Patagonia (Station 310, lat. $51^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{S}$., long. $74^{*} 3^{\prime} \mathrm{W}$.), from a depth of 400 fathoms and a blue mud ground, the thawl bronght up a cup-shaped Hexactinellid, 16 cm . in length and 95 cm . in maximum breadth. The solid inferior portion of the sponge is contracted into a cylindrical stalk, 2.5 cm . in thickness. This stalk is bent to the sille, as if to he attached to some solid hody, but the rest has been unfortnuately torn away. The somewhat bulging wall of the cup has a thickness of 8 mm . at the lower part, but decreases gradnally towards the upper margin, and ends in a simple smooth margin, bent slightly ontwards. The sharp, uniform, circular edge eshibits no projecting margimalin. Throngh the thin even lattice-work of the dermal membrane are scen the irregularly seattered, elongated, angular or spindle-shaped pits, from which roundish camals extend towards the eentre. On the imner surface round sharply contoured depressions of varions sizes occur, into the bottom of which the more or less wide excurrent canals of the efferent system open (PI. LXV. fig. 1)

Besides this large specimen a small, flat, wide cup- or basiu-like form was olitained at the same locality. It meastred 2 cm . in maximum breadth and 1 cm in height, but was also torn away from its connection, and exhibited only a torn base, 1.5 cm . in breadth: Erom this the side wall of the body, measuring about 2 mm . in thickness, arises, projecting obliquely upwards and ontwards, and continned on to a smooth, ciroular, shappedged margin, measuring 2 cm . in diameter (PI. LXV. fig. 2). In perpendicnlar cross sections through the wall of the cup one can meadily detect the altornating afferent and efferent comals, and the folds of the chamber layer which extends between them.

The main portion of the parenchymal skeleton consists of loug slender diacts with rough pointed or slightly club-shaped onds, with or without contral nodes, like thase which have been already so often described in this family (PI, LXV. fig. 11). There is an isolated occurrence of small, wakly-levoloped oxyhexacts with fine straight rays (PI. LXV. fig. 6), aud a greater abundance of oxyhesasters with short, sometimes very short, principal ruys, bearing long, diverging, straight or wavy, fine terminals (PI, L.XV. fig. 5). The number of terminals on each prineipal ray varies from two to three, while less frequently only one is present.

Not unfrequently the prineipal rays we so short that they can hardly be detected.
being hidden by a splacrical cental thickening, from which the long terminals directly arise, resulting in a many-rayod form.

In eertain regions, and especially below the external skin, in the subdernal space; there is a tolerably abundant occurence of those eight-nayed discolexasters, which were already deseribed in Rhedolocelyphts mollis. Here also there are eight metium-sized principals not exactly round, but somewhat angular. These form approximatuly equal angles with the central node, which is beset with romdish tubereles. Terminally the prineipals divide into three to form fine, long, diverging terminals, which bear on their extremities small, toothed, transverse dises.

We have also to note the quite isolated ocentonce of very small delieate discohexasters (PI. LXV. fig. 4), in which the expanded ends of the prineipal rays bear numerons fine terminals, with transverse dises on their extremitics.

The dermal skeletou includes medium-sized hypodermal oxypentacts, in which the long, smooth, oceasionally somowhat curved rays, are roughened towards the pointed extremitics. The dermal membrane itself contains a lagge number of pentacts, tetracts, liacts, and ocensionally monacts, in which the rough straight rays, beset with small pointed spines, are rounded off at their outer ends, or provided with blunt points (Pl. L.XV. figs. 7, 8, 9), At the middle of the diacts and at one end of the monacts, four or five cruciately disposed hemispherical tubereles (or sometimes two in one axis) project laterally as rudiments of the undeveloperl mays (PL. LXV, figs. 7, 8).

The gastral skeleton, and that of the skin which lines the wide efferent canals, consists exclusively of comparatively large oxyhexasters in the usual disposition. The weakly developed straight rays, which are of approximatcly equal length, have au irregularly tubercled or roughenol surface (PL, LXV, fig- I0).

There are no marginalia in this species.

Genus 7. Crateromorphet, Gray (PIs, LXI.-LXIII., LXVII., LXVIII. fig. 2).

> 1872. Carter, Anm. and Mag. Nat. Hist, vol. x. p. 110 (Grateronampla meycri).
> 1872. Gray, Ann and Mag, Nat. Hist., vol x. p 136.
> 1873. Carter, Ann, and Slag. Nat. Mist., vol, xi, p 975.
> 187\%. Carter, Ann and Mag. Nat. Hist, vol. xi. p. 319.
> 1874. Gray, Ann. and 3tag Nat. Hist, vol. xiii. p. 281.
> 1875. Garter, Anm. and Mag. Nate Hist, vol. xvi, 1, 1.
> 1875. Marshall, Zoitsche. f. wise, Zool., Bd. xxv, Supph, p. It2.
> 1876. Marshall, Zeitschr, f. wiss. Zowl, Bd. xxvii. p. 113.
> 1877. Zittel, Mith Al Baier. Ahad., xiii p. 1.

History.-Among the spouges which Dr, A, B. Meyer sent home from Zebu fone of the Philippine Islands), to the British Musenm, there is an oval eup- or bell-hike form with a round but comparatively stender stalk. This form was distinguished by Gray as

Civeteromorpha moyerí, and wis first described by Carter.' Tho mpproximatoly ronnd stalk, which was as loug and as thick ns one's linger, and comected lyy at trumpet-like expansion with the "cup- or goldet-shaped body:" was found by Chiter to be perforated by a large number (twelve) of longitudinal canals "which open into the vents of the bottom of the eup where the stem joins the later." At the lower end the stalk was expanded and adigted for fixing the sponge to the sandy bottom of the sea. The margin at the lirim of the enp was extremely thin, but the wall beeame thicker towards the base. The prineipal forms of spicules which Carter found in the goblet-shaped body were " (1) straight, fusiform sjicules terminally swollen and spinose, also more or leas swollon anl smooth in the centre, where the central canal has a hexradiute cross, opprosite to the ends of which two or four tubereles may ocenr. These spicules form bundles srossing me mother at right angles, or approximately so, and thus support the dermal network. (2) Nail-like or creciate suicules, in which the arms are smooth, straight and pointed, the shaft a little longer than the rest, also oceur somenthat sparsely. (3) Dinute smooth liexradiate apirnlio, in which each amo of the cross, just after lewsing the centre, divides into two long divergent spines, are present in myriads. (4) In the porebearing aren curiate spicules oceur, is which the arms, arising it right angles from the contre, are more or leas expanded at the ands und spinose throughout. (5) The stem contains, in addition to the rod-like spienles forming a woolly mass, large, smooth, thick spienles, four-twelfths of mo inch in length, acenate and swollen at hoth ends. These oecm distributed longitndinally over the surface of the stem."

Gray repeats Curter's duscription in somewhat different language, and establishes on the strength of this specimen the family Cateromorplidee with the following characteristic:-"Sponge emp-shaped, attached by an elongated pedicel formed of numerous short spieules. Body of sponge coverel extomally with lexradiate spicules, the outer ray of which is aborted, placed in lougitndimal mod transverse lines, making a square mesh; bollow with lauge oseules which diminish in size as they reach the margin of the rup. Stem formed of mmerons eytindrieal tukes sitnated in a spiculous folt, ending in a humeh of fitaments runk in the mod."

In 1876, Marshall ${ }^{3}$ gave the following diagnosis of the genus:- "Polyzoic, with pseudogaster ()) of leaker form, outer side of the beaker-like cup perforatel by cylindrical sprues (the stomachie eavities?), others of the same kind running longitndinally to spraces in the basi of the cup. In the internal skeleton the hexradiate forms of spicules dieappear, and miaxial forms oceur. Body cavities covered by poculiar small hexradiate spicules with bifureated rays (?). Dermal skeleton of five-rayed spicules. No proper root-tuft. Rosettes with numerous secondary knobbed rays."

Crateromorpha meyeri is regarded by him as a pollakid Hexactinellid which has

[^43]degenerated in several points, as may be seen iu the proponderance of uniaxial spienles, and also in the absence of a special root-tuft.

Cheuracter of the Genus.-The somewhat thick-walled cup- or bowl-shaped body is firmly attached to the substratum by means of a more or less long and compact eylindrical stalk. The sharpened circular oscular margin usually bears a membranous, perpendicular, annular fringe, though oceasionally naked. The external surface appears smooth and sometimes meshed. On the interial surface the numerons efferent canals open, through roundish apertures of variable size, directly into the large gastral eavity. The parenchyma inchudes oxyhexasters and discohexasters of variable form and size. The dermal membrane contains small rough tetracts and pentacts, and sometimes also diacts, which are blunted terminally or thickened in elub-shaped fashion. The gastral membrane contains ronghened pentacts.

1. Crateromorpha meyeri, Gray (PL, LXI.).

Near Zebu, Philippine Islands (Station 209), from a depth of 95 fathoms and a blue mind ground, several well-preserved speeimens of Crateromorpha meyeri were obtained.

The sponges are 10 to 12 cm . in beight, and of a beatiful wine-glass-like form. An irregular expansion (basal plate) attaches the sponge to the firm substratum, and the cylindrical stalk, about 5 em . in length and about as thick as one's little finger, is contimed through a trumpet-like enlargement into a widely open bulging cup, about 5 cm . in brealth. The wall of this cup is inferiorly abont 2 cm . in thickness, but becomes narvower upwards and finally ends in a delicate, thiu, transparent, straight or slightly outwardly curved lamellar fringe, with a sharp edge, which measures 4 mm . in height, and about 0.5 mm . in thickness. The extermal dermal surface of the whole sponge is smooth, but through the fine reetangular lattice-work of the dermal membrane the irregnlar roundish eavitics of the afferent eanals may be seen (II. LXI. fig. 1). On the much firmer internal surface there are numerous roundish openings of varying width. These belong to the efferent camals. The smaller apertures in the neighbourhood of the Lattice-work are still covered by the gastral membrane, but the larger open freely, Inferiorly the openings of the efferent system of canals become larger, so that fimally, at the foot of the gastral cavity, only more or less narrow septa remain between them. (PI. LXI. fig. 2). The larger septa extend radially from the centre towards the lateral wall, and prodnce a radially aymmetrical division into four, which recalls a similar condition in species of Hyalonense. In longitudiual sections the relation of the afferent and efferent canals is very distinetly soen, and between them the much folded layer of ciliated chambers (PI. LXI. figs. 2, 3).

In Pl. LXI. fig. 1 an attempt is made to xeproduce the peculiar frey-yellow colour, (zoof. chail, Exp.-1:AIT Lill.-1886.)
exhibited by these forms of Crateromorpha, and by the great majority of the spirit-preserved Ilexactinellida here described. It is noteworthy that the marginal fringe which surrounds the superior circular opening (about 40 mm . in width) is not yellow, but usually white. The stalk also appears somerhat lighter in colour than the dark greyyellow body-wall (PL. LXI. fig. 1).

The main mass of spicules in the parenchyma of Crateromorphia meyeri consists, as in Buthydorns and Rhabdocalyptus, of long thin diacts, which are roughened terminally, aud exhibit either ronnded off or bhutly ponted extremities. Some spicules bear a diatinct central thickening, or four critciate, or less frequently two opposite hemispherical tubereles, while the others exhibit no trace of such structures. The diacts vary greatly in length and thickness, and are sometimes thickened terminally in a slightly clul-shaped fashiou. Less frequently they are gradually uarrowed and fimally terminate in points, while the middle portion is so thickened that the whole spicule aequires a spindle-shaped form. Between these diacts of varions length, medium- and small-sized oxyhexacts oceur in irregular distribution. In these the rays are frequently of considerable length, and are uniformly narrowed towards the extremity, fimally terminating in a poiut.

There is an abundant occurrence of oxyhexasters with very short, sometimes almost aborted, principal rays, and long sleuder terninals, which are usually bent slightly outwards at the base, but are otherwise straight up to their pointed extremities, Each short principal bears two to four of these terminals. Less frequestly, and chiefly on the subgastral trabecular space, small discohexasters occur, in which the moderately short prineipal rays are terminally expanded into a transverse dise. The convex surface of this dise bears a brush-like tuft of fine terminal rays, with toothed transverse dises on thieir extremities (PI. LXI. fig. 7).

The dermal skeleton includes medium-sized hypodermal oxypentacts, with moderately loug and strongly developed straight mays, which are roughened near the extremity, but are elsewhere smooth. The four tangential rays, which are craciately disposed round a central node, are at firat slightly expanded and decrease gradually in thickness towards the pointed ends. Besides these hypodermalia which do not ahways form a quadrate lattice-work with their tangential rays, a large number of small dermal pentacts ocour, with rough straight rays, of approximatcly equal length, and freqnently somewhat club-shaped at their extremities. The four tangentials intersecting at right anglos are often inclined slightly inwards. From the point of intersection a knob-tike tubercle sometimes projects outwards, representing the undeveloped external radial ray (PI. IXI. fig. 10); it is, however, generally absent. Between these dermal pentacts, perfectly similar tetracts not unfrequently ocemr, in which the four rays, intersecting at right angles, are usually curved slightly inwards.

In the gastral skeleton, as in Rheiblocalyptus, there are no large hypogastralia, The autogustralia are all small rough pentacts, in which the straight rays are not club-
shaped terminally, but simply rounded, or clso with a blunt point (PI, LXI. fig. 9). The mode of intersection is frequently thickened, and usually exhihits a slightly projecting tubercle, representing the undoveloped sixth ray. While this sixth ray is undeveloped in the gastralia proper, it appears distinetly on the spicules which serve to support the lining of the efferent canals, and exactly resenbles the other five rays, The camalarin are therefore exyhexacts, and the sixth ray usually projects for a greater or less distance into the lumen of the efferent canals. While they form a contimous layer on the interual surface of the wider canals, they occur more sparsely in the narrower leranches, and may finally be altogether absent (P1. LXI. fig. 3). There are no special marginalit, since the lamellar oscular friuge described above ends in a simple smooth edge.

The stalk demands special notice. Though its structure ossentially resembles that of the enp-shaped body, there are several peculiarities worth noting. It is penetrated by several anastomosing longitudinal camals which open above into the gastral cavity of the cup, and receive laterally the short efferent cauals of the wall.

The long diacts of the parenchyma have almost exclusively a longitudinal disposition, and are more or less abundantly and firmly unitod by trausverse syanpticula, so that the whole stalk, being penetrated and supported by a continuous and conneeted framework, is very compact and firm. Only near the external surface, and near the upper end where the stalk joins the cup, are the parenchymal spicules united to a less extent, or not at all. Between the diacts there is a comparatively abundant occurreuce of small thick hexacts, which may be isolated, but generally lave one or two opposite rays laterally united by a siliceous mass to the long diacts (PI. LXI. figs. 5, 6).

The degree of amalgamation and connection by means of synaptictila increases from above dowawards, so that the basal enlargement is traversed by a dense and stony siliceous framework.

The oxyhexasters which oceur so abundantly in the parenchyma of the cup-shaped body are less frequent in the stalk, and are only found in those portions where the union of the spicules by amalgamation or by synapticula has not occurred to a very marked estent. I have observed that small discohexasters only occur isolated.

The skeleton of the smooth external skin-layer exhibits medium-sized hypodermal pentacts and small rongh dermal pentacts or tetracts, with rounded or slightly clubshaped ray-tips, like those which oceurred in the dermal skeleton of the cup-shaped body:

On the inner surface of the large longitudinal efferent canals of the stalk, similar roughened pentacts also occur, with wounded or slightly elub-shaped ray-tips. These correspond to the pentact gastralia of the gastral cavity in the superior oup-shaped portion.

This form, which Bowerbank received in 1877 from Dr. A. B. Neyer, and describerl as an anomalous Hyalonema, ${ }^{2}$ is not a Hyalonema, but certainly Crateromorpha

[^44]meyeri. This was further proved by the examiuation of a large specimen of the same form, preserved in the Zoological Museum at Dresilen, which I was allowed to study through the kinduess of Hofrath A. B. Meyer.

I also found a dried specimen of Cetteromorphe meyeri among the sponges which Dr. Döderlein collected at Enosima in Japan.
2. Crateromorphe thierfelderi, n. sp. (P1. LXII. figs. 1-4).

The stalked cup-shaped form, represented in its natural size in P1. LXII. fig. 1, was trawled near the Little Ki Island (Station 192), from a depth of 129 to 140 fathoms, and a blue mud hottom. It measures 10 cm . in total length, and 4.5 cm . in maximum breadth. The bulb-like or thick spindle-shaped body is 5 cm . long, and exhibits a simple bulging gastral cavity, about 2.5 cm . in width, opening sujeriorly by a circular osculum 15 mm . broad, and coutinued inferiorly into the humen of the stalk. The stalk is from 6 to 8 mm . in breadth. The lower end of the latter and a large piece of the upper wall of the body have unfortanately been torn away. In its bulging portion the wall is about 8 mm . in thickness, but it decreases rapidly towards the upper end, ending finally in a short, thin, smooth, projecting fringe. Inferiorly, on the other hand, the thickuess of the body-wall decreases to about 3 mm . as it joins the stalk.

While the external surface of the sponge appears smooth, the internal surface exhibits numerous round apertures, belonging to the efferent canals. These pores vary in width up to 5 mm .

The parenchyma contains besides strongly developed slightly curved diacts (PI, LXII, fig. 4) and medium-sized hexacts, also numerous oxyhexasters, with terminal rays bent gently outwards (Pl. LXII. fig, 2). Besides these, there are small comparatively regular discohexasters 0.05 mm . in diameter, with five to eight equal-sized terminals on each principal ray (PI. LX11, fig. 3).

The dermal membrane contains rough tetracts, and less frequently similar pentacts, with a more or less strongly developed intenal ray. In the gastral membrane only roughened pentacts occur.

I have named this form in honour of my friend Professor Albert Thierfelder of Rostock, While it presents a cortain resemblance to Crateromorpha moyeri, it is also very closely allied to Cruteromorghe murragi aboat to be described, and ocerpies in fact an intermediate position between these two species.

3. Crateromerphes murvayi, n. sp. (PI. LXIII.).

In the vicinity of the Jittle Ki Island (Station 199), from a depth of 129 to 140 futhoms and a blue mud ground, the trawl brought up, along with numerous other

Hexactinellids, the beatiful stalked form reprosented in PI. L.SIII. fig. 1. The cul measured 12 em . in licight, and as much in maximum breadth-at the circular superior opening of the somewhat depressed and yet bell-shaped body. This form I have namod Cicteromorpha murrayi in honour of my much estcemed friend John Murray. Tho tubnlar stalk, which is broken off inferiorly, has a parictal thickness of 3 mm ., and a diameter of 2.5 cm . Jist beyoud the trumpet-shaped expansiou, where the stalk joins the body, the latter exhibits a rounded boss-like protrusion $(1.5 \mathrm{~cm}$. in length), directed outwards and upwards. The external surface of the body and of the stalk is smooth, and covered by a fine quadrate lattice-work, through which numerous roundish incurrent apertares are visible. The internal surfee of the wide gastral cavity exhibits numerous round exeurrent apertures of the efferent system of canals, which are small in the neighbourhood of the superior margin, but became gradually larger towards the base of the eap, and ocerr at last so close together, that a network of mote or less slender septa protrudes between them into the gastral cavity.

The thickness of the body-wall is on an average between 2 to 3 cm , and decrenses gradually upwards to the smooth sharp-edged margin, on which no distinet cuff-like fringe was discoverable.

Of the larger spicules of the parenchymal skeleton the most abundant are those slender diact forms which are beset at both ends with small pointed spines. The ends are thickened in club-shaped fashion, bluntly pointed, or less frequently simply rounded off, In the middle these spicules are in some cases smooth, while in othors they exhibit the familiar amnular swelling, or else four eruciate or two opposite hemispherical nodes. Beside these we liave to note the occurrence-characteristic of the species-of thiek diaets of medium length (2.5 to 4 cm .), which are curved in as fudim bow fashion, or else gently twisted in the middle. They are hore especially well developed, attaining a thickness of 0.15 mm ., and gradually decrease in diameter towards the extremities, where they end in blunt points (Pl. LXIIL. fig. 4). The terminal portion may be smooth, as represented in Pl. LXIII. fig. 4, or laterally beset with numerous minute pointed spines.

There is in the parenchyma a remarkably sparse occurrence of large or medium-sized hexaets, an important item in distinguishing this species from the closely related Civeteromorphat thierfolderi.

Between the large parenchymalia there is an abundant oecerrence of oxyhoxasters with short principal rays, and two to four long divergent terminals, which have either a perfectly atraight course, or are somewhat eurved terminully (Pl. LNIII. fig. 5). Less frequently, and especially in the neighboumood of the gastral suface, another form of rosette is represcuted by small diseohexasters, in which the somewhat short priucipal rays bear on their terminal transverse dises mumerons finc terminals, which vary in length, and bear transversely on their extremities small convex toothed dises (PI. LXIII. fig. 6).

The dermal skeleton is composed of medium-sized, strongly developed hypodermal pentaets, in whieh the smooth rays, gradnally narrowed towards the extremity, are either simply conical or somewhat roughened and rounded at the tips. Besides these, the dermal membrane inchules numerous tetracts and pentacts, and more rarcly diacts, with contral nodes. These dermilii correspond exactly to those of Cicteromorpha meyeri. Their straight and rough mys intersect at right angles, and the ends are thickened in somewhat club-shaped fashion.

The gastralin, which form a connected layer lining the gastral cavity, resemble the dermalin, nul consist, for the most part, of pentacts with small tubereles or bosses in the place of the sixth ray. Hexacts also occur, in which the projecting radial ray extends for a greater or less distance into the gastral eavity. The camalaria lining the funer surface of the wider efferent eanals resemble those just described. The skeleton of the stalk doea not essentially differ from that of the bell-slaped body.

4. Crateromorpha tumida, 14. sp. (PL. LXVII.; PL. LXVIII. fig, 2).

Near the Banda Islands (Station 194A, Jat. $4^{\circ} 31^{\prime}$ S., long. $129^{\circ} 57^{\prime} 20^{\prime \prime}$ E.), from a depth of 360 fathoms and a volcanic mud ground, the trawl brought mp two specimens of a Crateromorpha, in whieh the very soft body proper has been badly preserved, and so much injured by subsequent friction during transport, that only a cloudy formless mass remains attached to the firm stalk. Fortanately a figure (Pl. LXVII. fig. 1) of one of the specimens had been previously made under Sir Wyville Thomson's direction, which shows at least the form of the body lefore it was so much damaged. The specimen measures 17 cm . in length. Tho cylindrical stalk is firmly attached to a compact basal plate, and from its thinnest portion, just above the basal plate (where it measures about 5 mm . in breadth), gradually increases in diameter on to the base of the body, where it attains a breadth of 20 mm . Where the smooth and firm stalk passes into the body, there is a trmmpet-shaped expansion with projecting radinl ridges and depressions between. The body proper measures 13 cm . in breadth by 8 cm . in height, it exhibits irregnlar lateral bulgings, and has on the whole the form of a broad cup with very thick walls and with sharp superior margin. The irregular undulating edgo of the superior aperture is approximately circular and mensures almost 10 cm . in diameter.

The irregularly ridged and furrowed external surface of the body is covered by the delicate lattice-work of the dermal membrane, through which one can see the numerons round lacunce (1 to 4 mm . wide) of the afferent canal system. The somewhat firmer internal surface of the wide, almost hemispherical gastral cavity, exhibits in its upper marginal region comparatively small apertures of the efferent canal system, which become gradually larger, however, towards the lower surface. It is noteworthy, as a
distinetion from Aulochone, that from the lower portion of the gastral cavity no ennal leads downwards into the stalk, lut that the floor of the gistral cavity has the same parenchymatous structure as the lateral wall, and exhibits the same round canalicular apertures as in the lattor. The stalk is not a tube with a simple candieular Jumen as in Aulochoue, but is penetrated by an irregular lacunar and canalicnlar system, which opens superiorly into the efferent eanal system of the lower portion of the body.

The greater part of the parcnclymal skeleton consists of long, straight or slightly curved, smooth diacts, with or without central nodes, and with rough elub-shaped onds (PI. LXVIL. figz 2, 3). They occur either in isolated distribution or in strands. Between these a large number of oxylhexasters oceur, in which the comparatively short and strong principal rays bear from two to four diverging, long, strongly developed terminals. The extremities of these terminal rays are never bent in hook-like fashion as in Chateromorpha murrayi and Crateromorpha thierfederi. Sometimes one or other of the principal rays remains undivided, and not unfrequently both the rays on one axis; so that the latter extends in a simple straight course to a pointed extremity (Pl. I.XVII. fig. 5). Between these very numerons oxyhexasters, many-rayod discohexasters oceur in very much less abundance, but of about the same size ns the former. Each of the short principal rays bears about eight struight, substantial, cylindrical terminals, which are of equal longth, and extend, with miform divergence, radially outwards. On their extremities they bear convex, marginally toothed, transverse dises (Pl. LXVI. fig. 6; P1. LXVHI. fig. 2).

The hypodermalia of the dermal skeleton are moderately large pentacts, with straight, cylindrical, genctally smooth, but terminally roughened and somewhat club-shaped mys. The tangential rays are disposed at right angles to one another and to the proximal radial ray.

The dermal mombrane itself contains autodermalia in the form of cruciate tetracts, with rough eylindrical rays, which are usually simply romided off at theix extremities, or less frequently swollen in clul-shaped fashion. Diacts also occur, with mys crossed at right angles, and with or without four or two eentral protuberances. Sometimes, through the abortion of one of the tetract rays, a triact form results (PI. LAMII. fig. 4).

The gastral and canalicular skelcton is destitute of hypogastralia and hypocmualaria. It cousists of rough pentacts, with rays erossed at right angles, and romided off' or somewhat swollen at their extremities,

The spicules of the stalk do not differ from the corresponding forms in the body proper (P1. LXIIII. fig. 2). In the fowermost pertion of the stall, however, there is, by means of symapticula, a more or lesa extensive amalgamation nud connection of the long diacts, which are longitudimally disposed in approximately or perfectly parallel courses (1 I. LXVH. fig. 8).

The second specimen, which is not figured, has about the same size as the above, and resembled it exactly, though much looser in texture. Not only is the greater part of the body wanting, but the lower end of the conical, expandel, basal portion is quite gone. The region where the stalk passes into the body is somewhat broader than in the former specimen.

Gemns 8. Aulochone, n. gen. (PI. LXVI. ; Pl. LXVIII. figs. 1, 3-7).

A cylindrical cup is borne on a long tubular stalk. The oseular margin is folded ontwards and backwards in such a way that a portion of the gastral surface bas become part of the outer wall of the cylindrical body, while the other portion of the gastral wall sarrounds the funnel-shaped gastral cavity, and is contimed downwards into the membranous lining of the tubular sheath.

In this way the dermal membrane limits the body only on the inferior somewhat bollowed surface, where the emp is attached to the top of the stalk.

This concave, somewhat hollowed, inferiorsurface of the body exhibits a fine-meshed, quadratic dermal lattice-work, while the eylindrical external surface of the body and the internal funnel-shaped gastral surface exhibit the numerous large and small roundish openings of the efferent water canals.

The parenchyma contains, between the large dinets, numerous diseohexastors with terminal rays of variable length. In the dermal and gastral membranes small rough pentacts have a preponderaut or exclusive occurreace.

1. Aulochone cylindrica, n. sp. (PI. LXVI. ; PL. LXVIII. fig. 1).

A sponge form, strikingly different in external appearance from the Cratoromorpha species just discussed, but nevertheless closely allied, as the character of the siliceous spicules plainly shows, was trawled to the north-east of the Kermadec Islands (Station 171, lat. $28^{\circ} 33^{\prime}$ S., long. $177^{\circ} 50^{\prime}$ W.), from a depth of 600 fathoms and a hard ground bottom. The sponge consisted, in the first place, of a broken stalk, about 4 mm . in diameter, and 25 cm . in present length, but probably much longer when intact. On this the body proper is seated, resombling the vertebral centrum of a bony fish in the infundibular concavity of its terminal surface, and in the cylindrical appeazance of the sides (PI. LXVI. fig. 4). The upper terminal surface is decply concave in funnel-like fashion, and this funnel-like space is continued directly into the cylindrical tubular eavity formed by the upward prolongation of the stalk. The opposite inferior surface, on the other land, is hollowed out only to the extent of forming a cireular furrow, while the central portion is ocoupied by the trmmpet-shaped comneating portion between stalk and body (Pl. LNVI. Figs. 1, 2, 4). Nor is this broad anuular furrow on the
lower sufface quite uniformly hollowed out, like the funnel-like superior surface, but is somewhat interrupted by four eruciately disposed radial folds which project inwands (II. LXVI. figs, 2, 3).

Towards the lower surface with its groove-fike coneavity, the cylindrical surface of the sides is shaply defined off by a smooth margin with a sharp edge, which projects downwads at a sharp angle. From the upper terminal finnol the eylindrical hateral surface is much more inregularly separated, exhibiting manfold inward folds and less of a sharp margin (Pl. LXYI. figs. 1, 4).

The whole lower surface, from the trumpet-shaped attachment of the stalk to the sharp-edged bounding margin, is covered by a very smoothly expanded dermal network with fine square meshes. Tluongh this, large round lacune 10 cm . and more in width ean be seen (PI. LXVI. figs. 2,3). The character of the cylindrical lateral surface, and of the upper funnel-sliaped coneavity contimed into the ceutral canal of the stalk, differs from that above described in the less uniform devclopment of the bounding membrane, and in its penetration by uumerous small and large irregularly disposed round apertures, the latter mensuring up to 6 mm , in diameter. These gaps represent the external apertures of pumerous offerent canals (PL. LNVI. figs. 1, 4).

From vertical scetions it may be seen that it is only from the inferior grooved surface that the more or less wide afferent canals penctrate upwards into the loose parenchyma of the body, while the corresponding efferent passages all open on the lateral or on the superior funnel-shiped surface (PI. LXVI. fig. 4). From this it follows that not the superior fumel-like surface alone, but the external lateral eytindrical surface also, corresponds to the gastral surface of other Hexactinellids. The trnc dermal surface, on the other hand, is represented wholly by the groove-like concavity on the lower surface of the body, and by its direct continuation, the onter surface of the stalk. We have thus to do with an eversion of the originally inner surface of the eup and with a partial overgrowth of the wall, so that a portion of the originally internal gastral surface, that is to say, the upper portion, has become the extermal lateral surface, while the whole originally lateral external wall has been confined by the outward and downward curvature of the sharp oscular margin to the inferior concave suface of the present sponge bods. This theory of the present shape is in complete harmony with the auraugement of the chamber layer aul with the distribution of the siliceons spicules, In a vertical section of the downwardly bent, overhanging, sharp edge of the lateral margin, that is to say, of the original everted oscular rim (PI. LXVIII. fig. 1), it may be seen that the folded chamber layer is disposed in such a way that all the chambers have their convex external sufface turned to the delicately latticed skin which covers the groovel inferior surface of the sponge boty: The efferent ipectures of the elmmbers, on the other hand, aro all direeted towarda the cytimirical lateral surface, which therefore corresponds to the gastral surface of other sponges, while the inforior surfice is really the dermal.
(200L CHALL. EXP-PAHT Lill.-1887.)
G哈 92

The prineipal spicules of the parenchymal skeleton are slender, smooth diacts, of saried length. They exlibit rongh ends thickenal in club-like fishion. Less frequently simply sotuded or pointed diaets necur. Many of these long dinets exhibit no swellings or lateral processes at their midale point, while others bear four cruciate, or two opposite thbercles-the rudiments of undeveloped mays.

Between these long parenchyoal spicules a lage number of irregularly seattered osyhexasters oecur. They exhibit strongly developed, short principal mays, and two to fonr long, straight, divergent terminals on each principal (PI. LXVI. fig. 6). It ought to be noted that oxyhexasters very fiequently occur in which one principal ray is conspicnonsly longer than the others, so that the whole spicule deviates considerably from the rosette form. Other irregularities oceur, such as the displacement of one of the terminal rays from the common whon to the side of the associated principal ; spinous ramifications or irregular twistings occur here and there as abnormal, or perhaps as pathological modifications (PI. LXV1. figs. 11, 12). In isolated cases, I observed discohexasters with moderately short principal rays, bearing on their expanded ends numerous long, thin terminals, radially disposed, and each terminating in a transverse dise with clasp-like teeth (PI. LXVI. fig. 7). In the subdermal spaces of the counecting portion between the stalk and the body, large discohexasters of Horicome-like pattern ocemr, as is also the case in Aulochone lilium (PI. LXVIII. fig. 5). The perianth-like groups of termiual rays are in this species, however, somewhat thinner at their basal and median portions.

The dermal skeleton consists of strongly developed rough pentacts, of varinble size, the rays having rounded or club-shaped ends. Betweon these pentacts, tetracts of similar structure ocensionally occur. The gastral skeleton on the upper funnel-like surface, and on the cylindrical sides, consists of rough pentacts similar to the nbove (PI. LXVI. fig. 10).

On the much enrved regions, both dermalia and gastralia exhibit a backward curvature of the four tangential rays. On the superficial side a small tubercle is occasionally seen where the sixth ray has not been developed.

In the skin which lines the large canalicular cavities of the body, I have uever found any special cannlaria.

The skeletal elements of the stalk do not essentially differ from those of the body generally. The longitudinal and trausterse, i.e, circular, bundles of spicules usually atternate in their arrangement. Between the above, the oxybexasters and small discohexisters already refermed to ocen, while the large floricome-like discohexasters are found more abudantly in the subdermal spaces, The dormalia are strongly developed, and the inwardly projeeting radial froximal ray is often strikingly shortened. The gastralia are frequently less rough in their median portion, while the elub-shaped thickened end a always exhilit numerons minute spines.
2. Autochone litium, n. sp. (PI. LXVIII. figs. 3-7).

Near the Meangis Jslands, north-east of Cclulies (Station 214, lat. $4^{7} 33^{\prime}$ N., long. $127^{\circ} 6^{\prime} \mathrm{E}$.), from a depth of 500 fathons and a bluc mud ground, the dredge brought up a comparatively well preserved long-stalked type of Aulochone, which measured 23 cm . in total length. The romided pillar-like portion of the hody measured 7 cm . in trausversu diametor and 4 em . in height, while the tubular stalk measured 6 mm . in thickness and 19 cm . in height. The stalk forms a fumel-shaped expansion with laterally projecting radial folds before passing into the body proper, and the lumen of this stalk opens into the funnel-shaped gastral eavity within the loose body. The body, which has been somewhat compressed both in capture and preservation, exhibits on its lower side a number of radbally projecting folds, which radiate out from four cruciately disposed prineipal ridges. Between these radial septa there are pouch-like depressions, which are closed extemally by means of a sharp-edged margin which projects perpendienlarly downwards, and is directly continuous with terminal expansions of the radial folds (PI. LXVIII. fig. 3). The pouch-like depressions of the lower surface thus appear to be rounded off externally.

The funnel-shaped excavation on the superior surface is bordered by pad-fike folds of the body-wall, and is not distinetly limited superiorly or exterually. In fact, the gastral wall is directly continued by a rounded superior marginal pad into the somewhat longitudinally folded outer surface of the body. The latter represents, indeed, the everted gastral surface, and is limited towards the inferior dermal surface only at the inferior extermal sharp-edged margin of the body generally (PI. LXVIII. fig. 3). It is thus evident that the whole architecture of this sponge agrees with that of Aulochone cylindrica, and this is equally true of the internal structure, and especially in regard to the disposition of the folded chamber layer. The convexity of all the chambers within the body is directed towards the eavities, which are pushed in from the lower surface, and enveloped in the dermal membranc; in the stalk, on the other hand, the convexity is towards the external dermal surface. The openings of the chambers within the body are directed towards the exterual and superior grastral wall, while in the stalk they are turned towards the central lumen of the tnbe.

The principal spicules of the parenchymal skeleton are long, thiu, or slightly thiekenal diacts, with rough, chbl-shaped, or simply rounded ends. There is rarely any annular thickening, or development of four cruciate, or two opposite bosses. The rays are for the most part uniformly cyliudrical, or slightly thickened in a spindle-like mamer, and are perfectly smooth exeept at thoir roughoned ends. They are cither quite straight or gently eurved. The abundant parenchymal oxyhexasters conespond exactly in form and size to the oxyhexasters of Aulochone cylindrica; they difler, howercr, markedly in this, that the long terminals are completely covered with amall spines, being in fict very rough
(PI. LXVIII. fig. G). Another divergent rosette form is represcuted by a floricome-like discoheraster, which oceurs in considerable ahundanee, especially in the subdermal trabecular space and on the transterse terminal expausions, This form exhibits six comparatively short and simple principal mys, each equipped with a whorled tuft of long, fine, S-shaped terminale. These bear on their extremities marginally toothed plates, which overhang towards the exterior. The unmber of terminals on each principal ray varics. Sometimes there are but six in a single whorl, sometimes eight, ten or more, and they are not always of equal length (PL. 1NY111. fig. 5).

The parenchymal spienles of the stalk differ from those of the body in this, that the long diacts are stronger, and in part, at least, in the inferior portion of the stalk, dinectly united by synapticnla. Besides oxyhexusters and discohexasters, peenliar hexacts oecur with short but thick rays, which meet in the centre in a sort of trmmpet-shaped basul expansion, forming a thick node of intersection. The outer rounded extremity is alvays beset with small spines, which somctimes extend over the entire length. The rays are either of equal length, as in PI. LXV1II. fig. 7, or to some extent mequal, in that the rays on the same axis are equal to one another, but different from those on the other axes, Leas frequently pentacts or tetracts ocem of similar form.

The dermal and gastral skelctons are similarly composed of pentacts of variable size, in which the rays are thickly beset with small spines, either thronghont as in the dermalin, or over the greater part of their length, that is with the exception of the central portion. At their extremities the rays are cither simply ronnded off, or thickened in elub-shaped fushion. The dermalia have their tangential rays usually inclined somewhet inwards, and exhibit no distal tuberele at the node of intersection. The gastralia, on the other hand, have their tangentials disposed at right angles to the frequently reduced radial my, and very often exhibit a tubercle or rounded knob, which projects into the gastral cavity, in the position of the sixth ray.

Genus 9. Cuulocalyx, n. gen.

This genus contains the single species Ceulocalys tener:

Caulocalyx tener, i. sp- (PI. LXIX.).

A fragment of a remarkable sponge form, imperfectly preserved, but indubitably referable to the family Rosellide, was trawled in the Mid Sonth Atlantic, to the west of Tristan da Caular (Station 383, lat. $35^{\circ} 36^{\prime} \mathrm{S}$., long. $21^{\circ} 12^{\prime} \mathrm{W}$.), from a depth of 2025 fathoms and a Globigcrina ooze grotud. It consisted for the most part of a fibrous stalk, frayed out inferionly, mil measming 4 cm , in length, by 2 to 4 mm . in breadth. Towards the upper end radial lateral folds gradually increase in height, so as to form a cup-shaped
body measuring 4 to 5 cm . in transyorse and longitudinal diameter. This loase body was unfortunately very mueh injured. While the upper funnel-shaped terminal surface, limiting the gastral cavity, is so abundautly penctrated by roundish apertures of variable size that only a network of more or less broad septa and free smooth margins remain, the external, much rom surface is studded with numerous thin aud pointed spicules which project freely for 2104 cm . beyond the general surface of the body (P . LXIX. fig. 1).

The large spieules of the borly-parenchyma consist for the most part of long, rather thin, smooth diacts, which are rough at their ends, and terminate without any marked swelling in a simple conical point. At their centre some exhibit a distinet annular swelling containing an intersoction of the axial camal. Most of the spicules, bowever, remain uniform and eylimdrical throughout.

Between these long and slightly bent or looped diacts, a varying mumber of diverse rosettes oceur. The majority are rather large discolecasters, in which the moderately short and simple priucipal rays usually bear four long divergent terminals. The latter are very thin at their base, but increase gradunlly in thickness towards the exterior, and finally terminate in a relatively broad, convex, trausverse disc, which usually bears a fairly large number of marginal teeth (Pl . LXTN. figs. 8, 4, 7, 8). In the more stiongly developed forms, the thickened external ends of the terminal rays exhibit small irregularly scattered tubereles (PL. LXIX, fig. 7).

Between very weakly developed rosettes of this type, with thin terminal rays (PL. LSIX. fig. 3), and rather strougly developed forms, twice or three times as broul (Pl. IXIX. fig. 4), many transition types occur.

In addition to the above, we have to note the rather freqnent occurrence, cspecially in the subgastral trabecular spaces, of small plumicomes, in which the moderately short, simple principal rays each bear on their ends a broad convex transverse plate. From the couvex extermal side of the latter, a large number of S-shaped, pointed, ternimal rays arise, disposed in perianth-like fashion, and more strongly developed in the outer than in the central portion (PI. LXIX. fig. 6).

The dermal skeleton is formed of oxypentacts, in which the tangential rays, intersceting at right augles, and often somewhat bent, are laterally beset with seattered, slightly curved spines. The radially directed proximal ray, which is usually much longer, and frequently curved with faint undulations, is, on the other hand, eitler quite smooth, or merely equipped with miunte tubereles (PL LXIX. fig. 2). An inconspicuous protulierance may be occasionally observed on the distal side of the node of intersection. The gastralia are somewhat rough oxybexacts, in which the four tangential rays are straight or slightly curved, and conically pointed at their ends. The moderately long, fredy projecting ray is cither conically poiuted as atove, or exhibits a slightly vlubbel thickening in front of the terminal point, while the usually longer radial ray opposito.
the latter is either conically pointed as above (PI. LXIX. fig. 5), or becomes gradually narrower towards the end.

In the fibrous rudiment of a stalk, the majority of the long diacts, which vary execedingly in thickness, have their ends thickened in club-like fashion, or thickly leset with spines, white on the surface of many which are otherwise smooth small spines oceur on the middle portion. Towards the lower end of several of the long diacts, which are disposed in longitudinal bundles parallel to one another, one finds spines, bosses, or protuberances of some kind projecting laterally. These seem to represent the rudimentary traces of the synapticula which are subsequently seen in their developed form.

The radially disposed, freely projecting prostalia, which are found on the side and probably were also on the superior margin of the cup-shaped body, are oxydiacts measuring 2 to 4 cm . in length. Their freely projecting surface is, for the most part, somewhat thickly studded with numerous minute, quite irregularly seattered, conical bosses or spines.

Genus 10. Aulocalyx, n. gen.
This genus contains only one species, Aulocalyx irregularis.

Aulocalyx irregularis, n. sp. (Pl. LX.).
Off Marion Island, south-east of the Cape of Good Hope (Station 145A, lat. $46^{\circ} 41^{\prime}$ S., long. $38^{\circ} 10^{\prime}$ E.), from a depth of 310 fathoms and a volcanic sand bottom, several much injured and partially macerated specimens of a Hexactinellid were dredged. The lattice framework still lang together, and the geneml form was that of a broadly expanded enp with complex, much folded or diverticulated wall (PI. LX. fig. 1), similar to that observed in Periphacagella elise, Marshall. Although the fragments obtained were only from 3 to 4 cm . in height, it seems probable that the unimiured cup was at least twice as high. Of the soft tissuc only some very small fragments remained.

The skeletal framework, which is moderately thick at the base and as hard as stone, becomes gradually looser and more delicate towards the upper end, and finally so sparse and thin, that, as in Regadrella, Dictyocalyx, Rhabdocalyptus, Hertwigia, \&ce, one is inclined to believe that in the upper, most recently added portion no firm fusion of the skeletal elements las occurred.

As to the general structure of the soft tissue, it must be noted that between the two sieve-like, perforated, bounding lamellie of the body-wall (the dermal and gastral memlarae), the membrana reticularis forms in simple folds a comnected series of thimble-like diverticula composing the chamber layer. The complication of this folding increases
with the thickness of the wall, and thus differs very greatly in the different regions of the hody. The subdermal trabeenlar framework, extending between the dermal membrane and the chamber layer, exhibits only here and there inegular gaps, while the similar subgastral framework following the concave curvature of the chamber layer exhibits wide lacume, which extend into the grastral membrane. A thin layer of the trabecular framework also extends on the imer surface of each concave diverticulum (PI. LX. fig, 3),

The connected lattice framework of the skeleton consists of medium-sized hexacts, which are united in an irregular fashion either by fusion or by synapticala (PI. LX. fig, 3).

As can be readily seen in the older portions of the framework, with the help of the much enlarged axial camals, tho six rays stand, as a rule, at right angles to one another, but frequently bend from their original direction, and become, as they approach the rays of other hexacts, united with the latter by lateral mooring or by symapticula.

From the complete absence of a regular orientation and mode of conneetion, it seems to me preferable to refer Aulocaly. not to the Dictyonina but to the Lyssacina. In the closer regions of the skeletal framework, between the medium-sized hexacts, numerous small forms oecur with short, thick rays, rounded off at the ends, and with a much expanded central portion. These are irregularly scattered, and are united with the former, so that a very close, spongy skeletal meshwork often results.

As to the isolated spienles which occur between the beams of the skeletal framework, either seattered quite irregularly in the parenchyma, or limited to certain regions of the same, I ought first to mention the fine, small, regular oxybexacts, which oceur irregularly, but in considerable abnodance, through the whole parenelyma (PI, LX. fig. 3). They nlways exhibit a slight roughening of all their rays. Besides these, numerous irregularly distributed, small, regular discohexasters occur, in which, from each of the moderately large, simple, smooth main rays, a tuft of S-shaped thin terminals project in perianth-like arrangement. Each of the terminal rays exhibits a somewhat thickened end, bearing a convex terminal dise with marginal teeth (Pl. LX. figs. 4, 6).

The length of tho main rays and the number of terminals on each are the same in one and the same discohexaster, but vary in the different rosettes, of which two very different specimens are figured in PI. LX. figs. 4, 6.

Another quite unique and characteristic form of rosette ocenrs, only however in the subdermal trabecular space, but there in comparative abundance. It is distinguished by its conspicuous size and by its peculiar structure, as represented in PI. LN. figs. $0^{3}, \overline{0}$.

These perfectly regular rosettes have a diameter of 0.4 mm . From each of the relatively short, smooth main rays, six teminals arise, arranged in a whorl, and disposed at equal augles in a fumel-like manmer. These long terminals are cither straight or somewhatconvexly curved at their narrow base, and gradnally incrense in thickness in clul-tike fashion toward the simply convex, or more ravely somewhat knobbed external end. They
are beset with numerous, somewhat recurved, thin, pointed barhs, which surround the ray in irregalar disposition (PI, LX. fig. 5).

The dermal skeloton is formol of medium-sized oxypentacts, with comparatively long straight rays, which are, throughout their whole length, somuwhat thickly beset with small pointel spines. The very ends of the four tangential rays are blunt and conical, while the proximal ray usually raus more gradually to a point. In the position of the undereloped (sixth) distal radial ray, a rounded tubercle sometimes occurs. The equally large grastralia exhibit the same structure and similar disposition (Pl. LX. fig. 3).

Several fragments of a connected skeletal framework, belonging to the same species, were alsu trawled between the Marion and Crozets Islamds (Station 147, lat. $46^{*} 16^{\prime}$ S., loug. $48^{\circ} 27^{\prime}$ E.), at a depth of 1600 fathoms, and a Dintom ooze ground. The completely macerated skeleton contained no trace of soft tissuc or of isolated spicules.

Gcnus 11. Euryplegma, n. gen.

This genus contains ouly the one species Euryplegma courioular.

Euryplegma auriculare, n. sp. (Pl. CII).
Off Ratoul or Sunday Islands, to the north-east of Now Zealand (Station 170s, lat. $29^{\circ} 45^{\prime} \mathrm{S}$., long. $178^{\circ} 11^{\prime} \mathrm{W}$.), from a depth of 680 fathoms, and a volcanic mud gromd, two specimens of a plate-shaped Hexactinellid were trawled. They were, however, partly macerated aud only fragmentary. The best preserved but broken specimen has the form of a semi-involute enr-slaped plate (PL. CII. fig. 1). It measures 17 cm . in height, and 6 to 7 cm . in breadth. The macerated skeletal fragment of the sther specimen forms at semitubular stalk or baaal portion 2 cm . in diameter, and this is continud on into a closed plate 3 to 5 mm . in thickness, which forms tho lower portion of a shallow funel (Pl. CII. fig. 2). The upper portion is unfortumately broken off.

The couvex outer surface of the involute car-shaped specimen (3 to 5 mm . in thickness) seems comparatively smooth, but is penetrated by mumerous long oval holes which leal into the rumels and ducts of the afferent canal system (Pl. CII. fig. 1). Near the upper end several of these cavities are covered by a membranous coutination of the thin sieve-like perforated dermat membrane (PI. Cll. fig. 3). The concave intermal surface is very rough and uneven in comparison with the outer surface. In the upper portion there is a distinet system of longitudinal ridges with interjacent furrows about 2 mm . in breadith. Somewhat further down they are covered by transverse, are-like, broad flat zones, so that transverso ridges 4 to 5 mm . in breadth cross at right aigles over the deeper longitadinal ridges, and project into the interior. Still further down transerse arcs exhilit knots or cushion-like elevations about 3 mm . in diameter, and
between these there are pit-like depressions of irregular form (PL. CII. fig. 1). The snmmit of each of these projecting knots gencrally beara the aperture $(0.5$ to 1 mm . in breadth) of an efforent canal. Similar apertures occur in varying abundance hetween the nodes. The firm basal portion of the specimen is quite deatitute of soft parts for n distance of 2 to 3 cm ., and must have been quite deal for some time (PI. CII. fig, 1).

These projecting ridges thove referred to are readily brought into relation with the macerated skeletal structure exhibited by the lower portion of the other specimen (Pl. CIL fig. 2). This fragment shows very distinetly that on the outer convex surface there is a reticulate framowork, enelosiug long, oval or angnlar meshes, and composed of leams which lie parallel to the smonth arehod sumface. Interwally there lies a system of upproximately parallel, or mather somewhat fan-shaped divergent longitudinal ridges which measure 1 to 2 mm . in brealth, mul now and again divide. Between these there are Jongitndinally disposed eanals of equal breadth, which are covered internally by a layer of beams for the most part transverse. From this latter layer numerous round perfonte swellings and internally open tubes project into the interios:

The round excurrent apertures of the cfferent canal system, which measure abont 2 to 3 mm . in width, are disposed in longitndinal and transverse rows intersecting at right angles (Pl . OII. fig. 1).

From the macerated skeleton, or better still, from lougitudiml and tramsyerse soctions of the whole body, it is clear that the latter consists of a much folded plate 2 to 2.5 mm . in thickness, in which the bonnding surfaces are formed by the sieve-like dermal and gastrul membrane, whiie betweon these the much folded chamber layer is supported by means of the familiar trabecular firmework (PI. CII. fig. 3), Many of the contrance apertures of the afferent canals are closed by a second external membraue split off from the dermal. In its peripheral portion this membane is supported by the subdermal trabeoular framework, but is subsequently quite freely expanded (PI, OIL fig, 3).

The dietyonal framework, which penetrates thoughont the entire sponge body, cousists of modenately large simple hexacts which are aoldered together, or occasionally comected ly synapticula in au irregulau fashion.

Only in a few regions, and especially in the meighbourhood of the dermal surface, have the dietyoual hexacts the typical form with straight rays disposed at right angles to one another, on which neconnt 1 had formerly reforred this genus to the Dietyonina. ${ }^{1}$ But they aro usually curved and clongated in very various wiys (PL. CIL. fig. 3), so that an intersection and fusion of the mys of ndjacent hexacts may occur at vory various angles, and the dietyonal fromework in fact resembles rather the skeletal framework of several Lyasicina than the ordinary type of Dietyonima. The whole skeletal beam is miformly thick and eylinilrical, with numerous iuregularly seattered, minute pointed spines (P1. C11. lig. 3).

[^45]The paronchomalia lying between the beams of the dietyonal framework consist of small, simple, and regular oxyhexacts, with delicate, straight, and rough rays, which rm ont with it slightly conical terminal pointing, anel of discolexasters which are much smaller than the oxybexacts, but rary considerably in size and form. Some of them lear on the sloort simpte principals, three to five, sarely more, S-shaped, whorled, somowhat markedly divergent, moderately thin, terminal rays with couves margimally toothed transverse dises (PI. CHI. fig. 5). In other, usually somewhat larger discohexisters of a similar type, the short simple principal rays bear six to ten long terminals, which are similarly S-shaped and disposed in perianth-fike fashion, only more closely packed together and with less broad terminal dises (PI. CII. fig. 4) than in the preceding form. Both forms are connected, however, by numerous intermediate types.

The dermalia are oxypentacts in which the straight or slightly incurved tangential rays are about 0.2 mm . in length, while the straght radial proximal is twice or three times as long. All the five rays are cylindrical, and are smooth except on the conically pointed torminal portion. A distal tubercle sometimes appears as the rudiment of the undeveloged sixth ray: The gastralia have guite the same form and mapproximately equal size. They are largest on the gastral sufface of the body, and become smaller and more weakly developed the nearer they are to the blind cods of the efferent canal system.

Tribe II. AMIPHIDISCOPHORA, F. E. Schalze (Pls. XXVII.-LII).
The bomding surface-membranes always contain amphidises. Hexasters are wholly absent from the parouclyma. There is always a tuft of basal fibres, by means of which the cup-or club-shaped sponge body is rooted in the mud. The ciliated clambers are not exactly thimble-slaped or sharply defined from one another, but appear rather as somewhat irregular diverticula of the membrama reticularis.
Family II yalonematida, Gray (Pls. XXVII.-LII.).

Both dermal and gastral membranes bear numerous pentact pinnli.

Subfamily 1. Hralosematina, F. E. Schulze (Pls, XXVIL-L.).
The usually cup-shaped body exhibits a more or less sharp-contoured, circular oscular region, and is only execptionally split in an ear-shaped fashion.

Genus 1. Hyeloneme, Gray (Pls. XXVIL--XLI.).

1832. Gray, Synopsis of the Coutonts of the British Museum, p. 79 (IIyalonexa बichelati).

1835, Gray, Proc Zoul. Soc, Lond., vol. iii. p. 63; abstracted in: Oken's lisi, 183万, 15. 148.

1:50. Mihe-Eiwande and Jutea Itames, Monognyth of the British Fossil Comals, p. 81.
1850. Gray, Amu, and Mag. Nat. Hist., ser. 3, vol. vi. p. 306.
1857. Gray, Proc. Took. Soc. Lond, voL $\pm \times v$. , 1. 978.
1859. Gray, Am. and Mag. NaL Hist, ser. 3 , vol. iv. p. 439.
 ortaneyra).
1860. Gruy, Aun and Mag. Nat. Hist, set. 3, yot. v. p. 229.
1860. ML. Sclaultze, Die Hyalonemen.
1861. Ehrenberg, Mlonaisber, L, k, prease Akai, d, Wiss Thedin, p, 450.
1861. vou Martons, Momatgher, \&. k. prouss Akad, \& Wias Lerlin, p. 480
1869. Rowerbank, Phil. Trana, vol. clii. p. 747.

1862, Süss, VerhandL d. k. k. zooh,bot. Genellsch. Wien, xii. p. 85 (IIyalonema: parvill home).
1864. Darboza tu Bocage, Proc. Zool. Soc. Lonil, 1. 265 (Hyatonana husitaniesum),
1865. Hahloza du Bocage, Proc. Zool. Soc Laml., p. 662.
1866. Gray, Amh, and Mag. Yuh. Hist., ser. 3, voL sviii. p. 287.
1866. Bowerbank, Anh, and Mas. Nat. Hist, ser. 3, vol. xviii p. 397.
1866. Siise, Ann, and Mag, Nal. Hist, sor, 3, val, sviii. p. 404.
1866. Gray, Amm, and Mag Nat. Hiet, scr. 3, voL xviii, p, 485.
1867. Bowerbank, Proc, Zool. Soc, Loni., 1. I8.
1867. Gray, Proc. Zool. Soe. Lond, p. 350 (Carferia japonica),
1867. Mix Schiltze, Anu and Mag. Nat. Hist., ser. 3, vol. xix. p. 153 ; Archiv f. mikrosk. Anat., BL iii, p. 906.
1S67. Ehrenberg, Monatsher, d. k, prauss, Akai, d, Wiss, Berlin, pp- 298, 843.
1867. Marboza du Doeage, Ann. and Mlag. Nah. Mist., sex. 3, vol xx. p. 143.

18ti7. Semper, Archiv 1. Naturgesch., Jahrg. xxxix. p. 84 (Hyatomema (Semperdla) vachelteri).
1868. Gray, Auw and May, Nat Hist., ser. 4, vol, i. p. 161.
1808. Gray; Ann. and Mag Nat. Hist., ser. 4, vol. ii. ppx 36, 263, 264, $320,373,388,390$, 423.
1868. Howerlank, Proc, Zool. Soc Loud. p. 118.
1868. Hanckel, Jeunisch Zeitsehr. \&. Med. u. Naturwiss, Did. iv. p. 64.
1808. Lovin, Öfversigt k. Vetenak.-Akul, Förlmidh., xxv. p. 105.
1868. Lovin, Arehiv 1. Naturgesch, Jahtg. xxxiv. p. 82.
1868. Lovin, Am, and Mag, Nat. 11 list, ser, 4, vol. iii. p. 493 ,
1868. Wright und Wyville Thomson, Anm and Mag. Nill. Hish, set. 4, vol. It p. 320 ,
1868. Semper, Verhanil, it phys,-mesh, Gesellsch. Wiiszburs, val. i. pe 99.
1869. Wyvile Thouson, Phil. Trans, vol, clix, H. 70 (Hymleanma loomi),
1869. Bowerbank, Aun, and Mag. Nat. Hist, ace. 4, vol. iii. p. 1\% 2 ,
1869. Gray, Amh anal Mage Nat. Hish, ser. 4, vol. iit. p. 192.
1870. Percisal Wright, Quart, Journ, Mier. Sci, vol. x. p. 73.
1870. Marbora du Boeage, Journ. Sci math. Acad. Líboz, ix. p. 69.
1871. Carter, Ann and Xag. Nat. Hist., sur. 4, vol. vili. p. 330.
187.. Gray, Aun, and Mlag. Nat. Hist, sel. 4, vol. is. p. 324.

18:2. Sars, on some remarkable forms of animal life from the great depps of the Norwegian

1873. Gray. Anu, and Mry Nat. HieL, Eit. 4, vol. xii pr, 76, 347.
1873. Wyvillo Thomson, Depthe of the Sut, p. 420.
1874. Gmy, dmn, anl Mas Nat HivL, see, i, vol. xii p. 684.
1871. E. P. Wrizht, Prow, Kay. Triah Amul, vol. i. p. 549.

1s, He. Huilow, Trmar Aointic Soc, Jayatr, vol. is

18i5. Carter, Suin. and Marg Nat. Hist., sat, t, vol xii. p. 1.
15i5. Küstermann, Arohiv l. mikrosk. Amit., Bil xi. p. 282.
1875. Howerbank, Proc Zool. Sne. Loml, p. 607.
1875. Marehali, Zatselir. t. wiss Zoal., Suppl.-Bd. xxv. p. 142 (Hyadonema thmasonis and Hyиlomena a ä̉nct.
1876. Marehall, Zaitseltr, 1. wias, Zool., Bd, xxvii. p. 113,
1876. Willomoes Suhm, Zeitsclur, f. wiss, Zool, Bi, sxvii ph xevii-
1877. Wyvilte Thomson, The Athatic, p. 273 (Hyplonemu toseres).

1s77. Sollas, Ann. and Mag. Nat, Hist, ser. 4, vol. xx. pv 285.
1877. Bowerbatnk, Froc Zuol. Soc. Lond, jn-161 (Hyalonena anomalumi).
1877. Joung, Lum and Mlag. Nat. Hist, ser. 4, vol. Xx. p. 425 (Hyofonema smithit).

1s78. Cartor, Anm, and Mag. Nat. Hist., ser. 5, vol, it. p. 157.
1878. Maghs, Soconl Annual Report Devonsh, and Corbwall Nat. Hist. Soc, p. 21.
1879. Janasiz Hall. Jax Comut Zoil., vol. v. p. 289.
1880. 0. Schmilt, Dio Sjungien des Meerbusens von Mexico, Heft ii.
1880. Norman, Arm. and Mag Nal Hist., sor, 5, vol. ví p, 436.
1881. Milne-Fitwanls, Comptea mendus, t. xciii. pp. 876, 931.
1885. Armater Hansen, Spongiade of the Norwegian North Mlantic Expedition (Hyetonema antrictun).
1886. Filhol, La vie au fond des mers, p. 278 ,

History, - The first important scientific necount of a Hyalonema is given by Gray' (lec. cit., p. 79). After his description of the Pennatulidæ, the following remarkz are formd:-"Here also is placed the extraordinary glass-rope (IIyalanema, Gray), the axis of which is formed of numerons trausparent siliceous fibres, slightly twisted togother so as to look like a rope of spun glass; the fibres appear to be somewhat similar to the calcarcous spicula of the Alcyonia. These corals are found with their tapering base inserted in a sponge on the comst of Japam. No animal hitherto discovered, exeept the inhabitant of this extraordiumy sulstance, secretes pure silex."

Gray gave a more accurate description of this sponge in $1855,{ }^{p}$ regarding it as a Goryonc--ike coral with the following gencric diagnosis:- "Hyctonema. Corallium simplex, subeylindricum, ad basin cortice corinceo tubereulato tectum; tuberculis sparsis, depressis, polypiforis Axis e-spiculis numerosis, elongatis, filiformibus, subcontortis, siliceds coustans. Polypus ignotus. Hyalonema sicholdii. Hab. apud Japoniam. Dr. Siebold."

Against the view held by Gray that the siliccous threads are to be regarded as

[^46]the skeleton of the aulherent polype, Valenciennes expressed the belief that we have liere to deal with spongoid spicules, and that the polypes occurring upon these belong to the group of the Zoautharia, aud are to be looked upon as parasites.'

Gray ${ }^{-7}$ at once defentel his views, and pointel out that it was improbithe that the polypus should always be found associated with the sponge, or that the association shonld lee so intimate as it was, and noted further that the axis skeleton of the wellknown Gorgoná presents a concentric lamimation similar to each of the long siliceous thrends

In a further communication by Gray on the same subject, ${ }^{3}$ the family of the "Hyalonemide" is regarded as a family of corals, with the single genus Hydonema, with chatacters which agree, essentially, though not verbally, with the above diagnosis of the genus given in 1835.

Gray reported the presence of riug-shaped or spiral projections on the onter surface of the concentrically haminatel long spicules, and conmmicated the result of the chemical analysis of these by W. Prout and T. J. Peasall, both of whom gave their compresition as hydrated silicic acid.

It is curious that Gray here desiguntes as Hyalonema mirabilis the only known species, which lie had described in his first communications as Hyalonema sieboldii, and that he quotes the Synopsis of the British Musoum, 1830, p. 118, as relevant literature. This quotation, which has passed iuto soveral later papers by other observers, is proved to be false, inasmuch as in the fibrary of the British Museam no edition of the Synopsis of the year 1830 is to befound, while the cdition inmechately preceding, published in 1827. contains no communication on Hyfulozemu, either at the page cited or anywhere else. Since I was umable, for want of time, to continue the search further during my stay in London, I requesteal Mr. Stuart O. Ridlloy to do so, and the result of his accurate examit-ation-for which I here express my best thanks-has shown that in none of the earlier editions of the Synopsis of the British Muscum, down to edition xxvii. of the year 1832in which the words already quoted are to be found on page 79-docs any communieation on Hyalonema oecur. This notice, however, is repeated in the following editions-xxvii. to xl.-withont essential change, and further observations are first added in edition xli. of the yerr 1840. No altemative is therefore left but to believe that Gray made a false quotation from memory, or had perhaps in crror taken the note on his museum label or such like for the scientific mame which he himself had adopted. This is important, itissmuch as it is not the specific nane Hyalonema mizabilis used by Gray in the vear 1857, but that already given by Gray bimsclf to the same species in 1835, Hyalonenu sieboldï, which has the priority.

[^47]On the systematic position of Hyulonema, Gray in 1859^{1} assorted that within the group of polypes with feathered tantacles or Alcyonaria, sud close to the "Sabulicole" which are rooted in the sand, and to the "Rupicole" or Gorgonide attached to the rock, a thind division might be formed, which on account of its rooting on sponges might be named "Spougicole," with the single genus Iyalonemo.

The opinion of Gray as to the polype nature of the remarkable glassy and filamentous tuft, and which beeame fixed to a sponge, was shared by Brandt, ${ }^{2}$ who in 1859 also described the glassy spicular bundle as the axial skeleton of the cortical layer of the polype. Brandt thought that two different genem of polypes could be distinguished, viz., Hyelonemu with plain diseoid polypes, nud Iyclochate with cylindrical termimally fumel-shaped solitary polypes, both of which he united in the single family Hyalochetides, In the genns Hycelonenue he described two speries, namely, Hyrdonema sieboldir, Gray, and Hystomemad rffine, Brandt; of the genns Hyalocliste only the siugle species, Myalochata passicti.

The loose flecey mass in which the conical extremity of the glassy filamentons tuft is usually embedded wats referred to by Braudt as a "parasitie sponge" which bal destroyed the soft parts of the polype stock at its point of attachment, he also distinguished, thongh he did not aceurately describe, two species of this sponge as "Spougite spimicrux" and "Spongia octeneyres." The attachment of a group of Hyaloneme to a Pholasbored stone by means of their conieal projecting tufted extremity, which occurred in the ense of a specimen from Japan, Brandt regarded as artificial.

Of this work by Brandt a critical review by Gray ${ }^{3}$ appeared in 1860. Gray asserted that the two genera distiuguished by Brandt with their three species were varieties of one and the same species. Ehrenberg ${ }^{4}$ also expressed an opinion during the same year as to the nature of this remarkable organism; he regarded the whole as a Japanese artifice, compounded of long sponge spicules and a polype.

A thorongh investigation of several dried Hyalonemata from Japan was first undertakeu by Max Schultze. As a result of this lue brictly expressed his views in regard to the relation of the polype and sponge, ${ }^{4}$ to the offect that the siliceous filiform cords and the sponge hody form an inseparable whole, and that accordingly the Hyalonema are to be regarded not as polypes but as sponges. In the same year he published the results of his accurate analysis of the formation and structure of the sponge, as well as of the adherent polype exust, in a special monograph, illustrated by beautiful plates, entitled Die Hyalonemen. The opiniou expressed in the preliminary communication, that the crust surrounding the spicntar tuft ilso belonged to the sponge body, he soon retrictel. He believed that the large cylindical sponge body became attached by means

[^48]of its broad truncated hasal plate to a solid substratmm, and that the long spiculur tuft, whose inferior compact portion is surrounded by the crust of a parasiticp olype, Palythoa fatue, projected from the narowed extremity. Passing over his aceurate description of the long siliceous filaments, as well as of the clegant, vexy manifold, small, siliceous spicules of the sponge looly proper, we need only here refer to the important observation made by Max Schultzo, to the effect that both in the loug tuft-spicules, and in the many-rayed or rod-shaped spicules of the body itself, and even in the axial part of the remarkable " Amphidises," a fine central camil extents, which is usually intersected at the middle by ond or two transverse canals which cross it at right angles.

While Elirenherg, ${ }^{1}$ in opposition to this opimion of Max Schultze, still maintained that we hal to deal with uu artitieial Japarese production, vou Martens examined the delated organism in Japan, and it the same publication (p. 480) essentially confirmed Max Schultze's opinion.

A theory of the mature of IIyulonema, similar to that expreasod by Max Schultze in his first commumication in the Comptes rendus, was expressel some yeats later by Bowerbank in one of his papers on the Anatomy and Physiology of Sponges. ${ }^{3}$ Bowerhank united Hyalonema with Matichondria, Isodiotya and Spongilla, in the suborder of his Silicea, with a "spiculo-reticulate skcleton,"-the skeleton being "contimoously reticulate in structure but not fibrous," The genus Hyalomema, Gray, was here charucterised by Bowerbank in the following manner:-"Skeleton an indefinite network of siliccous spicula, composed of separated elongated fasciculi reposing on continuous membranes, having the middle of the sponge perforated vertically by an extended spiral fasciculus of single, elongated, and very targe spicnla, forming the axial skeleton of a columnar cloacal system."

Suss in 1862^{3} called attention to a fossil from the Carboniferous limestone of Yorkshire, which had been already described by MCoy as Scopule paralleles, which exbibited a bundle of from fiftean to thirty or more round, smooth, parallel rods of the thickness of a knitting needle, and cach provided with a central canal. This he named Hyalonema parallchum.

Iu 1864 Barboza du Bocage made a communication ${ }^{4}$ on a new species of the genus Hyclonema, which was discovered off the coast of Portugal at great depths. He nomed it Hyalonema lusitunicum. Boeage regarded the form and peculiarly regular arrangement of the polypes, which partly surrounded the siliceons spicular tuft and were provided with forty tentacles, as especially charaeteristic of his new specius. His diagnosis nums thas:-"Hyalonema polypario elougato fibris setaceis, hyalimis, spiraliter tortis, corio polypigero ab apice usque ad 言longitudimis totre involutis polypis dilatatis, ellipticis valdo aggregatis, parmm clevatis, per series longitudinales ac spirales regulariter digestis."

[^49]On the sponge body Boeage made no ohservations; he simply notes that the covering of polypes extends withont interruption to the pointed extremity of the fibrons cord, where they become romewhat diminished in size. At a hater period he ${ }^{1}$ supplied some further data as to the locality of bis Hyclonemue husitomicum-near the mouth of the Tagns-and also confirmed lis previons report from the examination of some new material.

The account given ly Barboza dn Bocage seemed to Gray to be well caleulated to support the opinion which lie still firmly maintainel, thut the long fibous bundle was the skeletal axis of the polype covering. He ntilised it in a renewed defence of his viows, admitting, however, that he had been so far mistaken in his exnmination of the indicilual polypes, since these possessed not eight feathered, but tweuty simple tentacles,

Soon after this Bowerbank elaborated ${ }^{3}$ his theory in regard to the uature of Ilyelonema. He now maintained that not only the long tuft of glass-spicules and the cylindrical or conical hasal mass, but also the uneven irregular tind surrounding the fibrous tuft, were all parts of the sponge.

A memoir by Max Selintze' is noteworthy as containing the proposal to mite the two genera Euplectelle, Owen, and Hyaloneme, Gray, iuto a special grony of siliceous sponges with the title "Lophospougie."

In aceurate description of the sponge named by him Hyedonema mirabile was now given by Bowerbank. ${ }^{\text {b }}$ The cylindrical clevations on the rind of the siliceous tuft, which had been deseribed by most observers as polypes, were recoguised as the oscula of the sponge. The form described by Barboza du Bocage Bowerbank 'looked npon as not specifically distinct from his IIydoneme mivebile.

In lis comprehensive sponge system published in 1867, Gray designated the large cylindrical body, which he regarded as the whole sponge, iu which the long siliceous filaments were embedderl, by a new generic name "Certeria," assigned to this genna a place in his family of the "Esperiadre," in the order of the Acanthospongia, and gave to it the following diagnosis:- "Spouge massive, irregularly retienlated, shallow, formed of aboudant agglutinated filiform neenle-like spienles, with four-and six-rayed stellate, erveiform and birotulate spicnles." As the ouly known genns he mentioned Carteria japonica ($=$ Hyalonema mirabile, Bowerbank, Spongice octancyra, Brandt, and Spongia spàicrux, Braude).

In two conmmnications pullished in 1867^{8}, Ehrenberg maistamed his opinion that the entire body was artificially compounded by the Japanese, but commmicated in the second paper a letter from Barboza du Bocage, in which the latter declared

[^50]that he had been convinced of the correctness of Max Sehultze's opinion by finding two large specimens of Hyclonema with sponge bodies but without the polype crust.

The sponges which Semper described in 1867^{1} and in $1868,^{2}$ under the designation of Ilyalonemat schultzei, I shall discuss when considering the genus Semperella.

In 1868 Gray made several commumieations on Hyctonema; ${ }^{3}$ in the first of these he addeal to his Cavteria joponica a second species, Curteria lusituriou ($=$ Hyalonema lusitenicum, Bocage). In the second he combated Max Schultzo's coneoption of Hydonema, and in the third he expressed the opinion that the sponge described a short time previonsly by Loviu as Hyalonema boveale ${ }^{4}$ in no way belonged to the genus Myalonema, Gray (or Carteria, Gray), but was from the form of its simple spindle-shaped spicules to be referred to the Haliehondrida, in elose relation to Halichondria fieus, Johnston (Ficuline, Gray). In his later memoir published in Euglish ${ }^{\text {b }}$ Loven described a North Sua sponge, with a club-shaped body and a slender stalk fixed in the sand by moans of root-like processes, and bearing a certain extermal resemblance to Hyalonema sicholdii, Lovén conjectured that the Japancse and Portugese Hyalonemata were, like his Hyctonema boreale, rooted in mud by means of their long tult-like spreading spicules, and that accordingly the broad cylindrical sponge body of these forms did not represent the basc, but was fixed as an upward projecting mass upon the root-tuft.

In the meantime Barboza du Bocage had also discovered, off the coast of Portugal, some sponges which resembled the Hyalonema boreale. In his report on these forms," which he had been at first inclined to regard as young specimens of Hyalonence lusitanieum, he expresses his conviction that these, along with the Hyalonema boreale of Lovén, should be placed in a special new genus "Locenice"

Gray now aunounced ${ }^{3}$ that the Japanese eollectors, who sometimes found the diverging extremity of the glassy spicular tnft covered with mnd, affirmed that this free tufted extremity was embedded in the mud or sand of the sea-bottom. He was himself inctined to regard this view as correet, and figures" a Hyalonema placed in this position. It is notewortly that Gray now returned to the name Iycdoneme sicholdii, which he first applied in 1835 to the smpposed polypes, and thma alamioned the designation Hyalonema mivabile, which liad been used for a longer period. For the Hyalonema lusitanicuns deseribed by Barboza du Bocage, he atheres to a generie name which had afready been used in 1867, viz., Hyalothric, and ho names the specimen in question Hyalothrie lasitamica. Both in the ease of Myalonenace sicholdii and of Hyclothrix lusittaice, he admits varieties with and without the milhering sponges.

[^51][^52]Geg 24

Percival Wright, ${ }^{\text {t }}$ who dredged Hyalonema lusitanicum from a depth of 480 fathoms south-west of Sctulal, and had observed it in the fresh condition, found it embedded in mud up to that part of the silicoons spicular tuft which was not covered by Pelythoce, while the upper extremity of the Luft bore a sponge body with several oscular openings. In the polypes forming the crust of the stalk movements of the tentacles were obscryed.

Hyalonemas were dredged in a similar situation in the Gulf Stream by Wyville Thomson from a depth of 550 fathoms.

In his memoir on Holtenia carpenteri, ${ }^{2}$ Wyville Thomson refers to a Hyalonema loveni as a new species, without however describing or chameterising it.

Percival Wright now deseribed in an elaborate paper the Hyolonema found off the coast of Portngal by Barboza du Bocage, Wyville Thomson and himself, and named it IFyalonema mirabile. On a specimen with an oral cup-shaped body, about 8 inches in length and 4 inches in breadth, "a number of irregular large openings (oscula)" could be scen in an upper pitting, and these "are covered over with a dclicate opou sarcode netwark, the edges of the meshics of which are thickly lined by the spionles called 'spiculate cruciform spicules' by Bowerbank." A figure of this, given on his pl, iii., shows the sieve-net on the upper truncated surface of the sponge body, extending evenly over the oscular opening and over the layer of the "spiculate eruciform spicules" in the net beams.

The two sponges described by Sas in 1872, in his work "On some remarkable forms of animal life from the groat deeps off the Norwegian coast," and named as Hyalonema longissimum and Hyclonema parvom, manifestly do not belong to the Hexactinellida any more than his Hyctonewu borcole.

In the work entitled Depths of the Sea, Wyville Thomson reported in 1873 on some Hyalonemata which he had dredged to the north of the Butt of Lewis from a depth of 450 to 500 fathoms. Iu these the root-tuft alone measured 40 cm . or more. He identified these forms as Hycloneme lusitonicum, Barboza du Boenge, and figured (loc. cit., p. 421) a slender specimen abont 34 cm . in length. It is noteworthy that this figme does not include the sieve-net which wns ohserved by Pereival Wright in his Portugnese specimen (described minder the title Ilyalonema mirabile), covering the osenlar openings of the mpper truncated surface. Instead of this a central conical boss projects about 2 cm . above the upper bonnding surface, which is provided with large openings.

Higgin next described, in 1875, a Hyalonema from Zabu (one of the Philippine Islands) as Hyalonemu cebucise. This form resembles, indeed, in many respects the Japanese Hyalonema sicboldii, but fecording to Higgin's description and fignees differs from that species chiefly in the following points:-the form of the body resembles that of a hewer's mallet ; the polype crust of the stalk is absent; the "large stout acerate

[^53][^54]spicules " oceur not only in the interior of the body but also in the superficial dermal layer; the rays of the small hexradiate spicules in the interior are not bent but stideight, and are, up to the pointed extremity, beset with lateral prongs. ${ }^{1}$

Higgin sneceded in discovering in his IIycloneme cebuense the truc position of the dermal apicules, mad Kistermann² observed in the same year, in Hyalonema sicholdï, the presence of four eruciately disposed anchor-teeth on the extremity of the long tuft spicules. Küstermann also observed, close to the extremity of a tuft-spicule, that the fine axial canal was crossed lyy two short transverse canalicnli disposed at right angles to one another.

Au claborate deseription of the minute structural relations of Hyclonema sieboldii has been given by Marshall ${ }^{3}$ in his admirable Researches on the Hexactinellido. He calls attention to the peculiar sieve-like perforated plate which covers the upper trumeated extremity of the sponge-body. In the large bollow cavity of this species be also succeeded in discovering round embryos of the size of a millet grain or a pea, and exhibiting a central cavity with a small round excurrent opening. The wall consisted for the most part of smooth leexradiate spicules. On the outer surface spindle-shaped spicules oceurred; and long pointed rod-like forms penctrated the wall here and there in a radial direction, and projected for a considerable distance beyond the surface. One of the specimens of tha Leyden collection, described by Max Selrultze, appeared to Marshall, on aecount of its different dimensions, and especially on account of the pectliar condition of the dermal skeleton, which was said to exhibit anastomosing bands of long clastic uniaxial spieules with large eross spienles at the anastomoses, to justify the institution of a new species, which he named Hyclonema affine. Important deviations from the Hyalonema sicholdï type were exbibited by a small (only 7 cm . in length) Hyalonema which Wyrille Thomson collected to the north of the Shetland Islands, from a depth of 550 fathoms, and which has been named Hyclonema thomsoni. Instcad of the sieve-uet, which extends across the upper truncated extremity of Hyalonema sicboldii, a central slender cone, 1 cm . in length, projects freely, and from its expanded base four cruciately disposed narrow ridges extond, forming the upper border of fow septa which traverse the cavity of the sponge in a radial direction. Another peeafiarity of the Hyalonema thomsoni consists, aecording to Marshall, in the thumb-like prongs which are spirally disposed on many of the tuft-spieules, and which at their mion with the ridge-like projecting basal portion of the spicule exlitit a canalicnlated appicarame.

IV'yville Thomson' then briefly noted and figured some particularly striking forms of Hyalonemu from the rich collection of the Challenger Expedition. One species, obtained in the vicinity of St. Thomas, from a depth of 390 fathoms, aod named by Wyrille

[^55]Thomson Hyalonema toxeres, is distiuguished by its remarkably strong, bow-shaped, spindle-like spicnles,

In the same yenr, 1877, M. and .I. Young ${ }^{1}$ reported on fossil remains from the earboniferons strata of Cunningham Baidland, near Dalry in Ayrshire, which included not only the Hyalonemat parallelim, $\mathrm{M}^{4} \mathrm{Coy}$, already described by Siiss, but a second species, Hyalonema smithii, Young and Young. Besides the long, straight, smooth, knitting-needle-like spicnles which Säss refors to in Hyalonema parallelum, the Youngs fonnd also short five-rayed and six-rayed spicnles.

Among the sponges which A. B. Meyer brought home from the Philippines and New Guinea, and handed over to Bowerbank for description, there was a cip-shaped specimen which Bowerbank ${ }^{2}$ briefly deseribed in 1877, and in spite of the entirdy distinct form of the spicules identified as a Hyalonema from which the basal tuft leat heen torn off. This he named Hyalonema anomalum. Dr. A. B. Meyer had the kindness to hand over to me at my reqnest a portion of this same specimen belonging to the Dresden Zoological Anseum, and I have been able to convince neyself that we have here to deal not with a Hyalonema, but with a badly-preserved specimen of Crateromorpha meyeri; and with this the deseription given by Bowerbank himself agrees.

In the abundant sponge material which was collected during the deep-sea expedition by Agassiz and Pourtales in the Gulf of Mexico, and entrusted to Oscar Schmidt for examination, this renowned spongiologist found only two specimens of Hyalonema. ${ }^{3}$ The larger specimen consisted onty of a torn off spicular tuft partly covered by a erust of Palythod. The other, which was distinetly smaller, was however completely preserved, and bore a sieve-net over its upper extremity. The latter was identified ly 0. Schmidt as Hyalonema sicboldii.

In the Bay of Biscay, during the Freuch expedition of the "Travailleur," a specimen of Ilyalonema lusitanicum was dredged, accorling to Norman's ${ }^{4}$ account, from a depth of 600 fathoms.

In the report by G. Armaner Hansen on the Sponges of the Norske Nordhavs Expelition, at badly-preserved Hexaetinellid is described and figured (1885). It was obtained from a depth of 1081 fathoms, lat. $63^{\circ} 17^{\prime} \mathrm{N}$., long. $1^{\prime} 27^{\prime} \mathrm{W}$., on Biloculiua clay. Armauer Hansen had for examination (loc. cit., 1. 19) "several specimens with round hollow stems of somewhat variablo thickness, measuring up to 3 cm . in length, and surrounded at the one extremity by a very loose almost cotton-like substance." Since I observe a discohexact among the siliceons spioules figured (loe. cit., pl. v. fig. 10), and since "the stem is composed exclusively of spicules which are trumeato-spinose at both extremities," I can in no way agree with Armaner Hansen's opinion that this

[^56]Hexactinclid, which he names Hyalonema arcticam, belongs to the genus Hyalonema. No Ilyalonema possesses in "roud hollow stem," with rough, rod-like spioules, rounded off at both ends; and in no Hyaloneme are there rongh discohexacts, such as are figured (loc, cit, fig. 10a). On the other hand, I conjecture from the deseription and from the figures of Armaner Hansen that we have to deal with a species of my genus Coulophacus, and certainly at least with an Asconematid.

Character of the Genus.-The body is generally in the form of a thick walled eup. from the shallow cavity of which a central conical boss projects. From the uper shaply defined border, which is distinguished by a fringe of marginal spicules, un independent sieve-net-fike perforated membrane cextends in many species over the whole oscular opening. From the contre of the lower, usually somewhat narrowed end of the body, a tuft of long and strongly developed basal spieules projeets domnmards. The tnft cousists wholly or for the most part of four-toothed anchors, which serve to moor the sponge in the loose mud. The bundle of spicules is continued superiorly into the cone which rises in the gastral cavity. In most species, and perhaps even in all, the upper portion of this hasal tuft is surrounded by an coscrustation of Pulythoo, which begins just below the end of the body proper, extending in different individuals to a very varied distance, but never growing on the lower somewhat bushy divergent portion of the tuft.

Both dermal and gastral skeleton are composed (I) of strong pentacts, with the mpaired ray sunk more or less deeply into the parenchyma, (2) of pinnli which have their tangential basal cross inserted in the skin, and (3) of amphidises which are radially ilisposed with the median axial cross portion embedded in the skin, and with one end projecting freely outwards, while the other extends into the parenchyma, or into the subdermal or sulgastral spaces as the case may be. Amplidises more rurely oectr tangentially in the skin, hut are then represented only by minute forms. In some species the gastral skeleton is contimed without much change into the efferent ducts, i.c, into the camalicular skelcton. The parenchyma contains large and small oxyhexaets, crneiate tetracts, triacts, straight diacts, and occasionally isolated monacts.

The chambers are not so distinctly marked off as glove-finger or thimble-shaped sacs as in most of the other Hexactinellids. They appear rather as more irregrilar and less sharply defined diverticula of the membrana reticularis.

Eshall divide the genus Hyalonema, Gray, into the two subgenera Hyaloneme, schs strict, and Stylocalyx-a distinction based on the presence or absence of an osentar sieve-plate.

Subgenus 1. Hycelonema, sons, strict. (Pls. XXVII--XXIX.; PL. XXX. figs. 9-17; PI. XXXIII.).

The superior aperture of the gatral cavity is covered by a sieve-plate, which extends from the side (with its annular, culf-like fringe of fine marginalin) eitber right across the month of the cup, or sumk down into the latter, towards the inner surfaee, in frmelshaped fashion.

1. Hyaloncma sieboldii, Gray (PI. XIVII. figs. 1-13).

Among the numerous species of Hycelonema obtained by the Challenger Expedition, the familinr Japanese form, Inyalonema sieboldii, Gray, one of the best and first known Hexactirellids, was mfortumately not inoluded. A collection of Japanese Hexactinellids, however, entrusted to me ly Dr. Döderlein, contained a tolerably well-preserved dried speeimen of this sponge, which is figured after a photograph (one-third matural size, not one-half as stated on the plate) on PI. XXVII. fig. 1. I was able further to compare this with several dried and preserved specimens in the Royal Aluseum, Berlin, which were brought from Japan by Dr. Hilgendorf.

The total length of the specimens examined varies from 50 to 80 cm . The body proper measures 6 to 15 cm . in thickness, and oceupies 10 to 15 cm . of the above total length, the remainder repress-nting the length of the spirally twisted, basal tuft. The upper portion of the latter where it joins the body, and where, for a distance of 10 to 20 cm , it is beset by Pelythoo futua, M. Schultze, only attains a diameter of 5 to 10 mm . Gradially, however, the tuft becomes looser, and breaks inferionly into a bushy bundle. Since the form and external appearance of the whole spouge have been abready deseribed and figured in detail by Max Schultze and others, I shall simply restrict myself to emphasizing the important points, and devote more attention to certain stractural relations which have been litherto less intimately investigated. The general form of the body is cylindrical, transversely truucated at the upper end, and inferiorly narrowed in a somewhat conical manner, rounded off, and finally ending in a small inconspicuous marginal pad. The superior external margin bears a fine fringe, composed of slender needles projecting in wreath-like arrangement (marginalia). The upper truncated surface is formed by a sieve-plate, which is stretched right across, or protrudes with a slight convesity: The component lattice-work of the sieve-plate is not, however, uniformly developed, but is nsually divided into four distinct portions by four zones of unperforated membrane, which unite in the centre to form nu irregular uross. The dividing zones measure from 3 to $10 \mathrm{~mm} . \mathrm{in}$ breadth, and the four iregularly triangular or ronndish perfoated sieve portions vary in width from 2 to 4 cm . Each of the four perforated sieve-regions corresponds to an equal sized, deep portion of the gastral cavity, while the
imperforate limiting zones lie just above the gastral septa, and are indecd partially united with them. This union of the septa of the gatstral eavity with the siovesplate usually oceurs only in the eentre and at the outer ends, so that one cau see the septa, it their midille portion, ending with in free convex margin just below the plate. In some cases, however, cach septum mites along its whole extent with the corresponding zone of the sievo-plate. Commensal Anthozon occur in extrencly variable ummber all over the lateral surface, and even on the eruciate imperforate reas of the sieve-plate. They protrude from circular apertures, whioh are 2 to 3 mm in wifth and possess a firm peripheral layec. In some specimens they cover the whole lateral surfice so thickly that the distance between them is not more than from 3 to 10 mm ,, while they also ocemr abudantly (PL XXVII, fige 2) on the diviling rones of the sieve-plate. In other specimens they oceur singly only here and there, though they never seem to he wholly absent.

Apart from these Anthozoa tubes, the surface of the sponge is comparatively smooth. The pares of the dermal membrane corering the surface are for the most part microseopically small. The extreme iuferior end of the body, adjacont to the Polythoo cucrustating the basal tuff, consists of an inconspienous but compact cirenhar cushion, varying greatly in breadth in the different specimens. In dried forms, the fine reticulate patteru which is distinctly seen over the whole lateral surface of the body is in this region wo longer recognisable.

Whon the terminal sieve-plate is removed, the gastral cavity is revealed, and is seen to be divided into four wide spaces by the four broad, cruciately disposed, radinl septa, with a central conical elevation. The free uper margius of these septa, if not fused with the sicve-phate, are romuled off and convex, and extend from the body margin on the outside to the conical elevation in the centro. The cavitios lying betweon the septa become gradnally narrower downwards, and receive from the sides and from below the wide laennar efferent canals of the body-wail. In a longitadinal section nea the eentral axis, a contimuation of the basal tuft is seen as a somewhat markelly twisted strand of spicales, prolonged up the contral column and gradually narrowing towards tho conical elevation, as was indecd long ago observed and figured by Max Schultze. Since the efferent canals are very wide and often lacunar, and sinec the subdermal spaces with the afferent canals peuetrating inwinds from them have a simitar charaeter, it evidently follows that the layer between the two systems of canals cannot be ly any means broad.

The skeletal elements of Hyalonemas siebnldï which nitways remain completely isolated were thoroughly studied in 1860 by Max Schultze, and so excullontly deatiled in his monograph, that I must lere simply content myself with reforring to that alminuble memoin, and with a brief revien of the different fomm of sqieulea nod of the mamer of their disposition.

The parenehymal spicules supporting the soft body are represented by a large number of simple spinille-shaped diacts, varying in length up to 3 mm . Both their ends are simply pointed or rounded oft, aul not unfrequently provided with small spines. While most of these spicules appear to be smooth centrally, some exhibit there an annlar swelling, and others two oprosite, or four ennciate tuberele-like elevations, into which two or four cross branches of the axial eanal are seen to penetrate. Even in the diacts which are smooth eentrally sometimes similar cross lranches from the axial canal ean be detected. ${ }^{1}$

The spindle-shaped spicules are, for the most part, not perfectly straight but slightly bent, lying in strands or somewhat irregularly seattered. Slemler diacts are also oocasionally to be found beset towards both euds with inwardly direeted hooks (PI. XXVII. fig. 3). Between the spindle-spicules there is a somewhat sparse oceurence of proper oxyliexaets and derivative spicules, the latter with five to three rays, or even with two opposed at right angles. Larger smooth hexacts very rarely oceur: Somewhat more abumdantly, but yet rarely, slender hoxacts are found with distally direeted teeth, as represented in Pl. XXVII. fig. 13. Similar hexaets with curved rays (PI. XXVII, fig. 10), as figured by Max Schultze (loc. vit., Taf. iv. fig. 4), 1 have only very rarely seen-so rarely, indeed, that I doult whether they have not found their way in from some other species of Hydonema, and are not really foreign to Hydonema sieboldii. I am also doubtful whether the peculiar amphidises, which were found so abundantly in the limiting membranes, are also proper to the pareuchyma.

The dermal skeleton is mainly composed of strongly developed pentact hypogastralia, which form by their mutually apposed tangential rays a comparatively wide-meshed rectaugular lattice-work, while the strands of the finer uetwork of the skin are supported by tangontially disposed diacts. The narrowed cuds of the somewhat blunt rays are frequently to some extent eovered with tubercles, or are at least rough. They usually exhibit the same character on the same pentact, but in different spicules vary so far at least, that some are pointed and others quite blunt, some relatively smoother and others more or less markedly beset with terminal protuberanees. The distal (sixth) ray las so completcly disappeared that only the merest lint persists in the form of a slight prominence.

On the liypodermalia and on the dermal strands of diacts extended between them there are seen countless autodermal pinuli, which are here esclusively pentacts. The four basal rays intersecting at right angles lie wholly in the dermal membrane ; the somewhat long ilistal ray, which is ifrawn out into a long fine point, is always at right angles to the surface of the skin, and thus projects freely into the water perpendicular to the body-surfice. There is no proximal sixth ray, or its presence is M. Schultze, Die Hyalouemen, Taf, ini. aul iv,
only suggested. The comparatively strong and straight basal mays, which are spirely covered with small externally directed teeth, are only about 0.05 mm . in length. At first gradually narrowing, they end in a short conical point. The distal may, which has an average length of 0.3 mm ., is in some regions decidedly shorter, while it may; on the other band, attain double the above length. It is as a rale perfeetly straight, strongly developed at the base, and very gradnally diminishing in diameter up to the fine narow point. It is covered with strong, distally directed spines or tecth, which stand out somembat markally towards the base, and become shorter and more closely apposed towards the extremity (Pl. XXVII. fig. 12).

In same positions on the latoral sufface of the body the pinuli are specially loug and somewhat bent (Pl. N.XVII. fig. 11). The dermal skeleton of the superior torminal sieve-plate docs not differ in essential characters from that of the Iateral wall. Instead of the large pentact hypodermalin, howover, strands of diacts of various sizes prodominate.

The marginalia forming the marginal fringe of the whole sieve-plate are straight or but slightly curved oxydinets, 1 to 15 mm . is length. Four distinct, enciately disposed, broad aud rombded protulerances from the point of intersection represent the fangentinl rays. The frecly projecting distal portion bears extemally dirocted spines, and narows very gradnally to a fine point. The proximal protion, which is inserted in the parenchyma, is cither smooth or but sparsely beset with small pointed devations, whieh stand out transvorsely or are somewhat furnod towards the apex, i.e., internally. The proximal portion is alwaye thicker and less pointed than tho distal exterml portion, and its length is to that of the latter gencrally in the proportion of $1: 2$.

Though it camot be doubted that these marginalia belong to the rank of the dermalia, and itte most nerrly redated to the autodermal pinuli, no distiuct tramsitional forms are to be observed; they can indeed be distinguished with equal shammess from the pinuli of the siere-plate and from those of the sides of the body:

Speeial attention must be directed to those remarkatle elements of the dermal skeleton which were designated birotnlate spicries by Bowerbank, anil amphidises by Max Schultze and othets. They consisi of a strmight main stem, looth cnils of which bear a similarly composed campanulate umbel formed of a varying number of radiate processes, varying in length, and eifliry of a leaf-like form, or namor tike the rills of an umbrilla. This form of spicule is typioil and characteristic of the whole family of the Hyalonematide. Manifold variations oneour in shupe und size, and these mo partiolly characteristic of the differeat generit and specfes, mat thas useffl for diagnostic purposes. That we have here really to deal with diacts is evident, in apite of the absence of any intersection of the well-developer axial cowal ly one or two small transweres canith, from the fact that auphislises are not unfrequently found, in which four, orneiately disposed,

Cusg 05
conical or romuled clevations projeet at the proper position. Here and there strnctures may be observed in which, instead of such rudiments of the four abortive rays, the latter, or at keast two of them are present as well equipped with many-ribled mbels as are the two rays usmally alone dercloped. Carter has previonsly reported the occurrence of this abnormality in Inyclonema sielobleii.' I am inclined to compare the smooth processes forming the liell-shaped umbel at each end of the stem with the terminal rays of other spicules, and to regard then therefore as simple tooth or spine structures. I lave nerer olserved any trace of an axial canal within them, and find, with Marshall and others, that they are not formed in the first radiment of the amphidises but develop subsequently. In Hyalonema sicboldii only two different kinds of amphidiscocour in the skin. On the one land, there are large strongly developed amphidises, 042 mm . or more in length, with an umbel 0.18 mm . or more in breadth, the axial beam of which is 0.035 mm . in thickness, and more or less rough, with irregulaty seattered, inconspicuously arehed prominences. At each end there are about eight slightly arohed umbel-rays, each of which, with a longitudinally directed basal piece about 0.07 mm . long and 0.015 mm . hroad, springs from the side of the terminal portion of the axial beam, and passes extermally into the ploughshare-like lateral plates, which are bent towards the surface of the umbel, and therefore at right angles to the basal phate (PI. XXVII. fig. 7). These curved lateral plates do not usually grow together laterally, bat form each a free sharp hiteral border. They are continued at their free end into a laneet-shaped terminal point while at the other extremity, Hear the main axis of the spieule, they end in a rounded prominence, and thus enclose between them a central terminal pit. The free margin of the basal plate exhibits a romided edge which becomen gradually raised from the axial beam of tho amphidise, and is continucd with a hook-like bend to the end of the lanect-shaped, curved, external lateral plate (PI. XXVII, fig. 7).

The disposition of these large amplidises in the skin has not as yet been correctly represented by investigators. They do not lie, as Marshall, O. Schmidt, Bowerbank, Carter and others lave described, tangentially in the dermal membraue, bat are radially directed, so that one-fialf of the whole spicule projects freely from the extermal surface, and the other extends internally iuto the subdermal space. I have found them irregularly seattered, sometimes in comparative abundance, sometimes only sparsely, but could not distiuguish any one region of the body as characterised by their special frequency. They occur also on the external surface of the terminal sieveplate.

Besides these large amphidises with broad shovel-like umbel rays, numerous smaller forms, measuring ouly 0.01 to 0.016 mm . in length, ocur, irregularly seattered in the dermal mombrane, in no special direction, but for the most part tangentially disposed. Their umbels are terminally hemispherically curved, and consist of cight umbel-radii

[^57]running out into straight terminal rays. The former vary greatly in length in the different amplidises, often havdly execeding the length of the hemisphere, sometimes almast touching the opposite mys (PL . XXVH, figs. 5, 6). The axial beam is sometimes comparatively smooth, sometimes knotted, frequently exlibiting at the middle point a eross or a ring of conspicuous knots. I have never found in the skit transitional stages between the two above described very different forms of large amphidises, but such intermediate structures are observed to oeeur in the parenchyma.

The gestrab skeleton differs in many points from the dermal. The skin lining the principal gastral and the four large basal divertionla is not supported ly pentacts, but by strands of largo smooth diacts and monacts, which usually become gradually uarrower towards the extremity, terminating in a sliap apex or conical point, or more rarcly rounded off. The large amphidises, with broad, shovel-like, umbel-rays, which occurred so abmendantly in the external skin, are here altogether absent; and their place is ocenpid by itrogularly seattered, medium-sized forms with eight namow, companatively long rays, whose terminal portions are more nearly approximated to the axial beam (PI. XXVH. figs. 8,9). The length of these rays is about 0.3 mm ., the breadth of the umbel 0.1 mm . The axial beam is comparatively narow, and exhibits a few irregularly disposed tubereles, and usually, at the middle point, four crucinte strongly developed protrusions, which are probably to be regardel as traces of the abortive rays (PI. XXVII. figa, 8, 9). The rays of the mmbel resemble in general form those of the large amphidises in the external skin; they are, however, longer, measuring usually about a thirl of the whole length of the amphidise. Originating in a short basal piece, they extend for the greater part of their length approximately paraliel to the axis, or even with a slight external convexity. A comparatively large number of small amphidises oceur like those of the dermal membrane fignred on PL. XXVII, figs, 5, 6, as also some rather larger isolated forms of similar structure, represented in fig. 4.

As in the external skin, pentact pinuli oceur in abumdance in the gastral membrane and in its direct continmation into the efferent passages and canals, where the lining membrane is covered with them. Compared with the dermal pinules, however, they are somewhat different in shape and less abundantly prosent. The lasal cross bying in the limiting membrane consists of four weakly developed, and gencrally straight, rarely somewhat curved rays, almost twice as long as the basal rays of the domal pimiles, and beset with distally directed teeth. The ray which projects froely into the lumen and varies greatly in length, is likewise but weakly developed, and usually bears obliquely divergent, distally directed teeth.

The spicnles which compose the basal collar-pad of the spongo body demand special notice. Besides the forms which have just been described in detail, strinetures oecur in the parenchyma and in the dermal membrane of this region, which are not found elso-
where throughout the whole sponge. They have the form of thick hexacts, pentacts, tetracts, triacts or diacts, whose rays, muiformly thick, strong and eylindical-exhilhit blunt or rounded cuds, and are more or less ahundantly covered with ahort, strong, conical spines. These teeth or apines nee either unformly seattered over the whole surface, or ocem only on the distat ends of the several rays, the median and proximal portions remaining smooth. As these peculiar spicules of the iasal pad have been figured in the case of Hycelowema sieboldiii in Max Schultze's classic work on Hyalonematide, 1 have not devoted to thom any special illustrition.

Of all the skeletal parts of IIyalonemas sicboldii, the long spiciles of the basal tuft have been longest and most intimately studied. These basalia form a long loosely wound strand, which meastres 30 to 60 cm , or more in length, and breaks ap towards the foot in a brosh-like fashion. To the detailed descriptions of former investigators 1 have but little new to add, and therefore refer to their accounts, eqpecially to that of Max Schultze. He found in one tuft 200 to 300 separate apicules, of which the shorter lay nearer the axis. The shape of the inferion extremity was certainly determined only in the shorter forms. He observed a simple pointed termination, similar to that of the stperior extremity hidlen within the aponge. Besiles porfoctly smooth forms, ammerons spicules ocemr with a tooth-bearing spiral ridge. The free margin of the latter projects obliquely outwards aud upsards, so that a similar direction is given to the leaf or naillike, pointed or slightly romeded spines which it beass Internptions of the spirals sometimes occur, and these are often so regularly disposed, that the remaining portions of the projecting ridges are alternately opposed to one another.

On some very well-preserved (spirit) specimens collected by Dr. Hilgendorf in Sagami Bay, Japan, I was able to study the very inferior extremity of many of the long spicules of the tuft. It appeared that the spinose main protion of the spicule is followed by a short, marrow, smooth neek, which bears terminally a solid, eap-like or hemispherical thiekening whose upper rounded margin exhilits cight recorent teeth, forming an anchorlike figure.

2. Hyalonema gracile, 1. sp. (Pl. XXVLI. figs. 14-23).

This species of Ityctonemat was drelged in the neighbowrhood of the Philippine Island Mindanao (lat. $8^{\circ} 0^{\prime}$ N., long. $121^{\circ} 42^{\prime}$ S., Station 211), fiom a depth of 2225 fathoms, and on a blae mud ground. Its body, which is approximately pear-shaped, measures 2.5 cm . if length by 1.6 cm . in breadth. The npper end, which is somewhat namowed and transversely trmeated, beass a dolicate sieve-plate, while the lower, conically pointed end runs out into a basal thft, 155 mm , broad and about 3 cm . longThe component spicules aro not mumerons, nor twisted, and they diverge but slightly
inferiorly: Owing to the imsufficient preservation of the single specimen, it was impossible to determine whether a Patythoc-crust enveloped the basal taft, below the inforior extremity of the body: Below the superior terminal sicve-plate, them is a flat hollow space, from which four erwiately arranged wide passages, furuished with latoral and terminal divertieufa and eamalienlar prolongations extend into the promeligran. Nearly ul to the sieyoplate, the centic is occupied by a colnmella, ending frcely in a conical prommence. From this central pillar the for craciately arranged septal plates radiate outwneds, separating the form gastral spaces from one another (PL. XXVII. fig. 14).

Of the external skin, as also of a delicate narow enff-like fringe which surrounds the sieve-plute and separates it from the skin, only a few pieces are preserved.

The spicules stpporting the parenchyma consist of simple, flat oxyhexacts of medium size, which are usually radially disposed at right angles to the surface, rud distributed with general uniformity over the whole body: The six mays are all of equal longtl, and are very gradnally namowed towards their somewhat conically pointed extremitics. Besides these, numerous simple smooth oxydiacts occur, partly isolnted, partly disposed in struids. These sometimes exhibit a central swelling, either in the form of a simple ring, more or less sharply marked off, or in the form of four crnciate, or more ravely of two opposite romdish protuberances. In these well-developed contral portions an nxial-cauml cross can usnally be seen. Less abmadantly than these dincts. triacrs occur, which guncrally exhilnt two long rays, lying in one axis, and a much shorter third ray, at right angles to the former and springing foom a slight median swelling.

Near the narrowed end of the body, and especially in the porons hasal cushion. hexacts, Tentacts, tetracts, triacts and diacts occur, with cylindrical mays, which do not twi out to a point, but exhibit a trumeated or even swollen end, and are terminally, and to a greater or less distance inwauds, thickly beset with conical tubercles. As an illustration of the peculiady modified spicales of the lasal enshion, I have figured a triact on P1. XXVI. fig. 18. Tetracts aro there, however, most abundant.

I have here and there found such a simple regular form of smath osyliexact, with delicate narrow rays, as is sepresented in PI. XXVII. fig. 20. Very frequently, on the other hand, and thronghoat the whole parenclyma, such forms oecur as are seen in Pl. NXVII. fig, 23. Tbe loug narrow rays, covered with samall, not obligne but directly transverse protuberances and peaks, tre more or less markedly bent round in their distal jortions, and the bendings of the two mys which lie in the same nisis are always in the same planc, but in opposite directions. The planes of eurvature of this three axos of the spicule form with one another equal angles of 120°. The reqreseatatiou of these hexacts with curved mays in PI. XNVII. fig. 23 is so far misatisfactory, since one emnot recognise in it that three rays are approached by their conds; and their three
opposites likewise. This is, however, better expressed in the figures of corresponding spicules in other specics, e.g., Iyalonemuc apertam (PI. XXXVIII. fig. 5).

The dermal skeleton is composed of large, strong, hypodermal pentacts; of autodermal pentact pinuli, and of antodermal amphidises of various kinds. The rays of the hypodermal pentacts are quite smooth and are directed at right angles to one mother. Thiey either run gradually to a sharp point or terminate conically. There is no hint whatever of the missing distal ray, The proximal ray is usually larger than the four equal-sized tangentials, but is sometimes smaller, and sometimes of equal length. The autodermal pinuli are penfacts. The proximal ray is no longer recognisable, but the distal is drawn ont into a slim fir-free-like form, about 0.3 mm . long, and beset with obliqnely inserted and somewhat bent and pointed branchlets (PI. XXVII, fig. 21). The basal end of the distal ray usually remains perfectly smooth. The four tangential rays, which lie at right angles to one another and to the distal ray, are straight and of equal size. Only near the somewhat blunt distal extromity do they exhibit some distally directed protaberances, while the large proximal portion of each ray is quite smooth (PI, XXVII, fig. 21).

The very large kind of amphidise which oecurred in Hyalonema sieboldii is not present in this species. The largest form of amphidisc has a length of 0.14 mm , and a breadth of 0.06 mm . The axial rod is covered with protuberances, the highest of which are in the middle, and arranged in a circle. The eight terminal umbel rays on ench side, which are disposed in a bell-like form, have a leaf- or spade-hike shape, and terminate in a somewhat rounded lancet-like point. The basal plate is comparatively short. The individual terminal rays ure sometimes laterally separated at their base by grooves, but sometimes, on the other hand, they are laterally united. The terminal arching of the bell-shaped umbel is not very broad, though strongly marked as the result of the divergence of the umbel rays. The extremities of the opposite umbel-rays approach one another to within a fourth of the whole length of the amphidise. These larger amphidises always have their median portion inserted in the dermal membrane, so that the one half lies within the body of the sponge, while the other projects freely above the surface of the skin; bat, besides these, several other smaller forms oceur as represented in PI. XXVII, fige. 15, 16, 17. These all exhibit a relatively broad arehing of the much shorter terminal umbels, some of which consist of more than eight umbel rays. I have observed as many as thirteen umbel-rays in some of the medium-sized amphidises (PL XXVII, figs. 16, 17). The axial rod either exhikits a few small, irregularly distributed tubereles, or in addition to these four coarser, cruciately arranged, median prominences, which may also oceur alone. The umbel-rays have narow bases, they end in lancet-like fashion, and approach one another to the extent of not more than one-third of the total length (0.03 mm .) of the nmphidise. I nover found these medim and smaller amphidises except lying flat, that is, parallsl to the surface of the dormal membrane.

The skeletal elements of the gastral membrane and lining of the efferent canals agrec in many respects with those of the dermnI area. The hypogastral peatucts are, howover, wanting, being etther replaced by diacts or not at all. The autogastral pentact pinules generally resemble the dermals in form and length; they are, however, throughout more delicate and slim (PL XXVIL, fig. 22). They are at once thickest and strongest near the margins of the openings, and are seen to be more widely separated and more weakly developed the further the canals are traced inwards.

The long naroow diact marginalia in several layers, form a not very ligh, cuff-like projecting marginal friuge. From the middle portion, which is distiuguished by four craciate protuberances with axial camals, a smooth, gradually narrowing, terminally pointed proximal ray extends inwards, whilo, in the opposite direetion, an equally long, or still longer distal ray, projects freely outwards in the same nxis. The basal portion of the latter is smooth, but the larger pottion, on to the freely projecting termimal point, is furnished with pointed, distally-directed lateral teeth, gradually decreasing in size.

In the basal pod, strong short spicules occur, with from six to two thick, eylindrical rays, whose terminal portions are frequently somewhat thickened, and always covered with radially disposed, pointed, conical teeth. Of the apparently smooth basal spicules which form a simple, untwisted tuft, bat few are present, and these all broken.

3. Hyalonema divergens, n. sp. (Pl. XXVIII. figs. 1-11).

This species of Hyalonema was dredged in Mid-Pacific, to the east of Maldon Island (Station 271), lat. $0^{\circ} 33^{\prime}$ S., long $151^{\circ} 34^{\prime}$ W., from a depth of 2425 fathoms, on a Globigerina ooze ground. In shape it resembles an inverted bell, with a slightly widened terminal portion; it possesses an length of 8 cm . and a maximmm breadth of 65 cm . (PL XXVILL fig. 1). The superior margin of the transversely truncated terminal surfice bears a delicate spicule-fringe. The terminal surface itself is formed by a transversely wretched net, that is, by a typical sieve-plate. From the somewhat pointed lower end a straight basal tuft projects, It is composed of parallel basal spicules, which are, for the most part, broken somewhat short, and sometimes attain the thickness of almost a millimetre.

The only specimen procured is somerhat compressed, and in some plnees rubbed away, so that it is impossible to make any definite statements as to the characters of the lateral surface. Only hers and there does a pateh of uninjured skin persist. At the inferior extremity of the body, where the long, strong spicules of the root-tuft freely project, the often mentioned thick basal pad is seen. There is no trace of encrusting Polythou, but the gencral state of preservation makes it impossible to say with certainty that the Putythoos were absent during the life of the sponge.

The delicate u et of the terminal sieve-membrane is raised from the marginal portion
of the upper surface of the thicker parenehyma of the boty, and is also quito free from the four crteiate septa and the central pillar, though it may possibly have coalesced with the distal portions of the upper margins of the septa and with the end of the columella. From the four large princinat cavities of the efferent system, ramified heures and canals lead to the sides, and downwards into the recesses of the sponge, so that, as in Hycelonema sieboldii, the whole body-mass consists of a very wide-meshed system of plates.

The great majority of the spicules of the parenchyma are straight or slightly bent, smooth diacts, with or without central knot or swelling. Between these, smaller isolated regular oxybesacts ocem, with straight, smooth rays (PL. XXVIII. fig. 8), and abso somewhat larger oxyhexaets with bent mays (PI. XXIII. fig. 6). The representation of these forms in PI. XXVIII. fig. 6 is so far unfortumate, since cach of the two opposite triplets of rays should have the three ends of the rays approximated.

In the dermal skeleton the strongly developeil hypodermal pentacts of different sizes, and with simple, smooth, somexhat pointed rays, are to be noted. The four tangential rays of the latter are equipped with mumerous pentact piunif exhibiting strong short, slightly pointed or even blunted, smooth, straight bnsal myz, and oxhibiting a strikingly long, well-developed distal my, furnished with somewhat closely set tecth (PL. NXVIII, fig. 7). The freely projecting, toothed distal may attain the leagth of 1.3 mm . or more. The amphidises, which are present in considemile abundance, exhibit considerahle varieties of form and size. Nost of them are 0.13 mm . in length. and exhibit a long narow axial rod with tubereles and frequently with larger ernciately disposed protuberances in the centre. The cight tolerably lroad, lanect-shaped umbultar rays attain a length of about a third of the whole amphidisc, and extend, with marked divergence, in an incurved but oblique outward course (PL. IXVIII. fig. 3). In reference to this striking divergence of the umbrellar rays in the largest amphidises, I have bestowed on the species the title Hyalonemuc divergens. Among these amplidises disposed at right anglos to the limiting surface, others of a very large size oceur here and there. The latter atain a length of 0.5 mm , nud have long mularellar teeth curved into the form of a long ovoid. From the middle of the delicate asial rod, form somewhat long, cruciatcly disposed tubercles project. Among the numerons amphidises with curved umbrellar rays, medium-sized forms, 0.06 mm . in length, are also found, with kuotted axial rode, and lemisplerical arched umbels (P1. XXVIII, fig. 4). Small fonus are also abundantly present, meanming 0.03 to 0.04 mm . in length, and exhibiting zhort, beníspherical termiual dises (PL. XXVIII. fig. 5). These smaller and smallest amphidises are not disposed at right angles to the surface, but lie tangentially in the dermal membrane.

The marginalia are long namow diacts 2.2 mm , in leugth, with simple, smooth, or only inferiorly ronghened surfaced. The proximal ray is uniformly narrowed nud runs ont to
a point; the free distal is at least twice as long, and bears short spines. At the houndary of the two, in the centre of the diact, are four conical projections arranged in a crele (Pl. XXVIII. fig. 2). The gastial skeleton twas not well preserved ; but it secmed not to differ essontially from the ilermal.

4. Hyalonema toxeres, Wyville Thomson (PI. XXIX).

Near the West Indian islaud St. Thomas (Station 24), lat. $18^{*} 38^{\prime} 30^{\prime \prime} \mathrm{N}$., long. $65^{\prime \prime} 5^{\prime} 30^{\prime \prime} \mathrm{W}$. ; several specimens of a Hyalonema were dredged from a Pteropod oozo ground at a depth of 390 fathoms. The speeies has already been shortly deseribed by Sir Wyville Thomson in bis preliminary acconit of the Voyage of the ChallengerThe Atlantic. I suljoin the account there given of this forme.
"Two examples of the sponge-body of a very handsome Hyalonema were sifted outt of the cord mud. Unfortunately, in both cases, the sponige hat been tom from the central coil, and the absence of the coil might have thrown some little doubt upon the form and mode of finish of the complete animal ; so that it was extremely fortunate that a young specimen of the same species, abont 40 mm . in length, was caught in the tangles quite perfect."
"Hyalonema toxeres, Wyrille Thomson, resemblos closely the other known species, Hyalonema lusitunicum and Hyalonenue sieboldi, in general appearance and in the arrangement of its parts. A more or less fannel-shaped sponge presents troo surfaces, covered with a network of different patterns formed by varying arrangements of large five-rayed spicules. The upper concave surfuce shows a numbor of oscular openings irregularly arranged, and the lower surface a more uniform network of pores, some of which seem to be imhalent and others exhalent. The central axis of this sponge is closely warped into the upper part of a coil of long and strong glassy spicales, which, us in the other species, serve to anchor the sponge in the soft mud. Both of the specimens dredged have the aponge more flattened and expanded than it is in Hyalonema lusitanionm. In one of them it is nearly tlat (fig. 5), forming a miform cake-like expansion, 80 mm . iu length, by 70 mm . in width, and ahout 8 mm . in thickness. The upper or oseular surfnce is covered by an exceedingly close notwork, with groups of large oponings at nearly eqnal intervals. It is slightly mised in the centre. The ceutral clovation is followed by a slight depression, and the upper wall then passes out nearly horizontally to a shap periphemal edge, fringed with long, delicato spricnles, each consisting of a slender centinl sluft, with a cross of fom short transyerse processio in the centre. The onter half of the central axis is delicately fenthered.
"The lower surface of the sponge (fig. 6) is protected by a singularly olergant 1 Lock cit., vol, i. it g7a,
(zoot. CHALL EXP.-PART : LIIT-1887.)
Geg 26
network of sareode, with wile oral and round meshes madiating irregulary from a central point. The membrawe is transversed by irregularly radiating ridges of firmer substance, which anite in the contre in a projecting boss at the point, where in this specimen the 'glassope' has unfortantely been torn out.
"In minute structure, Hyglonema toxeres conresponds in all essential respocts with Hyalonema secboldii and Hyalonemu lusitanicum. All the spicules are of the same ground forms, with some little differences in detail, with the exception of one remarkable spicule which enters largely into the structure of Hyalonema toxeves, and serves to distinguish even the mallest portion of it. This is a large spicule, the largest abovo a centimetre in length, and more than half a millimetre in width in the centre, shaped

like a how or boomerang. These spicules are distributed in all parta of the sponge, and nre particularly abmelant near the insertion of the coil. No analogous form ocems in the other species of IIydonema.
"The large amphidises are much targer than in any other known sponge. They are upwards of half a millimetre in length and visible to the maked eye, twice as large ats in IIyalonema lusitanewm. The feathered slafts of the five-rayed spienles which fringe the openings are louger than in the other species, aml the rays of the eross are moch shorter (fig. 7).
"The second specimen of the aponge body agreed with the one deseribed in all
casential points of structure, but was more conical in form. The joung specimen differed from the young of Hyalonema lusitunicum at the same age in being wider and more eylindrical, but the external wall, which afterwards becomes that of the lower surface, showed the same furangement in squares which we find in the young of the other species, so that apparently the graceful, round-meshed, wide netting of the under surface docs not appuar in the early stages.
"The coil is developed much in the same proportion and in the same way as in Hyalonema lusitamieum, the fibres spreading out and incorporating with the sponge substanee. The characteristio bow-like spieules are abundant in the young sponge, and

Fig. 7.-Inyalonema toccros, Wyrille Thoman. Part of the tuemhinme frum the upper aurfoce, $\times 40$.
these, with the larger amplidiscs, place it beyond a doubt that it is the young of Hyalonema loxeres.
"A quantity of loose spicules brought up in the drodge at the same time were referroil to this species. They were somewhat stouter than those of Ilyalonema lusitanicum, and less regular in outline. There was one coil nearly complete, involved in a calerreous expansion of a branch of Diplokelia profunda. Two very yomp polyps, apparently of Palythoa futuc, were commencing the formation of their investing crust at the top of the coil of the young epecimen, just below the sponge body:"

Since the three specimens studied by Wyville Thomson are also at my disposal for
examination, though perhaps in a luss satisfactory state of preservation, I will add to the above account some supplementary details.

The smooth cake-like specimen figured by Wyville Thomson (figs. 5, 6) was not when 1 received it so well preserved as is mpears in the woodeuts referred to. The specimen is represented in PI. XXIX, figs. 2,3, of the matmal size, after a photograph from either side. It is cridunt that half the finged margin (from which a rectangular portion has been ent for investigation) is well preserved, while the rest of tho marginal portion seems compressed and torn. The side represented in fig. 3 , covered with a somewhat wide-meshed network of more or less thin strands, cxhibits a tolerably unimjured surface, and is almost smooth with the exception of the projecting knobs about the centre of the (twinjured) dise. On the other side, however (fig: 2) the marginal portion exhibits for ahout a finger's breadth an intact dermal layer, with a fine-meshed latticework, through which were secu the large deep apertnres or pits of the parenchyma, occuring at uniform distances of about 5 to 8 mm ., as figmed in the woodeut (fig. 5) of Wyville Thomson's Atlantic. The middle portion of the flat sponge body is on the same side much injured and apparently compressed (PI. XXIX. fig. 2).

From Wrville Thomson's account this latter somemhat inbent side (P7. XXLS. fig. 2 of my figures, and fig. 5) is said to be the upper, while that corered by the wide-meshed sieve-net and lwaring a projecting cental boss be the lower (PL. XXIS: fig. 3, and fig, 6). The projecting central protuberance of the latter is, acoording to Wrville Thomson, the norrowed basal portion, from which the long tuft of nealles was torn away.

The results of my iurestigation force me, however, to another conclusion, namely, that the side covered with the wide-meshed sieve-network is the upper, while the other with the fime superficinl lattice-work and the subjacent pits of the parenchyma is the lower or outer. This is proved first of all by the character of the superficinl layers. The wide-meshed framework which covers the sufface (fig. 3) exactly resembles the sieve-plate present in the funne-shaped second specimen (Pl. XXIX. fig. 1) of the same apecies, while the fime-meshed dermal layer which covers the undamaged marginal zone on the other side (PI XXIX. fig. 2) eorresponds exactly in structure to the dermal membrane of all Hexactinellids and especially to that of the funncl-shoped specimen (PI. XXIX. fig. 1) of the same species.

The boss-like clevation in the centre of the surface furnished with the wide-meshed network does not represent the marrowed basal end of the boty, but the conus centralis which oecms on all species of Hyalonemat. The narowed basal end of the sponge body has, on the other hand, been torn off with the hasal tuft of spicnles, and is therefore not to be seen on the lower smffice of the body (PL XXIX. fig. 2). We have bere apparently a siccimon of Hydonema foccres, which, after the tearing nuay of the basal tuft and lower oud, has been forced ly oblique pressure into a flat compressed form. The normal
form of the body as seen in the second specimen, which is comparatively well preservect, 1rut also destitute of hasal tuft, is represented in natural size in PI. X.XN. fig. L. We have here an Luverted eonienl form, with slightly bulging sides, and a broad upperend not transversely trureated, but depressed in funmel-like fashion, and covered by a narrow-meshed delieate network, while the external lateral surface of the body is enveloped by a deliente dermal sieve-work- the dermal membrane, through which the more or less regularly distributed large imhalent cuazals of the afforent system are seen as dark spots (Pl. XNIX. fig. 1). On the upper extemal margin, which projects as a sharply defined ring, there is a eontinuous fringe of marginal spicules. On the lower, somenkat incurved end, lies a round giqing opening, about 6 mm . in width. This leads into a straight canal, and there can be no doubt that it represents the position of the torn oft basal toft.

The third much smaller spocimen, with a well-preserved tuft of hasal spicules, as also figured by Wyville Thomson, differs cssentially in external form from the above sqecimens. The body is not comical but oya, with truncated superior, and somerwhat marrowed inferior extremity; The structure, however, agrees so exactly with that of both the other specimens, that one can have no besitation in aeknowledging the correctness of Wyville Thomson's reference of this form to the same species, Hyatoniema toxeres. The specimen is unfortumately not well preserved, especially towards the upper end. On the middle of the upper terminal sufface the conns projects, and from it four crucinte longitudinal septa with smooth, convex, superior margin extend through the centrial space to the lateral wall into which they pass. The four cruciate cavities thus formed are continued downiwards and sideways into the offerent lacunar passages of the parchehyma. Close bencith the narrowed inferior portion with the small basil tuft there is a ring of a ferv Palythoce individuals (PL. XXIX. fig. 4).

Microseopic examination of the flinty spicules shows the intimate similarity of all the three specimens, and the few variations which are present are referable to differences in age and individual characteristics.

In the parcochyma, besides the familiar regular medium-sized oxyhesacts, and numerons straight or slightly beut, weakly developed diacts with or without central swellings or knobs, espeeially remarkable and characteristic diacts oceur. These are thick nud spindle-sbiped, curved or somewhat bent, with rounded terminal points, and withont central swelling or tubercles. These bent needles measurc 3 to 8 mm . in length, and exhibit in the middle a thickness of 0.3 to 0.4 mm . The concentric lamination in very distinetly seen, and on the outer end the relation of the various layers of growth is often most beantifully demonstrable (PL. XXIN. fig. 11). The distribution of these strong, bent needles in the parenchyma seems to me quite irregnlar. I have not obsersed their special abundance in any one region, nor on the other land any defmite disposition. They frequently ocenr paralle! to the skin near the extemal sarface, bui aloo in
the middle of the parenchyma, and in the most varied relations to the dermal surface. In contrast to most other species of Ilyulonema, small oxyhexacts with straight (PL. XXLX. fig. 9) and with bent (PI. XXIX. fig. 10) rays are not aburdant. The latter oceur indeed in very sparse isolation. Both forms are claracterised by this, that the rays are throughout their whole extent thickly beset with small barbs, turued obliquely inwards, i.c, towards the middle.

Tho dermal skeleton is supported by medium or small-sized, simple, smooth, hypodermal oxypentacts without a trace of a distal sixth ray, fud also by numerous mediumsized hypodernal oxydiacts, which all lie tangentially. Alove these hypodermalia, autodermal pentact pinuli ocour, which exhibit short, slightly tootherd, basal rays of moderate strength, and a narrow distal, 0.4 to 0.5 mm . in length, with somewhat long narrow obliquely inserted, pointed lateral spines, Large dermal amphidiscs, 0.35 mm . in length (PI. XXIX. fig. 6) are tolerably abundant. In their breadth aud in the somewhat flatly arched short termimal umbels, with eight broad, lancet-shaped, tumbel mys, they at onee recall the approximately equal, strong dermal amphidises of Hyalonemas sieboldii. They are all disposed at right angles to the surface, with their centre in the dermal membrane (PI. XXIX. fig, 5). Besides these, numerons smaller amphidises with short hemisphericul terminal umbels (Pl. XXIX. fig. 8) oeeur in tangential disposition. Less frequently medium-sized amphidises oceur, essentially resembling the greater above deseribed (Pl. XXIX, fig. 7).

In the sieve-membrane covering the superior terminal surface of the sponge, and to a large extent coalescent with the subjacent parenchymal laycr, skelctal elements oceur similar to those in the exterual skin. The inner surface of the large lacuno and passages penctrating the parenchyma, and adso of the efferent camals is bere smooth, exlibiting no gastral or camalicular skeleton, containing neither hypogustral ponitacts nor pinuli nor amphidises, in fact, solely supported by wealdy developed, somewhat curved diacts like those which occur so abundantly in the parenclyma.

The marginalia, which form a contimuous projecting fringe on the sharp upper margin of the body, are straight oxydiacts, whose proximal end inserted in the parenchyma is smooth, while the much longer and very gradually pointed distal ond is beset with lateral spines projecting obliquely downwards (Pl . XXIX. fig. 5). At the boundary between the distal and proximal portions, four cruciately disposed hemispherically arched knobs project, boing traces of the rudimentary trausverse xays.

The basal pad of the smaller (P1. XXIX. fig. 4) and of the large funnel-shaped specimen (Pl. XXIX. fig. 1) consists of six-to two-rayed, strongly developed spieules, with eylindrical, externally truncated, or rounded straight rays. These agree thoroughly with similar structures in the hitherto described species of IIyalonemce. The prosimal portion of each ray is smooth; the distal, on the other hand, is thickly beset with coarse conical spines; more rarely the whole surface of the spicule is uniformly spinose.

The long basalia of the root-tuft which I examinod in the small specimen (PI. XXIX. fig. 4) exhibit opposite or spirally disposed, obliquely projecting lelges with marginal teeth, like those which M. Schultze has figured in Myalonemas sieboldiz in his well-known work (Taf. ii. fig. 4). The extrome distal end of the long basalia was not preserved.
5. IIyalonema kentii, O. Sehmialt (II. XXX. figs. 9-17).

In his Spongien des Meerbusent vou Mexico, O. Selimidt describes (p .65), under the desiguation Asconema kentii, n Hexactinellid which was dredged at various localities off Grenada, Martinique, Guadeloupe, and Bequia, from depths of 300 to 1500 frthoms. This form occarred in two varieties, on the one hand, as a "flat or shallow bow, either rounded off inferiorly or furnished with a short or somewhat irregularly twisted pointed stalk," and on the other, as "a saccular form with irregular margin, divided internallyinto irregular pouch-like divisions mud cavities, separated by thin ragged partitions." "A delicate outer layer with fir-trec-like spicules, extends like a fine voil over the surface. The body is unusually rich in double verticils (Doppelquirlen), occurriug in very varied dimensions and forma in the several parts of the body." As my esteemed fellow worker in Strassburg was kind enough to give me for esumination a dried specimen of the goblet-type, I am ahle to include this beautiful form in the series of species of Hyalonemas A figure, drawn from a photograph, represents the sponge of the uatural size. Both the external and the concave saperior and internal surface of the loose eap-or founcl-slaped body nre covered by a delicate retionlate membrane. On the outer wall this petwork is mueh fimer and more uniform than on the coneave upper surface, where it seems to form a sieve with unequal, and in some cases, large meshes. It is either attached to the subjacent body parenchyma, or oxtends freely across the large cavitics. On the supecior external margin there is, as O. Sehmidt pointed ont, a cufflike fringe of fine spicules.

The loose parenchyma of the sponge is supported by mumerous straight or curved smooth oxydiacts, with or without rudiments of the four abortive transverse rnys, and by smooth, simple, medium-sizel oxy hexacts, which frequently exhibit a slight roughness, and are furnished either with straight or with curved rays as represented in PI. NXX. figs. 14, 15. It is boteworthy that the oxyclinets are generally thin and often so long that they become readily carved, not unfrequently appearing rauch bent or even coiled.

The hypodermal oxypentacts are perfeetly smooth. Their tangential rays are mutually apposed and form a beantifnl rectangular meshorork. To these rays are ntached a great numbor of autodermal pinuli, with four straight, somewhat sulstantial. basal rays which are comparatively short, conically pointed, and cither quite smooth or equipped terminally with minute distally directed teeth. The distal may, on the other haul, measures about 0.45 mm . in length, is smooth at the base, but elsewhere
so thickly beset with rather long, narrow spines, diverging obliquely outwards, that a somewhat bushy appearance results (PI. XXX. fig. 16). An cessentially different appertance is presented by the pinuli which lie on the fimnel-shaped concave upper surface, in the strands of the sieve. The hasal rays are here namower and longer; the weakly developed distal ray has a decidedly greator leugth- 0.8 mm ., and lears only a small number of short apposed spines (P1. XXX. fig. 17). On the imner surfice of the gastral eavity and wider efferent canals, a special gastral or eanalicular skeleton oceurs. This consists of moderatoly large, smooth, simple oxypentacts, with the four trunsverso rays insertod on the gastral or canalicular membrane, and sparsely furnished with slim autogastral pinini of various sizes, The four straight basal rays of the latter are ather loug and thin, and gradually pointed; the distal ray is stim and beset with short, somewhat apposed, lateral spines.

Among the dermal amphidises there frequently oecurs a large, comparatively broad form (0.5 mm . long by 0.2 mm . broad), with short, mach arehed umbels, and eight broad laneet-shaped mobel rays. The strongly developed axial rod is for the most part smooth, but generally exhibits at the middle point four cruciately disposed, ronnded tubercles,- the rommants of the forr abortive transverse mys. In the superior sieve-plate these large broad amphidises which oceur all over in the external skins are, euriously euough, absent. On the other hand, medium-sized (0.3 mm) amphidises of amothor form occur, with narrow, much arched, cight-rayed umbels, which occnpy more than a thind of the total length, sometimes almost meeting in the middle. The slim axial rod is beset with tubereles (PI. XXX. fig. 11). Besides these, somowhat smaller and narower amphidises, with eight medium-sized umbel rays occasioually ocerr, and in great wumbers the decidedly smaller forms with short, broadly-arched mnny-rayed umbels which occured so abondantly in the exterual skiu (PI, XXX. fig. 13). ${ }^{1}$

In the basal pad the familiar strongly-devoloped six- to tworayod spioules ocenr abundantly. Their rouuded ends are covered with tubereles, while the proximal main portion of the ray is smooth. The bundle of needles in the basal tuft is unforturately torn away. At the inferior extremity of the body one can see the distiuct defect left by their removal.

Hyalonema poculum, n. sp. (PL. XXXIII. figs. 1-7).

In the neighbourhood of the island of Juan Fernandez, west of Valparaiso (lat. $33^{\circ} 42^{\prime}$ S., long. $78^{\circ} 18^{\prime}$ W., Station 300), a cup-shaped Hyclonene was dredgod from a Globigorina ooze bottom at a dopth of 1375 fathoms. The inforior extremity md tuft of basal needles is torn array. The upper funnel-shaped concave end of the comparatively thin-walled cup has a transverse diameter of about 5 cm ., while the lower

[^58]broken portion measures about thece. From this it may he fiffored that the whole body had a length of ahout 10 to 12 cm . On the superior somewhat sharply terminated margin there is a continuous border-fringe of projecting spicules. The akiu of the upper surface of the funnel is gradually mised to a distance of about 2 cm . from the bodyparenchyma as an indopendent lattice-work (PI. XXXIII. fig. 1). On the extermal surface traces are seen here and there of the namow-moshed rectangular network of the dermal membratie.

In the parenclyma lio numerous long, thin, and somewhat pliable oxydiacts, on which central tubercles or nodes are gencrally absent, or but slightly developed. Between these, some medium-sized and numerons small, straight, regular oxylexacts oceur; the rays of the latter exhibit a slight roughness (PI. XXXIII. fig. 7). I have not found any small oxyhexacts with lent rays. The dermal skeleton is charncterisal by the presence of moderately large strongly devoloped hypodermal oxypentacts. The four tangential rays bearautodermal pinnli with four short, strong, almost smonth basal mys, and a moderately long, somewhat makedly spinose distal (Pl. XXXIII. fig. 6). Dermal amphidisca aro represented by a somewhat largo $(0.5 \mathrm{~mm}$. in length) form with broad, short, hemisphericnlly arched mmbels, and with four or eight notes at the middle of the axial heam. The eight umbel rays are pointed like lancets, and not brondencl out in shovel-like fashion (PL. XXXIII. fig. 4). I sometimes observed the sharp lateral margin of several somerwhat longer umbel rays uniformly beset with fine teeth in a saw-like fishion. Besides these, the familiar small amphidisos with short, flat, or hemispherically arched umbels oceur in great abundance, and also isolated medium-sized thimer forms with eight to ten umber rays.

The skeletal elements of the lattice-work covering the upper sucface of thee funnel agree essentially mith those of the skim.

The marginalia measure 0.6 mm . in length; the distal ray is covered with spines like that of the pinuli; the proximal ray is smooth. In the centre are seen four cruciately disposed, somewhat distally directed, bent tubercles with fine terminal points (P1. XXXIII. fig. 3).

Hyalonema eonus, n. sp. (P1. XXXIII. figs. 8-15).

South of Australia (lat. $50^{\circ} 1^{\prime}$ S., long. $123^{\circ} 4^{\prime}$ E., Station 158) a form of Hyalonema was drelged from a Globigerimn ooze bottom at a depth of 1800 fathoms. The basul tuft was again torn away; but the rest of the body was otherwise tolcrably intact. A portion of a basal tuft with a small remnant of attached body was also fotmd, and very pobably belonged to the same specinien. The body has the form of a $\mathrm{cone}, 6 \mathrm{~cm}$. long lyy: 5 cm . broad at the upper transversely trumeated end, while the lower romid ond umons to about the thickness of one's little finger (PI. XIXIII, fig 8). The somewhat inemred
((OOL CHALL EXP.-PAKT LIIL.-i887.)
$\mathrm{G}_{\mathrm{gg}}-7$
upeer terminal surface is covered by a terminal sieve membrane lying flatly over the parcuchyma of the body. Ronnd abont this sieve-plate, on the somewhat sharp lateral margin, an inconspicnous circular fringe of spicules projects. On the lateral surface of the cone, remmants of the delieate dermal lattice-work are here and there recognisalile (PI. XXXIII. fig. 8), and through the latter large grooves and inhalent apertures are visible.

The parenchyma is supported by medinm-sized smooth oxyhexacts and by numerous thin and pliable oxydiacts of various sizes, with or withont central swelling. More rarely diacts occur with one or two club-shaped swollen ends. Straight, smooth, small oxyhexacts oceur in moderate abundance.

The dermal skeleton consists of medium-sized smooth hypodermal oxypentacts. The autodermal peutact pinuli are relatively long (about 0.4 mm .), and bear four slim mediumsized basnl rays, and a distal beset with somewhat long spines (PI. XXXIII. fig 15).

The superior sieve-network is supported by reticulate strands of strongly developed, moderately long, smooth oxydiacts, which, as a rule, exhibit at the middle only two hemispherical or flatly apposed nodes. Between these, simple, strong, smooth oxytetracts oceur here and there, and also pentacts with rays of a similar character. The autodermal pentact pinuli of this terninal sieve-plate are, for the most part, like the dermal, though in some regions longer (PI. XXXIII. fig. 14).

Since the abundant amphidises of the external skin and those of the terminal sievemembrane are exactly alike, 1 will describe them for both localities at once. Most striking is the largest form (abont 0.2 mm . long), which exhibits a strongly developed axial rod, smooth with the exception of four ermeintely disposed central protaberances, and with very gently arehed terminal umbel rays, estending ouly over about one-third of a sphere, and provided with eight teeth. These short umbel rays are very broad, and termimate in a paddle or leaf-like point (PL. XXXIII. fig. 9). Besides these, amphidises of medium size ocenr with irregnlarly toothed axial rods, and with terminal umbels, hemisphericat or tonger, with eight slender rays (Pl. XXXIII. fig. 11). Similar forms sometimes occur with longer and more divergent umbel mays (PL. XXXIIl. fig. 12). As in almost all species of Hyclorema numerous small many-rayed amphidises oceur, as figured in Pl. XXXIII, fig. 13.

The marginalia exhibit a long toothed distal ray, a smooth proximal, and four eruciate hemispherical rudiments of the taugentials.

The spicules of the isolated basal tuft, which was foum beside the body of the sponge, and most prolably belongs to it, exhibit on their inferior extremity a very remarkable auchor-like stracture. On the somewhat thickened terminal portion, four twisted, strongly developed rays project transvereely in a circle, and then bend upwards at right angles along the equally loug terminal portion. The latter portion is somewhat enrved, and tums gradually to a point (PL XXXIII, fig. 10). On the prolongation of the axis there
is a small flat tuberele-like process, representing the abortive sixth ray. The long stalk exhibits, like the fom anchor teeth, a distinct axiel canal.

Subgenus 2. Stylocalyx, 11. suligen, (PI. XXXI; Pl. XXXIV. figs. 1-11; Pls. XXXV., XXXYIL, XXXVIII, XL., XLI.).
The superior aperture of the gastral cavity is not covered by a sicve-plate, but remains quite open. The gastral cavity is divided into four chambers by a central cone and four crociate radial septa.

1. Hyaloneme (Stylocalyx) thomsoni, Marshall (Pl. XXXIV. figs 1-11).

In his memoir on the Hexactinellide ${ }^{1}$ W. Marshall describes a species of Hyalonema obtained by Wyville Thomson on the "Porcupine" Expedition to the north of the Shetland Islands, at a depth of 550 fathoms. This form measured 7 cm . in length, $3 \cdot 5$ being occupied by the body proper, and 3.5 by the basal tuft, nad about 8 mm . in thickness. Through the kimlness of O. Schmidt I have been able to examine this dried specimen. The body ${ }^{2}$ has a spindle-like form, the upper end not being transversely truncated, but extending to a somewhat pointed apex, in the form of a projecting cone. The basal tuft is surrounded, just below the lower pointed end, by an encrustation of Palythoa, 3 mm . in leugth, and with four or five polypes. The number of slightly twisted basal spicales is estimated by Marshall at fifty or sixty. On some of them he observed a ridge with nail-like teeth, which was absent from others; the lower ends are all broken off: In the still partilly preserved extemal dermal skeleton Marshall found regular "four-rayed" spicules which were mutually arposed by their limbs, and also several five-rayed forms. In the fir-tree forms situated on these spieules of the dermal network the spimose principal ray projects, according to Marahall. into the lumen of the rectangular dermal meshes in the plane of the skin, that is, lies tangentially. Besides these, amphidiscs occasionally occur, 0.03 to 0.08 mm , in length, and with six long, narrow, pointed anchor-teeth, as well as very small (0.008 mm . in length) double anchors. Within the body of Hyaloneme thomsoni, Marshall describes fomr large cavitics, into which large and small parenchymal passages open. On the wall of these cavities loug curved uniaxial spicules occur, besides isolated smooth six-rajed forms and amphidiscs with small double anchors. In the parenchyma proper ho found, besides the long uniaxial spicules, four-, five-, and six-rayed forms, and most firquently small hexacts.

In the covering membrane, which extends from the truncated superior and external margin to the conical knob projecting freely is the centre, Marshall olsecved four cleft-

[^59]like openings which led into the four subjacent cavities. In this lid, and in the eonical terminal knob, the same fir-tree-like amplidises ocemred as in the external shin.

From my own examination of the specimen in Professor O. Sehmidt's possession, which was origimally investigated by Marshall, 1 am able to corrobornte the essentinl results of Marshall's research, and I shinll therefore only confine myself to extending and completing the latter.

The parenchyma proper in the above-lescribed Hycloneme is supported by mediumsized, smooth, regular oxyhexaets, beside which uumerous smooth, straight, or curved diuets oceur, with or without central swellings. These have been already figured in detail by Marshall. Small oxyhexacts with straight roughened rays-and these onlyoecar is moderate abondance (P1. XXXIV. fig, 4). In the dermal skeleton the familiar amooth Lypodermal pentacts ocemr, as also autodermal penitact pinuli with somewhat long terminally toothed basal ruys, and with a freely projecting pointed distal, about 0.2 .4 mm . in length, and beset with long obligue curved sjunes (PI. XXXIV. fig, 6). Roundish amphidises of various form and sizo, of which the largest linve rn average length of 0.2 mm ., also occur. They are characterised by the possession of a flat, short, terminal umbel on cither side, with six simple hook or claw-shaped, narow rays, not torminally brondened, The moderately strong axial rod bears isolated bemispherieal nodes, four of which, usually Bomenthat more strongly developed, are erneiately disposed in the centro (PL XXXIV, fig. 2). An amphidise of this type, in process of formation, is figured in PI. SXXIV. fig. 7. Besides these typieal six-rayed large amphidises, others half as large occur, with long, eampanulate, uarour, eight-rayed umbels, the slender rays of which almost meet, diverging somewhat laterally towards one another. The nariow axial rod has a ceatral nodule (Pl. XX.IV. fig. 3). Still smaller forms whose unbels with eight or more rays are short and Lemieplerical (PI. XXXIV. figs. 5, 8), occur nbundantly. In the basal pad of the lower end of the body strongly developed spieules ocur, varionsly provided with rays from six to two in number. These truneate rays are thickly studded with spines or teeth from the ends to within a varying distance of the centre (P]. XXXIV, figs. 10, 11).

The tuft of spicules is composed solely of long spienles, which bear toothed singed ridges. These are either broken off inferionly, or continued into a chab-shaped or hemispherieal four-toothed anchor with fow strong, backwardly bent, nawow, pointed teeth (PL. XXXIV. fig. 9).

Among some Hexactinellids of the "Porcupine" Expedition which I obtaned through the Challonger Office, 1 found a specimen with chameters exaetly corresponding to those above described. This was ohtained from Station 47 of the "Porcupine" Expedition, from a depth of 542 fathoms. The extended spindle-shaped form had a total length of 45 cm . The body proper, which was about 5 mm . in thickness, occupied 3 cm .; and was coutinned superiorly into an apex, while the narrowed lower ead bore a colony of threc or four Palythoa prolypes, embracing the basal tuft for 2 mm . The spicules both of
the pacenchyma and of the basal tuft were exactly similar to those above described. The skin was mfortumately wholly absent, so that nothing further could he ascertained as to dermal skeleton.

A thied specimen, which in my oprinion belongs to this species, Hyalonema themsoni, is depusited in the Berlin Zoological Museum. It is labelled as Hydulonema Iusitenicum, Bocage (?), was collected by Wyville Thomson off the West Hebrides, and is numbered 405. This splendid specimen has a total leugth of 21 cm , and the body proper, which ocenpies 9 cm ., has a masimum breadth of 3 cm . I have figured it in its natumal size on PL CXXIY. fig. 1. The apieal cone projects- 2 cm . in length-from the centre of the trmicated terminal suface, which exhibits four cruciately disposed radial septa aud interjacent apertures, and resembles exactly the superior surface of the speeimen figured by Marsluil. Below the somewhat sharply angular projecting lateral margius of this smooth terminal surface, which is uot oovered by a dermal sieve-petwork, the body exhibits a slight aunular constriction but curves outwards again below the middle, and is finnlly conically narromed towards the lower end. Below the somewhat rounded off annular basal pad, there is an encrustation (6 cm . long) of Palython, zud from this the hasal tuft is prolonged downwards (P1 XXXIV, fig. I).

In the parenclyym, besiles medium-sized, smooth, regular oxyliexacts and numerous smooth, straight, or gently curved oxyuliacts, with or without central nodes or tubercles, a large number of small oxyhexnets with straight, somewhat roughened rays oceur, similar to those which we have already described and figured in the smaller speeimens (PI. XXXIV. fig. 4).

The dormal skeleton exhihits the same smooth hypodermal oxypentacts and somerwhat long, narrow pinuli, with moderately long, slightly spinose, basal mays, as we have already described in the smaller specimeus. Tho amphidises also essentinily agree in size and form with thase ahove described and figured (PL XXXIV. figs. 2, 3, 5, 7, 8,), and diffor imly in this, that the largest amphidises with short, narrow umbel rays have, as a rule, not six but cight rays. The substantial toothed spieules of the basal pad nud the long spicules of the root-processes essentially resemble those of the above forms; occasional, slight, and inconstant differences seem to me to be simply individual, couditioned by the large size, and in no way of specific importance.

The auperior torminal surfice is in this specimen much better presersed than in the smaller forms, so that the essential agreement between the covering mombrane and the external akin is demoustrable, excopt that the autodormal pentact pinuli are somewhat natrower and longer than in the formor. The same enveloping lajer extends for some distance into the system of efferent tubes.

Near the basal pad numerous more or less long dinets occur in the purenclyma, and do not run out at their onds into smooth points, but aro somowhat thickened and spiuose before findly terminating in conical points. At the middle point of
these diacts with spinose torminal portions four cruciate hemispherical tubercles usually occur.

This species, Hyalonema thomsoni, diffurs from Hyalonema lusitanicum, Bocage, not only in general form and in the long projecting cone, bat more especially in the large amplidises with short narow umbel rays, and in the absence of small oxyliexacts with curved rays.

Though I have no hesitation in including the three forms destribed above within the oue species, Hyoloneme thomsoni, Marshall, I am in doubt as to a specimen of Hyalonema dredged near the Azores (Station 73_{1} lat. $38^{\circ} 3^{\prime} \mathrm{N}$., long. $31^{\circ} 14^{\prime} \mathrm{W}$.), at a depth of 1000 fathoms, from a Pteropod ooze ground. This fragment, which has a total length of only 8 cm ., represents the lateral portion (about one-third) of a pear-shaped body, abont 8 mm . in breadth at the upper end, while the inferior portion narrowed to 2 mm . projects as a broken tuft of fow spicules. The superior extremity of the body is not preserved.

The parenchymal spicules consist of smooth oxydiacts of various lengths, with or without central tubercles, and of moderately large smooth oxyhoxacts and smaller forms with straight somewhat ronghened rays,-all exactly agreeing with those ahready described in Hyalonema thomsoni. The hypotermal smooth oxyputacts and the somewhat slim autodermal pinuli of the skin do also not differ essentially from those of Hyalonema thomsoni, and the stme may be said of the substantial spicules of the basal pal (PI. XXXIV. figs. 15, 17), or of the long spicules of the root-tuft, distinguished by their four-toothed terminal anchors (PI. XXXIV. fig. 16), which exhibit an axial cross.

Only the amphidises, still discoremble in the small aud isolated remnants of the skin, are somewhat divergent from those of the specimeus of Ityalonema thomsoni, in the apparent absence of the large form bearing short hemispherical terminal umbels with six or eight narow hook-shnped umbel rays, mul in such slight differences in the form of the small amphidiscs, as may be discovered by inspecting PI. XXXIV. figs. 12, 13, 14. Since the apparent absence of the harge amplitises may very probably be reforred to the incomploteness of the specimen in which the skin waa nimost gone, and since besides the small divergent amphidises exactly congruent forms also ocem, there seems no renson to erect a separate species for this fragment, and I therefore content mysolf with designating it Hyalonema thomsoni, var, exiguum.
2. Hyalonema (Stylocalyxi) apertum, u. sp. (Pls. XXXVII., XXXVIII.).

In the Sagami Bay, west of Yokohama in Jupan (Station 232, lat. $35^{\circ} 11^{\prime} \mathrm{N}^{\prime}$., long $139^{\circ} 28^{\prime}$ E.), from a depth of 345 fathoms and a green mud bottom, severat specimens of Hyalonema were dredged. In some of these the body is still well preserved, but in most only the basal tuft and the Palythoes inernstation remain. The body of the
sponge is cup-shaped, more or less curved outwards laterally, and truncated transversely or obliguely above. The superior terminal surface is sometimes almost flat, uswally, however, markelly concave, and always provided witls a sharp-angled projecting marginal fringe, and with a central more or less markedly projecting cone. From the inferior lateral portion of this central eone four radial longitudinal plates extend as septa through the gastral eavity, broadening out laterally to unite with the thick body-wall. By these four cruciately disposed septa, four cavities opening widely on the upper terminal surface are enclosed, and these are continued laterally and inferionly into the trec-like branched system of efferent camals. The fine terminal canals extend to within a short distance of the external skin, and there end blindly in those diverticula of the membrana reticularis which are characteristic of the Hyalonematidæ (Pl. XXXVII. figs. 1-3; Pl. XXXVIII. fig. 1). Close below the ineonspicuous annular hasal pad, surrounding the upper portion of the long much twisted root-tuft, there is an incrustation of Palythox, which embraces in some forms only a small portion, and in others two-thirds or more of the long tuft.

The total length of the sponge varies between 18 and 50 cm ., of which the body itself occupies, on an average, from 5 to 8 cm . The maximum diameter sometimes occurs just below the upper end, sometimes about the middle, and varies from 3 to 6 em . The average thickness of the basal tuft, just below the lower end of the body, is 3 to 4 mm .; further dowu, however, it becomes greater until the brush-like divergence of the spicules begins. Apart from some circular apertures from 1 to 4 mm . in diameter, the superior convex surface of the body and the whole surface of the freely projecting conus are seen to be fairly smooth. On the other hand, the whole lateral swface distinctly oxhibits, even to the naked eye, the rectangular lattice-work of the dermal membrane (PI. XXXVII. fig. 3).

The parenchyma contains a few medium-sized superficially smooth oxyhexacts, and numerous oxydiacts, disposed in strands or lying singly, with or without central swellings or with two or four craciate nodes (PI. XXXIIII, fig. 3). The small oxybexacts which ocenr in great abundance are all rough, and almost thorny, and have more or less markedly eurved rays (P1. XXXVIIL. fig. 5). Isolated very small but strongly developed oxyliexacts, with distally directed teeth (PL. XXXVII. fig. 4), oceasionally oceur.

The dermal skeleton, which appears on surface view as a conspicuons rectangular latticework (Pl. XXXVHI. fig. 2), eonsists of simple smooth medium-sized bypodermal oxypentacts, and of abundant autodermal pentact pinnli, about 0.2 mm in length, with strongly developed short-toothed basal rays, and somewhat strougly dereloped distal ray; with short obliquely inserted, spines (PI. XXXVIII. fig 10), cud finally of incgularly scattered, large, medium-sized, and anall amphidises. The former, measuring from 0.15 to $0.1 \bar{r}$ min. in loggth, lave a strong knottod axial rod, and broad ambels with eight paddloshaped rays (PL. KXNVIII. fig, 7); the tiidde-sized forms have from ten to thelve long narrow nombel rays (IL NXXTIII. fig. 6); while the very abundant small forms bear
hemispherical umbels, with many (ustually twelve) rays, and thin axial vods, either smooth or with median nodes (PI. XXXVIII. figs. 8, 9).

The gastmal skeleton exhibits smooth hypogastral pentacts similar to those oceuring in the skin, the sume form of pinuli as autogastralia, nnd similar or somewhat smaller amphidises (PI. XXXVIII. figs. 1, 12). While the smooth pentacts and the amphidises are confined to the gristral membrane and to the lining of the largest efforent passuges, the pinuli have a somerhat wider distribution, and, becoming seareer as the four basal rays aro more prolongel, are contimed into the ciferent systom of camals even to the fine terminal branches, where they finally entirely cease (PI. XXXVIII. fig. 1).

The projecting fringe of spicules on the external shate margin of the oscular region consists of marginal oxylincts at least 0.5 mm . in length, with long distal ray bearing minute obliquely disposed spines. The proximal ray, which is about a third shorter, bears rery small backwardly directed teeth. At the boundary between the two rays foar ernciately disposed hemispherical or somerrhat larger knobs protrude (Pl. XXXVIII. fig. 11).

In the lower narrowed end of the lody, and especinlly in the basal pad, compact six to two-rayed spicnles with blant, toothed, or spinose ends oceur, like those in the same position in most species of Hyctoneme. The spicules of the Lasal taft vary greatly in longth, and resemble in structure those of Hyalonema sicboldï, to which Hyalomemat apertum presents a close resemblance in the general structure of ita spicules. While the upper portion of these long-stalked anchors is quite smooth, the lower lears oblique rows of barbs on projecting ridges, and, on the very end, borne on a smooth narrow neek, H hemispherical or helmet-shaped terminal knob with four to eight shovel-shaped marginal anchor teeth, whieh are directed obliquely upwards and outwards. The intersection of the axial canals in these long anchor spicules always lies in the lower swollen end, in the head of the anchor,

In a rich collection of Japanese forms brought home by Dr. Hilgendorf, and deposited ii the Berlin Zoological Mluscum, are several dried and well-preserved spirit specimens of Hyalonemu apertuin. On closer examination of these I found two small dried specimens of this species, which had been temporarily designated by Professor TV. Marshall as Hyolonema affine, Marshall. Irefor on this point to the briof deseription which Marshall gives, in lis researches on Hexactinellids (1875), of IIyalonema uffine, a species which he had erected for a form which had been already examined by Mlax Schiltze and noted by him as "B" and "C."

The diagnosis which Marshall gives (loc. cit., p. 234) is as followa:- " Hyalonemd affine, if not, as I believe, a distinct slecies, is at least a specinlly well defined varicty of Hyalonema sieboldix. Tho tuft is 47 cm . long and only 8 mm . broad; the sponge body proper has a length of 9 cm . Other specimens exhibit, with an atsial strand of about the same length, hhough of greater brealth, a larger sponge-body, which measures for instance
in the specimen figured by Max Schultze on Taf. i., 13 cm ., while the root-tuft is 48 cm . long and 1.5 cm . broad. I wish, however, to lay special emphasis on this, that in Hyalonema affine the dermal skeleton (partly rubbed off however, though not to such an extent as Max Schultze describes) exhibits peeuliar characteristies. From the lower end of the sponge body, from the position where the axial tuft enters, mmerons longitudinal strunds, 0.5 mm . in breadth, arise, dividing repeatedly and anastomosing with one another, becoming gradually narrower in so doing, and I did not olserve these longitudinal strands in any other specimen of Hyalonema, although I examined a considerable number in various states of preservation. The strands are composed of nniaxial, decidedly long (8 cm .) pliable spicules which frequently intersect. At the point of intersection there is a tolambly constant occurrence of a spicule with dimensions which neither I nor Nax Schutze have ever found in Hyalonema sicboldii, namely, with an axial length of fully 3 mm . The intersecting bundles lie in the direction of the axes. Between these strands there is a further dermal skeleton, but this in no way differed from that of the other specimens. Similarly the afficrent apertures, and indeed the rest of the spongetissne, agreed both in macro- and microscopic characters with IIyalmema sicboldii, though the apertures were not so abundantly present. It seemed to me, however, that the great differences in size, and especially the peculiar character of the dermal skeleton, justified the crection of a new species, closely related to Hyclonema sieboldia."

According to this description, which was of course based on a single, dry, and probably not very well preserved specimen, it seems to me possible that the form above deseribed as Hyalonema apertum may be identical with Marshall's Hyaloneme affine, and I have indeed hesitated long whether I should adopt the older desiguation. There is, however, in Marshall's diagnosis no mention of some of the peculiarities which are typical and characteristic of Hyclonema apertum, especially the complete absence of the terminal sieve membrane, while the character especially emplasised by Marshall, namely, the presence of intersecting bundles of long uniaxial spicules below the skin of the dried specimen, occurs nlso in various other species of Hyalonema (though not in Hyalonema sicboldii, owing to the presence of countless commensal polypes), so that no certain and exclasive charneter seems to remain to Hyalonema affire. The dimensions of the body or of the basal tuft cannot be regarded as in any way determinative.

Since, then, it is not probable that Hyalonema affine, Marshall, is identical with my IHyslonema apertum, I prefer to retain for the time the latter title.

3. Hyalonema (Stylooclyx) depressum, n. sp. (Pls. XXXV., XXXV1.).

In the Mid-North Pacifie, north of the Mellish Islands (Station 246, lat. $36^{\circ} 10^{\prime} \mathrm{N}$., long. $178^{\circ} 0^{\prime}$ E.), from a depth of 2050 fathoms and a Globigerina ooze ground, severnl specimens of IHyalonema were dredged, which in general form differ markedly from tho
above-described species, in exlibiting a body broader than long (PL. XXXV. figs. 1, 2). The breadth bore to the length an average proportion of $2: 1$, so that the whole body of the sponge appeared as compressed from above downwards. The lateral margin is, however, never sharp. From the middle of the superior gently convex surface, an irregularly ronodish, narrow and shap, oscular fringe projects, consisting of a circle of parallel rod-like spieules (PI. XXXV, figs. 1, 2). Through the roundish oscular opening, one sees the bluntly romed conus centralis projecting to the level of the aperture, while from the sides of the former four crneintely disposed main septa extend laterally and iuferiorly. Between these cross septa the ramified efferent canals penetrate into the parenchyma (PI. XXXV. fig. 2). The surface of the under side is but rarely simply convex, as in Pl. XXXV. fig. 1; it nsually appears somewhat flattened or even pressed slightly inwards. The portion from which the tuft of bastl fibres springs is however usually somewhat protruded. The spieules of the lasal tuft are rather strougly developed, in large specimens almost attaiming the thickness of pins. They are, however, not preserved throughout their whole length. Sometimes the bunch of spicules nttains the thickness of one's little finger (Pl, XXXV. figs. 1, 2). The largest specimen measured 12 cm . in breadth, and about 6 cm . in hieight; the smallest was 5 cm . broad, and 3 cm . high. Ten perfect specimens and some fragments were procured.

The parenelyma of the sponge is supported by the usual modium-sized smooth oxyhexaets, and by numerous smooth, straight, oxydiacts with tolerably large central nodes. More rarcly a terminal swelling oecurs (PI. XXXVI. fig. 2). Between the above forms lie a great number of small rough oxyhexaets, with straight or earved rays (Pl. NXXVI. figs. 9, 10 ; Pl. XXXV. figs. 9, 10).

In the dermal skeletou somewhat large, smooth hypodermal oxypentacts oceur, in which the four tangential rays are not disposed at right angles to the radiul proximal in a single plane, but are bent somewhat inwurds (P1. XNXVI. fig. 8). The proximal ray is generally three or more times louger than the tangentials. Externally the skin is thickly corered with numerons autodermal pentact pinnli, with four somewhat short and thick basal mays bearing small firm tubercles, while the moderately long, strong distal exhibits somewhat strong lnteral spines direeted upwards (Pl. XXXV. fig. 7). The largest of the dermal amphidises are abont $0^{\circ} 2 \mathrm{~mm}$. in length, and ocear somewhat sparsely; they bear a very namow, smooth, or slightly roughewed axial rod, with four or eight lateral teeth. In somo cases these middle teeth are curved forward towards the distal umbel of rays (PI. NXXVI. fig. 3). The terminal umbels are somewhat long and bell-shaped, and consist of eight to twelve lancet-shaped, but usually quite narow rays (PI. XXXV. fig. 4). Besides these, medium-sized amphidises of similar form oecasionally oceur, and likewise small forms with many-rayed liemispherical terminal umbels (PL. XXXVI. fig. 6).

Of similar strueture is the gastral skeletou on the free surface of the central cone, on the main septa, and in the large gastral casitics, while it gradually assumes a different
character in the tubular efferent canals, especially through the degeneration and final disappearance of the supporting hypocanalicular pentacts, as also throagh the shortening of the autocanalicular peutact pinuli, which further exhibit a less thickly spinose free ray and longer roughened basal rays. Lastly, in the finer canals the pinuli gradnally become fruther and further distant from one another, until just before the diverticula of the membrana retienlaris only isolated very delieate pinuli occur (PI. XXXVI. fig, 1). Numerous amphidises lie in the gastral-canalicular membrane, but do not penetrate as far as the layer of chaubers. The large form of amplidises (PI. XXXVI. fig. 3) is here altogether absent, but the medium-sized, and especially the smaller are often present in great abundance.

The marginalia form a closed ring on the free sharp edge of the oscular aperture. They have the form of moderately long oxydiacts with perfeotly smooth proximal, and somewhat thickly spinose distal rays. On the boundary between the two rays, two opposite, or rarely four cruciate tuberclos or bosses almost always project. These are usually hemispherical or somewhat longer than broad, or else completely rounded off.

The basal pad contains the familiar firm spicules with six to two rays, the ends of which are beset with spines, while the imer portion remains smooth (Pl. XXXV. fig. 8). The strongly developed spientes of the basal tuft, almost as thick as pins, are in part smooth, and in part studded with numerous nail-like barbs, which are not inserted on annular or spiral eross ridges, but are disposed in isolated fashion in indistinct and irregularly developed spiral rows (PI. XXXVI. fig. 7). Viewed from the surface, the freely projecting points of the teeth appear to be marked off by a line of basal tubercles. Such a bounding line does not really exist above, as may be readily seen when viewed in profile, but is merely the optical expression of the upper margin of the origin of the barbs on the surface of the spicule. Towards the lower end the long spicules become markedly thinner, the lateral barbs diverge further from one another, and the spicule ends below in a peenliar hemispherical anchor structure with four double hooks cruciately disposed (PI. XXXVI. fig. 11), or in a hemispherieal terminal knob from which four minute simple craciate pointed barbs project backwards, as in the anchors of Hyalonemut thomsomi, var. exiguum (P1. XXXIV, fig. 16).

Several forms of Hyaloneme, differing only in subordinate characters from that above described, and wholly agreeing with it both in general organisation and in the structure of the spicules, and therefore undonbtedly belonging to the same species, were dredged in the Mid-Pacific (Station 271, lat. $0^{\circ} 33^{\prime}$ S., long. $151^{\circ} 34^{\prime}$ W) from a similar depth of $2+25$ fathoms and from a Globigerina ooze bottom. There are two perfect specimens, destitute only of the freely projecting portion of the basal tuft, and also the fragment of a thind form, all procured at the same locality. All the three seom somewhat smaller than the above, and exhibit either a conical form with an inferior point, or a flat cake-like shape. The breadth varies from 5 to 6 cm ; the height from 3 to 4 , and in the latter form
measures only 2 cm . In other respects the form and structure are not essentially difforent. The somewhat brighter colour is rather striking, being in these three forms light greenish-yellow, while those from Station 246 wero dark dull greenish-brown. The seetion in Pl. XXXVI. fig. 1, is a diagrammatie ropresentation of a longitudinal seetion through the external marginal portion of one of the specimens from Station 271.

4. Hyalonema (Stylocalyx) clavigerum, n. sp. (PI. XLI.).

In the neighbourhood of the Penguin Islands (Station 147, lat, $46^{\circ} 16^{\prime}$ S., long, $48^{\circ} 27^{\prime}$ E.), from a depth of 1600 fathoms, and from a Diatom ooze ground, a fragment of a Hyclonemal was dredged, which is represented in Pl. XLI. fig. I. The fragment represents about one-eighth of the whole body, and is without any trace of the basal tuft, but still exlibits a portion of the oscnlar margin and onc of the ralial septa. The consistenee of this sponge fragment, which is about 5 cm . long, and represents a probably truncated oval body, is not so great as that of Hyalonema globus. The whole extermal surface distinetly exhibits a well-developed rectangular dermal framework.

The parenchymal skeleton consists again of somewhat large smooth and radially disposed oxyhexacts, and of simple oxydiacts which are either smooth, or have a median swelling or four projecting medinn knobs. Between these, thin forms oquipped at both ends with delicate barbs (PL. XLI. fig. 6) oceasionally oecur, like those found abundantly in the parenchyma of Hycelonema globus (P1. XL. fig. 5).

Besides these, minute delicate oxyhexacts occur in some abundance, exhibiting fine straight pointed rays, on which a gentle eurvature may, here and there, be detected (Pl, XLI. fig. 7).

Those oxyhexasters which are represented in large numbers in the diagrammatic section of PI. XLI. fig. 2, and under high power in PI. XLI. fig. 5, do not really belong to this sponge, nor indeed to the genus Hyalonema, but are forms which have been aceideutally imported.

The dermal skeleton is mainly composed of somewhat large smooth hypodermal osypentacts, with oblique, inwardly directed tangential rays. On the outer surface mumerons antodermal pentact pinuli oceur, with rather long, smooth and pointed, basal tangential rays, while the relatively short distal ray bears, as in Hyaloneme globus, long, fine, upwaxdly bent lateral spiues, and a knob-like extornal terminal pertion with thick, somewhat pointed axial end, and so has a tufted appcarance (PI. XLI. fig. 4).

The somewhat large amphidises which are irregularly seattored in radial disposition within the external skin, exhibit a firm smooth axial rod with several (fom or eight) radially projecting tubereles in the centre. The bell-shaped terminal umbels aro rather broad, and measure about one-fourth of the total length. They consist of eight broad shovel-shaped rays with lancet-like pointod onds (P1, XLI. fig. 9). There is a much sparser
occurrence of rather small elongated forms, with narrow umbel-rays (PL XLL. fig. 10), Very frequent, on the other hand, is the oceurrence of the familiar small amphidises with ten- or twelve-rayed, short, hemispherical umbels (PI, XLI. fig. 11).

In the gastral membraue and in the lining of the larger efferent eanals the hypogastral oxypentacts are absent, but strands of oxydincts of various thickness, with or without central thickening and projecting nodes occur abundantly. The autogastral pentact pinuli are strikingly distant from one mother, and bear long, pointed, somewhat spinose hasal rays, and a rather long spiudle-shaped, thickened proximal with short, almost seale-like teeth (PL. XLL. figs. 2, 8). Small amphidises with twelve- or more rayed, short, hemispherical umbels occur abundantly in the gastral membrane. The cuff-like limiting fringe round the sharply defined oscular margin consists of oxydiacts, almost 1 mm . long, in which the proximal ray is quite smooth and simple, and uniformly narrowed into a sharp point, while the free distal ray, close above the smooth inner portion, is beset in fir-treelike fashion with scale-like or pointed spines, projecting obliquely outwards, and also exhibits a spindle-shaped thiekening (PL. XLI, fig. 3).

5. Hyalonema (Stylocalyx) ylobus, n, sp. (PL DL.).

Near the Banda Islands, in the Malay Archipelago (Station 194A, Iat. $4^{\circ} 31^{\prime}$ S., long. $129^{\circ} 57^{\prime} 20^{\prime \prime}$ E.), from a depth of 360 fathoms and volennic mud ground, a specimen of Hyalonema was dredged whieh differed in some points from the speeies bitherto described. The body which is almost globular measures 23 mm . in length and 22 mm . in breadth. On the superior pole there is a round ascular aperture, 4 mm . in diameter, with a shap tangentially directed margin bounded by a thin fringe of spicules (PL. XL. fig. 1). Through this terminal opening the gastral eavity can be seen with the somewhat pointed conus rising from below, and with four craciately disposed radial septa, extending from the lower portion of the conus to the margin, towards which they become broader. The lower pole of the spherical body bears an apparently mueh damaged lasal tuft. The scanty spicules do not exceed $0: 2 \mathrm{~mm}$ in thickness (PI. XL. fig. 1). The thole uniformly curved external surface of the body is covered with a dermal latticework, the distinct meshes of which are approximntely or perfectly square, and formed of strands which aro arranged like the lines of longitude and latitude on a globe.

The parenchyma is supported by strongly developed smooth medium-sized oxyhexacts, and by oxydiacts of variable length and thickness disposed in strands. Besides these smooth oxydiacts, forms oceur in some nbundance, in whide not ouly looth cmls, bat the central portion, and rarely the whole spicule, wre more or less thickly covored with centrilly direeted barbs. Four crneintely disposed projecting nodes occur in the centro, and these are sometimes continued into curved hooks (P1. XL. fig. 5). The parenchyma further contains a considerable number of very slim, smooth oxy hesaets of variable size,
but usually about 0.2 mm . in diameter (PI. XL. fig. 10). The spicules represented on PL. X1. figs. 3, 11, 13, also occur here and therc in the parenclyyma, but do not really belong to this species, being extrinsic importations from other forms, perhaps from a Grateromarphe.

The lasis of the dermal skeleton consists of strongly developed smooth oxypentacts The apposition of the tangential rays of the latter forms the square-meshed lattice-mork, which can be recognised even with the maided eye (PI. XL. fig. 2). This gives this sponge a greater compactness than is possessed by any other species of Hyaloneme. The radially directed proximal ray is longer than the tangentials. Adjacent to the latter lie strands of smooth oxydiacts with central swelling or nodes. The autodermal pentact pinuli exhibit comparatively long, straight, spinose basal rays, about 0.05 mm . in length, while the somewhat short (about 0.1 mm .) projecting distal is charicterised by the long lateral spines, directed upwards and outwards, which begin at some distance from the base, are somewhat distantly inserted in the middle portion, become more closely apposed in the upper part of the ray, and finally form a kind of bud, in the middle of which lies the end of the ray, in nowise thin or gradually pointed, but rather thick and ending in a conical point (PI. XL. fig. 16).

The abundant and characteristic amphidise in the skin is a large, strongly developed form, 0.4 mm . in length, in which the thick smooth axial rod is centrally beset by eight slim tubercles or bosses. The somewhat broal, but not very long terminal umbels are not aniformly hemispherically arched, but are at their outer end shightly truncated. The eight umbel rays with broad, blade-like, longitudinal bases, have a broad paddle-like form and a rounded end (PI. XL, fig. 7).

Besides these, there is a frequent occurrence of those small amphidises with hemispherical, twelve- or more rayed terminal umbels, and with slim delicate axial rod, which occur in the skin of all species of Hyalonema (P1. XL. fig. 15). In the gastral membrane, however, the hypogastral peutacts are either wholly absent, or of very sparse occurence, while the strongly developed smooth oxydiacts and the associated pentact autogastral pinnli are very abundant. The latter exhibit rather long slightly spinose basals, and a free fir-tree-like ray, which runs out into a thin terminal point and bears short curved lateral spines. I did not find any large amphidises in the gastral membrane, but the small forms oceur in great abundance.

The marginal fringe of the superior oscular aperture is formed of oxydiacts which attain a length of only 1 mm . The freely projecting distal ray is beset with hook-shaped externally curved spincs, while the proximal bears only swall pointed tabercles. At the boundary between the two, on the thickest portion of the spicule, four cruciately disposed hemispherical bosses project (P1. XL. fig. 6).

In the lasal pad numerons strong spicules with six to two rays ocenr, in which the blunt ends are thickly beset with spincs. It may be frequently observed, especially in
the numerous tetracts, that the rays are somewhat eurved, even in the cross plane (PI. XL. fig. 12). The spieules of the basal tuft, which vary greatly in size, are smooth superiorly, but inferiorly beset with isolated barbs, while the helmet-shaped thickened lower end bears four long cruciate, flat or roundish, anchor teeth of variable length, directed upwards and outwards (PI. XI. figs. 8, 9).

6. Hyclonema (Stylocalyx) degans, n. sp. (PL XXXI. figs. 1-7).

In the Mid Pacific, to the south-cast of the Christine Islands (Station 271, lat. $0^{\circ} 33^{\prime} \mathrm{S}$., long. $151^{\circ} 34^{\prime}$ W.), from a depth of 2425 fathoms and a Globigerina ooze bottom, an extremely delicate and soft Hycloneme was trawled. The compressed moundish inferiorly pointed body has a thickness of about 2 cm ., and bears a basal tuft of a few projecting spicules which mensure 12 to 14 cm . in length (Pl. XXXI. fig. 1). At the upper end of the body a central cone slightly projects, and from it four ernciately disposed radial plates extend, dividing the central eavity into four divisions. The superior openings of these cavities are seen ns irrogular roundish gaps on the upper surfaec. It is improbable that a terminal sieve plate extended over these apertures; no trace of such a structure persists. On the upper half of the body, indeed, the whole outer skin seemed to have been rubbed away, while traces of the same are still recognisable on the lower somewhat bulging conical portion.

The loose parenelyma contains not only simple smooth medium-sized oxyhexacts, and numerous smooth (or rarely terminally roughened) (Pl. XXXI. fig. 3) oxydiacts of medium size and inconsiderable length, but also a great number of small smooth oxyhexacts with curved rays.

The dermal skeleton (Pl. XXXI. fig. 2) consists of somewhat strongly developed, smooth oxypentacts, on which mmerous antodermal pentact pinuli are apposed. The latter exhibit four moderately long, terminally slightly toothed basal rays, and a more or less spinose distal (PI. XXXI. fig. 4) which may attain a length of 0.5 mm . Besides these, ummerous medium sized eight-rayed amphidises ocenr, bearing on their axial rod several somewhat irregularly distributed boss-like, projecting, lateral tubereles, and exhibiting straight, bell-shaped terminal umbels which are so long that their flat loncetshaped rays almost meet one another (PI. X.XXI. fig. 6). There are also numerous minute amphidises with slightly arehed short umbels, 0.02 to 0.04 mm . in length (PI. XXXI. figs. 5, 7). Isolated largo broad amphidises also ocemr, but I am doubtful whotherthey really belong to this specics. From their scarcity and irregular disposition it secms probable that they owe their origin to one of the otherspecies of IIyalozema which lay in the same glass and which contain these broad amphidises in abundance. The hasal tuft exhibits numerons firm spicules with six to two rays, which are straight and terminally beset with strong teeth, or clse truncated or rounded.

The long spicules of the tuft are quite smooth and are all broken at their lower end.

7. Hyalonema (Styloculy.x) tenстиm, n. sp. (PI. XXXI. figs. 8-20).

In the South Pacific (Station 289, lat. $39^{\circ} 41^{\prime}$ S., long. $131^{\circ} 23^{\prime}$ W.), from a depth of 2550 fathoms and a red clay bottom, a delicate and very loose Hyalonena was dredged, which exhibited a pear-shapod body 4 cm . in length, and 25 cm . in maximum breadth. In the middle of the upper, very injured extremity a pointed cone projects, from the sides of which four eruciately disposed longitudinal septa extend to the side wall, separating the central eavity into four chambers. From the lower, somewhat pointed end, a narrow basal tuft projects for about 16 cm . It is composed of about fifty spicules which are wound spirally together, and which exhibit only at the very extremity a somewhat straighter, and more separate course. The general form of the body, as represented on PL. XXXI. fig. 8 , has obriously been very considerably altered by damage done to the upper lale. The latter appears to have been much rubbed away, and the superior external margin of the upper terminal sufface has been wholly destroyed.

The spicules of the parenchyma consist for the most part of medium-sized smooth oxydiacts, beside which there oecasionally oecur, especially near the outer wall, smooth knobbed or terminally toothed diacts, and sometimes even monacts (PI. XXXI. fig. 10). Besides these long rod-like spicules, medium-sized straight oxyhexacts oceur in considerable abundance in the parenchyma, while small oxyhexacts with curred smoath rays (Pl XXXI. figs. 9 and 17) are very prevalent, and exactly resemble the small curved oxyhexacts of Hyalonena elegans.

The dermal skeleton contains the often mentioned, moderately large, smooth hypodermal oxypentacts without a trace of a (sixth) distal ray. Nnmerous large autodermal pentact pinuli also occur-with four rather long basal tangential rays-strongly developed and with toothed pointed ends, while the extraordinary long (1.6 mm . and more), radially projecting distal is beset with short teeth except in the smooth basal portion (PI. XXXI. fig. 11).

The dermal membrane contains numerous short broal amplidises, which exhibit a perfectly smooth, strongly developed axis-rod, bearing hemispherically arched, broad, terminal umbels with smooth, paddle-shaped rays almost meeting in the middle, and occurring in variable number from eight to twelve, but nsually ten or eleven (PI. XXXI. figs. 12, 13, 20). The interior side of the smooth, terminally rounded, paddle-shaped umbel rays exhibits an inward projecting median ridge, ending in an elevation before the extremity of the ray. In P1. XXX1. fig. 18 one of these abnormal spicules is represented, with four mays, as occasionally oecurs in addition to the form with six. Besides these large almost globular amphidises, in which the opposite paddle-shaped umbel
rays are frequently not exactly opposed, but more or less regularly alternating ($\mathrm{PL} . \mathrm{XXXI}$. lig. 12), more slongated modium-sized forms also occur, which are sharply distinguished from tho above, by the fact that the umbel is not hemispherical but terminally truneate, and furnished with more straightly stretched, olliquely inserted, teruinal mays (PI, XXXI, fig, 14), A somewhat smaller form also oceurs, in which the umbel rays are not broadened out in paddlc-like fashion, but exhibit a narrow point, and in which the axial rod is more or less thickly beset with lateral spines Finally, the familiar manall amphidiscs, with narrow, smooth, axial rods and hemispherieal many-raycd (sixteon to twenty) umbels (Pl. XXXI. fig. 16), also occur in tolerable abundanec, varying in the different regions of the body. In the lowest terminal portion of the body, in the so-called basal pad, strongly developed spicules with six to two rays oceur as in all species of Hyalonema. The rounded or truncate ends of the rays are beset with conical tecth or spines, extending to a greater or less distance intcriorly (P1. XXXI. fig. 15).

The long spicules of the basal tuft exlibitspiral or annular, obliquely projeeting ridges and rows of teeth, which are inscrted on the projecting edge of the ridges.

There now follow those species of Hyalonema, the upper end of which was not sufficiently preserved for deciding the question, whether there is a sieve-plate or not.

1. Hyalonema lusitanicum, Barboza du Bocage (Pl. XXVIII. figs. 12-17; P1. NXXIX. figs. 16-18).

The specimen which Barboza du Bocage obtained in the neighbourtood of Sctubal in Portugal, and which he described and figured ${ }^{1}$ ander the title IIyalonema lusitanicum, consisted of a spirally twisted tuft of spicnles, the narrower end of which was for a leugth of 26 cm . and also at the terminal point, completely covered by a continuous layer of Palythoa, while in the longer free portion the -spicules diverged in bushy tufted fashion. Neither on this specimen, nor on others which Boenge afterwards obtained from the same locality, could any portion of sponge-body be detected. The following diagnosis was given :-" Hyalonema polypario elongato, fibris setaccis hyalinis spiraliter tortis, corio polypigero al apicem usque ad $\frac{2}{5}$ longitudimis totins involutis; polypis dilatatis, ellipticis, valde aggregatis, parum elevatis, per series longitudinales ac spirales regulariter digestis." Barboza must afterwards have found more perfect forms in which the sponge-body was preserval, for I found in the British Musemm in Sonth Kensington, Loudon, a spirit specimen with the label Hyatoncmed lusitunieum, Barboza du Docage, and described as a gift from the discoveru: The specimou was 56 cm. in length, and exhibited on the mucts damaged apper ond a projecting tuft.
(200L CHALL EXP:-PART HIL-1:Si.)
$\mathrm{G}_{\mathrm{B}}^{5} 92$

I was able to procure several small fragments of this original specimen, and the results of my investigation seem to warant me in amplifying the specific dingnosis of Hydonema lusitanieum. From my own notes and from some subsequent observations which Mr. Rirlloy wns kind cnongh to make for me, the length of the much damaged body is 12 cm , the breadth only 2.7 . The much twisted basal tuft of spieules has a breadth of 15 mm . The Palythoa crust is not present having been probably separated off.

In the absence of a marginal fringe and of the probably originally prosent terninal siove-net, it is impossible to determine whether the tuft of spicules, projecting for about 1 cm . on the upper end, and doubtless representing a damaged conus, really projected in the iutact form.

Another form in the British Mnsenm, which is said to have been bronght from Porto Rico, exhibits a body transversely truncated above, with a well-developed terminal sievenet, and with an indication of the conus centralis. The basal tuft here attains a length of 26 cm . and is covered with the Polythoce erust. Whether this second specimen really belongs to Bocage's IHyalonema lusitanicum, I am not able to determine, since I have not been able to analyse the structure of its component spicules.

The following deseription of the skeleton refers only to the first mentioned original specimen of Hyalonema lusitanicum, Bocage.

The supporting spicules of the parenchyma consist for the most part of diaets of variable size and thickness. These are somewhat pointod at either end, and usually exhibit a simple, spindle-shaped, perfectly smooth course, or occasionally bear a single tuberele, or there may be four or two, projecting from the middle point. They are generally somewhat curved, though frequently perfectly straight. Between these diacts mediumsized oxyhexacts occur, though on the whole not very abmudantly. They oxhibit six simple, somewhat pointed, straight and smooth rays, which are generally of equal length. Sometimes, however, four rays cruciately disposed are of uniform length, while the other two lying in the third axis, that is to say, radially disposed, are somerwat longer. I also found isolated monacts with one end thickened into a knoh or rounded off like a button, while the other onded in a point. Scattered through tho whole parenchyma in relative abundance there are small, smooth or slightly roughened oxyhexucts, with rays which are selilom perfectly straight (PL. XXVIII. fig. 16), but usually bent in the familiar fashion, so that three approach each other, and the three antipodals likewisc (PI. XXTTLI. fig. 15).

The middle-sized hypodermal oxypentacts which serve to support the skin are quite smooth, their rays rmin terminally to a somewhat marked point. The autodermal pentact pinuli, which are usually inserted on the latter, bear four short, strongly developed, tangrential basal rays, with blunt, slightly toothed ends, and a strong distal, about 0.3 mm . in length, which has an almost bushy appearance due to the long lateral processes (PI. XXVIII. fig. 17). The majority of the numerous, radially disposed, dermal amphidises have a
length of 0.1 mm ., a long, narrow, axial rod with centinl teeth, and at cach end, a narrow bell-shaped umbel, occtpying about a third of the total length, and provided with eight rays, which have no great breadth, and which have terminally a rather straight course (PI. XXVIII. fig. 18). More rarely larger amphidises ocetr, of similar form, but with a length of 0.2 mm ., and a proportiouate breadth (PL. XXVIIL. fig. 14). Besides these numerous small amphidises occur from 0.03 to 0.02 mm . in length, exhibiting the same form as the above, but lying tangentially in the dermal membrame (PI. XXVIII. fig. 12).

I was not able to examine the spicules of the margisal fringe. The pinuli of the gastral surface and of the associated diverticula differ from those of the dermal region in this, that the distal ray is slimmer, shorter, and not tufted, and that the four basal rays are both relatively and absolutely longer than those of the dermal pinuli. In the basal pad at the lower end of the sponge body; there are numerous strongly developed spieules with a variable number of rays which exhibit toothed rounded ends (P1. XXVIII. figa. 10, 11.)

Among the Challenger material there is a basal tuft of strong spicules much encrusted with Palythoo, which bears a striking resemblance to the specimen figured by Bocage (loc. cit.), and very probably belongs to the species Hyalonema lusitanioum. I have figured it in its natural size in PI. XXXIX. fig. 16, and bave investigated the few persisting remnants of the sponge-body. The form was obtained at Station IV. to the south of Cape St. Vineent, lat. $36^{\circ} 25^{\prime} \mathrm{N}$, long. $8^{\circ} 12^{\prime} \mathrm{W}$, from a depth of 600 fathoms and a blue mud ground. From the upper end of the straight cylindrical form, which measures 20 cm . in length by 10 mm . in breadth, some broken basal spicules project. From the lower end shreds of a Palythoo enerustation hang down, but the buadle of spieules is broken off. That the somewhat conienl point turned upwards in the figure, is really the superior pole, which supported the sponge-body, and had a few projecting spienles inserted in it, is best demonstrated by the examination of the few small remuants of the lost body, which persist loosely bound up with the Palythoa erust. The siliceous elements recognisable in the traces of the basal pad are firm spicules with six to two terminally rounded, cylindrical mays (11, XXXIX. fig, 17), which are beset with conical clevations of variable size either throughout their whole extent or only at their ends. On the larger conieal elevations, small secondary teeth very frequently oceur (PI. XXXIN. fig. 18).

Unfortunately neither the results attained by Barboza du Boeage in his original research on Hyadonema lusitunicum, nor those of my investigation of the above described form, which is probably to be identified with Boeage's, are sufficient to establish any definite diagnosis of the form and structure of the species. Whether the much injured specimen which I examined in the British Musenm is really the same ns the root-tuft deseribed by Bocage in 1864 is likewise doubtful, although the label certainly referred the specimen to the discoverer himself.

I ought not, however, onit to mentiou that in the Berlin Zoological Museum there is a well preserved IHyalonemat form, obtained from Sir Wyville Thomson, and labelled as Hyalonema Tusitauicmm, Bocage. This specimen figured in PI. XXXIV. fig. 1, does not, however, in its form and in ite spieales, resemble the Hyalonema of the British Museum, but agrees in all essential pointo except size, with the Hyatoneme thomsoni, Marshall. I was therefore compelled to deseribe it under the latter designation.

2. Hyclonemu cobuense, Higgin.

The species of Hyalonema which Higgin deseribed in 1875, ${ }^{1}$ under the title Hyalonema celmense, is not represented among tho numerous forms of the Challenger collection. According to Higgin's account the form deseribed must be a distinct species, and not-as Carter seems inclined to make out in lis remarks on Higgin's article-a mere varicty of Hyalonema sicloldii. The most important characteristics of the species are:-(1) the peculiar sculptor's-mallet-like form of the large hody, which measures more than 14 cm . in length and 12 cm . in lreadth; (2) the strikingly thick and short, straight, smooth oxydiacts, which are said to belong to the dermal skelcton; ${ }^{2}$ (3) the peenliar small parenchymal oxyhexacts, which bear hook-shaped lateral spines at the ends of the rays; ${ }^{3}$ (4) the slim donble-harpoon-shaped oxydiacts, bearing all along both mays curved teeth turnod towards the centro, ${ }^{4}$ and finally (5) the presence of four blunt anchor teeth on the long spicules of the tuft. ${ }^{3}$

It is not evident from Higgin's otherwise accurate and detailed description whether a terminal sieve-net covers the gastral cavity, or whether the latter remains open, nor does he note the presence or absence of a fringe of marginal spicules. From the fact that no polype encrustation was observed on the upper end of the fibrons tuft, one cannot of course certainly infor its absenco during life, since it might readily have been separated off.

3. Hyalonema tenue, n. sp. (Pl. XXX. figs. 1-8).

To the east of the mouth of the Rio de la Plata (Station 323, lat. $35^{\circ} 39^{\prime} \mathrm{S}$, long. $50^{\circ} 47^{\prime} \mathrm{W}$), from a depth of 1900 fathoms and a blue mad ground, two fragments of a Hyclonema wore dredged, the siliccous elements of which appear to me sufticiontly characteristic to justify the erection of a distinct species. One of the fragments bas the form of a thin irregular plate about 2 cm . square in the middle of which a normal oval space, 6 mm . long by 4 broad, can be detected (PI. XXX, fig. 1). This openng is

[^60]
surrounded by a circle of radially disposed straight spicules, and as examimation with a low power at once reveals, represcats an oscular opening. The other fragment consists of a somewhat thicker (about 3 mm .) plate, with irregular ragged edges. On one suface smooth-edged oval or coundish pits pecur, from which narow diverticula pass towards the side and towards the interior (PL. XXX. fig. 2). The other surface is rough and upparently damaged. This secomd specimen undoubtedly forms pat of the internal wall of the body, and exhibits the surface limiting the gastral cavity and bearing the openings of the camals.

An examination of the siliecons clements shows, in the first place, that they are all strikingly slim and delicate, whenee my choice of the specific designation tenue. Among the long spicules of the paronchyma, between the numerons slim oxydincts, one romarks an unusual abundance of oxyhexacts of medium and small size (Pl. X.XX. fig. 8), with thin, gradually pointed smooth mays. Besides these, though not so abundantly, small oxyhexacts occur with perfectly smooth curved rays (PI. XXX. fig. 5). In the extermal skin, on the smooth hypodermal oxyjentacts, and on the tangential oxydiacts, numerous autodermal pentact pinuli are inserted, with four smooth basal rays which are relatively long (0.2 mm .), while the slim, finely pointed distal, beset with minute obliquely inscrted tecth, attains a length of almost 1 mm . The amplidises of the skin are of medium size (from $0^{\circ} 2$ to 0.1 mm . in length) and with simple, straight-rayed, eampanulate, mediumsized umbels, occupying one-third of the total length. The umbels never have eight, but always thirteen or twelve smooth, laucet-shaped, umbel rays. The axial rod is beset with nodes, which attain especially in the middle a cousiderable prominence and a craciate disposition. The marginalia, which are radially grouped round the oscular opening, attain a length of $1 \frac{1}{2}$ to 2 mm . Their pointed proximal ond is smooth, and not so long as the likewise pointed distal, which has a length of at least 1 mm . and is beset with oblique lateral teeth. On the boundary between the two rays, four eruciately disposed, globular tabereles project, the rudimentary representatives of the four tangential rays, as is readily demonstrated by the presence of a well-developed axial canal (P1. XXX. fig. 7).

4. Hyalonema robustum, n. sp. (P1 XXXII. figs. 1-10).

In the west of the North Pacific.-(Station 241, lat. $35^{\circ} 41^{\prime} \mathrm{N}$., long, $157^{\circ} 42^{\prime} \mathrm{E}$), from a depth of 2300 fathoms and a red elay hottom, the fragment of a Hyalonemat was dredged, whieh had the form and size of half an apple, and erilently represented ubout half the entire boly of a sponge. On the convex external surface of the hemispherical specimen, the dermal membrane is well presersed as a fine-meshed network, while the torn intornal surface exhibits a loose, wide-meshed parenchym, with cavitics increasing in width towards the interior.

Although I am not usually inclined to bestow specific distinction ou such an imperfect specimen, it seemed to me justifiable to make ab exeeption in favour of this form, on aceount of the marked breadth and strength aequired by the larger almost spherical amphidises, and also because of other peculiarities among the spicales

The large supporting spicules of the parenchyma are more or less long diacts of variable strength, besides which isolated medinm-sized, strong oxyhexacts also oceur, as also rery abundant slimmer medimm-6ized oxyhexaets; in which the rays are eovered with slender spines inserted at right angles (PI. XXXII. fig. 8). Between these a liost of small smooth oxyhexacts with curved rays also occur (Pl XXXII. fig. 6).

The dermal skeleton contains strongly developed hypodermal oxypentacts with proximal rays of varable length. On the tangential rays are inserted rows of autodermal pentact pinuli, with four short, strongly developed tangential basal rays, beset with short distally directed teeth, while the distal ray, about 0.3 mm . long, has a more bushy appearance, due to somewhat long obliquely inserted spines which are specially well-dereloped on the median and external portions (PI. XXXII. fig. 7). Especially striking in the dermal membrane are the very broad, almost spherical, strongly developed amphidises (P1. XXXII. figs. 1, 2), with broaily arched terminal umbels which almost meet in the middle. Each umbel consists of eight to twelve broal, paddle-shaped rays, which exhibit a median ridge projecting inwards and rounded off terminally. They do not pass into a terminal plate at the pole, but end sharply with a projecting margin round a central circnlar pit (Pl. XXXII. fig. 2). The opposed umbel rays are usually not exactly opposite but alternating (PL, XXXII, figs 1, 2).

Besides these, the dermal membrane contains other amphidises, with eight slender umbel rays of smaller, and sometimes of much smaller size (Pl. XXXII. figs. 4, 5). The small umbels only oceupy a third of the total length of the amphidises, or even less in the smallest forms (PI, XXXII. fig. 5).

On the inner surface of the large internal cavity, in the gastral and canalicular membrane, numerous amphidises oceur of medinm and small size. They exhibit in part the same structure as those last described in the external skin (Pl. XXXII. fig. 4), and in part somewhat larger forms (PL. XXXII. fig 3). Those large, almost spherical amphidises, which occur so abundantly in the dermal membrane, are herc altogether absent, nor have 1 found any hypogastral pentacts or autogastral pinuli in the gastral or canalicular membrane.

In the lower portion of the body, which forms an amular pad, strongly developed spicules with six to two cylindrical rays occur. Their rounded ends are beset for a sariable distance with teeth and spines (PI. XXXII, figs. 9, 10), which often appear on the rudiments of undeveloped rays (P. XXXII. fig. 10).

Hyalonema specics diversaz indefinita (PL. XXXII. figs. 11-16; P1 SXXLX. figs. $1-15)$.

Of the above-deseribed spocies of Hyalonema, more or less perfectly preserved specimens were at my disposal, so that an approximately accurate investigation was possible, and diagnoses sufficient for the determination of the several specics were obtained. But besides the aiove, the Challenger collection included several fragments which could be certainly enough referred to the genus Hycdonemc, but not with any definiteness to any of the species previonsly known, or now cstablished ly my investigations. They belong to new, not yet described species. Following the frequent precedent of many investigators, I wight have selected the most prominent characteristics of theso forms, and used them for thie crection of distinet species. I have, however, proferred to refrain from designating these imperfect and torn fragments, of which I should be mable to frame a description or diagnosis sufticient for their re-identification. I have, nevertheless, figurel several of the more remakable spicular structures of sponges from these localities for the nse of future investigators, and by way of extending our knowledge of the variety of form within the genus Hyalonema.

Several large but insufficiently preserved fragments, referable to a sponge form about the size of one's fist, were dredged from the Mid-Pacific, near the Equator (Station 271, lat. $0^{\circ} 33^{\prime}$ S., long. $151^{\circ} 34^{\prime}$ W., where Hyalonema depressum was found), from a depth of 2425 fathoms and a Globigerina ooze ground. The smooth oxyhexacts and oxydiacts of the parenchymal skeleton do not exhibit any marked peculiarities. Small oxyhexacts are only represented by somewhat abundant forms with straight or slightly curved pointed raya (PL XXXII. fig. 15). The complete absence of small curved oxyhexacts essentially distingnishes this form from the species Hyalonema depressum found in the same Iocality. The hypodermal oxypentacts and oxydiacts of the dermal skeleton resemble, in form and size, the similar forms of Hyatonema clavigerim. The rutodermal pentact pinnli are, however, peculiar, and resemble most closely the external pinuli of Hyalonema robustum. Like the latter, they exhibit short, strongly developed, and miuutely spinose basal rays, and also a free, spindle-shaped, somewhat bushy distal, almost 0.4 mm . in length, heset with pumerous ruther long spines dispased like seales. The very end of the ray frequently exhibits a strongly developed, thick point, which is not very satiffactorily represented on P1. AXN11. fig. 16.

The much extended, larger and medium-sized amphidises of the skin, are distinguishod by the alender, delicate character of the slightly toothed axial rod, and also by the long umbels, which bear eight slender rays, and exhibit a campanulate form, somewhat trimeated terminally. These formos of amphidise differ greatly in size, as may be seen from some of the modifications represented in PL. XXXIL. figs. 11, 12, 18. Occasional giant-forms (fig. 11), 0.4 mm . or more in length, oceur. Besides these, there is an abun-
dant occurrence of the familiar small amphidises with hemisplecrical many-rayed terminal dises (PI. XXXII. fig, 14).

No hypogastral pentacts occur in the gastral skeleton, but their place is taken by strands of supporting diacts. The autogastral pentact pinnti are essentially different from the autodermal. They are not only decidedly shorter, and in no way so busliy as the lattex, but they exhibit longer, less tuberenlated basal rays, and are continued into n slender, pointed, terminal ray.

The oxydiacts, which form the long marginal fringe, bear a smooth, proximal ray; and a distal, beset with obliquely isserted spines, directed downwards and outwards. From the centre two or more, rarely four, rounded, or slightly pointed, lateral tubercles project.

A mnch torn fragment with isolated, broken tuft spicules, was trawled to the west of Cope York (Station 184, lat. $12^{\circ} 8^{\prime}$ S., long. $145^{\circ} 10^{\prime}$ E.), from a depth of 1400 fathoms, and a Globigerima ooze ground.

From the size of the shreds, and the thickness of the tuft spicules, it wns to be inferred that the intact body had the size of an average apple. There are no definite indications as to the original form of the body.

In the parenchyma, besides long, narrow, smooth oxyhexacts and oxydiaets, small lank oxyhexacts occur, some with straight, and others with bent, smooth rays, though neither can be said to be abundant.

The dermal skeleton exhibits large, smooth, hypodermal oxypentacts, with tangential rays turned somewhat inwards, and long, slim, slightly spinose autodermal pentact pindif with moderately long, and terminally spinose basal mys (Pl. XXXIX. figs, 5, 7). Amphidiscs of very various sizes and forms also occur. The karger exhibit a strongly developed axial rod beset with spines, and bear rather broad, campanulate umbels, composed of eight broad, paddle-like, terminally broad and rounded rays (P1. XXXIX. figs. 2, 3). The length of these rays saries in relation to the total length of the amphidises, so that they sometimes attain to only a third of the whole length, at other times to about a half, and sometimes almost meet in the middle. The abnndant medinm-sized mphidises (PL XXXIX. figs. 4, 9) are slimmer, and bear narrower umbel rays in varimhle number. Each umbel usually consists of eight rays, but ten or twelve rays also occur. Finally; ns in all species of Hyalonema, smnll amphidises with hemisphericnl many-rayed terminal umbels oecur in great abmadace. Some oxydiact marginalin wero observed with smooth proximal, and shortly toothed, pointed, distal miss, while on the boundary betwecu them, two or four romaded or slightly pointed tubercles projected (PL XXXTX. fig. 1).

In the South Atlantic, to the west of Tristan da Cuuha (Station 333, hat. $35^{\circ} 36^{\prime} \mathrm{S}$,
long. $21^{\circ} 12^{\prime} \mathrm{W}$.), from a depth of 2025 fathoms, and a Globigorima ooze bottom, a small itegularly torn fragment of Hyctonema was trawled. A small portion of the marginal fringe and of the superior sieve-plate was fortunately presorved. The parenchymal skeleton includes smooth, medium-sized oxyhexacts, smooth oxydiacts of various sizes, and small, somewhat roughened oxyhexaets, with straight ratys. The hypodermal pentacts are strongly developed, of medium-size, and with smooth tangential mays, directed somewhat inwards. The autodermal pentact pinuli are slim and of moderate size. Their basal tays are rather long, and slightly spinose (Pl. XXXIX. figs. 13, 15).

The eather sparsely distributed larger amphidises of the skin are not very long (0.23 mm . and less), but with strong smooth axial rods and flatly arehed, brond, short umbels, which consist of eight or seven broad paddle-shaped rays, pointed at the end like a Gothie arch (PI. XXXIX. fig. 10). Medium-sized amphidises of similar structure are more abundant, while the small forms (PI, XXXIX. fig. 11) with somewhat longer and more campanulate umbels also oceur, and finally the familiar small amphidises with hemispherical umbels of ten to thirteen rays.

To the west of Luzon (Station 205, lat. $16^{\circ} 42^{\prime} \mathrm{N}$., long. $119^{\circ} 22^{\prime}$ E.), from a depth of 1050 fathoms and a blue mud ground, a ragged fragment of a Hyalonematid was obtained, which is in many respects very divergent from the hitherto deseribed forms of Hyalonema. It is improbable, in fact, that it belongs to the genus, but rather to a type not yet investigated. From the nut-like fragment obtained, it was, however, impossible to draw any definite conclusions as to original shape and size of the sponge, except that it was piobably about the size of an average upple.

It is very remarkable that the supporting spicules of the parenchyma are exclusively long slim pliable oxytriacts, with two long rays lying in straight line, and a third much smaller disposed at right angles aceross the middle. Besides these, I have found only small oxydiacts and some oxytetracts, whose rays did not, however, lie in one plane. A Large number of minute, very delieate oxy hexaets, with rather long, uniformly slender, straight rays also ocetur.

The dermal skeleton with its liypodermalia I lave not been able to find, probably beeanse of the absence of that layer. Autodermal or autogastral pinuli are, however, present in abundance. They are chaacterised by their medium-sized and somewhat boshy distal, and by the moderately long slender basal rays, which are somewhat thickened and toothed towards the end, though terminating in a shary point. The amplidises vary greatly in size. Giants of 0.5 mm . oceur, metium-sized forms onethitd to one-fifth as large, and the ordinary small type. Most of the medimesized amphidises have deeply campanulate terminal umbels with uine to four rays. I observed some large forms in which the opposite umbel rays had fused.
(zooL. CBALL. Exp. - RAGT LIL.-1887.)
Ggg 30

Genus 2. Pheronemit, Leidy (Pls. XLII.-XLVL).
 Holemin, Wyv, Thomson.

```
1868. Lesly, Proc. Acaut. Nat. Sci. Philal., p. 9 (Phcromma anns).
1869, Wyville Thomson, Aun, and Mag. Nat. Hlist, vol. iv. P. 112.
1869. Wyville Thomson, Phil. Truns,, vol clix, p. 707 (Hollewia corpenteri).
1870. Leidy, The American Naturalist, vol. iv. p. }17\mathrm{ (March) (Pheronemat anna).
1870. Kont, Monthly Mier. Journ, p. 243.
1870. Kont, Amn and Mag Nat. Hist, vol, vi. pp, 182-186. (Pheronemat carpeuteri and
1870. Gray, Arn, and Mlag. Nat. HisL, vol. vi. Pp. 309-312. {Phervermad grayh.
1870. Sclmmidt, Die Spongien des ntlantischen Gebietes (Holtenia pourtalesï).
1871. Carter, Ann. and Mag. Nat, Hist,, vol. vii, pp, 112-141.
187L. Ehlers, Zcitschr. f. wiss, Zool,, Bd, xxi, p. 540.
1872. Gray, Ann, and Mag. Nat. Hist, vol. ix. pp. 443-461.
1873. Carter, Amn. and Mag. Nat. Hist, vol. xi. p. }834
1873. Cartur, Amn, and Mag. Not. Hist,, vol. xi. p. 275,
1873. Carter, Aun, and Mag. Nst. Hist,, vol. sii. p. 349.
1874. Meyer, Amm. and Mag. Nat. Hist., vol. xiii. p. 66.
1874. Gray, Ann. and Mag. Nab, Hist, vol. xiii. p. }284
1875. Carter, Anm, and Mag. Nat. Hist,, vol. xv. p. 113.
1875. Carter, Ann. and Mag. Nat. Hist, vol, xvi. p. 1.
1875. Marshall, Zeitschr. f. wiss, ZooL, Bd. xxv., SuppL, p. 142.
1876. Marshall, Zeitschs. f. wiss. %ool, Di. xxviL p. 113.
1877. Zittel, Abbanilt. d. baier. Akad, d. Wiss,
1877. Marshall and Meyer, Mitthmil. d. ZooL. Mns, in Dresden.
1877. Wyvillo Thomson, The Atlantic.
1880. Schmidt, Spongien des Meerbusens von Mexico.
1880. Norman, Nun, and Mag. Nat, Hist., vol. vi. p. }\ddagger30
1881. Mllne-Edwards, Comptes rondus, voL, xciii.; Ann, and MTag. Nat. Hist., voL. ix. p. 37.
1881. Duncan, Journ. Koy. Mier. Soc., ser. 1, p. 173.
1881. Carpenter, The Microscope.
1885. Filhol, La vie an fond des mers, p. }285\mathrm{ (Pheronema parfaiti).
```

History.-In 1868^{1} Leidy made a report ou a sionge from Santa Cruz, which presents an oval form about 3 inches in size, and bears on one extremity a tuft of siliccous spicules ubout 2 inches in length, and differing from that of Hyclonema only in its smaller size. Afterwards lie described this new form more aceurately under the name of Pheronema annay, and he ropeated his communication in 1870 in a paper illustrated by woodents and entitled Remarks on some Carious Sjonges.? The latter description rau thus:- "The body of the sponge is oblong ovoidal, with one side more protuberant than the other. The narrower extremity; which I suppose to be the upper, is conical, and its truncated apex presents a single circular orifice, the third of an inch in diamoter. The opposite extremity is rather cylindrioal, with a broad, slightly rounded

[^61]extremity, from which project numerous fascieles of siliccous threads. The sponge body is of a light brown hue, and rigid to the feel. Its surface exhibits an intricate interlacement of the sponge tissue, which appears mainly composed of stellate, siliceous spicules of various sizes. The coarser spicules of the surface have five mays. Four of these together are irregularly eruciform, while the fifth projects in a direction opposite to all the others. They appear to be so arranged that the crucial rays interlace with those of the contiguous spicules forming a lattice-work on the surface of the sponge, while the odd ray opposed to the others penetrates the interior of the sponge. The finer tissue, seen through the intervals of the latticed arrangement on the surfaee of the sponge, appears to be made up in the same manner of finer stellate spicules. Some of the longest stellate spicules of the surface liave a spread of half an inch.
"The fascicles of siliceous threads projecting from the body of the sponge are upwards of twenty in number, and over 2 mehes in length. They resemble in appearance tufts of blonde human hair. The individual threads are nearly like those proceeding from the lower end of Euplectella. Where thickest, they are less than the $\frac{1}{200}$ of m inch in diameter, and become attenuated towards the extremities. At first, as they proceed from the body of the sponge, they are smooth and then finely tuberculate. The tubercles are gradually replaced by minute recurved hooks, which become better developed approaching the free end of the threads, which finally terminate in a pair of longer opposed books, reminding one of the arms of an anchor. The oljects of the tufts of threads, with their lateral hooklets and terminal anchors, would appear to be to maintaiu or moor the sponge in position in its ocean home."

Without knowing of these publications by Leidy, Wyville Thomson had in 1869 given a detailed and thorough account of a sponge designated Holtenia corpenteri, several specimens of which he had collected to the north-west of Scotland, from a depth of 530 fathoms in the course of his deep sea investigations in the "Lightning." The form of these specimens, which were about as large as one's fist, was "globular, elliptical or subcylindrical." A spacious and tolerably smooth central cavity, half the diameter of the sponge, diminishes superiorly to a round space of perfectly uniform breadth, while from the closed under side a tuft of numerous individual clusters of toferably long, bow-shaped siliceous spicules doubtless rooted in the sand, runs out in a radial direction. On the lateral wall, und most abundantly near the upper surface, lung radially directed spieules project freely, while the boundary of the wide superior osculum is formed by a compact wreath of vertical spicules measuring about 1 cm . or more in length. Both on thic outer and inuer surfaces of the tolerably firm cup-shaped sponge body; a firm rind is formed of strong compact silicoous spicules which tie in the skin, and are grouped together in stellate fashion, while the parenchymal mass itself is penetrated by a system of numerous cavities and caunls. The siliceous spicules which penetrate and cover the entire organism resemble generally those of Hyalonema. The
form presents, however, so many peculinvities that the crection of a special genns seoms to be justified, even apart from the different form of the body and its microscopie struetire.

In a Notice of a New Vitreous Sponge-Pheronema grayi ${ }^{3}$ - Saville Kent first justified the change of the generic title Holtenite, which had been applied by Wyville Thomson to lis ILoltenia ecupenteri, into Pheroncma (Leidy), on the ground of priority, since a generic agreement betweeu the two species Pheroncma anиe, Leidy, and Holtemiu curpenteri, Wyville Thomson, cannot be doubted. He now brought forward a third species-Pheronema grayi-belonging to the same genus Plicronema. Of this several specimons had been procured during the expedition of the "Norna" off the coast of Portugal and in the neighbourhood of Setubal, from depths varying from 400 to 600 fathoms. This new speeies was further described and figured by Kent in the Montlily Mieroscopical Journal (1870, p. 243). Pheromema grygi is distingnished by the Portuguesc fisherman as "Nidos de Mer," or "the sea bird's nest," being so named chiofly on accomnt of the very broad and depressed form of the body, which is indeed very like the nest of a chaffinch, and also on account of the uniform distribution of the hair-like siliccous spicules over the whole surfnce, but especially on the inferior arched portion. These spicnles are not arranged in bundles, but are isolated, and project for a greater or less distance, while in some specimens they are prolonged to form a very long lasal tuft. Saville Kent also eafled attention to the fact that the shaft of the amphidises or "recurvate birotulate spicula" appeared to him to be rougher or "more profusely cchinate," than in the case of the similar spicules of Pheronente carpenteri. "The sarcode investing and constituting the sponge body was of a brilliant orange colour."

Under the name of Holtenia pourtalesii, Oscar Schmidt described and figwred in the same year $1870,{ }^{2}$ several sacciform sponges, some of which are provided with a superior oscular opening, while others arc entirely closed. The form of these types, however, makes it difficult to refor them to this genus, or even to Pleronema; they are rathor to be related, as Chater noted in 1875, ${ }^{3}$ to Rossella (or Lanuginella, Schmidt), It is impossible to say whether a form designated by 0 . Schmidt Holtemáa saccus belongs to Pheronema. It is describal by 0 . Schmidt as "sacciform, the wide opening having very thin walls and irregularly projecting spicules." In the sarcode, according to Schmidt, "immmerable small hexradiate spicules oceur, besides many five-rayed spicules with a projecting fifth ray, while whorl-like double anchors (amphidises) here and there occur: The sparsely distributed large hexradiate spicules and the long spicules are disposed on the incomplete meshes,"

In some Notes on Anchoring Sponges, Gray announced his inclination to unite

[^62]Pheronema grayi, Leidy, Holtemice corpenteri, Wyville Thomson, and other forms in a single family-the Pheronemadw, which might be characterised by the "ovate globular or purse-like boty, with a large internal cavity and outer walls formod of hoxradiate spieules placed side by side, producing a tesselated surface formed of stars." For Pheroneme grani, Gray moreover, proposed the new generic name Callisphitera, and for Holtentio sacous, O. Schmidt, the generic unme Vasella.

A somewhat different diagnosis was given by Gray in 1872^{1} for his family Pheronemadæ in the words:- "Sjonge oblong; outer surface formed of hexradiate spicules, lower surface with olongate filiform spieules ending in three recurved loles." In this family he distinguished (a) those forms with "anchoring filaments arising in a circle of tufts arome the base of tho spongc," snch as Pheronema, Leidy and Kent = Holtenia, Thomson, and (b) those with anchoring spicules arising from nll parts of the sponge, such as Cellisphcert $=$ Pheronema groy n, Kont, and Vizella=Holtenia, 0. Schmidt.

Under the designation of Leboria hemispharica, Gray described, in 1873, ${ }^{3}$ a sponge from Cobu, one of the Philippine Islands, sent through A. B. Meyer to the British Musenm, with the following lrief diagnosis:-"It is hemispherical, about 2 inches in diameter, and rather more than 1 inch high, with a rather smooth outer surface, and a rather deep regular coucavity on the upper surface, which seems formed of interlacing spicules, learing considerable spaces between them. The outer surface and its margin are seattered with distant, but rather regularly placed cylindrical perforations, from the centre of which are emitted tufts of elongated filiform spicules, diverging in all directions from the surface of the sponge. The midalle of the underside deeply concave, with a well-defined cdge, from which is emitted a very large tuft of very numerous crowded spicules, forming a kind of brush, each filament when perfect ending in three short roourved spines."

A detailed description of the same specimen was aftorwarls given by Carter ${ }^{\text {b }}$ in which he also deseribed the form und distribution of the various siliceous spicules, while the insignifieant points of difference between these and the correspouding spicules of the genern Hyalonema, Hollenia, and Phesonema were painted out.

In his great work on the Hexactinellida which Carter published in 1873,' and which contains a partienlarly detailed account of the form of individual siliceous spicules, Pheronema anna, Leidy, Pleroneme grayi, Kent, Holtenia carpenteri, Wyville Thomson (as well as Meycrina claviformis, Gray, which is furthor-reforred to below) aro united into one group, which is characteriscd as follows:- "Species more or less globular, excavated, provided with anchoring spicules, and characterised by the birotulate flesh spicule above

[^63]mentioned. Anchoring spicules of two kinds, viz., smooth and spiniferous, the latter terminating at its free extremity in a recurved double hook, termination of the former unknown," On the other hand, Labaric hemisphavica, though closely allied, is so peculiar as to constitute a section by itself, with the following characteristics:"Species possessing the lirotulate flesh spienle, in which the termination of both kinds of anchoring spicules are known. Free termination of spiniferous anchoring spieules mueh the same as in the above mentioned; termination on the smooth anchoring spicule consisting of a double hook or arm, opposite, compressed, slightly reeurved, and twice the size of the head of the spiniferons form." Carter placed Oscar Schmidt's Holtenia pourtalesï at a great distance from both of these groups, between Crateromorplia and Rossella, and characterised it in the following terms:- "Rosette many-rayed; rays multitudinous, of mequal length, straight and eapitate, pappiform."

As the result of a thorough investigation which Higgin ${ }^{1}$ was able to carry out on a well-preserved specimen of the Labaria hemispharica, Gray, from Cebu, some errors in Carter's earlier deseription were correeted-errors which were mainly attributable to the fact that the specimen whieh Carter had studied was mixed up with foreign spicules belonging to another sponge. This was confirmed ${ }^{2}$ by Carter himself, for he remarks, "that the anchoring spieules with spined shaft are abnormal." Carter also observes, that "while the shafts of the anchoring spicules of Labaria hemispharica and of the genus Rossella are all smooth, those of Hyalonemn, \&e., are all spined; and that the latter only appear to be sometimes smooth from the spines being continued upwards from the free end for a less distance in some than in others."

In his notes on the affinities of the Hexactinellida, Marshall observes, ${ }^{\pi}$ that "Labaria and Pheronema we clearly very elosely related to one another, and perhaps scarcely separable generically; " and further, that "Holtenia saceus, 0 . Schmidt, is also related to Pheronema, though it does not belong to this genus."

Among the sponges which were collected by the Freneh Expedition of the "Travailleme" in the Bay of Biscay, Norman also records Holtenia earpenteri.4 Aecording to the report of Oscar Schmidt, a typical specimen of Pheronema cana was found in the neighbourhood of Sauta Cruz, at a depth of 180 and 248 fathoms. A speeial genus Leiobolidium has heen established by Oscar Schmidt for a spherical sponge measuring 15 mm . in diameter, soft and smooth to the tonch, resembling in general habit and sofmess a delicate Reniera, and exhibiting the same microscopic component elements as Pheronema. "At the one pole there is an oscnlum surrounded by a cim, over ngainst this there is a small irregular depression from which a root-tuft seemed to have been torn."

[^64]The specimen was found at Bequia, at a depth of 1507 fathoms, on muddy ground.

Monsienr Filhol, in lis preliminary review of the chief results of the voyages of the "Travaillew" and of the "Talisman,"1 gives the following brief notice in regard to the gonus Pheronema:-"Les Phorouema paraissent étre répandus dans tout l'Atlantique, dont elles habitent en certaines points de twés grandes profondeurs. Communes sur la còte ilu Portugal, elles apparaissent encore plus nombreuses au large des eôtes du Maroe et du Sonegal. Nous les avons prises à partir de 600 mêtres jusqu'à 2200 mètres. Dans un dragage exécuté ì 4789 métres le chalut a rapporté des débris d'une éponge brisée, qui semblait avoir dû être à uu Pheronema. Les esp̧èces nous ont paru devoir étre varicés. Certaines d'entre ellos sont remarquables par un énorme developpement, alors que d'autics, telles que les Pheronema Parfaiti (loc. cit. fig. 92), se font renarquer par leur transparence ot labsence de collerette des spicules autour de l'oseule. La coloration des Pheronema, que nons avons capturés, était brunâtre, et nous n'avons jamais eu Poceasion d'observer la belle coloration d'un rouge orangé, dont M. Saville Kent a fait mention, à propos d'une expèce de Pberonema qu'il avait capturé dans les environs de Gibraltar."

Characters of the Genus.-The lower end of the cup- or goblet-shaped, thick-walled body, is continued into a broad, not always sharply defined root-tuft of basal prostalia, while from the lateral surface tufts of pleural prostalia project. The circular oseular margin is surrounded by a ouff-like fringe of freely projecting marginal prostalia, whieh seem, however, to be absent in one species,-Pheronema cana, Leidy. The parcnchyma of the body contains uncinates. The basal tufts consist of tolerably elongated bidentate anchors. The marginalia and many of the pleuralia end in club-shaped thickenings.

1. Pheronema anna, Lcidy (PI. XLII.).

The kininess of my esteemed fellow-worker O. Schmidt of Strassburg, placed at my disposal for examination a dry specimen of Pheronema anne, Leidy. Like Leidy's original specimen, this form was got at Santa Craz, W. I., from a depth of 180 or 248 fathous. It is represented in natural size, from a photograph, on PI. XLII. fig. 1. The body is about 11 cm . in length, and in the middle 5 cm . thick, exhibiting on the whole a long, oval form, though the upper half is marrowed to a transversely truncated end, 2 cm , in breadth. The broad lower portion is also somewhat truncate, with a breadth of about 3 cm ., and from it there projects a number of slim, isolated tufta of basal spicules (5 to 6 cm . in length). Minute, slender bundles of shorter (2 to 3 cm .) straight, rod-like spieules are disposed radially, but in irregular distribution, over the whole lateral surface of the sponge, without however anywhere forming a elosed wreath. Nor is there any special
fringe of spicules on the somewhat sharpened, oscular margin of the gastral eavity. On the onter surface of the body, hetween the rulinl groups of spicules, one can sed the characteristic network formed from the tangential rays of the hypodermalin, while on the imer surface of the gastral space irregular groups of closely adjacent, minute, circulur apertures (0.5 to 1 mm . in diameter) penetrate, like sieve pores, the somewhat uniform, curred, smooth wall. In the parenchyma, I have only been able to find quite isolated, large and middle-sized licxacts. Beside the long, radial rays of the large hypodermal or hypogastral pentacts, a great number of various diacts oecur, and small oxylexaets in special abmulance. The latter are for the most part loug and slender, but in part also comparatively short. Only a few are smooth; most of them bear somewhat closely apposed spincs tumed in the same direction. They may perhaps be thus best described as uncinates. Others oecur in which the long, median portion is smooth, but the ends beset with spines.

Some of the very long, slender uncinates, which usually oceur in buulles, bear several simple, obliquely projecting, or almost apposed bars; while others exhibit, below each slender pointed, almost appressed spine, it minute, longitudinal furrow or rib, as has been figured by Wyville Thomson in Pheronemu carpenteri (loc, sit,, pl, lxviii. fig. 4). The short and rather thick uncinates have on an average a length of only 0.5 to 1 mm ., and bear spines of very varied length, and occasionally quite rudimentary (PI. XLII. fig. 6).

The small oxyhexacts have an average diameter of 0.14 mm , and are characterised by transverse, rather blunt, externally directed, slender and somewhat bent apines, longest in the middle of the rays, and decreasing towards the ends (PL. XLII. fig. 12).

The very strongly developed dermal skeleton exhibits strong hypodermal oxypentacts with long smooth rays, which are not however always at right angles to one another. The proximal radial ray is indced usually at right angles to the four tangentials, but these frequently form acute or obtuse angles, or are bent near the point of intersection into the tangential plane. The rays of these large smooth oxypentacts are as a rule straight, but slight eurvatures not unfrequently oceur, either in simple or in S -shaped fashion.

The pinuli of the externnl skin are moderately large oxypentacts, with four rather long, slender, tangential bases, which are rarely quite smooth, in fact, usually beset with more or less long, oblique, externally directed spines. The oblique somewhat externally bent spines of the more or less long free distal ray vary in aboudance. They sometimes produce an almost bushy appearance, and are longest in the middle of the ray (Pl. XLII. fig. 10). The dermal amphidises vary greatly in size and form. Tho largest are between 0.2 and 0.3 mm . in length, and exhibit a strongly developed axial rod with hemispherical tubercles and expanded campanulate umbels with cight smooth lancetshaped umbel rays (Pl NLII, fig. 2). Besides these, numerous amphidises of medium size occur, measuring 0.05 to 0.1 mm . in length, with a slightly tubereulate axial rod and cight
slender umbel rays, which vary considerably in length in different amphidises, and are often markedly divergent (PI. XLII. fig. 3). The smaller and smallest amphidises, varying from 0.04 to 0.02 mm . in length, bear short, approximately or perfectly bemispherical terminal umbels, with cight, twelve, or more slender umbel rays (P1. XLII. ligs. 4 and 5).

The firm skin which lines the long cylindrical gastral cavity is supported by strong smooth hypogastral pentacts, which entirely resemble the already deseribed hypodermalia. The bushy autogastral pentacts are also exactly similar to the autodermals. 1 did not find here the largest form of amphidise, with broad paddle-like or lancet-ghaped umbel rays, but the medium-sizod and small forms were present in abmidanee, as in the skin. On the internal surface of the numerous large ramified efferent ducts, which oceur in the gastral walls, hypocanalicnlar oxypeatacts with eanalicnlar pentact pinuli oceur, but the latter aro differont from the autodermal and antogastral forms in this, that their four, sometimes smooth, sometimes spinose basal rays are on an average longer, and the freely projoeting ray less thickly beset with lateral curved spines (PI. XLII. figs. 8, 9, 12, 13). The further the efferent canal system is followed towards the chamber parenchyma, the less conspicnons, the more slender and sparse do the pinules become, and the weaker is the development of the spines on the freely projecting my (PI. XLII. fig. 11) until thoy timally disappear just before the orifices of the chambers.

The spicules, which project radially in long tufts from the lateral surface, are diacts or meinates, either smooth or covered with barbs. The long bundles, projecting at the lower end consist of spicules, which are smooth at the upper pointed end, while the lower is beset with spines, bent obliqucly upwads and outwards, and usually distinctly disposed in two opposite rows. Somewhat above tho extremity the spines disappear, and the spicule onds in an anchor structure, which exhibits two, more or less long, slightly recurred, opposite teeth (FL XLII. fig. 7). Three such teoth exceptionally occur. If two anchor teeth are formed, as is usually the case, they lic in the same plane as the biseriate alternately disposed barbules of the shaft (Pl. XLII. fig. 7).

2. Pheronema carpenteri (Wyville Thomson) (PL, XLIIL).

On the "Lightning" Expedition in the north of Scotland, Wyville Thomson found, at a dopth of 530 fathoms, some beautiful sponges which ho described and figured in a masterly fathion ${ }^{1}$ under the titlo Holtenia carpenteri. Of these I obtained for examination some spirit and dried specimens captured by Wyvill Thomson hinself on the "Lightning" and "Porcupine" Expeditions, and other specimens well-preserved in alcohol, which were drodged by Mr. John Murray on the "Triton" Expedition. On the Challenger Expedition several much torn portions of this Ilexactinellid were trawled on

[^65](zont. chall. ExT.-PAMT Lhil-1887.)
Ggs 31
the Brazil coast, off Macio, to the east of the mouth of the San Francisco (Station 124, lat. $10^{\circ} 11^{\prime} \mathrm{S}$,, long. $35^{\circ} 22^{\prime} \mathrm{W}$.), from a depth of 1600 fathoms, and a red mud ground. Several portions of the basal tnit, and of the lateral wall, with vestiges of the external skin, are alone preserved.

For my stndy of the tisste and the disposition of the various spicules, the specimens collected by Mr. John Mnrray were espeeinlly satisfactory, owing to their excellent preservation in absolute alcohol. These specinens exhibited an ellipsoidal form, and the body measured, exclusive of the basal tuft, 5 cm . in length, and 4 to 5 cm . in maximum breadth. The circular osenlar opening at the superior pole is surrounded by a wreath of vertically projecting, marginal spicules, has a diameter of 12 mm ., and leads into a smooth-walled, cylindrical, inferiorly truncated gastral cavity, 25 mm . in dipth. From the whole external lateral surface, fine, pointed, radial spicules project in loose bundles, 2 to 3 cm . in longth. These are, howover, irregularly disposed, with the execption of certain closely set, somewhat longer spicules, which form an annular zone, a few mm . in breadth, about 10 mm . below the marginal fringe. On the lower basal end of the sponge, there is a large number of slender (1 to 2 mm . in breadth) tufts of long Hexible spicules, 30 to 40 cm . in longth, which interlace abundantly in the thick felt-work of the basal tuft. The individual slender bundles ure however distinctly separate as they issue from the sponge-body. The external surface of the sponge exhibits a delicate dermal network, marked, especially in the dried apecimens, by stellate knots at tolerably uniform intervals (PL. XLIII. fig. 1).

The ellipsoidal shape may be regarded as characteristic of the general form of the body (cf. Pl. XLIIL. fig, 1, and Wyville Thomson, loc. ciit., pl. Ixvii., pl. lxix. fig. 1), although a comparative survey of all the forms before me reveals a slight difference in this, that the larger, and therefore probably older specimens, are somewhat more drawn out longitudinally, the smaller younger forms are approximately spherical, while the very smallest, less than a pea in size, often exhibit, as Wyville Thomson has shown, the form of a hen's egg with an inferior pointed pole (Wyville Thomson, loc, cit., pl. Ixxi.).

As is noted in Wyville Thomson's eareful investigation of the siliccous spieutes of Pheronema earpenteri, the parenchyma, which is on the whole only slightly massive but is penetrated by countless lacnue and wide passages, contains among the larger independent strictly parenchymal spicules, medium-sized, rarely large oxyhexacts, while long, slender, ftexible oxydinats predominate. These are either smooth or thickly besct with appressed unformly directed barbs, and are for the most part radially disposed towards the external or gastral surface, with the distal pointed end projecting for a varinble distance beyond the smface. Besides these, there are in the parenchyma a large number of short, strongly developed uncinates, 0.2 to 0.3 mm . in leagth. with but short spines or barbs (Pl. XLIII. fig. 5). Finally, there occur in the parenchyma small simple oxyhexacts, with smooth straight rays. That the strong rand somewhat large smooth
oxypentacts, which form the main support of the dermal, gastral, and comalioular skin, and which here and there appear to lie quite within the parenchyma, are rally to be regarded as true paronchymalia, does not scem to me proballe. As a rule I could readily connect them with the alove named surfaces, and thus regard thom as hypodermal, liypogastral, and hypoeanalicular elements respectively.

The dermal skeleton has for its supporting basis large, strong oxypentacts, in which the four long smooth tangential rays are usually indeed all but straight and erossed at right augles, though not mefrequently somewhat curved, and in their inclimation to one another more or less diverted from a right angle. They are froquently disposed not exaetly tangentially, but slightly inclined inwards. The likewise long and strongly developed, smooth, straight, proximal ray is, as a rule, at right angles to the surface; it may, however, in certain cases, for instance in the immediato neighbourhood of the marginal boundary, deviate from this exactly radial disposition. The tangential rays of the adjacent Hypodermal pentacts lie for the most part in long strctches close to one another, and thes form a strong, quadratic, dermal lattice-work, in the meshes of which the sieve network of the dermal membrane is spread ont. The quadratic skeletal meshwork is, however, in no way uniformly composed, but numerous deviations and displacements oceur all over. The skin is externally beset with autodermal pentact pinuli which are more or less roughened. Their tangential basal rays are of considerable length and almost always smooth, but rarely tuberculate towards the end, while the moderately long (0.15 to 0.2 mm .) radially projecting distal is smooth below, but on the outer three-fourths of its lengts beset in fir-tree-like fashion with strongly developed lateral spines (PI. XLIII. fig. 4). It is noteworthy that these dermal pinuli are in no way so abundantly or thickly present as is usmal in the other Hyalonematids; in certain positions, indeed, they we sparsely present or have a quite isolated oconrrence. Espocially near the oscular margin they are only to be found bere and there among the especially abundant pleural prostalia (P1. XLIII. fig. 2).

As to mophidises, I found, in the external skin of the North Atlantic specimens, only the small (0.03 to 0.05 mm) eight-rayed form (PL. XLIII. figs. 6, 8) with short hemispherical umbels. In the remains of the Brazilian specimens, however, besides the ubove forms, larger eight-rayed amphidises of similar form (Pl. XLIII. figs. 9, 10) occurred. I hesitate, however, before proposing to erect a distinct species on the strength of this single deviation.

In the compact gastral membrane the skeletal clements are disposed in essentially thesame way as in the external skin. The following deviations are, however, of some interest. In the first place, the whole free surface is much more closely and uniformly beset with pinuli, and these pinuli differ from the autodermal forms in this, that they are for the most part, especially in the neighbourhood of the oscular opening, bent by the stream of water towards the efferent aperture (PI. XLIII. fig. 2). The
small amphidisis here are equal in abmdance, aud similar in form to those in the outer skill.

Even the larger afferent and efferent canals are furnished with pimbl, though in rapidly decreasing size and strength. The small amphidises also extend for a considerable distance as comalicetaria.

In regard to the numerous radial pleuralia which project to a greater or less distance beyond the sumface of the sponge, the uncinates proper demand special notice. These are long oxydiacts which aro thickly surrounded by appressed barls. They oceur chiefly at the apper end in the neighbourhood of the osenlar margin, and are always radially disposed so that the pointed ends of the barbs are directed inwards, and the anterior point of the whole spicule ontwards (PI. XLIII. fig. 2). Wyville Thomson has figured a specimen of such at long (up to 8 mm .) pleural uncinate (loc. cit., pl. Ixviii. fig. 4). Besides these a large number of cylindrical spionles of varions calibre ocour, frequently in the form of thin, coiled theads, which gradually decrease in thickness, towirchs hoth ends from a maximmm diameter about the region of the external surface of the sponge. They terminate internally in a simple point, while the outer extremity generally evades observation owing to breakage. They are usually smooth, either altogether or for the greater portion of their length. Although these long, smooth, pleural prostalia are for the most part boken, and the extormal extremity only uncertainly distinguishable, a few seem to be intact. I was unable to decide whether there are any, or if so how many, pleuralia which run out externally into a point. Most of the long, projecting, smooth spicules gradually become thimer and thinner towards the extremity, but the fact that the terminal portions themselves are broken off, suggests that they do not simply form points, but terminate like the shorter forms about to be described, in which the outer ends were preserved. On several of the thin fibre-like plenral spicules, which are quite smooth on their internal pointed portion, one notices further ontwands the appearance of small teeth, at first very inconspicnous, but afterwards gradually more prominent and spinc-like, These are directed transverscly or somewhat obliquely outwards. The outer or most external spinous portions of these pleuralia finally terminate in a club-shaped swelling with four cruciately disposed lateral elevations and a single terminal point. The lateral points either project transversely, or are directed olliquely ontwards; more rarely they are bent somewhat inwards. In some instances it was possible to recognise in this terminal knob a hint of an axial canal intersection, corresponding to the five conical tecth.

These spinose monacts ocear especially on the upper portion of the sponge-body. I have repeatedly found, even in the neighbourhood of the osenlar margin, similar monacts of smaller size (2 to 3 mm .), which projected but slightly from the surface of the skin, and were throughont their whole extent, from the internal pointed end to the extermal terminal knol, uniformly thickly lieset with small spines direeted transsersely or obliquely outwards (PI. XIIII. fig. 2).

Fimally, the plemralia include isolated two-toothed, very rarely three-toothed, fonchor forms with a strong shaft bearing barbs. These occur more abundantly towards the base, and seem to be wholly absent from the upper ond of the sponge-body. The imer portion of these spicules, which vary greatly in length, is smooth, and ends in at simple uniform point. On the onter portion inconspicuous tubereles first appear, these are succeeded by larger forms, which finally pass into strongly developed spines pointed lackwauds and slightly recurved. In the portion of the anchor shaft which is surroundel by barbs the diameter of the spicule rod decreases gradually outwards. Just in front of the end which bears two simple anchor teeth the barbs disappear, and the diameter again mereases on to the thickened end with its slightly arched apex. From the latter the two strong roundish (ahout 1 mm . in length) anchor-teeth originate laterally in a distal plane. They extend opposite one another-smooth and slightly curved-and are directed obliquely outwauds and lackwarkls, In abnormal eases three similar anchor teeth occur, forming equal angles with one another, or the number may be reduced to one.

The basalia forming the numerous slender tufts -about 2 mm , in thickness-which project from the lower rounded end of the sponge, are for the most part of great length, and may in the larger specimens, as Wyville Thomson has shown, measure several decimetres. They are, on the whole, stronger than the pleuralia, and form in spirit or dried specimens a thick feltwork, between the filres of which, portions of the substratum and all kinds of forcign bodies are included (PI. XLIII. fig. 1). In their upper portions all the fibres are smooth, while externally they exhibit, for the most part, perhaps without exeeption, the carred barks described above in connection with the shaft of the pleural anchors. Like the pleural anchors, further, they pass by a smooth cylindrical neek to a thickened terminal portion with two more or less large reeurved anchor teeth.

The marginalia surrounding the circular margin of the oscular aperture form a closed wreath-a few spicules in breadth-and consisting either of long, strongly developed uncinates like those which occurred among the pleuralia, or of perfeetly smooth, internally pointed, externally narrowed spicules of various calibre, whieh probably end in a point or in a spinose portion with terminal knob.

While on the internal surface of the gastral cavity of the Hyalonematids no spictules projected excopt the pinules, in this form numerous uncinates occur in the neighbourhood of the marginal fringe, arranged in tufts direeted inwards and upwards, and projecting frecly for about half their entire length into the lumen of the gastral cavity (PI NLIII, fig. 2).
' Osear Sohmidt has, in his Spotgien iles Meerbueens ron Mexico ($\mathrm{p}, 65$), minintrined that the Theroveme figured by
 Pherowma aunu, Leidy, With thif opinion 1 camot apree. The lasalia do indeed protride as in Pheronima amir, but the same ocpurs in Mecroncma curpontcri, though to a less marked degree. Besides, nu Sarille Fient notes, the

As to the young specimens, from 10 to 5 mm . in size, so thoroughly studied by Wyrille Thomson, it is to be noted furthor that besides the already mentioned ovoid form of the body, the slender development of the fir-tree-like distal ray of the dermal pinules is striking.

3. Pheronema grayi, Sav. Kent.

This Portuguess species is distinguishable, even on external macroseopic iuspection, by-its likeness to the nest of a chaffinch, and by the seattered disposition of the lateral and lasal prostalin, which are not grouped in bundles. Though there was no specimen at my disposal for more intimate study, I shall attempt to sum up the characteristies on the strength of the deseriptions and figures before me, and as the result of notes which I made on some speeimens in the British Mnseum. The brealth and height of the two-third spherical form are approximately equal, and measure 10 to 12 cm . The loose lreard-like root-tuft has a length of 26 to 60 cm . or more. The circular oscular aperture measures 5 cm . in diameter, and bears on its margin a continuous annular fringe of perpendicularly projecting needles, of which the freely projecting portious are about 10 cm . long. While the prostalia hateralia over the rest of the extemal surface are uniformly but sparscly scattered, there is here, as in Pheronema carpenteri, in thicker zonc, about 12 mm . below the marginal fringe. The zone consists of pleuralia, projecting radially, or directed somewhat obliquely outwards and upwards. When the sponge was brought ou board "the sarcode investing and constituting the spouge body was," according to Saville Kent (loc. cit., p. 284), " of a brilliant orange colour."

In regard to the spicules, it is to be noted that they essentially agree with those of Phermema corpenteri, and from the report which I have given above in regard to the prostalia of Pheroneme carpenteri, it will be seen that even "the long attonuate spinulate forms and others with straight spines" which Saville Kent figures as characteristic of Pheroncian grayi, are not absent from the former. It is possible that the spinose meedles with a five-pointed terminal and external knob, which I found in Pheronema corpenteri projecting as lateral prostalia from the neighbourhood of the ascular margin, are absent in Pheroneme grayi, but this supposition requires to be corroborated by direct investigation, which I have not been able to accomplish.

4. Phivonema homispharicum (Gray).

As W. Marshall has noted, the genus Labaria erected by Gray (with a single species, Laberict hemisphioricum, Gray), cannot be separated from Pheronema, Leidy. This form (from the Philippine Ishand, Zebu) has been described by Gray, Carter, and with special
thoronghness by Thomas Higgin, and the result is to show that it must simity bo included in the genns Pleronema, Since I have not myself been able to examine Pheronema hemisphavieum, I will here content myself with eiting the last mod most thorongh description, that of Higgin, and with shortly summarising the most essential characteristics.

According to Higgin, the spouge is in form " like a small bird's nest, the bottom of which is flat, with a well-defined edge: the sides are rounded; and the sponge attains its greatest diameter about one-third of the way down from the edge of the frollow of the nest, torrards the base." Aceording to his figure on II. XXIL. fig. 3 the shape is like that of a prehistoric Greek clay urn, and exhibits a convex surface above and below the amnular pad which occupies about the median third of the lateral wall. The maximnm transrerse diameter measures abont 10 to 12 cm , and the height about 9. The uper flatly spherical cavity is at the margin 8 to 9 cm . in width, and is 4 cm . deep, The length of the anchor needles in the basal tuft is 8 to 9 cm . On the superior, sharply defined margin there is a wreath of varying length and 1 to 3 cm . in breadth, composed of long straight pointed spicules, which project at right angles. The lateral usually projecting anmlar zone is covered with " whisker-like bundles of long spicules which issue from circular holes the edges of which are slightly raised, each bundle consisting of a dozen or more spicules. Around the circumference of the base are arranged loose fascicles of anchoring spicules, from 7.5 to 8 cm . in length, and laving a diameter of about 12 mm . measming along the edge of the base, by 6 mm . to 10 mm . A few seattered short spicules project here and there from the base gencrally, but there are no bundles other than those aroumd the edge. The anchoring spicules are of one kind only, viz,, smooth, fusiform, terminating at the free end in two opposite hooks; there are no spined forms, The spienles of the whisker-hike tufts are plain, fusiform; the spicules of the crect fringe round the labrum are also fusiform and smooth throughout, but there is an appearance of spines on some towards the free end." In the surface reticnlation T. IIiggin found four kinds of spionles"(1) pentacts, whose four tangential arms are equally smooth and oppositc or at right angles to each other, inclined slightly domawards or inwards; the shafts of the larger spicules are 12 mm . long; (2) long, slender, acerate spicules, thickly cavered with short sharp spines, all pointing towards one and the same end of the shaft; (3) smooth aceratus with the cross on the central canal ; (4) plumose spicules, of shapes intermediate between oue with a very thick shaft, short and bushy looking, with long, strong, bluntly ended ams, and another with small, short, fine arms and a long feather-like shaft; the crucial arms of which, thickly studded with short obtusely pointed sjines, are bent ilownwards, as if to embrace or fit to the arms of the large spicules on which they rest. Thestrongly woren together basket work of the interior, as seen throngh the investing network, is composed of:-(1) smooth spicules of the sexradiate type (that is, acerate with simply
a central cross indicating their Hexactinellid eharacter); (2) acerate with four tubercles at the middle of the shaft ; (3) sparsely spined acerates, the spines bent towards the middle of the spicnle; (4) four-rayed, (5) five-rayed, and (6) six-rayed spicules, the long arms of Which are bent together in all varieties of ways; among these are (7) large and small eight-armed birotulates with dome-shaped heads, and some very minute ones; (8) small sexradiate spinules, the arms of which are furnished towards the free end with three, four, or five long spines projecting in the direction of the free end; also (9) a small acerate spicule in great abundance peculiar to the species, fumished with fine spines not very close together, all of which are bent towards one end of the spienle, increasing in leugth along one-third of the spicule (viz., from the end from which they look), and then gradually diminishing again from this point to the other end of the shaft; and (10) plumose spicules in great variety:"

5. Pleronema globosum, 14. sp. (PI. XLIV.).

Besides several other Hyalonematids, some specimens of a Pheronema were obtained from Station 192 of the Challenger Expedition, near the Little Ki Island (lat. $5^{\prime \prime} 49^{\prime} 15^{\prime \prime} \mathrm{S}$., Iong. $132^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{E}$.) from a depth of 129 fathoms and a blue mud ground. At first I was inclined to regard the latter as identical with the above described Pheronema hemispharicum, Gray, from the Philippine Island, Zebu. The specimens before me, lowever, which are for the most part well preserved in spirit, differ so markedly both in external appearanee and in the structure of many of their spicules from the latter species, that a separation is certainly necessary. While the smaller specimens, with a diameter of 20 to 25 mm ., have an almost spherical appearance, and only exhibit at the superior pole a hemispherical depression with a strong-margined aperture, 10 cm . in dimeter, the larger forms, 9 to 10 cm . in breadth and 6 cm . high, have the form of a superiorly truncated and somewhat depressed three-quarter sphere. The circular terminal opening of the shallow hemispherical gastral cavity, 3 to 4 cm . in depth, mensures 5 to 6 cm . in breadth, and exhibits a somewhat sharply defined edge, under which a gentle protrusion iuwards is distinctly visible. From this oseular margin a wreath of pointed spioules projects perpendicularly for 12 to 15 mm . In the external dermal layer there is a tolerably firm irregularly shaped network, which bears at intervals of $1 \frac{1}{2}$ to 2 em . small knots with slight loss-like projections (PI. XLIV. fig. 1). From each such boss a tuft of eight to twelve blunt spicules projects radially, attaining a length of 3 cm , and more. The whole uniformly convex basal surface is furnished with these tufts of spicules, at approximately equal intervals, and that all over, not merely forming a circle, or leaving the central portion free (as Higgin described in Pheronoma homisplaericни). The spieules of these basal tufts far execed the pleural in number, and still more in length. The normal length of the basal tuft, which is in all the specimens much thickened
and folted, is difficult to estimate. In the largest forms it camnot be less than 10 to 20 cm .

The concave internal surface of the upper gastral cavity exlibits a tolerably firm and solid portion, about 10 mm . in breadth, and arched slightly inwards, while all the rest of the surface forms a tolerably well-differcutiated quadratic latticc-work, the strands of which enclose meshes, 2 mm . or less in width.

From this description, and from the figure in PI. XLIV. fig. 1, drawn from a photograph, the extornal specific differences between Pheronema globosum and Pheronema hemispharrieum, Gray, must be evident enough As to parenchymal spicules, mention must be made of (1) the numerous rather large oxyhexacts, with long, straight, or slightly curved smooth rays, which are sometimes reduced in number so as to result in pentacts, tetracts, or triacts; (2) medium-sized smooth oxydiacts, which are for the most part somerwhat bent; (3) long radial uncinates, reaching as far as the sufface or even further; (4) very unmerous short uncinates, which though especially abundant round about the efferent canals, occur in varicd disposition, and are distinguishable from the long uncinates not only by their smaller size, but also by this, that the strong latorally inserted spines are curved, and somewhat markedly divergent; (5) slender oxydiacts of rarer occurrence, with strongly developed, or almost wholly reduced spines (PL. XLIV. figs. 4, 7).

The numerous modium-sized and small amphidises (Pl. XLIV. fig. 3) which oceur in the parenchyma, do not, in my opinion, really belong to it, but owe their origin to the outer skin, or to the membranc of the gastral or caualicular cavities, whence they have been forcibly pushed or floated into the parenchyma.

The dermal skeleton includes strong hypodermal oxypentacts with long, smooth, straight or slightly bent rays, measuring 10 mm . or more in length (PL. XLIV. figs. 8, 9). The four tangential rays are inclined slightly inwards (Pl. XLIV. fig. 9). Numerous strongly developed autodermal pentact pimuli also occur, exhibiting a somewhat thick, bushy, free distal ray, thickly beset with strong, bent, lateral spines, and four moderately long, blunted basals, slightly inclined inwards, and thickly beset with short spines, (PI. XLIV. figs. 3, 5). In various places the distal ray of the pinuli is somewhat mors slender, of greater length, and slightly curved.

As to amphidises, 1 observe a large form, 0.2 mm . long, with campanulate but rather short terminal umbels, in which the eight, or more aroly six, umbel rays are tolerably smooth, and moderately rounded in paldle-like fashion (PI. XLIV. fig. 6). The rather thick stalk is richly beset with roundish tubercles. Besides those, somewhat small amphidises oceur, with exactly similur form, and finally very small forms, 0.02 mm . or less in length (PL. XLIV. figs. 12, 13).

The dermal skeleton of the gastral cavity resembles that of the outer skin, except in this, that the pinules are furnished with a much longer and moro sleuder distal ray:

The pleural prostalia consist of the long, more or less markedly projecting uncinates, (zooh chail Exp.-pant Lili,-1887.)
but for the most part of long spicules, of which the internal portion buried in the body is wholly smooth and runs out into a point, while the outer frecly projecting portion (2 to 3 cm . in length), though, indeed, for the grenter part of its length also smooth, is in the neighbourhood of the outer termination beset with teeth, directed obliquely outwards, and either runs ont into a point, or exhibits a club-shaped thickening, with one terminal, and four cruciately disposed lateral points. Since most of the pleuralia are broken off, it is difficult to determine which mode of termination is the more abundant, and whether there are not here also spicules which are quite smooth on to the very end.

The margimalia, which project in a perfeetly continuous series for 12 to 15 mm ., and become narrowed towards their outer end, are always quite smooth in their inner pointed portion. Towards the exterior they bear small spines projecting obliquely outwards, and end in a sort of lance-like point.

The basalia (PI. XLIV. fig. 11) are very long and for the most part quite smooth. While the inner end always runs out into a point, they terminate externally in a doubletoothed anchor, in which both teeth diverge almost transversely, are very gently curved, and end in a point. The shaft becomes gradually narrower to within a certain distance of the end of the anchor, and then increases in thickness on the anchor itself. The inferior margin of the whole anchor is a simple continuous arc, like that of Pheronema giganteum ($\mathrm{Pl}, \mathrm{XLV}$, fig. 9).

On young specimens I have sometimes seen small anchor forms buried in the body, and in these the shaft was, for the most part, beset with lateral barbs projecting towards the inner end.

6. Pheronema giganteum, n. sp. (Pls. XLV., XLVL.).

At the same station where the almost spherical spocimens of Pheronema glohosum were obtained, i.e., near Little Ki Island (lat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long, $132^{\circ} 14^{\prime} 15^{\prime \prime}$ E.), the trawl brought up from a depth of 129 fathoms and from a blue mud ground, a single well-preserved specimen of another Pheronema form. This is well figured in PL XLV, fig. 1, in half its natural size, and in Pl XLVL. fig. 1, one-third reduced, in longitudinal section.

It differs from Pheronema globosum in its large size, to which it owes its title of gigonterm, while as to shape it presents a long ovoid and somewhat obliquely depressed form, the preculiarity being due to a slight one-sided flattening from the side of the inferior pole. It measures 48 cm . in length and 20 cm . in maximum diameter, and exhibits an irregularly tuberculate surface. At the superior pole there is a circular terminal aperture, 6 cm . in width, and surrounded by a somewhat sharply angular projecting margin, enelosing the almost cylindrical gastral eavity, which is more than 20 cm . in depth.

From small boss-like (2 to 5 mm . broad) clevations of the external body surface,
which oceur irregularly at intervals of 5 to 15 mm . over the wholo skin, roundish tufts of radially disposed, pointed spicules, 3 to 6 cm . or more in length, projoct. From the somewhat protruding oscular margin, there projects a continuons, cuff-like, anmular fringe of (3 to 4 cm .) long pointed spicules, with slight ontward curvature. The whole downward directed surface, which is markedly enlarged by the above deseribed oblique flattening of the sponge, bears a thick basal tuft, 10 cm . in length by 20 to 24 in breadth, and composed of much felted spicules. As in Pheroñemu anne, Pheronema carpenteri, and Pheronema globosum, this tuft is composed of numerous individual and separate bundles of spicules, springing from the whole of the lower surface (PI. XLVI. fig. 1). The external surface of the skin, as seen between the laterally projecting tufts of spieules, appears to the naked eye very uniform and oven. Here and there, through the somewhat thick covering of the subdermal eavities, the afferent canal system may be recognised (Pl. XLVI. fig. 3). The internal lining of the gastral eavity, which is also formed from a firm uniform layer, is penetrated by groups of pores, with the exception of a somewhat protruding thick zone, 2 cm . in breadth, close beside the oseular margin. The groups of pores consist of three to five roundish exit openings of the efferent canals, and are covered by a delieate gastral network (Pl. XLVI. figs. 1, 4, 10, 11).

The wall of the sponge, which measures 4 to 6 cm . in thickness, is penetrated by roundial lacunx and ducts of the afferent and efforout eanal system, which, in their widest portions, especially below the dermal and gastral walls, attain a diameter of 10 mm . and more (Pl . XLVI, fig. 2). Between these wider passages there are tolerably thick (up to 10 mm . and more) tissue layers, which are penetrated by much narrower canals, opeming laterally with narow apertures into the larger (P). XLVI. fig. 2).

The spieules which belong especially to the parenchyma are of the following main types :-first of all, numerous strong pentacts, usually with a greater radial ray, while the four others do not always lie quite in one plane, and therefore not exactly at right nagles to one another, but are slightly bent in various ways. It seems as if these parenchymal pentacts were originally hypogastralia and hypodermalia, which beeame secondarily involved in the parenchyma proper (PI. XLVI. fig. 7). A second form of skeletal element, occurring abundantly in the parenchyma, represent the small oxyhexaets. The straight, regularly disposed, moderately strong rays of these forms are beset with somewhat distant, longer or shorter spines, projeeting somewhat transversely (PI. XLVI. fig. 8). In the third place, there aro in the parenchyma, and in special abundance noar the outer skin, uncinates of various length. The shorter forms, $0^{\prime} 6$ to 1.0 mm . in length, arc comparatively thick, and furnished with strong compressed barbs. They ocom in irregular distribution throughout the parencbyma, while the longer forms, some mm . in length, project radially in bundles to the onter skin, or penetrating the latter, pass into the tufts of the pleural prostalia. On these long uncinates there are numerous barhs all round, longer and more slender than on the shorter forms, and further closely
appressed. They spring from a projection and cover over a groove-shaped depression, Finally, we have to note the oceurrence (here and there very abundant) of small thin oxydincts, which exhibit on their surface fine tubercles or spines, or only irregular roughnesses. It seems to me improbable that the amphidises found in the parcuchyma really belong to it. I belicve rather that they are present only by secondary dislocation, having originated in the dermal, gastral or canalieular skin.

The dermal skeleton includes strongly developed hypodermal oxypentacts of variable size. While the long proximal ray has usually a perfectly radial disposition, the four tangentials extending below the dermal membrane do not always form right angles with one another, and frequently exhibit near their origin a marked curyature to the side or inwards. The rays may exceed 1 mm . in diameter, and that strength is indeed common enough, though not at the point of origin, but at some distance up the ray. Betweon pentaets of this sort, tetracts occasionally occur, arising by reduction of the proximal radial ray. Not unfrequently, in some or in all, the ends are more or less markedly rounded. The autodermal pentact pinuli, present in great number and in strong development exhibit great variations in the size and form of the cypress-like or fir-tree-like free distal ray. The four cruciately disposed moderately long and thin basal rays lie in the same plane. Near their origin they are smooth, but bear on the larger outer end small teeth and spines. They nsually end in a point, but in the larger specimens the ends are sometimes more or less bluntly rounded off (PI. XLV. figs. 2, 3). The distal ray of the larger dermal pinules attains a length of 0.3 mm , and morc. In form it resembles a slender cypress, so closely lie the uniformly long, oblique, lateral spines (PI. XLV. fig. 2). Between these long pinules numerous smaller forms oceur, which are usunlly much more slender, and run out into a single long terminal point (Pl. XLV. fig. 3). Less frequently compressed, broad and bushy forms occur (Pl. XLV. fig. 5). The tall cypress-like pimuli are usually associated with the strong tangential rays of the large hypodermal pentacts, while the slender and smaller forms occur on the sieve-like perforated dermal meshes, which are enclosed by large hypodermal pentacts.

The larger amphidiscs, which do not occur in what could be called abundance, attain a length of 0.18 mm ., exbibit a moderately thin, tubercled, axial rod, and short eampanulate, almost hemispherical terminal umbels, with eight smooth, terminally slightly pointed rays ($\mathrm{Pl}, \mathrm{XLV}$. fig. 8). Less frequently, somewhat broader ovoid amphidises oecur, in which the umbel rays almost, or actually meet the opposites (Pl. XLV. fig. 7). Finally, a large number of small amphidises are found, with longish form, and almast hemispherical umbels composod of eight uniformly slender rays (PI. XLVI. fig, 5).

The gastral skeletou exhibits the same strong and somewhat slimmer oxypentacts which oceur under the external skin. The numerous pentact pinuli otherwise resemble the bushy forms of the outer skin, but have a much shorter bushy radial ray. On the sieve-network in the gastral skin, which covers the large grouped apertures, there are
delicate pinules with thin pointed basal rays, and with slender pointed free radial, as wo have already described in the outer skin (PI. XLVI. figs. 10, 11).

There is in the gastral skin a very abundant oceurrence of large and long amphidises, with short, hemispherical, eight-rayed umbels, and tubereled, moderately slender, axial rods (Pl. XLVI. fig. 11), such as occurred sparsely in the dermal membrane. More abundant are the small, long amphidises, with slender, roughened axis rod, and short, hemispherical, eight-rayed terminal umbels.

The camalicular skeleton of the larger efferent passages differs essentially from that of the afferent ducts of the lacunar subdermal or subgastral spaces. Even macroscopic inspection of the internal surface of these canals and lacune, one notices a marked difference in the character of the surface, which is in the efferent canals quite rough and villous, while that of the afferent canals, and of the subdermal or subgastral lacune, appears comparatively smooth, or only exhibits a fine uniform ronghuess. On all the larger eanals and lacunæ, the walls are supported by strongly developed hypocanalicular oxypentacts, with rays varying in strength, aceording to the size and width of the cannls. Between the larger hypocanalaria, swaller forms always occur. The peculiarly rough nature of the afferent canals is conditioned by especially long, though not particularly broad autocanalicular pentact pinuli, in which the fieely projecting cypress-like ray attains is length of 0.4 mm , and more, Of course between these long pinules shorter forms occur, with slender, slightly spinose, free radial rays (Pl. XLYI. fig. 6). Isolated amphidises of the larger sort and mumerons representatives of the smaller type oceur in the skin of the wider efferent eanals (PL. XLVI. fig. 6). Both the number and the size of the canalicular pinules and ampbidises gradually decreases with the width of the canals, until they finally disappear in the neighbourhood of the chambers.

The lining layer of the large afferent canals and of the subdermal spaces is supported by smooth hypocanalicular oxypentacts entirely similar to those of the offerent canals, Both the autocanalicular pinnli and the amphidises are, however, entirely absent (PL, XLVI, fig. 7, left).

The ploural prostalia, which project for 3 to 6 cm . from the lateral wall of the sponge, are strong smooth needles, which attain the thickness of a millimetre. They run to a point within the body, but the external termination unfortunately eluded distinct observation, since they were almost all broken off. Doubtless, however, they are either smoothly and simply pointed, or are terminally toothed, and end in a small five-pointed club. The same is true of the marginalia, which project for about 3 to 4 cm . I have already mentioned that numerous long uncinates with pointed external extremities project between the pleural prostalia.

The long basalia, which issue like the pleuralin in bundles, but become woven into a felted basal tuft, begin like the pleuralia and marginalia in an internal pointed end, swoll out beyond the body into smooth cylindrical beams, which ngain decrease in thickness
towards the outer end, before which, however, they become again enlarged and end in a bidentate crescent-shapel anchor. The two teeth of the latter rise from the gently bowshaped, rounded and thickened terminal protion (Pl. XLV. fig. 9), and end in simple conical points. The distance of these two terminal points, i.e., the total breadth of the anchor, is about 0.5 mm .

Gonus 3. Poliopogon, Wyville Thomson (Pls, XLVII.-L.).

Literature and History.-In his preliminary account of part of the Challenger Expedition' Wyville Thomson described a large sponge-Poliopogon amadou-which was found to the south of the Canary Islands at a depth of 1525 fathoms. This he regarded as type of a new genus-Poliopogon. This sponge forms an oblique and upward directed, semi-involute plate, with sharp upper and lateral margins, having the general shape of a tree fungus. From the transversely truncated base a strong beard of long silicoous fibres projects, and those fibres bear on their extremities two widely extended anchor teeth, which serve for fixing the sponge. An uniserial fringe of fine, straight, paralle, projecting siliceous spicules adorns the sharp free side and upper margins, The concave inner and the convex outer surfaces are covered by a fine network with quadrate meshes. "The sponge when brought up was of a delicate cream colour ; it was necessary to steep it in fresh water to free it from salt, and the colour changed to a leaden grey."

Character of the Gemus,-The body has the form cither of a thick-walled goblet, or of an ear-shaped involute plate. It exhibits a broad basal tuft, and an oscular fringe of marginalia, but no laterally projecting pleuralia. The parenchyma contains small, extremely rough or spinose, oxyhexacts and uncinates, and in onc species even small smooth oxydiacts of varying size and in varying abundance. The two teeth of the basal anchors are disposed approximately at right angles to the long, almost smooth shaft. The marginalia end externally in club-shaped thickenings.

1. Poliopogon antedou, n. sp. (Pls. XLLX., L.).

South-west from the Canary Islands (Station 3, lat, $25^{\circ} 24^{\prime}$ N., long. $20^{\circ} 14^{\prime}$ W.), from a depth of 1525 fathoms and hard ground, a beautiful Poliopogon form was dredged. This type, which was in 1877 figured and shortly described under the above title in Wyville Thomson's Atlantic, has not the cup shape characteristic of most other Hyalonematide, but exhibits rather the form of an ear, or that of a leaf rolled up into a semi-funnel (PL. XLIX.). There is thus no gastral eavity but only acconcave gastral, and a convex external surface, both of which are quite smooth, withont radially projecting

[^66]spienles from the dolicate quadrate meshwork, and are distinctly markel off from one another by a somewhat sharp-edged, spicule-bearing border, extending down to the bushy basal portion. Towards the extornal margin, the flat body which measures 3 to 5 cm . in thickness, becomes crradually shauper ; the maximum beight is 40 cm , and the breadth about as much. The somewhat irregnlar knobbed base is continued into a bushy beardlike basal tuft of spicules 10 to 12 cm . in length. By this the sponge is fixed among the coral and other detritus (P1. XLIX.).

The parenchymal skeleton consists of large or medium-sized smooth oxypentacts, which probably had their four tangential rays originally inserted in some bounding surface, while the fifth stood radially. Afterwards, bowever, they came to be embedded in the parenchyma. The angles of the five rays are generally, though by no means always, right angles, and one or other of the rays not unfrequently exhibits a simple eurvature near its origin. The individual rays usnally have a length of 10 to 20 mm . Throughout the whole parenchyma irregularly scattered, small, lank oxyhexaets also occur, with rays of about equal length, straight or slightly curved, and usually somewhat roughened, i.e, beset with small pointed tubercles, which are occasionally longer, and project obliquely outwards, ns represented in Pl. L. fig. 6. Less froqueutly uncinate forms occur, but only near the two limiting surfaces, and usually in radial disposition. Some uncinates only attain a length of 2 to 4 mm . (PL. L. fig. 3), but most are much longer. The short, smooth, spindle-shaped oxydiacts, whieh oceur so abundantly in the parenchyma of Poliopogon giges, to be described below (PI. XLVIII. figs. 3, 7), are here wholly absent.

The supporting spicules of the gastral skeleton are, as in all Hyalonematids, strongly developed, smooth oxypentacts of varied dimensions. Their radially directed ray may attain a length of 1 to 2 cm ., while the four tangentials, crossed approximately or exactly at right angles, and but rarely bent, may be as long or longer, and are apposed to one another in twos or threes to form the familinr quadratic lattice-work. The autodermal pinuli are somewhat amall pentacts about 0.4 mm . in length, with straight spines directed obliquely upwards and outwards. The outer end of the distal ray passes into a long thin point; the basal portion is smooth. The four moderately long ($0^{\circ} 1 \mathrm{~mm}$.) hasal rays, are internally smooth, but are on their outer halves beset with short, distant, outward directed teeth, and end in slightly conieal points. While disposed at right angles to the distal ray, they do not form right angles with one another, but two opposite obtuse and acute angles, with a slight cmrvature in the two neute angles so that the form of the central portion of a 8 results (PI. L. fig. 5). Numerous eight-rayed amphidises of various size, but of similar form ocemr in the dermal membrane, and appear to penetrate thence into the parenchyma. The larger have the middle portion of their axis rod inserted in the dermal membrane, while the one end projects freely to the exterior, and the other iuto a subdermal space. Some of these have a length of $0^{\circ} 2 \mathrm{~mm}$. and a moderate thiekness, are
tolerably smooth, exhibiting four to eight protrading bosses on the middle of the axis rod, and bear bell-shaped umbels with somewhat divergeut rays of a flat paddle-like form (P1. L. fig. 8). Others, measuring 0.1 mm ., have a thimer, knotted axis rod, aud umbel rays with somewhat pointed ends, while small forms also occur, measuring 0.06 to 0.04 or even 0.03 mm . in length (PL. L. figs. 10, II, 12).

Very similady constitnted are the spicules which form the skeleton of the other, or gastral side of the curved body. Here also the same oxypentacts occur as hypogastralia, the same peutact pinuli as autogastralin, and amphidises of similar form and equally varied dimensions (Pl. L. fig. 1).

In the lateral wall of the larger efferent canals there are also oxypentacts similar to the hypodermal and hypogastral forms, though lessstrongly developed and less long. Pinuli, however, are absent, but the very abundant amphidises exhibit the same size and form as those of the skin.

The long lank marginalia which form the marginal fringe round the edge of the whole sponge, usually measure some mm . (up to 1 cm . or morv) in length. They are for the most part quite smooth, form internally a long thin point, while externally they bear small, somewhat distant lateral teeth, which project obliquely upwards and ontwards. They finally end externally in a slight elub-shaped or bud-like swelling (Pl. I. figs. 1, 4). The long strongly developed spicules (5 to 10 cm . in length), which project like a heard from the thickened lower portion of the sponge body into the mud, are quite smooth. They end internally, i.e, in the sponge body, in a simple point, while towards the lower outer free end they first decrease gradually in thickness, and then again slowly increase, finally forming a double toothed very gently curved anchor. The two teeth of the latter stand out almost at right angles from the shaft, are only slightly bent, and end in a somewhat blunt point (Pl. L. fig. 7).

It is especially interesting to note that in the larger cavities of one of the specimens of Poliopogon amadou some small, approximately spherical sponges were found, measuring about 3 mm . in diameter, and undoubtedly young forms of Poliopogon. Since their tissue was still in tolerable preservation, it was possible to make sections through the small bodies. These results were important not ouly for the species but for the whole genus, and indeed for the family of Hyalonematide.

I have given in PL. L. fig. 2 a diagrammatic representation of the structure exhibited in successful axial sections of the young sponge forms. The chatacters more or less distinctly prominent on various sections have been combined in a synthetic figure. A central cavity with which all the diverticula of the folded chamber-layer directly commumicate, opens to the exterior at the upper pole of the somewhat transversely oval section. This external aperture is not, however, completely free and open, but seems still to be covered by a delicate membrais. The membrena reticularis which forms the chamber-like diverticula, is perfectly continuous, forming a much folded and puckered
membrane, the divertioula of which all project outwards against the smooth distended outer skin. On the imer side of the larger diverticula, a delicate network extends, while outside of the reticularis, between it and the reticulate dermal membrane, there is the external trabecular network.

The external layer of the dermal membrane is supported by smooth simple, hypodermal oxypentacts, with four tangential rays, intersecting parallel to the surface and somerrhat curved, while the proximal ray, at right angles to the latter, is inserted radially in the parenchyma. Long slim spicules projeet radially on all sides for a greater or less distance from the sponge body. They are either simply pointed at both ends, and thus iu part to be described as incipient uneinates, or exhibit on the freely projecting portion minute teeth or spines directed obliquely outwards, and on the outer ond a slight club-shaped toothed swelling with a narrow terminal point, while the internal proximal portion remains smooth. Both in the external skin and in the parenchyma there are numerous amphidises of the same form and size as those in the adult Poliopogon amador. On the lining of the gastral central eavity similar forms occur, which have been overlooked in the figure (Pl. L. fig. 2). At the inferior pole, opposite the oscular opening, the anchor forms above mentioned occur, in part buried in the parenchyma, in part more or less protruded. They resemble those of the adult but are of much smaller size. It is striking that the parenchyma is wholly destitute of the small hexacts and of the pinuli on the external and internal sides of the bounding surface.

2. Poliopogon gigas, n. sp. (Pls. XLVII., XLVIII.).

An immense sponge form, which tirned out to be a Poliopogon, was trawled between the Raoul and Macaulay Islauds, to the north of New Zealand, (Station 170, lat. 29" $45^{\prime} \mathrm{S}$., long. $178^{\circ} 11^{\prime} \mathrm{W}$.) at a depth of 630 fathoms, from a voleanic ground. The roundish cubical mass has a diameter of 50 to 70 cm . The lower wholly tom surface still exhibits the remains of lamdles of spicules, which have undoubtedly formed, ulong with others now lost, a thick broad basal tuft. The lateral rounded external surface is tolernbly smooth, without projecting bundles of spicules or isolated radial prostalia, and eovered by an incompletely preserved fine quadratic dermal lattice-work. The mper much injured terminal surface bears a median hemispherical depression, from 15 to 00 cm . in breadth and the same in depth, representing the gastral cavity (PI. XLYIL). The marginal fringe of the osenlar aperture is unfortunately not preserved.

The spicules of the parenchyma, which is penetrated by lacome and caanals of varying width, essentially resemble those of Poliopogon amulou, Here too we find smooth oxypentacts of variable size, with long straight or slightly curved rays. The original disposition of these pentacts seems to have been not so much it the parenchywa, as in the external or internal limiting membrane or in the walle of the larger eauals. Small
(ZOOL CHALL E:XP.-PSHT LIIL.-188\%.)
Gegg 33
oxyhexacts with slightly eurved slender rays occur, similar to those which were formd so abmidantly in the former spiecies (Pl. SLVIII. figes 1, 10). In eertain regions, for instance somewint abundantly below the outer skin, a skeletal element, not represented in Poliopogon camedou, occurs-in the form of small spindle-shaped smooth oxydiacts, (0.15 to 0.25 mm . in length) which have a maximum thickness either in the neighbourhood of their centre (PI. XLVIII. fig. 3) or more rarely nearer one end (PI. XLVIII. fig. 7), Here and there, especially in the neighbourhood of the external surface, long uncinates oecur, with manow appressed pointed barbs covering minute depressions. I have not been able to determine whether the amplidises of varied form and size, which ocour seattered in great abundance in the parenchyma (Pl . XLVIII. fig. 1), are really true parenchymalia, or have grown in from the bounding surfaces of the external skin, of the gastral cavity, or of the camals.

The dermal skeleton consists of rather strongly developed smooth oxypentacts. The autodermal pinules are indeed for the most part pentacts, but others not unfrequently occur, in which the sixth proximal maial ray is more or less distinetly developed (PI. XLVIII. figs. 8, 11). The four basal mays of the ordinary pentact pinules are somewhat long, and bear externally short spines projecting obliquely outwards, while the extreme outer end is roundel off or even truncated, though rarely pointed. As a rule the basal rays are like those of the dermal pinuli in Poliopogon amadou, bent like the middle portion of a figure 8 (PI. XLVIII. figs. 5,9). The freely projecting, radial distal ray is not so long aud slender as in Poliopogon amadou, but rather broad and only nbout 0.15 mm . in length. It is beset with lateral spines, which are curvel somewhat markedly outwards, and terminally apposed in bud-like fashion. Less frequently the distal ray ends in a point (PI . XLVIII. fig. 5). The large amphidises lying in the dermal membrone have a length of about 0.2 mm . Their axial rod is somewhat uniformly beset with small tubercles. The campanulate umbels have usually eight, less freqnontly moro mys, which are of considerable length, often almost mecting, and but slightly divergent (Pl. XLVIII. fig. 2). Besides these, there is an abundant occurrence of small amphidises with short, hemispherical, eight-myed terminal umbels and slender axial rod (PI. XLVIII, figs. 4, 6).

Whether the gastral skeleton surrounding the eavity closely resembles the dermal I was unable certainly to determine, owing to the want of sufficient material from that portion of the giant sponge. It is, however, extremely probable, from analogy with the related sprecies of Poliopogon amudou, that the strmenme of the canalienlar akcleton lining the larger dnets and lacune cssontially resembles that of the skin. Pinules are not wholly absent, but oceur as slender, scattered, canalicular pentacts or hexacts, with long, narrow, pointed hasal rays, and a slender free radial, which ends in a delicate point, and hears isolated, short, stanight, obliquely projecting lateral spines. In the larger ducts and lacunro, numerons large and small amphidiscs ocenr of the form described in the
dermal skeleton. No marginalia are preserved. In the thick beard-like shreds which here and there still project from the base, numerous anchors oceur, of the same form as those of Poliopogon amadou, with a shaft which may measure 10 cm . or more, while the slightly forward-curved ends of the two transverse teeth are separated from one another by about 0.5 mm . (PI. XLVIII. fig. 14, a). The pointed upper end of the anchor shaft, which is buried in the sponge body, frequently bears several short, seattered, downward-directed, lateral barbs (PL. XLVIII. fig. 14, b). In PI. XLVIII. fig. 13, I have figured a remarkable abnormal form of anchor structure.

Subfamily 2. Sempereluine, F. E. Sclulze.

Genus Semperelle, Gray (Pls. LI., LIL.).

```
1868. Somper, Verhandl. der Würzh Gesellsch., voL. i. p. }29\mathrm{ (IIyclonemea schultzer).
1868. Gray, Mmn. and Mag. Nat. Hist., voL. iL p. }373\mathrm{ (Sexperalla).
1868. Herklots ani Marshall, Aroh. Neorlani, L. sc, nat,, iii, p. 435 (Iyalothauma ludekinyit)
1872. Carter, Amn, and Mlag. Nat. Hist., vol x. p, 110.
1872. Gray, Amm, and Mag, Nat. Hist, vol, x, p. 134.
1872. Gray, Ann, and Mag. Nat. Hist., vol. x. p. }76\mathrm{ (Meyerina cluviformis).
1873. Carter, Ann, and Mag. Nat. Hist., vol, si. p, 275.
1873. Carter, Ann, and Mag. Nat. Hist,, vol, xii. p. }349
1874. Gray, Aum, and Mag. Nat. Hist,, vol. xiii. p. 284,
1875. Carter, Ann. aud Mag. Nat. Ilist., vol xvi. p. 200.
1875. Marshall, Zeitsely. f. wiss. Zool., Suppl, Bd. xxv.
1876. Mneshall, Zeitsehr. 1. wiss, Zool., Dhl. xxvii.
187%. Mierg, Joum. Limn. Soc Loud. (Zool.), val. xiii. p. 506.
```

History.-In 1868 Semper deseribed under the title Iyalonema schultzei a Philippine sponge, resembling in size and form Euplectella aspergillum. ${ }^{1}$ Senper's preliminary note was to the following effect:-"Hyaloneme Schulteei, S. resembles in form and size Euplectelle aspergillum. The root-fibres, which are either smooth or serrate, divide towards the sponge body into single bundles. They traverse the latter both internally and superficially, becoming connected with the main framowork in the same way as do the long root fibres of Euplectelle. Cruciate spieules of many kinds are united with these long strands of fibres, forming sometimes a very dense and sometimes a loose network, which is penetrated in all directions by the large canals of the sponge. The comparatively wide excurrent appertures ocem irregulaly over the whole sponge, and are frequently associated with tufts of fine, almost silk-like fibres. On seceral regions of the somewhat injured surface, a fine network with wide reetangular meshos may be observed. The whole sponge framework is, as in all true Hyalonemata, composed of free fibres or

[^67]uriciate spicules. Sometimes, howevar, zevemal spicules are fused together, and the origin of the comected siliceous framework of Euplectella is thus smggested. The shapes of the numerous free siliceous bodies recall those of IIyalomema sielobldii, Gray, from Japan."

In the same year (1868) Gray proposed to designate those sponges, which were in every way so different from the known species of Hyatonema, by the new goneric title Semperelle. ${ }^{1}$. Moreover, to a specimen of the same species from the island of Coram the name Hyalothoume ludehingi was given by Marshall and Herklots. Another sponge belonging to the sane species, was sent from the Philippine Ialand of Zebu through Dr, A. Meyer to the British Museum, and was shortly deseribed by Gray in 1872, ${ }^{2}$ under the titlo Meyerella claviformis. Carter gave a detailed analysis of the same specimen, ${ }^{3}$ and he changed the generic name Meyerella which had been given by Gray, into Neyerina because the former had already been applied to one of the Lepidoptera. In regard to the forms of the spicules, Carter regarded the new species as a combination of Carteria, Hyaloneme, Holtenia and Pleronema.

Gray now ereeted ${ }^{4}$ for this sponge a special family-the Meyerinidre-and characterised it in the following mamer:-"Sponge clongate, tubular, covered with a cobweblike netted cont, with a circle of tufts of anchoring fibres at the base which extend more than half may through the length of the body, and then by repetition of a shorter kind, are contimed on to the apex, where they also form a circle of tufts round the margin of the apical aperture."

In lis first systematic eatalogue of the known Hexactinellida Carter ${ }^{\circ}$ united Meyerina claviformis, Gray, with Moltenia and Pheronema into one group. On pl. xiv, he has compared the extremitios of the tuft spieules, which are very like the anchors of Holtenia and Meycrina.

In his Classification of the Spongidre, published in 1875, Cartor formed the group of "Birotulifera" in the family of the Sareohesactinellida, of the genera Hyalonema, Holtenie, Meyerina and Latheria.

The specific agreement of the variously designated forms was first recognised by Marshall, who, in bis researches in the Hexnctinellida ${ }^{7}$ in 1875, pointed out that, with exception of the generic name Hyalonema used by Semper, the oldest designation is that of Semperella schulteei, and that this name is therefore entitled to be retained as the proper one. In his accurate and careful description of the two speemens at his command-one of which was found at Ceram and the other at Zebu-Marshall pointed

[^68]out that the dense sieve-phato openings which occur alomilantly on the frumeated Jatoral borders of the five-sided prismatic body, and are surrounded by delicate spicules projecting in a cuff-like mauner, are the osenlar openings of the main anastomosing canal systum running longitudimilly in the walls of the sponge. The larger hollow spaces occurring in the axis and opening ahove he designated pseudogusters, and their terminal latticework closing plates as prevelo-sicve-plates. A second system of passages and canals, whieh lie between those exhulent oscular openings, separated from them by sponge tissue, and covered towards the outside by fine dermal lattice-like networks were referred by Marshall to the subdermal spaces of Hacckel, or to the bitcrmuerginal cavities of Bowerbonk. In consequence of these resalts of his examiuation, Marshall, ${ }^{1}$ in 1876, characterised the genus Semperella in the following manner:-" Polyzoic with pseulogasters. Anchor bundles anastomosing with each other throughout the whole body wall. Dermal skeleton of cross spicnles separated by the tissue of the body and spread over large subdermal longitudinal spaces into which the internal canals open. Oscula of the individuals in rows, with peristome wreath and sieve-plate. The gastral skeleton formed of large four-rayed spicules, provided with meshes occlusible by means of fir-treelike spricules, and in direct connection with the dermal skeleton. The cavities of the psendogastral system are covered interually by six-and five-rayed spicules."

Semperclla schulteei, Somper.

Near the Philippine Island, Zebu, the Challenger Expedition obtained a benutiful specimen of Semperello schultzei, 38 cm . in length, and 5 to 7 in thickness. This form having been well preserved in spirit, remains almost uninjured. The cylindrical body, which measures 30 cm . in leugth exclusive of the basal tuft, has inferionly a cylindrical form, but hecomes gradually wider upwards, forming an irregular pentagonal prism with trumeated edges. The latter are from 5 to 8 mm . in broadth, and from the middle of the hody upwards do not extend in exact longitudinal direction, but extend on the one hand obliquely, and further divide and anastomose, till they finally unite in the superior flat cone, which occupies the terminal region of the upper end. The rootprocess, which extends perpendioularly downwards from the lower end of the sponge, becomes midened out inforiorly into a loose brush, and penctrates by means of its diverging spicules into the very varied detritus-sulstratum. There was no trice of commensal Anthozoc.

It is noticeable, even with the unaided eye, that a striking differenee can be olserved in the stracture of the external layer of skin on the above mentioned truncated lateral cigos, and that on the iutervening flat, or even slightly concave, Jateral surfaces (10 to 30 mm . in breadth). For while the latter exhibit a very delicate narrow-meshed quadratic
lattice-work, with meshes which do not attain a width of a $\frac{1}{2} \mathrm{~mm}$., and are separated by yet thimer strands, the skin on the rib-like projecting trmeate edges exhibits a much more irregular network with polygonal or roundish meshes, 1 to 2 mm . in diameter, and with firm whitish strands passing laterally into a compact marginal fringe about 1.5 to 2 mm . in breadth, which forms the bonndary between the narrow-meshed quadratic network of the sides, and the wide-meshed firmer sieve-network of the rib-like edges (PL. LI. figs. 1, 16). Through both these networks, which differ so much from one another, the subjacent cavities are seen, shining through as a labyrinth of united passages. On the superior, somewhat obliquely pyramidal or flatly comical, troneate extremity of the sponge, the wider network, strengthened by firm solid junction-plates, is terminally expanded and united, while the fine quadratic dermal lattice-work is confined to the sides, with the exception of several angular or rounded terminal prolongations, which extend beyond the lateral terminal margin on to the summit. Where some of this lateral dermal sheath has been rubbed off by accident or design, the labyrinthine passages and spaces are directly exposed, and it can be seen how the canals and eavities benenth the narrow quadratic dermal network form a connected, contimtously distinct anastomosing system of camals, a little finger's breadth thick, which are separated by a wall of 1 mm . thickness from another adjacent canal system, which likewise forms a connected network of amastomosing spaces and passages. This second system of passages extends directly under the wide-meshed, more irregular lattice-work, which we have noted on the rounded off lateral edges. The two canal-systems are everywhere separated only by a thin partition, and their camals extend side by side, not only under the extermal skin, but penetrating inwards, traverse the whole internal body, so that the broad, inregnlar, longitudinal canal in the axial region is an integral part of that system of passages, which extends below the wider irregular network of rounded side margins, and which opens at the superior terminal plate. This remarkable presence of two completely separated canal systems is represented in Pl. LI. fig. 16, in the lateral portion of the sponge from which the external wall has been partly removed, and also in the diagrammatic cross section of the whole sponge in Pl. LII. fig. 1.

Through the fine quadratic dermal network which covers the slightly convex lateral surfaces of the body, the water passes first into the subjacent canal system, by which it is earried to all parts of the body, penetrating at length through the partition wall (which, though only about 1 mm . thick, contains the membrane reticularis and forms the proper parenchyma) into the second system of canals which is in conneetion with the central longitudinal canal or gastral cavity, Thence the water reaches the exterior by the offerent ducts, namely, either by the wide-meshed oscular sieve-network of the longitudinal side edges, or by the superior terminal region.

That the relation of these two adjacent; but perfectly distinct, labyrinthine canal systems to the flow of water is as above described, is demonstrable not only from their
relation in reference to the skin, or from the connection lectween the second and the main ecntral cumals, but also from the strueture of the soft sponge body, and especially from the form and disposition of the chamber layer, or more correctly of the system of irregular diverticula from the membrana reticularis. As in all Hyalonematide the latter extends in the parenchyma between afferent and efferent canal-system in such a way, that the convexity of all the diverticula is directed outwards against the cotering stream of water, that is, against the afferent system of canals. Every longitudinal or transverse section of the sponge body shows that the membrana reticularis found in the partition between the two systoms is so disposed or manifoldty bent outwards, that the convexity of each small protrusion is against the processes of those canals which lie under the fine-meshod quadratic dormal network on the flat or slightly convex sides (PI. LII. fig. 3).

The canals below the dermal membranc, which extends in the form of the fine-meshed quadratic network, represent wide subdermal spaces, and those penetrating inswards aro somewhat uniformly wide afferent canals which do not break up into branches, but form an auastomosing labyrinth (PI. LII. fig. 1).

Large supporting spicules are represented in the parenchyma by a fetw medium-sized oxyhexacts, and by numerons oxypentacts, some of them with very long rays. Long uncinate spicules also oceur (Pl. LL. fig. 3), disposed in brush-like strands or groups, at right angles to the skiu, where the parenchymal eanal-wall is inserted on the external skin. Besides these, we note smaller spicules of the following types:-Firstly, small oxyliexacts with stion mys of equal or diverse length, besct to a rariable extent with somowhat distant, straight or slightly curved spines, which are inserted either at right angles or approximately so (P1, LI. fig. 15; Pl. LII. fig. 5) ; secondly, oxydiacts of a similarly spinose character, and with four short, smooth, conieal median rays or spines intersecting at right angles, and representing the survival of the othor four degenerate rays of the hexacts (PI. LII. fig. 4); and thirdly, isolated short uneinates with small short barbs (PI. LI. fig. 6).

The dermal skeleton, which supports the fine-meshed quadratic lattice-work, consists of very varied, strongly developed, hypodermal oxypentacts, with long smooth tangential rays, which are often somewhat strongly curved at the base, though sometimes but slightly duveloped, and which are apposed to one another to form the quadratic latticework, while the more or less long, straight, proximal tangential ray, extends to at tariable distance inwards, and ofton projects frocly into the lypoiermal canal (PI. LII. lig. 3). Only whero the internal wall of the canal is comnected with the skin does the tangential may lie throughout its whole-often considerable-longth in the parcuchyma. On the tangontial strands of lypodermalia, and on the bands of the dermal network extending between the former, autodormal pentact pinnli oceur, usually disposed in rows. The four thick and moderately long, externally spinose, terminally somewlat conical or rounded basal
rays of these pinuli cxhibit a median curvature like that of the figure 8 , as we formerly saw in the dermal pentact pimuli of Poliopogon. The frees strongly developed distul ray has usually a length of about 0.15 mm , and is besct with strong, though not long, lateral spines bent tike hooks upwards and outwards. The very upper end forms a free point (PI. LI. figs. 5, 18).

As to amphidises, I find a large isolated form about 0.25 mm . long, with thick knotted axial rod, and short, broad, terminally somewhat transversely truncate umbels. The eight broad rays are paddle-like and terminally rounded (Pl. LI. fig. 10). Beside these, though also but sparsely, a similar form of medium-size oceurs (Pl. LI. fig. 8), and somewhat more abundantly the familiar small type with hemispherical terminal umbels, 0.02 to 0.03 mm. in length (PI. LIL. fig. 7). More frequent than in the stretched, frocly exposed, dermal lattice-work, is the occurrence of these various amphidises in the portions of the skin which lie over the insertion of the parenchymatous canalicular wall (Pl. LII. fig. 3).

The same kinds of spicules, but with somewhat different development and dimensions, compose the skeleton which forms the wide-meshed sieve-network in the osenlar regions of the bevelled sides and of the superior extremity of the whole sponge body. The large supporting pentacts exhibit indeed the same fundamental form and dimensions as those of the dermal membrane, but reductions of individual rays very frequently occur, with the production of rounded ends, or with the formation of slight, terminal, club-shaped swellings. The downward curvature at right angles, exhibited by some of the tangential rays, is also of very common occurrence. Especially remarkable, however, is the considerable length attained by the free distal ray of the pinuli. As a rule, this thick ray, beset with short hook-like lateral spines, measures 0.5 mm . in length, and ends in a projecting point. The four basal rays are moderately long, less curved, and terminally somewhat spinose and rounded (PI, LI. fig. 4). Besides these, shorter pinuli occur with slimmer distal ray. The strong eight-rayed amphidises (figured in PI. LI. fig. 10) oceur here more abundantly than in the dermal lattice-work, and always exhibit in successful preparations the characteristic disposition represented in P1. LII. fig. 3. Numerous eight-rayed amphidises of similar form, but of medium size oceur, and also quite minute forms with hemispherical umbels.

It is noteworthy that neither pinuli nor amphidises occur on either of the bounding surfaces of the parenchymatous septa between the afferent and efferent canals, but only the familiar parenchymalia, including numerous medium-sized oxypentacts, with numerous bent, or with more or less reduced rays. I have, however, frequently found-instead of the familiar small oxypentacts with several laterally projecting, somewhat bent spines, -pentacts of similar structure, in which the sixth ray was cither wholly absent, or represented only by a small conical elevation.

Thie freely projecting portion of the lasal tuft exlibits spicules up to 20 cm . in length, which terminate superiorly in a very gradual point, while the lower end forms a strougly
developed bifureate anchor. The simple tooth- or paddle-shaped transverse arme of the fatter exhibit a much thickened base cising from the elvb-shajed swollen terminal portion, and in the larger forms are counected by a distinct lateral fringe on cither side. While the upper lialf of the long aucbor spicules, which is for the most part louried in the sponge body, is perfectly smooth, gradually increasing in thickness downwavds, the lower half, which becomes gradually narrower, hoars small barbs increasing in height and breadth. These are spirally disposed round tho shaft, and decrease again in size towards the very end, disappearing cutirely a little above the anchor. Thus the much narrowed, and just above the anchor yet slimmer, terminal portion appears quite smooth (PL. LI, fig. 14).

Among the many Hexactinellids which were truwled by the Challenger near the Little Ki Islands (Station 192, lat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long. $132^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{E}$.), from a depth of 192 fathoms and a blue mud ground, there was a beautiful spocimen of a Semperelle, which agrees in so many points with Semperelle selultzei, Semper, that I regart it as a young form of the latter. There are indeel some differences, but these may be explained as characteristic of the young form. The specimen has a total length of 10.5 cm , of which only 5.6 go to the stretehed cylindrical body, and 4.9 cm . to the inferiorly much broadened root process, which is almost wholly onveloped in a Pelythou encrnstation (Pl. LII. fig. 2). At its broadest the body measures 12 mm ., and the somowhat bevelled longitudinal edges, which measure about 2 mm . in breadth, anastomose abundantly by means of cross proecsses. They project somewhat more markedly than in the adult specimen, and are bounded by a fringe of perpendicularly inserted, straight, rod-like spicules (Pl. LII. fig. 3), which may be called marginalia, and are almost wholly absent in the large speeimen. These slim spicnles, which in many places form a continuous garniture and in others are not diseaverable, are quite smooth on their internal pointed half, while the free extornal portion is for the most part beset with small lateral toeth (turned upwards and ontwards), and ends in a delieate point, below which there is usually a small elub-shaperl swelling with two or four lateral teeth. Similar needles also project in the above deseribed young specimens of Poliopogon amcedou, both on the oscular margin and on the lateral surface, but are not discoverable on the side of the adult form. This fact seems to make it especially probable that we have here to do with a young specimon, and not with another species, and that the more, since all the other spicules closely resemble in form and disposition those of the larger specimen, as is equally true of the structure of the soft tissuc.

Suborder П. DICHYONINA, Zittll (Pla, LXXI-CI., CIIl, CIV).
Hexactinellidu in which the principal hexacts ato already at ons early stage united into a comected and compred (dictyonal) framework in a more or less regular fashion
(200L OLLILL EST,-FAIIT ZIII,-188i.)
Gg\% 3!

Tribe I. uneinatalia, F. E. Selmlze (Pls, LXXI,-XCVIII.).

Dictyonina with meinates.

Sultribe 1. Clavularia, F. E. Schulze (Pls, LXXI.-LXXVL).

Besides the pentact hypodermalia aut hypogastralia madially disposed clavulo oceur.
Family Farreide (Pls. LXXl--LXXYI.).

The dictyonal framework forms in the youngest regions of the body a single-layered network with quadrate meshes, from the noles of which conical protuberauces project on either side towards the dermal and gastral sufaces.

> Genus Farrea, Bowerbank (Pls. LXXI-LXXYI.).

```
1857. Owen, Trams, Linu. Soc. Lond, vol xxiii, pl. sxi figk 8, 9.
1869. Nowerbank, Phil. Traus,, vol. clii. p. 7t7, Tab, xxxii, fig. 7.
1864. Nowerbank, Mom, Drit. Spoug, Dd. i. j. 20t.
1864. Kolliker, Icones histologice.
1867. Gay, Froc. ZooL. Soc. Land., p. 402, Tabs, xxvii,, xxviii
1868. Bowerbank, Froc. Zoal. Soc. Loul., p. 118.
1869. Bowerbauk, Prue. Zool. Soc. Land, p. 66.
1869.WyvilleThomson, Phil. Trans, voI. clix. p. 701.
1870. O. Schmidt, Grumizüge timer Spongienfanua des atlantischen Gcbietes, p. 16.
1870. Saville Kemt, Monthly MLicr. Jouru., p. 241.
1873. Carter, Amu. and Mag. Nat. Hist, ser. 4, vol, xii Pp. 17, 349.
1875. Bowerbank, Proc. Zool. Soc. Land,, 1. 27%.
1875. Marshall, Zoitschr, f. wias, ZooL, Suppl, Bd. sxw. p. 142.
1876. Bowerbank, Proc. Zool. Soc, Lond,, p. 535.
1876. Marshall, Zeitschr. f. wiss. Zool., Bd. xxvii. p, 113.
187%. Sollas, Ann. and Mag. Nat. Hish., ker. 4, vol. xis. p. 1.
1880. O. Schmidt, Spongien des Meerbusens von Moxioo, p. 43.
1885. Carter, Amn. and Mag. Nat. Hist, ser. 5, voL. xv. p. 387.
```

History.-In the root-tuft of that beautiful siliceous sponge which was on one oceasiou presented to Captain Etheridge ly the king of the Soychelles, and which, after it passed into the possession of Dr. Arthur Farre, was accurately studied by Richard Owen, and described under the name of Euplectellic cucumer?' fragments of the siliceous skeletons of other sponges were entangled. Some of these skeletal fragments, which had already been observed by Dr. Farre, were subjected by Owon, along with the Euplectella, to a closer examination, and he even figured two of them, both in the natural size and

[^69]also under a magnifying power of ten and twenty diameters, in his pL xxi. figs. 8, 9 . In the course of his paper he describes the one piece in the following words:- "An irregular network, more or less lient, with subquadrate meshes, sometimes erossed by oblique threads," while, with regard to the other he said :- "The meshes of the network are on nearly the same plane, and of a more regular square form, with a short pointed spiculum projecting from one side of each decussation of the threads like the teeth of a harrow."

Some years later Bowerbank also communicated the results of his examination of the same object. He considered the two skeletal fragments which had been deseribed and separated by Owen to he parts of one and the same sponge. The harrow-like nctwork of siliceous beams represented by Owen in his figs. 8 and 9 , with its regular quadrate meshes and pointed teeth projecting perpendicularly from the crossing points, he regarded as the dermal skeleton, under which only the irregularly formed imer body skeleton was said to have lain. After more precise examination of both parts by the aid of stronger magnifying powers, Bowerbank saw that the beams of the fragment regarled by him as belonging to the inner body skeleton were completely perforated by a manifest axial camal, and were richly covered externally with fine spines, while the beams of the (dermal) skeletal network which formed quadrate meshes appeared solid and smooth. Only the teeth projecting at right angles to the kuob points appeared rough. Bowerbank, moxeover, drew attention to the fact that the rough teeth stand at right angles to the plane of that quadrate network not only on its outer side, but on both surfaces.

To this form, the body and dermal skeletons of which he had examined in the above two fragments, Bowerbank gave the gencrie desigantion Farret, in honour of the fortumate possessor of that specimen of Euplectellu cucumer in whose root-tuft the forms were found, and he added to this the specific name of ococe on account of the great similarity of one of the specimens to a harrow. ${ }^{\text {. }}$ In his MLonograph of the British Spongiade (part i p. 204, 1864), Bowerbank referred his Farrea ocore to the sponges with a "canalicnlated siliceo-fibrons reticulate symmetrical skeleton," the "fibres" of which being "composed of concentric layers of solid silex, with a continnons central canal," and he added:-"The fibres in Farrea ocoo are zather coarse, nbmiantly tubereulated, and the mode of retienlation is rectangular." The inner body skeleton referred to in this latter description is figured in pL. xv. fig. 277 , and in the description of the plate is referred to as "simple fistulose siliceous fibre, spinulated"; while the solid and smooth network of beams which, in Bowerbank's opinion, belongs to this sponge and constitntes its dermal skeleton, is figured on pl. $x x i$, fig. 311 , and in the desoription of the plate is refored to as a "qualilateral siliceo-fibrons network showing the double series of entirely spined spionlar organs projected from its augles."

[^70]Finally Bowerbawk again gare, in 1869, a more minute description of his Farrea occu, and supplied three new figures on pL xxiv, figs 1, 7. In this latter very detailed commmiention the siliceons network with its quadrate meshes, regraried ns dermal skeletou aud compared in form to a liarrow, is represented by Bowerbank just is formerly; on the other hand, in addition to the more ircegular and rongh network of beams regarded as belonging to the inner fiamework, a number of variously formed isolated siliceous spicules are figured and deseribed as necessory parts of the skeleton. These have four, five, or more rays, and do not present the right angles of the Hexactindlidan spienles. The gencric characters of Ferrea were summanised by Bowerlank in the same paper (p. 76) in the following manner:-"Skoleton siliceo-fibrous. Fibres canaliculated, canals contimous. Rete symmetrical; interstices rectangulated." The view first nunounced in the well-known paper by Wysille Thomson On the Vitreous Spouges, ${ }^{2}$ is noterorthy; it is to the effect that the fromework of beams which in the skeleton of Forrea forms in system with exactly square meshes has arisen by an amnlgamation of regula hexradiato spioules,

Ainong the deep-sen spouges collected by Count Pourtalis in the Cariblean Sea Oscar Schmidt found in 1870^{3} several irregular dichotomonsly branched tubes from 2 to 6 mm . in diametor. These were attached by a plate-like expansion, were thickwalled at the base, and becme towards the wide open upper extremity gradually thin-walled and fragile, till frully on the outermost and doubtless youngest parts of the little tubular tree only a single layered metrork of siliceons beams and square meshes was fomd. From the intersections of the latter rough slender conical teoth projected on both sides. In addition to this siliceons network, which, in its joungest parts at least, presents a certain resemblauce to the harrow-like siliceons network of beams of Ferrea occu which Boworbank regarded as a deumal skeleton, Osear Schmidt also found and described the following free siliceons spicules:-(1) long spimdle-spicules beset mith barbs; (2) loug spicules which run out at ouc extremity to a point, and are provided on the other with a hemispharical or slightly cousex and marginally toothed umbel-like roof or cap; (3) hexradiate spicules, in which each of the mays is beset on its extremity with three prouged, thin teetl, with minute convex terminal umbels ; (4) thin spicnles which run out to a point at one extromity, and aro provided on the other somewhat expanded end with five to eight bristle-like narrow prickles which project in a brush-like manner. These various spienles, which occured in special abundance in the neighourhood of the surface, were regarded by Oscar Schmidt as sufficiently chanacteristic of a now species distinct from the Farree ocea of Powerbank, and this he designated Farrea ficeunde.

In the same year (1870) Savilk Kent described, along with several other Hexac-

[^71][^72]tinellida collected on the coasts of Spain and Portugal, in full-grown siliceous skeleton which Io identified as Ferren ocec, Bowerbank.

This form consists of a continnons branched tube exhibiting anastomoses here and thore, and measuring from 5 to 8 mm . in diameter. The tube opens by a slightly funnelshuped, expanded mid projecting enp abont $t \mathrm{~cm}$. in width. To conelude from the figures given ${ }^{1}$ all the tubes cousist only of a simple framework with quadrate meshes. Although in this the sprecimen described liy Saville Kent quite dgrees with the uctwork of siliceous beams, regarded by Bowerbank as the dermal skeletou of his Furrece ocea, yet it differs from the latter in the circumstance that the beams of the framework are not smooth extermally, but are beset with pointed tubercles. In this charicter it rather resembles the siliceous network regarded by Bowerbauk as part of the inmer body skeleton of his Fierrea occh.

On the ame Lophoficlia stock upon which the specimen which was determined as Fowea ocec, Bowerbank, had beon fomd, Saville Kent also observed some "small fistulose ranifications bridging over the minor interspaces betweon the branches of the coral." He regarded this sponge, in spite of the great similarity with the naljoining Forree, as a species belonging to anothor, and even a new genus, which he named Audodiotyon. From the genus Ferveu this is said to differ in the following points:- "In Furrea the basal skeloton is composed of a single reticulated lamina; in Aulodictyon the basal skeleton consists of a complex reticulate tube betwecn, nud continuous with the primary meshes, of which an abundant network of coalescing simple hexradiate stellate spicula occurs." Morcover "the minuter spienlu of the sarcode" are also said to be "of an entirely different tyjue" And since Osear Schmidt had, in the case of his Forrca, fuewnda, described no single-layered dictyonal framework in the basal part, but a complicated network of several layers, and isolated spienles, similar to those found by Keut in his Aulodictyon, the latter was of opimion that Schmidt's Farrec focuncla ought to be referrel as Aulodietyon fuemulam to lis new genus.

As I shall show further on, however, all tubular species of Furrece have in their basal portion a dense dictyonal fiamework of several layers, and also the "long attenuate spicules inflated at the extremity and reflecto-peltate, with a dentate margin or with is simple series of recurred hooks," which Kent looks upon as characteristic peculiarities of lif genus Aulodictyon. Consequently the genus Aulodietyon must be entircly abamioned.

In the survey of all the above deseribed Hexactinellida which Cartur gave in 1873, ${ }^{2}$ this accurato observer first shargly distinguishes the two siliceons metworks found on the already often mentioned origmal specimen of Euplectelle cucumor, Owou. These hal been desuribed Ly Bawerbank as dermal and body skeleton of oue the the same sponge, while

[^73]Carter distinguished them as body skeletons of two different species which he named Fervert oced, Bowerbank, and Forree densa.

Carter confmed the namo Ferrea occa, which had been applied to both parts (taken together), to the siliccons network (regarded by Bowerbank as a dermal skeleton), which cousists throughont of one layer, surounds exactly square meshes, and bears at the intersections rongh conical pegs on both sides. In justification of this, Carter notes that only this skeletal portiou in reality resembles a harrow (ocos), and that it had therefore been specially considered by Bowerbank in applying the name.

In his examination of this species (Farrea oeca, Bowerhank), besides using some of the fragments colleeted during the "Porcupine" Expedition, and the specimens studied by Saville Kent, Carter also employed the fragments which bad been obtained from the basal tuft of the beartiful Euplectella cucumer studied by Owen. He was, however, only tuble to procure completely maceruted and greatly croded specimens, and accordingly could not study the spienles that oecur fiecly on the soft parts. Yet he believed that some spicules which were casually inclnded here and there in the continnous framework of beams might with probability be interpreted as belonging to Furrea occa. With regard to the formation of central camals in the beams of the siliceons framework Carter was convinced from the direct examination of these numerons remmants of Farrea occa, that the entire network of beams, with its rectangular meshes, had not originally possessed a coutinuous canal system, but, as this arose by the amalgamation of isolated hexradiate spienles, it at first consisted merely of the separate hexradiate canals, which terminated blindly at the six extremities, and belonged, of course, to the inditidual hexradiate spicules. These separate axial canals corresponding to the individual hexradiate spicules usually became very manifest after the death of the amimal. On accomt of internal absorption or solution they are specially wide and striking, and this points to a previous more prolonged maceration of the dead sponge.

A sponge described by Carter mider the designation of Furred infundibuliformis, from the Curbbean Sca, presents a small fumel-like boily, with a mnch widened thin margin, having an opening of about $2 \frac{1}{2} \mathrm{~cm}$. in diameter, and with a solid round stalk of about 1 cm . in lengtli and $\frac{1}{2} \mathrm{~cm}$. in thickness. The sponge is attached to its stratum by means of the somewhat expanded inferior extremity of the stalk. The skeletal framework of the solid stalk consists of a dense lattice-work, with more or less distinctly defined rectangular meshes, and is continuous with the skeleton of the fumel-like plate, so that in the midfle of the plate a rectangular lattice-work remains, while more irregular networks of fibres extend over the two surfaces. The beams of the rectangular latticework are beset with small spines, those of the irregular network of fibres exlibit still finer spines aud bear numerons aimple, hexradiate, lateral spicules. In such soft parts between the foramina of the siliceons network as were visible in the dried condition, Carter found mumerons floricomes with minute latorally spinose terminal knobs.

During 1875 and 1876, in his Monograph of the Silico-fibrous Sponges, parts iii.-vi., ${ }^{1}$ Bowerbank ascribed no fewer than fourteen new species to liis genus Farrea. These he names Furrea gussioti, Forrea pocillum, Farrat fistuluta, Furree levis, Furrea perwsitica, Farrea valida, Farrou spinosissima, Farrea spinifera, Farrot-spimutenta, Farrea reuleata, Firree robista, Farea incrmis, Farrea percirmate, and Farrea irregutaris. Since, lowover, the description of these new species was usually basel only on a small fragment without chameteristic form, and withal more or less macerated and injured, it is impossible, in most cases, to determine (notwithstanding the perfect figures given under a magnifying power of 36 or 80 diameters) to which species the fragment in question properly belongs. It is much to be regretted that, in almast all these Bowerbankian species of Furrce, thie free spicules of the demal system were not preserved or are not sufficiontly clearly figured, and accordingly the worls nsed by Boworbank at the close of the introduction to the monograph referred to must be employed; he siys:- "When the expansible dermal system is present, wholly or in part, in specimens under examination, we are enabled to establish specific chatacters of external form and strmetural peenliaities of the most satisfactory description, but when that important portion of the organic structure of the sponge is absent the characters derived from the form and surface of the rigid skeleton are necessurily provisional, and can maintain their places in its deseription only mutil a specimen in a natural and perfect state can be procured." Since Bowerbank, morcover, lays the very greatest weight on the width of the axial canals and regards these-as his generic diagnoses "fibres canaliculnted, camals contintors" indicate-as at least essentally in a condition of perfeet continuity, wherens, ns Carter has already obsorved, in the skeletal framework of the Hexactinellida, the axial canals of the individual hexradiate spienles are at first meonneeted, while the width depends chiefly on the condition of the skeleton as regards maceration or solution, it is conceivable that the specific characters and differential features given by Bowerbank have often little value.

The two types indicated by Bowerbank (loc. cit., p. 272) as Farrea gassioti, and Farree pocillum agree so thoroughly in form, size, and structure that it is really only the different breadths of the central eanal of the network of beams that form the difference. But this distinction is seen to be insignificant when it is observed that, even according to Bowerbank's own statement, some greatly macerated specimens of Famea gussioti have the central canals remarkably wide and elear. Further, in the ease of the two specimens of Furrot pocillum, which have the soft parts dried and richly provided with the included isolated spicules, and which were accordingly, withont doubt, secured as fresh specimens, the canals are especially delicate, and in some places even almost imperecptible. Moreover, the great similarity in form, size,

[^74]and structure, which these two Bowerhankian speeies bear to the Ferrer infundibuliformis, Carter, which was deseribed two ycars previonsly by Carter, ${ }^{1}$ but was entirely unknown to Bowerbank, is certainly striking. Bowerbank, indeed, saye nothing of the elegant floticomes, which Catcr's specimen possessed in rich abundance, but it is quite possible that these fine forms may have escaped Bowerbank in the comrse of his examination, and that accordingly all three species may perhaps be united into one.

The fragment which Bowerbank has designated as Farred fistulate consists of a bent tube of 23 mm . in length and 6 mm . in transverse diameter. It is not only open at both extremities, but further exhibits a lateral orifice to which a short tube of equal width is attached. The skeleton with its two or three square lattico-layers consists of smooth, cylindrical beams, with wide central canals. From the intersections of the outer as well as of the inner surface tolerably long tuberculated teeth project. Bowerbank also describes a thin dermal membrane with numerons spicules; but since the latter are called "acerate" and "contort bihamate," and since, moreover, a specimen of Hymerlesmia jolinsoni, Bowerbmk, which is distinguished by "acerate" and "trenchant contort bilamate" spictiles, was foand to have settled in the interior of the tube, there man be no doubt that those free spicules of the outer skin-like casing do not belong to the Hexactinellid any more than the spienles of those Desmacidonids which are firmly fixed in the interior. The whole fragment may have lain dead for a long time on the bottom of the sea before it was brought up, and the width of the central canal of the beams is on that supposition readily explained.

Farrec lavis is the name given by Bowerbank to a new species, of which he possessed only a small fragment, consisting of a trbe-like siliccous network from 4 to 5 mm. in lurcadth, and scarcely 1 cm . in length. Since the entire system of beams which oncloses approximately square meshes only forms a single layer, Bowerbank looks upon this as a "dermal network." The beams of the network are smooth thronghout, and so too are the long conical teeth which project outwards and inwards at right angles to the intersections. The central canals, of which two, or sometimes cven three, lie close to one ruother, are very wide, and become confluent nt the angles.

Since the small fragment foum in dredged sand was provided only in one small place with a thin skin consisting of a driod soft mass without any spicules, it may be inferred that the skin did not belong to the sponge, and here too, the breadth of the central canals was cansed by longer solntion in sea-water. Bowerbank finally notes the great resemblance betwem his Farea lazis and the brauched, partially anastomosing, tubuhar network, figired by Saville Kont and designated Farree occu. Ho also calls attention to the fact, that that brauched tube-like form agrees with a cortain "Farree tubulater." I have carefnlly endeavoured, but to no parpose, to discover in

[^75]the literature of the group something about this Forree tubuleta, which, so far as I am akare, is referred to only in this place.

As to the inregular netiork of beams with central canals of various widths, which adhered to the imner side of a Furrea gussioti, Bowerbank, and which is spoken of by Bowerhank as Ferrea porusitice, one ean searcely say more than that it belonged to a Hexaetimellid, for the fact of its connection with the genns Farrea is not even plausible from Bowerbank's own description and figure.

Tho Farrea-velide of Bowerbank was established upon a small frugment of a reticulated skelcton. The fragment, which is regarded by Bowerbank as representing the dermal skelcton, is distinguished by the possession of uniform square meshes, by thick, smooth, tubular beams in the network, and ly short, tulberenlated, conical tceth and prickles. This dermal skeleton is associated with an inner body skeleton formed of distinetly thimer, smooth beams, lint of this skeleton little is preseryed. The numerous hexradiate crowded spieules, which are placed upon, and have one ray at right angles to the beams of the framework, are noteworthy.

Bowerbank designates by the mame of Forrea spinosissima a fragment of a skeleton, consisting of several reticulated layers, and provided with more or less squaro meshes. From the tubular beams, which are of various thickness, though generally slender, numerous long pointer prickles project at right angles, and are cither smooth or slightly beset with spines.

Farrea spinifera was erected by Boworbank on the basis of a skeletal fragment, whose beams, which are of various thickness and provided with a central canal, surromid more or less regalar meshes, and are distinguished by long, transversely disposed, or slightly couical prickles.

A small skeletal fragment, which Bowerbank has named Farrea spizaulenta, differs from most of the others hitherto referred to in the very convenient circumstance, that in the present case a portion of the soft tissues, along with the free spicules that oceurred in them, was proserved in the dried specimon. It is true that bere also it is not quite certain whether the dried mass in question really belonged to the same sponge as the siliceons skeleton, but it is in the highest degree probable. The framework consists of a simple network with aquare meshes and long rough teeth, which project on both sides at right angles to the knots of the network.

As was to be expected, Bowerbank failal to find any central canals in the beams of the siliccons network of this fragment, which was cortainly taken from the sea bottom in a living condition. The skeleton was not yet macerated and dissolved internally like the majority of the other specimens of rarious species of his genus Famea, which have been referred to above. These apparently solid beams of the nctwork are, howerer, not quite amooth, but are boset with small pointed tubercles or with parallel lougitudinal rows of fine prickles, which stand at equal distances from, and altermate with one
(2001, cmall Exp-pant till-1887.)
Gg8 33
another. Among the free spicules which are present in the soft parts, and are especinlly abundnut in the skin, Bowerhank notes simple hexradiate spicules, with smooth or finely fringed rays, and also floricomes, with small terminal plates on ench of the four S-shaped terminal rays of every prineipal ray. Bowerbank notices the great resomblaner between this species and Farrea oces, but he at the same time calls attention to some small differenees, such as the slightly roughened surface of the beams of the network, the slender form of the teeth, and the peculiar floricomes.

Of Ferree aculeutid, Bowerbank, the anthor possessed only a fingment, the form of which pointed to a cup-like form for the animal. The usually two-, more sellom threelayered lattice-like framework cousists of strong, camaliculated, siliceous beams, which suround tolorably regular square meshes, and are irregularly beset with conical prickles and thorns of various sizes. Here and there hexradiate spicules which have grown upon the abovo also occur. This species has a striking resemblance to Forreo spinifocu, ns Bowerhank limself recognised.

The skeletal framework of Furrec robusta, Bowerbank, has a close resemblance to that of Farrea centerta. It differs from it strictly only in the greater size of the benms and in the corresponding namowness of the square meshes, as also in tho greater thichness of the fully developed rongh hexradiate spicules-differences which overywhere occur between oldex and younger parts of the same sponge, The soft parts and Monactinellid spicules found by Bowerbank in the framework are quite independent, and belong to a Desmacidonid which had settled in the skeleton after the death of the Hexactinellid.

Another fragment of a siliccous framework with several lattice-like layers, and provided on both suffaces of the somewhat bent plate with meshes which are uniformly square but more irregular in the interior, Bowerbank has named Fetver inermis, because the beams are ontincly or almost entirely smoath. From the knots of the network slender smooth teeth project at right angles, Similar prickles also project here and there into the imer meshes.

Bowerbank has designated as Farrea perermetec a flat, slightly bent, skeletal fragment in which the framework of beams, which forms square meshes, is everywhere richly beset with spines and prickles of rarious sizes, and exhibits no recognisable central canals. Loug rough comical teeth project outwards and inwards. Numerous thomy hexradiate spicnles also oceur with one ray in cach directed at right angles to tho beams of the network.

Auother bent skeletal fragment, consisting of a tolerably irregular framework of beams which here and there exhibit square meshes, Boreerbank names Forrea irregulecris. The individual beams have a very varied thickness, and for the most part perfectly smooth, isolated, small hexradiate spieules also occur.

If we review these fourteen species established by Bowerbonk during the years

1875 and 1876, we can olitnin only in four cases any adequate conception of their form; namely, on the one hand, in the case of Famea gussioti and the very closcly related Farrea pocillum, both of which liave the same cup-like form; and on the other hand, in the case of Farrece fistulate and Furree lavis both of which are tubuliform and are also closely related to one another. Whieh of the other ten apecies belong to the one or the other of these two groups of forms, or perhaps to neither, it is searcely possible to say on nceount of the small size and imperfect condition of the fragments examined. According to Bowerbank's own representation his Ferrea spiaulentes scems to agree for the most part with the old Farrea ocea, Bowerbank, so far as regards the lattice-like framowork. If this agreement were indeed more intimate it woadd be of great importance for the establishment of the generic character of Forred, becanse some free siliceous spicules were found and deseribed by Bowerbank in the dried soft parts, and these are absent in the other cases. We must regret that Bowerbank las communicated no definite information in regard to the free spicules whieh be mentions as having been fomnd in "various forms" in an original fragment of his Forred ocea (and indeed in the so-called dermal skeleton); he only says (page 561) that in Farrea spinulenta one may find that "the large simple reetangulate sexradiate interstitial spicula with spmous radii, a few of which are entangled in the inner surface of the dermal rete, also form efficient specific characters, none stech having bitherto been found in Farrea ocon."

In his description of the sponger of the Gulf of Mexico-1880-Oscar Schmidt maintains his previous diagnosis of the species Farrea facunde. To the spicules then described as characteristic ho adds a hexradiate form in which every individual ray divides at the extremity into from two to four (usually three) fine bristlc-like teeth, and he conjectures that in the provionsly examined specimens certain spicules represented on his pl, v, fig. 9 , which bear on each of their thickened extremities four transversely arranged and somewhat recurred hooks, might be present as well as in the specimens subsequently studied. He further reports that in the majority of his numerous specimens those peculiar broom forms (Besengabeln) figured on pl. i. figs $18,19{ }^{1}$ and in some the umbelled spicules represented in fig. 2 of the same plate, were not to be found. He is, liowever, by no means inclined to crect a specifie differcnce on that account, and that the less since the familiur fir-tree-like spicules occurred here and sthere instead of the absent "brooms." Only one form-in which the absent tumbel and hook spioules are represented by the se-ealled knob-broom form, that is to say, by forks with several teeth which do not run out to points but terminate in terminal knobs, and which were in the meantime described by Carter as Eurete fatrcopsis-should be excluded from hiss Furvera feomula, and at any mete becomo the representative of a special species On the other hand, the genera Eurcte and Aulodictyon, which were phaced near Fontea by Somper
${ }^{\mathrm{t}}$ Spongint den atautichen Gebletes, 1870 .
and Kent, he regards as untenable, and would without further deloy mite them to Farrea. According to Sclimidt's view all the forms ascribed to these two genera, with the single exception of Carter's Eurete farrcopsis, belong to the eirele of forms round his Forrea facknde.

In a Report on a Collection of Marine Sponges from Japan, made by Dr. T. Anderson, Carter gives a detailed and accurate description of the skeleton of a dapanese Farrea, which he designates Farrea ocec, Bowerbank.' The conical and brancheal tube exhibits in its upper portion "an extremely thin and delieate reticulated wall, rendered densor lower down (towards the base) by additional matter of a similar kind. Extremities of the branches open and dilated. The points of intersection of the quadrangular reticulum are marked on each side by a long, curved, spiniferous process or spur, which is direeted upwards, thus supporting the sarcole or soft parts and its spicular contents, both externally and internally, that is, on each side of the skeletal wall." The loose dermal spicules exhibit five forms, viz., (1) hexradiate with outer ray aborted; (2) acorate, straight, unsymmetrically fusiform, sharply pointed at each end, spinose at short intervals throughont ("barbule") : (3) mil-shmped forms, with a long straight shaft, slightly swollen and pointed at the free end, and expanded horizontally at the other into a oircular head, more or less spinose at the edge, very abundant and varied; (4) hexradiate rosettes with four straight arms without central swelling, onding in four divergent rays disposed round a central one, rays smooth and simply pointed, or else more or less capitate and beset with small spines; (5) smaller hexradiate forms, is which all the four rays are equally developed, straight, pointed and spinose.

Since Carter has desiguated this Farrea from Japan (off Misaki) by the title Farrece occoc, and described it with sufficient elearness to admit of its being recognised, Bowerbank's name may be retaincd for this definite form. Pls, LXXI., LXXII., L.XXIII., and LXXVI. were printed before I received Carter's paper, so that I was unable to clange the specific designation Forrea haeckelii into Farrat occa (Bowarbank) Carter:

Generic Charucter:-A simple tubular stalk, attached by its compact expanded base, bears a dichotomously branchal anastomosing tube-work, the walls of which are supported by a dietyonal framework with rectangular meshes. In older specimens the dietyonal framework is below of more than one layer, but it becomes gradually thinmer towards the upper end, and finally forms a single-layered meshwork. From each of the intersections of this network a stout rough spine projects at right angles both iuwards and outwards. Besides the pentaot hypodermalia and hypogastralia other dermalia oceur as clavule with a mail-like, elavate, or verticillate shape. Besides uncinates, the parenchyma contains oxyherasters, and in some species discohexasters.

Many species of Farrea have been already erected and deseribed, but mostly with

reference to macerated specimens. Only one of these can I regard as sufficiently diagnosed to permit of certain recognition, uamely, the form lately described by Carter, and designated by him as Farrea occe, Bowerbank.

1. Farrea ocad (Bowerbank) Carter (Pls. LXXI., LX.XII., LXXIII; PI LXXVI. figs. $1-3$).

Both the material of the Challenger Experlition and the collection of tha Hexactingllida brought by Dr. Doderlein from the Sagruni Bay, Japan, include numerous specimens of this species of Forved. These are partly spirit specimens with the tissue preserved, and partly driod forms. They exhibit considerable differences botle in size and form.

It is unfortunate that not one of all the specimens is quite intach. The outermost ends of the tubes are generally broken off for a greater or less distance. I hope, however, that the repucsentation given in Pl. LXXII. fig. 1, of a macerated skeleton in tateral aspect, and those in PL. LXXL figs. 1 and 2, from photographs of spirit specimons in lateral and superior nspect, will give a correct conception of the general habit of this spongo. It is frequently richly bromehed, forming composito masses sometimes 12 cm . in height.

The simple Lollow stalk is attached by a tlat expansion to a more or loss compact substratum, sometimes consiating merely of a crumbly mass of clay. This expandol portion consists of an irregular tuberculate phate, which is closely appressed to the substratum. In its centre it has a thickness of 0.3 mm . or more, but becomes gradually thinner towarls the irregularly frilled edge, forming a delicate smoath margin. On the free upper surface of this compact basal plate there are usually some radially disposed furrows, from 1 to 2 mm . in breadth, which sometimes divide externally into two or three arrower branches. From the lumen of the round tubular stalk which rises from the middle of the phate, a round exeurrent aperture leads either through the phate itself straight downwarls, or just above the plate through the wall of the tube (PI. LXXII. fig. 2). The stalk, whieh usually stands erect at right angles, has a diamoter of 5 to 10 mm . and an equally short length. It passes immediately by division and gradual expansion into the crowded anastomosing tube-work of the stock. The ultimate ends of the tubes form thib-walled smooth margined cops projecting frecly on the somowhat uniformly archod convex surface of the whole complex. The dichotomons division of the single tubular ends tukes place in the following fashion. The cup-shuped expausion extends trausversely; usnally at right angles to the last plane of bifurcation, the two long parallol margins thus formed approach one anothor in the middle and fuse, so that the cup becomes divided into two independent and diverging tubes (II. LXXII. fig. 3). After a mote on less prolouged growth these ngain experience a diehotomous division of the same sort. The length of the tubular portion seems to vary greatly in diflorent stocks and also in the
different regions of one stock. In PI. LXXII, fig. 41 have represented a frugment of a specially elongated tubular system. This was trawled to the west of Manila (Station 207 , lat. $12^{\circ} 21^{\prime}$ N., long. $122^{\circ} 15^{\prime} \mathrm{E}$.) from a depth of 700 fathoms and a blue mud ground, white in contrast to this the specimen trawled in the Bay of Sagami by Dr. Dödotein, from about 150 fathoms and a day bottom (PL LXXI. fig. 2), exhibited quite short tubuhr brauches of at most 1 cm . in length. In the largest specimen of this lot, which is figured in PI. LXXII, fig, 1, the tubes have a length of ouly 1.5 to 2 cm .

In the spirit specimens, in which the whole soft tissue remnins perfectly intact with the dermal and gastral membrane, both the external and the inner surface are uniformly marked by fino dark points arranged in transverse and longitudinal rows crossing at right angles (PI. LXXI. fig. 2). Where the soft tissue has becu removed by maceration or by mechanical means, the beantiful quadratic network of the dictyomal framework is more or less distinetly seen (PL LXXII, figs. 1, 3).

The diameter of the tubes increases continuously from the simple basal portion to the freely projecting, widely open, termimal eups. On quite young specimens only a few centimetres in height, the stalk measures hardly 3 mm . in breadth, just above the plate of attuchment, while in older specimens external thickening resules in a transverse diameter of 5 to 10 mm . Whilu the cup-shaped onds of the tubes in young specimens have usually a width of only 5 mm . or so, the terminal openings of the large stocks are frequently 15 to 20 mm . in diameter.

Since the dichotomons ramifiention begins at a very early stago at variably distant intervals and not in the same plane, but in planes often disposed at right angles to one another, no long straight main trunk results, but an irregular much twisted syatem of tubes, expanding on all sides. The auastomosis seems to oceur partly as the result of direct umion between uewly formed tubes which meet one another in their growth, and partly as the resilt of the apposition of adjacent tules which are at first externally united, and afterwards come into direct commmieation by the absorption of the intervening partition. Now and then, but on the whole rarcly, I have observed one or other of the tubes, bent dowzwards or to the side, and closed by a transverse porous plate, while all the others remained open, 1 can only regard such a closure as an almormality, which has probably resulted as a protection against the injurious influence of mad or the like.

In regard to the microsoopic structure of the dictyonal framework, I lave in the first place to notice, in oppasition to the preyious statements of other investigators, that the greater part of the whole tubular syatem, and especially the superior youngest portion, is supported by a single-layered network, but that in the lower, and therefore older portions, and also at the base of all the stocks which are not very young, the firamework exlibits two layers or more (PL. LXXIII. fig. 2; PL. LXXVI. fig. 3). The network ensloses approximately cuhical meahcs, This many-layered framework has undonbtedly arisen in this way, that to each distal my of the single-layered lattice-work the proximal
ray of a lrexact of the new outer layer is apposed, and both beome conveloped in a common concentrically lmminuted siliecous sheath. It is olvious that in this way the older and lower portions of the tubes may gradually incrense in thickness.

The thick, firm, spongy mas, wheli forms the pedied on the oller stocka and the flatly expanded hasal plate, has had another origin. Besides the apposition of a new layer of the cubieal lattice-work, we have here to deal with the interposition of mmerous smaller hexacts in the already formed meshes. And while the external apposition of new layers leads in general to the regular formation of rectangular or cubical meshes, the interposition of smnll hexacts does not usually occur in the madial tangential direction, but at very varions angles to the main strands, so that an irrogular narrow meshed netivork results (PI. LXXVI. fig. a). Where the lasul plate is in direet contact with the substratum, as in all other Hexactinellide fixed on a solid basis, a narrow meshed bounding plate is formed, which arises mainly by the abondant development of synapticula between the lomils of spicules.

While the strands of tho single-layered dictyonal network which lie parallel to the surface of the tube are eylintrical and smooth, the intersections of the net exbibit comical prominences projecting at right angles botis outwards and invards, and always heset with small tubereles or rough elevations. In the many-layered dictyonal fromeswork, the radial beams extending between the layers, which lie parallel to one nnother and to the tube wall, exaetly resemble the tangential beans in thieir cylindrical shape and in their smooth sufface, while bere also the prominences projecting from the outer and inner surface of the whole lattice-rork are always tubercled and rough. The length of these freely projecting conical prominences varies as mach as their form, and that between tolerably wide limits. They nee generally straight or obly slightly curved; are longer in the younger prortions, espacially in the single-layered framework, and shorter on the surface of the many-layered framework of the older regions. On the surface of the stalk and on its basal expansion they are either altorgether absent, or represented ouly by small knob-like elevations.

At the points of intersection of the dictyonal framework there is a slight thiekening gradually increasing with age, but this is not in any way marked off from the strand, nor different from the latter in the character of its surface.

The composition of the whale framework from separate hexacts may be most reatily recognised on those specimens which have remained dead in the sea for some time and are thus macerated. The axial cainls of the individmal hexacts lave through the dissolution of the loose immost layers become more or less markedly midened, and are thas in their disposition and extent readity olsceral (PL. ENXYL fig. 5). In fiesh specimens, however, they enn usnally be detected as very fine canald (PI. INXI. fig. $3,8 \mathrm{se}$)

The length of these axial eaunls is ofen surprising. While they usually extend only
to the proximity of thu axial cross of the next spicule, where they are rounded off and terminate, they are sometimes continued right along to the middle of tie secome spicule; thus three axini cmals may not mifrequently be seen ruming alongside in one strani.

In his last description of Farred occe ${ }^{1}$ Carter states that the conieal prominences which project fredy on either side of the narrow meshed lattice-work are bent outwards, I cannot, however, admit the accuracy of this as a genesal statement. As a rule the prominences are striaght and directed at right angles to the surface. As Carter correctly notes, they gradually decrense in length towards the base of the stock.

As to the loose parenchymalia lying between the beams of the dietyonal framework, I shall first disonss the uncincta. These have been already well described and figured by Carter (loc. cit.). His description is as follows:-"Acerate, straight, mesymmetrically fusiform, that is, the outer or projecting part being thicker than the inner two-thirds of the spicule, which is thns rendered long and whip-like; sharp-pointed at each end, spined at short intervals throughont, the spines long, smooth and slender, respectively supported ou lracket-like processes, which, being spirally arranged around the sbaft, give it an irverular zig-zag appearance, all sloping in the same direction, that is backwards, or towards the sponge, at a very slight angle upon the shaft, whose outer or thickened end is extremely shap." He calls them barbule, a diminutive of the English barb, and says that they are "common to almost all the Hexactinellida." This assertion I cannot, however, admit. Among the numerons Lyssiema which I have examined, strnetures like these uncinates only ocem in the genera Pheronema, Poliopogon, and Semperelle. Among the Dictyonina I have not found them in the genera Myliusia, Gray ; Dactylocalyx, Gray, Scleroplegme, O. Sclmidt, Marguritella, O. Schmidt, Euryplegnae, F. E. S., Jounello, O. Schmidt, and Aulocystis, F. E. S., and these may therefore be desiguated as Inermia, in opposition to the Dietyonalia with uncinates-the Uneinataria.

As Carter notes, the mucinates exhibit in Farsee weca an extraordinary variability in length, though this depends to some extent on the age of the individual nucinates and of the regions of the sponge in which they oecur. Further, is the form, number, and arrangement of their intmrned spines, there are in one and the same sponge very marked difforences. Rarely, and only in the younger portions of the tubes, 1 find the spines distaut and very divergent from the stem as represented in Pl. LXXI. fig. 4, and Pl. LXXIII. fig. 3. Sometimes a spiral amangement of the spines can be detected; in other cases this is impossible, aud the distribution appears to be quite irregular. The expansion of the distal third portion of the uacinates as contrasted with the interior is very marked, especially on the large and strongly developed forms, where, too, the juner and is not unfrequently distingnished from the outer lyy the development of weak spimes.

 Eatin or Greek termin vean to mi to have the profernece an being coamplolftan and wot national, I have adhered to myorigimal itesigmation.

All the meinates in Forreu occe are disposed at right angles to the surfnce, and thus traverse the wall of the tube in a radind direction. The sharp external point does not, howover, penctrate the dermal membrane, but at most reaches it. The imner weaker, and always pointed emls remain at some distance from the gastral mombrane, varying according to the velation between the length of the uncinates and the diametor of the tube-wall.

Besides the uncinates, parenchymalin are represented by simple oxylhexasters in more or less abundant oecurrence. In these the long smooth principal rays divide into two to four widoly diverging, straight or gently curved terminals, half as long as the principals (P1. LXXI. fig. 7). These oxyhexasters occur most almandatly in the subdermal and subgastral trabecular space, but more sparsely in the middle layers of the tube-wall, even between the chambers, without, howerer, being altogether absent (PI. L.XXI. fig. 3; Pl. LXXIIL. fig. 2). They are embedded in the trabecular network itself, and 1 mm inclined to think that the formation of the trabeculse and their interconnection is of the greatest importance in relation to the form of these spicules. In Carter's specimen of Farrea ocea the teminal rays of the rosettes were as a rule smooth and pointed, thongh oecasionally microspined and more or less "eapitate." In the specimens which I examined, on the other hand, there were never any traces of terminal knobs or dises on the terminal rays of the rosettes, that is to say, of transitional forms between oxyhexasters and discolexasters. I have, however, found specimens of Farree in which the rosettes were exclusively discohexasters, and these of an unusual type, but these were representatives of a second species, namely, Forred sollasii. Other specimens in which, besides the oxyhexasters, discohoxasters also occurred, belonged to a third species, Farree rosmaeri. But if the different forms of rosettes as above noted really occur in one and the same sponge, with distinct transitional types, then the forms which I have designated as two distinet species, Farrea sollasii and Farrea vosmateri may perhaps be regarded as varietics of Farrea occa. 1 have not, however, as yet diseovered such tramsitional forms, and shall therefore meanwhile continue to regard these divergent specimens as distinct species, until their relation to Farrea occa be indisputably establishod.

Besides the uncinates and the above mentioned rosettes, the parenchyma of Farror occa contains simple hexacts, of the same size as the rosettes, with smooth or rough, straight, pointed rays, which nsually exhibit a knob-like thickening on their point of intersection. While these simple oxyhexacts have only a rare and isolated occurrence in the rpper younger portions of the Farreas stocks, they are abundant in the lower portion, and in older stocks even numerous in tho pedicel, and in the basal plate, within the meshes of the dietyomal framework, where they are abundantly fused to the dictyoual beams, so that by the gradual thickening of the rays, and their mion with adjacent strands, they contribute to the thickening and compacting of the connected skeloton.
(zool chati rexi-part till-188i.)

The dermal membrane of Farrea oced is supported by the four rectangularly intersecting tangential rays of simple pentacts, whose fifth rays penctrate into the parenchyma at right angles to the surface of the tube, while here and there a tuberele or knob-like distal elevation remains as the persisting trace of a sixth (distal) ray. Wlile the proximal ray is always perfectly straight and slightly narrowed into a conical form towards the pointed end, the fotr tangential mays are nsmally bent gently inwards, and end in a slight usually blunted thickening, or in a somewhat knob-shaped swelling (PI. LXXI, fig. 6). The proximal ray usnally exceeds the tangentint in length, is always eylindrieal, and generally smooth with the exception of a slight roughness at the point. The tangential rays, on the other hand, are somewhat flattened on their outcr side, and beset with smaller or larger tubercles which are sometimes pointed, sometimes rounded and boss-like. These tubercles or spines are usually strongly developed only on the gently convex and somewhat flattened side; on the lateral edges they are more wenkly developod, and are altogether absent on the inner side of the tangentials. In some cases they have an isolated occurrence on the internal side. Towards the end of the rays the spines increase in height, and ocenr more densely and all round.

The disposition of these pentacts in the dermal membrane is frequently after this fashion, that the quadratic framework, which is formed from their apposed tangential rays, corresponds exactly to the subjacent dictyonal framework, each proximal ray being apposed to a distal prominence of the latter, and the tangential rays lying parallel to the beams of the dictyoual lattice-work. The meshes of the dermal lattice-work thus of course correspond in size to those of the dictyonal framework.

In other cases, as for instance in that on which the figures on PL. LXXII. fig. 5 and PL. LXXIII. fig. 1 were based, each distal prominence of the dictyonal framework corresponds indeed to the proximal ray of a dermal pentact, but besides this there is above the middle of each mesh of the dictyonal lattice-work a dermal pentact; and the tangential rays of all the dermal pentacts do not lie parallel to the beams of the dictyonal lattice, but diagonally to the quadratic or reetangular meshes. Often enough, however, no definite relation between the dermal penfacts and the dictyonal lattice can be determined except this, that above most of the distal rays of the latter there occurs a pentact of the dermal skeleton. The extent to which the corresponding opposite tangential rays of two adjacent dermal pentacts may overlap one another, varies in the different regions of the sponge. Each tangential ray frequently reaches almost to the nodes of intersection of the neighbouring pentact (PI. LXXIL. fig. 5).

Besides the pentacts above described, the dermal skeleton of Ferrea ocea contains clavule, which are so far in conncetion with the former since they always lie close beside the proximal ray. While they form an oxternally divergent tuft, the inferior pointed ends of the long stalk are usually in contact with the proximal ray of the rehted pentact, and the heads with their convex terminal discs lie about the level of the dermal membrane or
project more or less beyond it, and fill up to a greater or less extent the four angles of the eruciate tangential rays of the pentact. Contrary to Carter's report, according to which six clavulo usually aceompany each pentact, I generally found eight round each in the best preserved specimens, and dispased so that two lay in each of the angles of the tangential mys. This number does not seem, however, to be in any way constant. Not unfrequently I have found ten or more clavule in one luudle, and very frequently fower than eight, and sometimes very few. It is diffieult to determine whether they may be sometimes wholly absent; where this appears to be the case, it is quite conceivable that they may lave fallen out or have been tom away. Nor does the fact that they frequently project more or less beyond the surface of the skin necessanily imply that they have this position in the living sponge. On the contrary, in the best preserved specimens the normal position scems to be that in which the homisplierical terminal dises oceur within the dermal membrane. Deformation of the body-wall or pressure of apposed foreign borlies has forced them outwards, as may be iuferred indeed from their shape.

The form of the dermal clayula in Farrea occa varies considerably, as Carter has already noted, and that between somerwat wide limits, from the long-toothed umbels to the smooth club (Pl. LXXII. fig. S), nevertheless one definite form is so predominantly frequent, that it may be regarded as the normal type, of which all the others ate only exceptional modifications (PL LXXI. figs. 5, 9). This typical dermal clavula exhibits a elub-shaped or poppy-head-like termimal swelling, which is externally and laterally roofed over by a hemispherically arched umbel, frequently raised in the contre into a projecting boss. The overhanging margin of the umbel is toothed. The teeth, which number eighteen to twenty-two are cither simple marginal teeth resulting between notches of the margin, or are more or less shaply defined off from the edge and laterally compressed even at the base. The cylindrical stalk is gradually narrowed towards the lower, simply rounded extremity, and is usually straight or gently bent, and, like the poppy-Licad-like extremity, is beset with small irregularly disposed tubercles, which increase somewhat in size and number towards the narrowed lower end (P1. LXXI. fig. 5).

Various deviations from the above described typical form often occur both in different regions of the same sponge and in specimens obtained from different localities. The variation is especially associated with the terminal portion which we lave shortly designated the "head." In thickness and length, for instance, it varies greatly. In many cases the stalk shows towards its upper end at most a gentle thickening, which bears terminally a thin toothed umbel like that of a toad-stool, while in othens there is a broad clulsshaped terminal portion from which the umbel region is but slightly, or even not at all marked off, so that a perfectly smooth clul-like swelling may result. While the terminal portion of the umbel is sometimes quite flat and without auy central elevation
(PL. LXXL. figs. 5-9), it is not unfrequently markedly arched, and frequently bears a more or less sharply defined central papilla. The toothed outer margin extends for a varying width beyond the centre of the head, or may on the other hand be reduced to a simple smooth fringe (PI. LXXII. fig. 8), or even whelly disappear. The number and size of the marginal teeth are very variable. The normal uumber, twenty, is rarely greatly exceeded, and frequently not attained. I may, howevor, call attention to the fact that anong the dermal clavule I have never found the anchor-like forms with eight to four long curved rays, which oceur so frequently on the gastral side. This marked differenee may sometimes be utilised to distinguish the two sides on broken fragments. The portion of the bead below the umbel is either a simple conical or trumpet-shaped expansion of the stalk, or is a thickening sometimes cylindrical or even narrowed in its superior portion (PL. LXXL fig. 9). In the latter case this swollen lower portion of the head may bear a special second row of teeth, which fie parallel to the toothed margin of the umbel. Not ouly do the length and strength of the stalk vary greatly, but the shape of the lower portion, which is sometimes quite gradnally pointed, sometimes conically truncated or even rounded off. The degree of roughess is also as variable on the lower as on the upper portion.

The gastral skeleton agrees cssentially with the dermml, so that I may simply refer to the above description of the latter, and content myself with noting the principal deviations. Thesc differences ane indeed notable enough to keep ns from ignoring them, as Carter has done in his otherwise excellent description of the skeletal elements in Farrect ocea. The large gastral pentacts agree almost perfectly in shape, size, and disposition with those of the dermal skeleton. It seemed to me, howover, that there was a more frequent occurrence of the remnant of the lost sixth ray in the form of a conical or romided bass. Often enough, however, in the gastral membrane, pentacts may be seen withont any trace of this remnant.

The difference between the gastral and dermal skeletons consists chiefly in the form of the clavule, which occur here also beside the pentacts, correqponding in number, position, and arrangement to those above deseribed, but differing somewhat in form. In the majority of the gastral clavnle, four or cight long, slender, more or less markedly recurved hooks or teeth are formed on the very differently shaped bead portions, and prodnce a certain resemblance to an anchor. The head at least, and the greater part of the stalk, are destitute of those roughnesses which are so frequent in the dermal clavnle (Pl. LXXI. figs. 8, 10 ; Pl. LXXIL. fig. 9).

This difference in shape betveen gastral and domal clavnle, is not of course constant nor everywhere marked to the same extent, While in some specimens, nad in certain regions of a single specimen, almost all the elavnle of the gastral skeleton exhibit this anchor-like structure, and ouly a few provided with the flat terminal umbels ocear in the dermal membrane, in other regions and in other specimens the umbel-bearing forms may
predominate, and indeed the anchor-like forms may decline to such an extent, that they are only foum here and thore.

I have taken special pains to try to elucidate the chancters of the soft body and especially the system of chambers in those specimens which are lest preserved. Neither the dermal nor the gnstrat membrane exhibits any special peculiautics. Where the dermal network has been in any way preserved, it exlibits meshes of variahle widtli, sometimes very narow as represented in PI. LXXI. fig. 3 and PI. LXXII, fig. 5, and sometimes so wide, that the whole rectangular region between four adjacent pentacts exhibits only one large round aperture. The gastral membrane exhibits similar refations.

In the younger portions, which are supported only by a single retieulate layer of the dictyonal framework, the chambers form a simple, or slightly folded layer of large saccular or thimble-shaped diverticula of variable size. Below the reetangular meshes of the dietyonal framework, they unite to form a wide excurrent space (PL. LXXI. fig. 8), so that, on looking down from the gastral surface, below each mesh, one finds a large excturent aperture. When the thickening of the wall towards the base of the stock results in a dietyoual framework of several layers, broad canals traverse this thick wall. The chambers, which are directed obliqnely, then appear rather as lateral and terminal divertieula of the wide prineipal canals, and seem to be continuons with them without any marked boundary (Pl. LXXII1, fig. 2).

The number of chamber-wall pores varies greatly in the different regions of the body and in different specimens. The thin layer of connective substance which forms the walls of the chambers bears internally the cpithelial cells, arranged in rectangular fashion as in Euplectella, and also united by the same lateral processes into a reetangular network. The trabecular framework which extends between the two bounding membranes and the chamber layer consists of deheate strands with fine expansions at the points of insertion and mion.

In many cases the external surface of the chamber wall exhibits numerous groups of small, crowiled cells, with muclei which stain with speeial readiness. It is pessible that these groups of six to twelve cells are concerned with reproduction; 1 have at least remarked their total absence in seveml specimens which contained numerous sperm balls at various stages. I liave mifortunately form no ova or larve. It is true indeed that in one fragment from Sagami Bay, the subdermal trabecular space contnined numerons Wastulm in some regions, but whether these belong to the Farrect or to some commensal, or porhaps to some quite unconneeted form, it is difficult to determine, aince the state of preservation of the specimen was by no means frivourable. The minuteness of the larwo (0.03 mm . in diameter) seemed, however, noteworthy.

2. Forrea sollasii, u. sp. (PI. LXXIV. figs. 1-6).

On the much macerated and half-caten skeleton of a dead Japanese Fourco acca (in Dr. Döderlein's collection), I found a system of dichotomons tubes abont 8 cm . high, and evidently belonging to a Farrea, which in extemal appearance so closely resembled Farrea occa that any special description is superfluous. It is, however, at least probable that we have here the representative of another species. The difference lies especially in the structure of the discohexasters scattered in the parenchyma. They differ markedly from those of Farrea occo, so that I felt compelled to erect a distinct specics.

I shall not enter into any detailed description of the strongly developed dictyonal framework, with its rough internal and exterual conical radial bosses, nor of the mencinates of various strength usually very much narrowod at the gastral extremity, nor of the dermal and gastral framework as a whole, but refer simply to the distinct representation given in Pl. LXXIV. fig. 1. The length of the anchor-hooks in many of the gastral clavalæ (Pl. LXXIV. fig. 5) is rather remarkable. It is, however, necessary to call attention to the peculiar discohexasters which oceur in all parts of the dry skeleton, in more or less abandanee, beside the quite isolated oxyhexasters which oceur in the form constantly represented in Farrea ocea. The basal portion of the uniformly developerl xays of these discohexasters seema rather shors, and divides into three long thin rather outwardly beut terminal rays, which bear on their outer ends a small transverse terminal plate, with four to eight gently reeurved margimal teeth (PI. LXXIV. fig. 6). Besides these delicate and weakly developed discohexasters, similar smaller forms here and there occur with stronger terminal rays, bearing dises without marginal teeth, and on the whole more resembling thickened knobs (P1. IXXIV. fig. 1, left, below).

3. Farrea vosmaeri, n. sp. (PI. LXXIV. figs. 7-13).

Among numerous specimens of Farwed occu, Carter, which Dr. Döderleiu dredged in Sagami Bay, Japau, from a depth of 100 to 200 fathoms, and preserved immediately in spirit, there are some well-preserved portions of a Farrea, which m microseopic appenrance and in the structure of the individual siliceous elements differs from Farrea ocea, and so markelly from Furred sollasii, that the erection of a distinct species seems inevitable. The spicules are very like those of Aulodictyon woodwordir, Sav: Kent, but they include oxyhexasters which ane not represented in the latter. The saviug clause must again be noted, that it is possible thint the divergent spicules have been intruded from outside. As can be inferred from Pl. LXXIV. figs. 7, 10-13, neither the general structure of the dictyonal framework nor the majority of the isolated
spicnles differ essentinily from those of the corresponding portions in Furree occu. Thic anchor-hooks in many of the gastral clavule seom to be especially long (PI. LXXIV. fig. 12), and the hexasters are in part very divergent. Thongh most of the latter have a general resemblance to the oxyhexasters of Farvect occt, they differ from the latter in the greater thickness of their principal mays (PI. LXXIV, fig. 8). Besides these, somewhat larger hexasters occur with weakly developed principal rays, which divide into four short S-shaped terminals, disposed in a perianth-like whort and tipped with a small knob. (PL. LXXIV. fig. 9).

4. Farrec cluxigera, n. sp. (Pl. LXXV.).

Near the Banda Eslands (Station 194, lat. $4^{\circ} 34^{\prime}$ S., long. $129^{\circ} 57^{\prime} 30^{\prime \prime}$ E.), from a depth of 200 to 360 fathoms and volcanic mud ground, a Ferrea was captured which in external appearance differed cssentially from all hitherto described forms. This sponge forms a straight tubular stem about as broad and as long as a fingor, with walls 1.5 to 2 mm . in thickuess. It bocomes gradually wider towards the upper end, attaining a diameter of 20 mm ., and rising at right amgles to a compact smooth basal expansion, which is directly attached to the solid substratum. Just above the solid base the internal lumen las a width of 3 mm , and is continued obliquely downwards into an extermal groore-like keel. At a leight of 12 mm . the first lateral branch is given off, with n diameter of 8 mm , while further up several branches fork off in irregular distribution, in a somewhat transverse direction to the main stem. The latter seems to divide superiorly into two large branches which are unfortunately broken off. While some of the transverse tubes are brokell off quite close to the main stem, others exhibit dichotomy into two very divergent branches, It is intereating that n very similar form has been deseribed by Osear Schmidt under the title Furver facunda from among the Hexactinellids of the Bay of Mexico. It is figured in the work already referred to, pl, vii. fig. 1A.

The dictyonal framework does not vary essentially from that described in Farrea occu. Inferiorly it increases, on the one hand, in thickness, and on the other very markedly in the fineness of its meshes. The basal portion becomes a thick, stone-hard, very finely porous mass, in the meshes of which countlicss small hexacts occur, in part free, and in part fused to the adjacent framework. Isolated parenchymalia are further represented by uncinates and lexnsters. Thic former seem to be comparatively long and narrow. Amoug the lattor I hnve observed the form which occurs so abundantly in Furrea occa, but in much more sparse distribution. Whether a second form of hexaster, charncterised by short principals and very long terminals, and occurring abundantly in some regions (Pl . LXXV. fig. 6), really belongs to this Farree, or has been intruded from some other Hexactinellid, I cannot nufortunately determine with certainty.

The dermal pentacts resemble in general the corresponding dormalia of Ferrea occa,

Int exhibit more frequently than in the latter remnants of the atrophied sixth ray; persisting in the form of a protriding, roundel, more or less elongatod distal tulecele. They also differ in the strong development of roumden lateral teeth on the fom tangontial mays (Pl. LXXV. fig. 8).

Very unique and charactoristic of this species are most of the dermal clavule, of which the common form in Ferrea occe has only an isolated occurrence. Two predominant forms oceur, of which one exhibits a thick, short, supcriorly rounded head with a contral terminal papilla, bearing two parallel circlets of teeth (PL. LXXV. fig. 3), while the other has a perfectly smooth, long, club-shaped distal end, which is not in any way sharply marked off from the stalk (PL LXXV. figs, 2, 5). These two forms of clavule are either quite irregularly distributed beside one another, or are distinctly restricted to certain regions of the sponge body, or finally disposed in alternate bundles in the manner represented in PI, LXXV, fig, 2.

The strong pentacts of the gastral skeletou are distinguished by the large blunt remmant of the atrophied sixth my and also by the specially large and distant teeth on the tangential rays. These tecth are not conical but rather cylindrical, and are rounded off at their ends (PI. LXXV. fig. 8). The gastral clavulie are all developed in mehor form, and usually possess only four strougly recurved long and narrow anchor teeth (PL. LXXV. fig. 4).

Corresponding to the strong development of the wall in the still preserved portion of the single specimen captured, cross sections reveal a deep folding of the chamber layer. The single chambers are somewhat smaller and more irregular than in the tube of Forrea oced (PL LXXV. fig. 2), nor elid the latter exhibit an equal strength of derelopment.

Fanea sp. (?) (PL. LXXVI. figs. 4, 5).
Among numerous macerated Furrea skeletons in the Challenger collection, which could not be satisfactorily itentified in the absence of all isolated spicules, there was one form which, though small and crumbling, seemed worthy of more notice than could of conse be given to the majority. This specimen, which is figured in Pl. LXXVI. fig. 4, esseutially differs in its whole configuration from any of the bitberto here described species of Farrea. It has the form of a slightly convex funnel, somewhat broken at the sides, and 1 to $1 \frac{1}{2} \mathrm{~cm}$. in height. It consists of a single lattice-work layer with welldeveloped rectangular meshes, and with strongly developed beams which resemble those of the dictyonal framework in undonbted species of Farrce. I would not give so much attention to this form, if Carter and Bowerbank had not previoualy described and figured as species of Farrec certain funnel-shaped Hexactinellids, of which it is possible that some belong to the gemus, though differing from the tubular type in more respects than in form. These forms are Furved infiendibuliformis, Curter (identical with Forvea
infundibularis, Carter), Fursea gossioti, Bowerbank, and Farrea pocillum, Bowerbank. The last of these three forms (Farvea pocillum, Bowerbank) certainly does not belong to the genus Farrea, as Bowerlank's figures' and deseription clearly show. On the other hand, Farea infumdibuliformis, Carter, and Farrea gassioti, Bowerbank, may quite possibly bolong either to the genus Farrat itself or to some related genus within the family Farreide. I only desire to direet the attention of specialists to this funnel-shaped Farreid, for such at least the frogment figured in Pl. LXXVI. eertainly is.

Subtribe II. Scopularia (Carter), F. E. Schulze (Pls. LXXVII,-XCVIII.).

Besides the pentact hypodermalia and hypogastralia, radially disposed scopulæ occur.

Family I. Eunetide, F. E. Schuize (Pls, LXXVII.-LXXXII.).

Branched and anastomosing tubes, which either form an irregular framework with tubes of almost uniform width, or else the wall of a cup. The dietyonal framework exhibits from the very first more than one layer, so that a single layered network of strands never oceurs at the ends of the tubes.

Genus 1. Eurete (Semper), Carter (Pls. LXXVIL--LXXIX.).
1868. Semper, VerhandL d, Wüzburg. phyz-med. Gese川seh., Sitzungh. vom July 18.
1875. Marshall, Zeitacha, f. wibs. Zool., Suppl, Bd. xxv. p. 181.
1876. Marshall, Zeitschr. f. wias. Zool., Ih, xxvii. p. 113.
1877. Carter, Aun and Mag, Nat. Hist., Ber. 4, vol. six. [, 112.

187\%. Zittel, Ahhandl. d. k. baier. Akad. d. Wisz, Bi. siil. Heft 1, p. 1.
1880. O. Schmidt, Die Spongien des Merlasens von Mexico.

History.-In the Transuctions of the Plysico-Mledical Society of Wïrzburg, 1868, there oceurs, in the report of the session held on 18th July 1868, the following notice :"Mr. Semper showed some new siliceous sponges from the Philippines. One is a new specios of the genus Hyalonema, and another may be regarded as a type of a new gonus Eurete." "The genus Eurete was established for a spouge, baving the form of a coral, the cylindrieul and hollow branches of which are everywhere united to one mother. The wide openiugs at the extremities of the branches seem to be exhalent, the fine pores between the network, which constitutes the walls of the tube, are apparently inhalent. The tissue of the wall of the tube-which measures about 1 mm . in thickncss -is composed of a tolerably dense nctwork of fine siliceous tubes, which are sometimes

[^76](800L OHALL HIV-PAIT HIL-185\%.)
G85 37
fused together irregulaly, though oceasionally also crossing one another in a regular manner, so that a network swrotuding rectangular meshes becomes formed. It seens nowhere to show actually free eross spienles, yet vory frequently the cavities of the amalgamated cross fibres remain independent of one another, so that often two or three hollow spaces lying close to one auother, yet not connected, are cemented together by a common silicoons mnss. In these siliceons tubes the uneommonly wide cavity of the axial cord is remarkable. It is often so wide that its diameter execeds the thickness of the wall about six times. It is to be regretted that the single specimen is moch bleached and macerated, so that it is not possible to say whether the almost complete absence of all free siliceons bodies shonld be looked upon as a peculimity distinguishing this genus. To judge from the structure of the tissue, this sponge probably belongs to the same genus as Ferred occu, Boworbank, Since, however, only fragments of the latter are known, it is still possible that they lelong to the Eneplectelle cucumer, Owen, on whose roots they were found, so that provisionally Foncer occa and Eurcte simplicissinu, Semper, may be regarded as distinct from one another. An accurate examination of the tissue of Euplectelle cuevmer would throw light on this question. Detailed descriptions will shortly be given in the Zeitschrift fiir wissenchaftliche Zoologie."

The description here promised was givea by W. Marshall in 1875.' Marshall first confirms the general description of Semper, and calls attention to the oceurrence of trmsverse divisional walls close bencath the orifices of some tules. These be desiguates by the name of sime-plates, and is inclined to regard them as indicating the recular limit of every "individual" properly so called. Of free spienles Marshall, like Semper, found but a mere trace, and he therefore conclnded that even the living sponge had none. This view has agaiu been definitely expressed by Marshall ${ }^{3}$ after re-examination of Semper's original specimen.

The sponge minutely described by Carter under the name of Eureto furveopsis ${ }^{3}$ was, like the majority of objeets of this nature that have to be dealt with, much macerated, yet in some remnants of the dried soft parts, it mumber of free siliceous spicules could still be found. From Carter's minute description I mako the following excerpt as being of very great importance:- "General form bush-like, composed of mauy tube-brauches inastomusing clathrously. Thauches short, thick, cylindrical, hollow, formed of a delicate, thin, reticulated wall, thickoning from the growing margin towards the base or oldest part. Orifices of branches respectively circular at finst, then expanded, afterwards funncl-shapel, becoming elliptical and contracted in the centre, where by the mion of the approximated parts of the margin, two circular orifices are formed, which grow into two short, round, tubular branchos in opposite direction, to divide again after the same

[^77]manner, and so on-or to amastomose with other acighbouring luanches. The meshes of the reticulated tiesue are subquadrangular,"
"Spicules of three kinds, namely, skeleton, subskeleton and flesh spicules. Skeleton spicnles scrercedicte arms spined throughont, pointed in the smallest, inflated at the extremities in the largest specimens. Subskeleton spicules of two forms:-(1) acerate, straight, fusiform, attenuately pointed, spined throughout, spines all inclined one way, and morc or less closely applied to the shaft; (2) scopulize spieule, consisting of a shaft and head; shaft eylindrical, abruptly pointed at the free end, quaulrangularly inflated at the other, micorspined throughout, most evidently towards the free end; head consisting of four urms, respectively supported by the four angular projections at the end of the shaft, at first remaining parallel or slightly curved towards ench other and then expanded; arm mach thimer than the shaft, inflated globularly at the extremity, microspined throughout, especially towards the inflation, whore the spines are long and inclined backwards, leaving the convexity of the inflation smooth or bald. Flesh spicule a Hexactinellid rosette, each arm bearing four capitate rays, expanded en fleur-de-lis, or without extended sums, the latter being reduced to a contral point, from which the rays radiate in all directions so as to present a globular form."
" Vitrcous fibre smooth between the knots, which are globular and spino-tubereulated all over, except where interupted by their umion with the fibre, or by the projection of one or more arms of the sexradiate spicule in the form of large spines, thickened or elongated, pointed or inflated at the extremity and spinnlated throughout."

According to Carter the following are the peculiarities of Eurete forveopsis:- "The globutar tuberculated knots of vitreous fibre, which, with the centrally developed spire, looks like a bossed omplalic shiold, and the globular influtions respectively at the ends of the scopuline arms very much like a 'bald head.'"

Chavacter of the Genus.-A systom of multifarious dichotomously branched and richly anastomosing tubes of approximately equal diameter, fixed to its substratum by meaus of several solid or hollow supports which are inferiorly expanded in a plate-like mamer. The margin of these oscnlar openings is not attenuated as in Farrea, The dictyonal framework of beans forming the skeleton consists in all parts of the spongeeven in the latest formed margins of the oseular openings-of several layers, amd surrounds more or less regularly formed, in many cases almost square, in others irregularly quadrangular or triangular, meshes with simple or knot-iike thickened intersections. On the dormal and ventral surfaces of the framework of beams conical pegs of varions length arise from the intersections, and are directed at right magles to the bounding surface.

The dermal and gastral skeletons consist of pentact hypodermalia and hyprognstratin reapectively, and of numcrous scopulie provided with knobbed or pointed teetl.

In the parenchyma barpoons directed at right angles to the smface and hexasters of various kinds occur in nuddition to simple hexacts.

1. Eurete semperi, n. sp. (PL LXXVII.).

Near the Little Ki Island (Station 192, lat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long. $132^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{E}$.), from a-depth of 140 fathoms and a blie mud ground, the trawl hronght up, among numerous other Hexactinellids, that form of Eurete represented in PL. LXXVI. fig. 1. It was abundantly beset with small Activio and exhibited in spirit a dnll light grey colour. Seseral solid basal pedestals, 5 to 8 mm , in diameter, partly uited in a common basal plate, bear a system of irregular reticulated and anastomosing tubes, 8 to 15 mm , in diameter, and I to 2 mm . in wall's thickness. The free ead is unfortunately broken off, or more or less seriously injured.

The hasal pedestals are dead up to a level of about 10 mm , otherwise the stock is tolerably well preserved. The strongly developed, somewhat irregnlar, dictyonal framework, which only rarely exhibits square or rectangular meshes, consists of strong beams beset with a ferr small spines, and united in thickened, spherical, swollen nodes of intersection more or less thickly covered with strongly developed but low-set teeth (Pl. LXXVII. fig. 2). The freely projecting spherical spinose bosses on the dermal and gastral surfaces are remarkably short and stunted. In the inferior regions of the stock the meshes of the dictyonal framework are very much narrowed by numerous small apposed hexacts, which, becoming thickened and imited all round, contribute to strungthening the aheady existing fromework. The result is the formation of a firm, stony, finely porous mass, Superiorly, however, the meshes become wider. Afferent camals traversing the wall at right angles to the surface, and corresponding efferent canals are scen in the dictyonal framework as romd passages which run altervately from the outer and the inner bounding surface, and eithor end blindly or divide into lateral twigs. The thicker the wall of the tube, the more is the canalicular system dexeloped within the dictyonal skeleton. The free parenchymalia are represented especially by small simple regnlar oxyliexacts, present in extroordinary abundance, and thickly beset in every region with minuto pointed tubercles, so that they appear rongh even under low power (PI. LXXVII. fig. 7). In almost nny region of the dictjonal framework they become readily fused to a ray perpendicular to the surface of the framework, or to one of the thick nodes of intersection (Pl. LXXVII. fig. 8). There they become thickened by the apposition of concentric siliceons lamelle and also unite with other adjacent strands, thes lealing to the growth and thickening of the whole dictyomal skelcton. The size of these rough hexacts varies greatly, but they rarely exceed 0.17 mm . in diameter.

The uncinates, which are always disposed at right migles to the bounding surfaces,
aro only sparsely present, somewhat slender in form, and thickly beset with long, closely appressed, narrow barbs.

Besides these, I find in the parenchyma, between the strands of the dictyounl framework, isolated minute discohexasters with six divergent, comparatively straight, terminal rays of equal length, on each of the six short, slender principals, which exhibit small knob-like torminal plates (P1. LXXVII. fig. 9).

The dermal skeleton exhibits molium-sized pentacts with much thickened rough and roumded ends on the four gently incurved tangentinls, a somewhat longer proximal ray also with a rough rounded off end, and lastly, a simple inconspicuous distal tubercle in place of the atrophied sixth ruy. Besides these hypodermatia which are united by their tangential rays into a quadratic notwork, there are abundant, very characteristic-indeed specifically distinctive-dermal scopule in which the smooth stalk with a rough gradually pointed proximal end is expatided distally in a conical fashion, amd bears four, or marely five or six, eruciately disposed prongs. The thin stalks of these slightly divergent prongs are usmally slightly hent (PI. LXXVII, fig. 5), and less frequently straight, They are continued outwards into a smooth, spindle-shaped, thickened end, which oceasionally exhibits a somewhat sharply defined point and an intermal sharp edge.

The pentacts of the gastral skeleton resemble those of the dermal, but the scopule which ocenr beside then differ in some essential points fiom those in the dermal region. The four to six thin prong-stallis, which are curved gently outwards, bear clab- or pearshaped terminal thickenings which are thickly beset round about with short obliquely disposed barbs. Only the outermost pole of the terminal prong-swelling wanains frec from these minute teeth (PI. LXXVII. figs. 6, 10).

The soft tissue exhibits here, as in all species of Eurete, a continuous dermal and gastral membrane with pores of very varied width, and a delicate subdermal and subgastral trabecnlar framework, in which the usually simple and straight afferent and efferent passages are secn ns roundish canalicular spaces. The system of chambers forms a degty, but somewhat simply folded layer of small chambers of the ordinary type, and somewhat sharply separated laterally from one another (PI. IXXVII. fig. 2).

2. Etrete selmidtii, n. sp. (Pl. LXXVIII. figs. 1-6).

Among the numerous specimens of Eyore now at my command, there are three which agree both in their microscopic appearance, and in the minnte atructure of the skeletal parts. These belong to a new species which 1 have numed Eurete selmüdiü, in honour of the illistrious spongiologist, Professor Oscar Schmidt of Strassburg. Two of theso are preserved in aleohol, and wore brought home by the Challengor Expedition, having been trowled is the neighbourhood of the Philippines at Station 201,
lat. $7^{2} 3^{\prime} \mathrm{N}$., long. $121^{\circ} 48^{\prime} \mathrm{E}$., from a depth of 102 fathoms and on stony and gravelly gromd. The thind was bought in a dried condlition by Dr. Dïderlein in Enoshima.

The transverse diameter of the tolerably thick-walled tubes, which form a dense basket-work, varies between 5 and 7 mm . The oscular openings are frequently somewhat contractel on the extremity of the freely projecting, short ends of the tubes. The Japanese specimen shows one irregulaly bounded basal plate, which formed a flat expansion on the stony substratum. From this plate arise the thiek, partly solid, partly bollow supports of the plexus of tubes. It is probable that these relatively large basal platos have resulted from the confluence of the several basal expansions of the originally independent supports. In the case of the two Challenger specimens, one of which is represented on Pl. LXXVIII. fig. 1, the basal portion is entircly abscut. On the Japanese specimen, as well as on both those from the Philippines, there were numerons small irregularly seattered Actinis with a diameter varying from 1 to 1.5 mm .

The dictyonal framework exhilits a tolembly regular structure with predominantly square meshes, smooth or but slightly spinose benms, and scarcely thickened, moderately spinose nodes of intersection (PI. EXXVIII. fig. 2). Between the beams of the dictyonal framework small rough oxylexacts occur in variable alundance, most plentifully in the basal region. They lie freely, or fused with single-rayed paronchymalia. In the latter ease the dictyonal framework is, in several regions of the stock, further strengthened by the tolerably abundant oecmrence of a second kind of parenchymalin, viz., medium-sized oxyhexasters with short prineipal ray's, each bearing two long moderately divergent torminals (PI. LXXVII. fig. 6). Besides thesc, numerous nncinates oceur, which are remarkable in their structure, and to some extentalso in their disposition. For while the uncinates are otherwise almost always disposed at right angles to the bounding surfaces, in this case many of them not only penetrate the wall transversely, but occur abundantly disposed obliqnely or parallel to the bounding surfaces. Forms so directed are much longer than the others. Both exhilit a somewhat marked flattening on both sides. The somewhat thickly apposed pointed barbs are not nniformly distributed all round, but sometimes occur on two slightly spiral longitudinal rows on the narrow edges of the uncinate, while the two flatter surfaces remain smooth.

The pentacts of the demal skeleton vary in size, and bear rough eylindrical rays of medium length, which are simply rounded off th the oxtromity: The four tangentials, which are tolcrably straight, are not disposed quite at right angles to the proximal ray, but more or less inclined towards it. A knob-like protuberance represents the abortive distal ray.

Besides these pentacts there are numerous scopule, ropresented by two different forms. The less frequent form is provided with four knobbed terminal prongs, while the much more numerous second type bears, on a knol-like thickening of the inferionly pointed stalk, two to four slightly divergent barbs, which are rathor strongly developed
at the hase, but gradually decrease in diameter towards the pointed extromity, and are laterally compressed like the blade of a knife, with the edge turned inwards and the back towards the exterior (II. LXXVIII. figs. 3, 5).

The pentacts of the gastral skeleton generally resemble those of the dermal skeleton, but more frequently exhibit a gently arched or even markedly protruding knob-like clevation in place of the undeveloped sixth ray. The-scopula are tolerably abmedant; and resemble the dermal forms of the first type. The expanded end of the posteriorly pointed stalk leas a knot-like swelling with four to five slightly diverging prongs. The slender stalk of the prongs exhibits a club-shaped extremity beset with small barbs (PI. LXXVIII. fig. 4).

The structure of the soft parts does not differ in any essential feature from that described in Eurete semperi.

3. Eurete farroopsis, Carter (PI. LXXIX. fige. 5-8),

The spenies of Eurcte fingred in PI. LXXIN. fig. 5 is a tubulat feltwork, which in several places is firmly attached to the solid substratum. The tnles bave a comparatively stuall diameter (of 5 to 8 mm .) and only a moderate periplecal thickness. The form was olitained near the Little Ki Island (Station 192, Jat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long. $192^{\circ} 14^{\prime} 15^{\prime \prime}$ E.) from a depth of 120 fathoms and a blue mud ground. It was thus found in the same locality as Eurcte semperi. In the structure of its skeletal elements it resembles very closely the Eurete furveopsis deseribed by Carter in 1877, and represented in a very effective figure (pl . ix. figs. $1-7$). The identity of the two forms is nnquestionable. The dietyomal framework, in which the square form of meshes predominates, consists of smoath or only slightly tubercled beams, and of more or less markedly thickened and roughened nodes of intersection. Simple, rough, minute oxyhexacts oceur in the parenchyma, espocially in the older and lower portions, and are in part fased by one ray to the general framework. Besides these, the parenchyma includes small discohexasters with terminal knobs on the four divergent, moderately long, often perianth-like, curved terminal rays, and in sparse occurronce the familiar uncinates beset round about with appressed barbs,

The dermal skeleton agrees perfectly with the gustral. The pentacts are provided on both sides with alightly curved tangential rays, somewhat rough at the rounded off extremitics, and a somerviat longer stringht radial, in which the narrowed, roughened, terminal portion is moderately pointerl or rounded off.

Just as the dermal and gastral pentacts resemble one another, so do the peouliady shaped scopulse which occur beside them; but the latter are characterised by the sharp break-like bend of the terminal rays. Each of these thin bent stalks, which diverge

[^78]considerably after the curvature, bears a more or less sharply defined terminal knob, with a smooth mex, but with sides learing several rows of tine recurved barbs,

4. Eurete certeri, n. sp. (PL. LXXVIII. figs. 7-12).

Two specimons of Eurete-one of which was trawled by the Clallenger Expedition iu the vicinity of Little Ki Island (Station 192, lat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long. $132^{\circ} 14^{\prime} 15^{\prime \prime}$ E.), at a depth of 129 fathoms and upon blue mad ground, while the other was dredged by Dr. Doiderlein in Sagami Bay, Japam, at a depth of 150 fathoms-are, on account of the agroement of their structure, united into a single speeies which is very closely allied to Eurcte farreopsis, Carter, from the Moluccas. I name these Eurete carteri in honour of the fimous Nestor of spongiologists-Mr. Carter.

The Japanese specimen exhibits a narrow-meshed tubular framework which was fixed to a piece of rock by meaus of a few compact pedicels. The constituent tubes are from 5 to 7 mm . in breadth, and open out by means of ahort projecting terminal branches. In the wall of several of the tubes there are circular holes measuring from 3 to 4 mm . in width-but whether these are to be ascribed to accidental iujnries, or are to be regarded as normal structural features, appears to me to be doubtful. I would lay little weight on the fact, were it not that similar circular perforations of the wall of the tube are also found in the other specimen, which is a fragment of a network of wider tubes.

The dictyonal network of beams exhibits but little regularity. The meshes are occasionally perfectly square, but are as a rule triangular. The beams are never quite smooth but are more or less richly beset with small pointed tubercles. The intersections are usually somewhat thickened, though here and there they mpear bat slightly differentiated. They are always thickly covered with small tubercles. The pegs which project on the dermal and gastral surfaces are tolerably thin, either comical or provided with a knob-like thickening ou the extremity, and are always rough and tuberculated.

The lypodermalia and hypogastralia are rough pentacts with slightly bent transverse rays, while each is provided with a straight radial ray which varies considcrably in length. The extremitics of the trausverse tays are as a rule somewhat swollen, but they are sometimes simply rounded. The radial ray is in mast eases simply rounded at the extremity, though oceasionally provided with a slight swelling.

The scopule of the outer skin resemble those of the gastral surface. Both possess smooth or quite insignificantly rough stalks which terminate in the parcnchyma by simple rounded extremities or become slightly attennated; on the other side, however, from four to six terminal prongs spring from a small conical thickening, and these are provided on the outer extremities with a knob-like rough swelling. The thin, usually amooth, but here and there also somowhat rough stalk of these terminal prongs is always straight or slightly bent (P1. LXXVIII. figa 9, 10), but it is never shaply dislocated like the prong
stalk in the scopule of Eurete farreopsis. The terminal knob-like thickening may, as shown in figs. 9,10 , be pear-shaped, or be more sharply differentiated from the thin stalk, so as to approach nearer to tho spherical form.

The uncimates are feeble and not very long, that beset with fine barbs.
The small discohexasters which are scattered quite irregularly in the parenchyma bear, on each of their principal rays, three or four straight terminals, which are irtegularly disposed, or arranged like the petals of a tily (PI. L.XXVIH. figs. 11, 12).

Moreover, at certain spots here and there, but in specialabundance in the basal regions there are simple hexacts, which are either smooth or provided with seattered tubereles, and run out to fine points. These originally lic frcely in the parenchyma, but subsequently amalgamate with the dictyonal framework of beams, or with onc another, and so coutribute to the thickening or strengthening of the continuons skeleton.
5. Eurete marshalli, n, sp. (PI. LXXIX. figs, 1-4).

A species closely related to Eurete forreopsis and Ewrete cavteri, was found near the Little Ki Island (Station 102, lat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long. $132^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{E}$.) at a depth of 140 fathoms, on a blue mud ground. Two specimens were obtained, both covered with small Aetinier. The smaller is represented in PI. LXXIX. fig. 1. In its smooth, or only slightly toothed strands, and thickened spinose nodes of intersection, the dietyonal framework closely resembles that of Eurete furropsis. On the other hand the parenchyma includes numerous oxyhexacts with long divergent terminals (PI, LXXIX. fig. 3) very different from the corresponding spicules in the above species. Between the beams of the dictyonal framework small simple hexacts are present, and also uncinates besce round about with slender pointed barbs; neither of these forms, however, exhihit any striking peculiarities. The spicules of the dermal and gastral skeleton are so closely alike that a separate description is quite unnecessary. The slightly eurved tangential rays of the pentact hypodermalia and hypogastralia are rough at their rounded eads, and the same is true of the long proximal. The tuberele which frequently occurs as a persistent trace of the undeveloped sixth ray is usually inconspicuons. A notewortliy fact, and distinctive of this form as distinguished from Eurete farreopsis, is this, that the somewhat markedly divergent terminal rays of the scopule, which are provided with pear-shaped barbed terminal knobs, exhilit no bend or break in their thin stalks, but are quite straight throughout their entire length.

6. Eurete bowerbankiz, n. sp. (Pl. LXXIX. figs. 9-13).

Among the Japanese specimens of Eurete collected by Dr. Döderlein in Sagami Bay by aid of the dredge and trawl, and well preserved in spirit, there occurs a tree-like form (\%OOL. GTALL. EXP.-TART LII.-1887.)
with a funnel-shaped expanded principal tube, and several lateral tubes $\$ \mathrm{~mm}$. in breadth. The dictyonal framework of this sponge exhibits beams which have a slightly tubereulated surface and no sharply differentiated or slightly thickened erossing knots. In addition to the hypodermalia and hypogastralia, which do not differ essontially from those of Eurcte farreopsis, seopuln occur. These have straight, unbroken, rough terminal rays which are of a thick club- or knob-like shape. The uncinates are of vaious thickness, but in most cases they are quite slender, and do not alwnys stand at right angles to the surface of the tube. Simple hexacts oceur which are partly free and partly fused together in various numbers. In contrast to Eurete carteri and Eurete marshalli, the great abundance of oxyliexasters is particularly characteristic of the species. They possess simple cylindrical principal rays, which are twice as long as the four greatly diverging conical terminals, which are arranged in a eruciform manner on the extremity of each of the principals (PL. LXXIX. fig. 13).

I shall further add a short note in regard to a species deseribed by Semper, which presents some peculiarities worthy of notice.

Eurete simplicissina, Scmper.

The beautifully developed network of tubes which Somper procured from Zebu, and established as the basis of the genus Eurete, has been carefully described and figured (two-thinds matural size) by Marshall. ${ }^{2}$ This specimen was kindly lent to me for comparison by Professor Scmper, but the remnant was unfortunately too utterly macerated. With the exception of some parcuchymalia (oxyhexasters with long thin terminals), no free spicules were to be found. The dictyonal framewark is composed of smooth or slightly spinose beams, without any marked thickening at the nodes of intersuction, and exlibits so few characteristic peculiarities that it is diffieult or impossible to distinguish it from that of the other species.

I am not in a position to say whether one of the species described may not be identical with Eurete simplicissima, Semper. It was suggested by the structure of the oxyhexasters found in the base of an attached Actinia-like Anthozoon, that Eurete simplicissima resembles my Eurete marshalli, which is figured in Pl. LXXIX. figs. 1 to 4. But since the dictyonal framework of this last species is provided with thickened and spinose nodes of intersection, the resemblance is not complete.

[^79]Genus 2. Periphragellu, Marshall (Pls. LXXX., LXXXI.).
1875. Marshall, Zeitschr. f. wiss. Zool, Bd. xxv, Suppl, p. 177.
1876. Marshall, Zoitschr. f. wiss Zool, Dd, xxvii, p. 113.

Inistory.-Among the Hexactinellida which Marshall described in 1875 in the Zeitsehrift fur wissenschaftliche Zoologie, there was a cup-shaped sponge about 15 cm . in height from the Molnceas. On tho lateral walls of this "there are curious tubuliform individnals, which have coalesced and communieate with one another, and are provided with a labyrinth of internal canals. They are sometimes broad and flat, sometimes tubuliform, but always very slender." Marshall has applied to this form the name Periphragella elise.

The network of siliceous beams, which is very dense beneath, but more diffuse above, presents a tolerably regralar strueture with permeating square meshes, and very small plain, round kuobs on the surface of the beams. Of free spicules Marshall found (1) smooth hexradiate spicules; (2) simple five-rayed spicules, the unpaired prineipal ray being twice as long as the others; (3) small hexradiate spienles with concave terminal dises, with five circularly disposed teeth on the margin of each; (4) somewhat larger hexradiate forms in which the rays are divided about the middle of their length into from two to four pointed prongs; (5) broom-shaped spicules with a smooth shaft, on the expanded extremity of which there are four somewhat diverging clubs, whose circular terminal kuobs aro provided with zones of plain recurved tubereles. All these spicules occurred exclusively in the middle and upper parts of the sponge ; in the base only small smooth hexradiate spicules were found between the lattice-like network of beams.

In his statement in regard to the affinities of the Hexactinellida, ${ }^{1}$ Marshall summarised the charneters of the genus Periphavelella in the following words:-"Polyzoic, individuals comical, mouth naked, with conspicuously developed goblet-shaped pseudogasters. Spicules sometimes hexradiate or simple dentate rosettes. Broom spicules with four rogular teeth, Special closing spicules for the dermal pores. Lattice-work very regular."

Periphragella clise, Marshall (PI. LXXX., PI. LXXXI.).

Among the dried Hexactinellida which Dr. Döderlein acquired in Enoshimn (Japan), there were three specimens of Periphragella eliss, Marshall. One of these, which is figured on PI. LXXX. fig. 1, has the form of a slightly bent cup or funnel 15 cm . in length. This rises with a round hollow stalk of 12 mm . in diameter, from an irregularly formed hasal plate from 30 to 40 mm . broad, and gradually expands upwards towards the round terminal opening, which is 50 mm , in breadth. The thin plate which directly surrounds the lumen of the funnel is continued, abovo the stalk region, into numerous radially disposed tubes of various width (from 3 to 15 mm . or more). These in most

[^80]cases branch, lie apposed to one mother, and anastomose frecly. The narrow (from 2 to 4 mm . in diameter) tabular branches, which project externally; open outwards by means of simple circular terminal openings. Here and there, but especially in the neighbourhood of the upper extremity, there are also broal tubes, which are curved outwards in a trumpet- or funnel-like fashion, and terminate with a wide irregulaly rounded margin.

The entire system of these simple or branched and anastomosing tubes, which pass out laterally from the central space, increases in thickncss upwards, and is from 1 to 4 cm . broad. It forms a covering to the outer side of the cup, on the upper terminal margin of which a certain outward curvature exhibits the structure of the t ubework, If one looks through the large terminal opening into the lumeu of the cup -the gastral carity-one sees the oval or circular imer openings of the tabes, which increase in diameter upward, and have a radial direction.

In another specimen represented on Pl. LXXX. fig. 2, the stalk and basal plate are absent, and the axis of the cup is unbent. The greatly developed system of branched and anastomosing lateral tubes increases in extent towards the top, but is much injured and broken towards the thin margin of the cup, so that the latter are clearly marked in the figure, and diselose the transverse beams of the ofteu very obvious square-meshed dietyonal framework.

Close above the stalk the wall of the cup measurcs 2.5 mm . in thickness, in the middle of the body 15 mm , and on the upper margin only about 1 mm ., i.e., the thickness the wall in the individual wall-tubes.

A third cup belonging to the same species was greatly weathered, and only its inferior part was preserved. It exhibits, like the first mentioned, a slight bending of the axis, and seems to have belonged to a very strong specimen, as it was borne upou a pedicel more than 2 cm . in thickncss.

A plate-like fragment with the well-preserved soft body, from 1 to 1.5 mm . in thickness of the wall, exhibiting an irregular tubular form, and probably referable to the greatly expanded upper lateral tubes of alarge cup, occurred among fragments of Farrea, Eurete, and Aphrocallistes, in the materials collected by Dr. Döderlein in the Bay of Sagami, and preserved in alcohol. I have figured this piece on P1. LXXXI, fig. 1, and have used it especially in the stndy of the soft parts as well as of the more minute structural relations of Periphragella. The beams enclosing the somewhat regular square meshes of the dictyonal framework are either quite smooth, or beset more or less richly with small simple spines. The free terminal bosses are always thickly spinose. The nodes of intersection exhibit no marked thickonings.

I have found uncinates only sparscly, and not always at right angles to the bounding surface. They vary in length and thickness, and are surrounded by barbs. The parenchyma includes a large number of seattered hexasters of two different types. Of less
frequent occurrence are the medirm-sized oxyhexasters with simplo prineipal rays of medium length, and with two to four outwand bent medium-sized terminals (PI, LNXXI. fig. 5). The terminal rays are usually twice as long as the primeipals which bear them. In the second place and much more abundantly, sometimes indeed remarkably crowded, are small discohexasters, with four to six simple or S -shaped, short, terminally knobbed terminal rays on each of the simple medium-sized principals (PL. LXXXI. fig. 4). The dermal and gastral pentacts are very like one another. Both the slightly incurved tangentials and the radial ray projecting into the parenchyma are somewhat rough, and end in club-shaped, rounded, of more rarely slarpened swellings (PI LXXXI, fig. 8). The sixth ray is alsent. Its position is either wholly unocenpied, or is marked only by a gentle elevation. Besides the pentact liypodermalia, there are a great number of dermal scopula, usually pushed far forward, and are generally arranged in tnfts on each pentact. The shaft is rough, swollen into a club-shape at the lower cud, somewhat conically expanded above. It bears four rather markedly diverging terminal rays, frequently bent somewhat outwards. Each terminal forms a club-shaped, often almost spherical, and tolerably distinet terminal portion, which gives off laterally several transverse rows of barbs, while the somewhat flattened terminal surface appears to be smooth. The thin stalk of the terminal ray is beset with very minute pointed barbs, which are also directed backwards.

The gastral scopule, which occur much more sparsely, have in general the same structure. The terminal rays seem to be more slender, and their terminal knob is smaller than in the dermal scopule.

In the character of its soft body, Periphragella elisa does not essentially differ from Eurete. In the subdermal trabecula, in some regions, groups of small cells occur, which I regard as immature sperm-balls.

Genus 3. Lefroyella, Wyville Thomson (PL. LXXXIL.).

Lejrmella decom, Wyvillo Thomson.
History.-In Wyville Thomson's preliminary account of a part of the voyage of the Challenger Expedition, entitled The Atlantic, 1877, p. 401, we read:-"On the following day we sounded in 2500 fathoms, and on the $29 t \mathrm{th}$ in 1075 fathoms, in sight of the Bermudas, with a bottom of coral mud. The drodge was put over and veered to 1600 fathoms, It came up at noon with the pasty mortar-like lifeless contents which we find almost constantly on the slopes of coral reefs; the lime sediment was mixed with a large proportion of the shells of Pteropods and Heteropods. Two fine specimens of a Hexactinellid sponge were hanging to the tangles, both unfortunately dead and slightly water worm. The largest specimen, which seems to be nearly complete, is 170 mm . in height, and shaped somewhat like an old fashoned tall champagne glass. It rests on a very solid
hard base of attaclment, it then contracts to a kind of stem, and then gradually expands mpwards to a width at the top of 40 mm . A deep eavity passes from the upper open end down to the stem-like constriction. The outer surface of the sponge is raised into spiral ridges somewhat as in Euplectella, and under the ridgos are irregnlarly spiral lines of large holes. The interior of the cup presenta a very remarkable character, which reminds one at once of many of the chalk Ventriculites. The inner layer is deeply fluted, thrown into a series of alternating vertical grooves and ridges, so that the outline of the cavity in a transverse section is deeply sinuous. The substanee of the sponge throughout is composed of a close mastomosing network of siliceons fibres; towards the outside the network much resembles that of Aphrocullistes; while on the inner wall the structure is trellis-like, and the form of the meshes square and more regular. The spaces of the network are crowded with small regular Hexactinellid spicules, some free, some cemented to the continuous skeleton by an attachment of silica. For this beautiful sponge, which I have every reason to believe is undescribed, I propose the mame Lefroyella decora. I have associated with this species the name of our kind friend, His Excellency MajorGenemal Lefioy, C.B., F.R.S., Governor of Bermudas."

Osear Schmidt says ${ }^{1}$:- "Under the name Lefioyella decorct, W. Thomson describes a sponge dredged in the vicinity of the Bermudas in 1075 fathoms, which is very probably identical with our Syringidium. Since, however, even the best preserved specimen figured is greatly macerated and croded, so that the more minute details cannot be recognised, I have deemed myself justified in regarding the sponge, from which I was able to give a description in nccordance with reality, as new."

In Leuckart's Jahresbericht (edited with the co-operation of Marshall) ${ }^{2}$ it is suggested, in reference to Lefioyella decora, Wyville Thomson, that this form is perhaps identical with Periphragella elisa.

Lefroycla decora, Wyrille Thomson (PL. LXXXII.).

In the neighbourhood of the Bermudas Islands, the Challenger Expedition dredged several specimens of this beantiful form, but these were unfortunately completely macerated and much rubbed. One specimen, with a narrow cup-shaped basal portion (6 cm . in length, 4 in breadth above and 2 below), was dredged at Station 33 (lat. $32^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{N}$., long, $64^{\circ} 35^{\prime} 55^{\prime \prime} \mathrm{W}$.), from a depth of 435 fathoms and a coral mud ground. The other form, which Wyville Thomson himself described (see above), was found hanging to the tangles of the dredge at Station 56 (lat. $32^{\circ} 8^{\prime} 45^{\prime \prime} \mathrm{N}$,, long. $46^{\circ} 59^{\prime} 35^{\prime \prime} \mathrm{W}$), and brought up from a depth of 1075 fathoms and a coral mud grome. This last specimen is represented on PL LXXII, fig. 1, in its natural size and from a

[^81]photograph. It has the form of a slender enp, attached to a broad hasal plate, and is 12 cm. long by 4 broad in its upper portion. It is not, however, intact. Since Sir Wyville Thomson speaks of two specimens from this locality, of which the larger was 17 cm . in length, it is evident that the latter is not in the collection before me.

In Wyville Thomson's description, and in fig. 1 on PL. LXXIL, attention is directed to the oblique or transverse vidges projecting on the external surface of the cup and altemating with somewhat bronder grooves. These transverse ridges consist almost wholly of a row of closely apposed and externally fused, short tubular stumps. The cireular external end measures 4 to 5 mm . in breadth, and is directed radially outwards, In the grooves, on the other hand, there are numerons, iregulaty arranged, round or clongatel, oval openings of variable size, which lead into more decply situated ducts,

The internal gastral surface of the cup presents another appearance. Here one observes a number of longitudinal ridges from 2 to 3 mm . in breadth, which project inwards and are separated by deep longitudinal grooves of equal breadth. Since these longitudinal vidges with arehed roof extend from the lower blind end of the slender cup-shaped gastral space to the upper, and here and there part, their number gradually increases from below upwards, and in the upper, broken end amounts to twenty. Each of these longitudinal ridges consists of two plates, which pass into one another at the free imer edge, and thus enclose an clongated slit-like space. Internally this is shut off from the gastral cavity by the skeletal fold referred to, while it communicates externally with those eavities and clefts which oceur at the foot of the external transverse grooves. From the longitudinal furrows, however, which oceur on the internal surface of the eup between the gastral ridges, there is a direct communication into the lumen of the tubular stumps which project radially on the external transverse ridges. When this is compared with the structure of the not very remotely allied Periphoragella, it seems elear that the lateral tubular stumps of the onter transverse ridges, whose cavities communicate directly with the gastral cavity and which project radially outwards, represent the efferent lateral tubes of Periphragella, and like the large oscular terminal aperture of the whole cup scrve for the exit of the water, while the apcrtures and cleft lying in the external transverse grooves, together with the associated, but internally closed, longitudinal ducts or slits, belong to the afferent system.

The dietyonal framework consists of smooth beams ouclosing predominantly square or rectangular meshes, without thickening of the nodes of intersection. The freely projecting conuli are on the other hand beset with tuboreles and teeth.

In the compact portions of the lattice-work, a few isolated spicules here and there ocenr, but it is, of course, doubtful whether they really belong to Lefioyella decora or are only intrusions. I have, therefore, simply mentioned their ocenrence without giving any figure. Besides simple, smooth hexacts of small size and uncinates of medium length, there are scopula with four straight, terminally knobbed prongs,

As appendix to the Euretidre I must here mention two small sponges, which in form and structure undoubtedly helong to this lamily, though they neither agree with any of the species deseribed above, nor yet were sufficiently differentiated to admit of adequate and distinet specific diagnosis.

They form two small thin-walled funnels, 1 and $1 \frac{1}{2} \mathrm{~cm}$. in height, fixed on asmall basal plate, with a terminal aperture above, 5 to 7 mm . in width, and with several short, tubular, stump-like lateral openings. They this appear to be young individuals from which a Eurete or Periphoragella or even Eefioyella might quite well develop. They agree with one another so thoroughly, both in maeroscopic and microscopie charactors, that they mquestionably belong to the same speeies. They were both trawled off Little Ki Ssland, at Station 192, from a depth of 140 fathoms and a blue mad ground. The dictyonal framework generally resembles that of species Eurete. The beams are thickly beset with coarse and fine tubercles in irregular disposition, and exhibiting a distinct thickening of the nodes of intersection, and also short freely projecting conuli (PI. L.XXII. fig 4). The parenchymalia are of variable size, and lie at right angles to the two bounding surfaces. They are represented by uncinates, and by oxyhexasters with short principal rays, and ravely with two longer slightly eurved terminals on each principal (PL. LXXII. fig. 7), and also by discohexasters in which the short principals bear a number of long slightly eurved terminals with marginally toothed terminal dises (PL LXXII. fig. 8).

The dermal skeleton consists of hypodermal pentacts, in which the four tangentials and also the radial proximal ray are at their ends somewhat roughened and slightly pointed or rounded at the tips. Beside the radial ray of these hypodermalia there lie radially direeted seopule, in which the shaft is pointed at the inner end, while the outer exhibits a thickening with four or five slightly curved or even geniculate, thin, smooth, terminal rays, in which the club-shaped terminal knobs are equipped with barbs (Pl. L.XXII. figs. 5, 6).

On the gastral surface I could only recognise pentact hypogastralia, which resemble the hypodermalia (PI. LXXII. fig. 4).

Family II, Melittionide, Zittel (Pls, LXXXIII,-LXXXVI.).

Seopularia which have the form of a ramified tube or of a cup with laterad blind divertieula. The dietyonal framework forms somewhat regularly hexagonal open radial spaces. In each of these a fumel-shaped, ontstretched continuation of the reticular membrane of the ciliated chambers extends across the Iumen. This is covered further along the external surface by the dermal membrane and on the internal sufface by the gastral, stretehing flatly over the various apertures. The gastral skeleton includes no scopule.

Gonus Aphrocullistes, Gray (Pls LXXXIII-LXXXVI.).

History.-The genus Aphrocallistes was established by Gray in 1858,' for the species Aphrocallistes beatrix, from a skeleton obtained at Malacea, and was characterised in the following manner:-" The sponge cylindrical, tubular, branched, the end of the main tube closed with an open network formed of spicula; bramehes cylindrical, simple, rarely bifid, rounded and closed at the end; the inner sumface of the tube with large un-equal-sized concavities placed in longitudinal series, having a large roundish oseule near its lower edge. The sponge hard, close, calcareous, with uniform, close, equal, regular hexangular pores on the surface, and large round ostioles in series on the sides of the main tubes. The outer surface formed of intertaugled transparent spines, which inosculate and unite with each other at their intersections, forming a hard rather brittle crust. The inuer surface lined with a coat of fusiform transparent spicula, which are placed in bundles parallel to each other in the spaces between the roundish internal apertures of the crowded small superficial pores."

In his spongiological system, Gray founded for this new form a special family-

[^82](200L CHALL. EXI:-PART LIM,-1887.)
the Aphrocallistidx-which he placed in the order of the Corallispongia between the families Daetylocalycide and Euplectellide; and he characterised it as follows:"Sponge tubular, tulies elosed with a reticulate lid; parietes formed of agglutinated siliceous spieula, with romid horizontal lateral pores; imer surfnee strengthened with clustered longitudinal loundles of elongated spicula."

The generic diagnosis of Aphrocallistes ram thas:- "Sponge tubular, elosed with a lid, with smaller lateral tubular branches, which are gencrally open at the ends." The remark contained in the first description given in 1858, to the effect that the skeleton of Aphrocallistes beatrix is "calcarcous," Gray now spenks of us a mere "slip of the pen," and particulacly notifies that it should have been called "siliceons."

A figure of several of the forms of spicules, together with a portion of the retienlate frumework of siliceous beams belonging to Aphrocallistes beatrix, oceurs in Wyville Thomson's commumication on the vitreous sponges, ${ }^{1}$ where special attention is called to the peculiar spicular form, "which consists of a leugthened shaft, ending in a small expansion, from which spring four equal branches, each terminated by a little knobs."

In his paper on Hollenie, Wyville Thomson refers not only to Aphrocallistes beatrix, Gray, but to a seeond species, Aphrocallistes boccuei, Wright MS. (p. 713). As a very frequently occurring spicule of Aphrocrtlistes he describes a "regular aixrayed star, with the principal axis longer than the transverse rays and one half of it fcathered."

In 1869^{3}, Bowerhank referred Aphroeallistes bectrix, Gray, to his genus Iphiteon, and named it Iphiteon beutrix. This generic name-Iphiteon-Bowerbank has, it is true, ascribed to Valenciomes, but upon no other ground, it would seem, tham that he found the form in the Museum of the Jardin des Plantes, Paris, noted on the labels as Iphitean panicea, Valencionnes. Bowerbauk has characterised this genus by the following diagnosis (loc. cit., p. 76):-"Skeleton siliceo-fibrous, fibres solid, cylindrical, reticulations symmetrical, areas rotulate, confluent."

Perceval Wright has described and figured a second species of the same genns, under the mame of Aphrocallistes bocagei. ${ }^{4}$ Vaxious specimens of this form, brought from the Cape Verde Islands, were preserved in the Museum of Lisbon, in the British Museum, and in his own collection, and had also been dredged by Wyville Thomson during the "Porcipine" Expedition, off the sonth-west coast of Treland, in deep water. The short but clear description given by Wright runs as follows :-"Spronge fistalous, erect, hranehing somewhat irregularly; skelcton siliceo fibrous, more or less symmetrically radial; radii short and stont on the outer surface of the skeleton, forming a series of hexagomal spaces, which are nealy all of the same dimensions, central umbo of the ray giving origin on its imer surface, often on both surfaces, to a long spine. These spines,

[^83]generally long, sharp-pointed, sometimes knob-headed; spicules acerate, retentive, verticillately spined, attenuated, rectangulated, hexradiate, and subfusiform eylindrical, cutircly spinous, Main tube closed by an irvegular siliceous network, which is deeply concave. Pores and dermal system unknown."

Among the differences between Aphrocallistes bocagei and Aphrocallistes beativix to which Wright ealled attention, but which havdly seemed to him to have more than a varietal significance, was the entire absence of the "porrecto multiradiato spicules" in the case of Aphoocrllistes bockegei,-a distinction all the more cssential, as these spicules were found to be quite constant in Aphrocallistes beatrix. As further points of distinction, he noted that "the areas forming the skeleton in Aphocallistes bocugei are much more regnalaly hexagonal than those in Aphrocallistes beatrix. The spines on the bosses are very much longer in the former than in the latter species; in it, too, the central cavity is larger. The reticulated network-like lid is much more radiate in its composition than ill Aphrocullistes beatrix. The bosses on the rays of the body skeleton are often knobbed." He also announcet that Alexander Agassiz had recoguised, from the description placed before him, the agreement between these and one of the sponges dredged by Count Pourtales to the south-east of Florida. This was soon afterwards confirmed by Oscar Schmidt, who examined the sponges dredged by Pourtales, and described them in his Grundziigen einer Spongien-fanna des Atlnntischen Gebietes, He discovered the transversely disposed plate, described by $W_{\text {right as a " reticulated }}$ network-like lid," of the wide exhalent opening of the main tube, not merely at the extrenity, bat also at several places in the interior of the tube, forming transverse septa.

Special attention was directed by Osear Schmidh to certain spicules, which were very similar to the forms described by Wyville Thomson in Aphrocallistes bectrix. Each of the latter was provided with a straight shaft and four knobbed terminal teeth, while the former exhibited only three such knobbed terminal teeth provided with fine prickles.

In 1870 Saville Kent also found, in the sponge material obtained by him during the "Norna" Expedition, off the coasts of Spain and Portugal, Aplurocallistes bocagei, Wright. From his own examination he established its specific distinctness from Aplirocallistes beatixix, and he added, as further differential characters, that the whole skeleton is much more slender, and is wating in that echinate aspect of the bosses and shafts of the mdii, characteristic of Aphracallistes beatrix. The "porrecto-multiradiate" spieales, which scem in fact to be characteristic and typical of the genus, are not wanting, as Professor Wright imagined; but there are none of the verticillate spined forms so abundant in Apherocallistes becutrix; while, on the other hand, Aphrocallistes bocagei is at once recogniser by the presence of abundant hexradiate spienla, having one extremity of the shaft profusely spinous, and accordingly beaving a close resemblance to those that occur in Pheronema grayi.

On the Portuguese coast Gwyn Jeffreys also found Aphrocallistes bocagci.
Carter, in his system of the Hexactinellidre, ${ }^{1}$ unites the characters which are comonon to the two then known species of Aploocallistes in the following manner:- "Species tubular branched, branches closed at their free extremities, wall thick, formed of polyhedrally reticnlated fibre possessing a seopuline shaft."

Of Aphrocallistes beatrix, Gray, he says :-"Rosette (small) with elougated shaft-like axis, many-rayel, rays straight, pointed or capitate, thorm-like chiefly situated in the middle and at the termimations of the shaft, arranged more or less verticillately; or (large) with microspined rays slightly curved and not capitate. Scopuline shaft headed with four rays of equal length, slightly everted, microspined, and terminating in small globular heads."

With respect to Aphrocallistes bocagei, Wright, on the other hand, he notes the following as peculiar:-"Rosette many-rayed; rays of equal longth, straight, capitate; or with long shaft-like axis, like that of the small form in Aphrocallistes beatrix, with or without heads,
"Scopuline shaft headed with four rays of equal length flexed outwards, en fleur-dc-lis, microspined, and each terminating in a large conical end."

In the more minute description ${ }^{2}$ given of the two species, which are especially related by the form of the spicules, Carter notes the following different spicular forms as being characteristic of Aphrocallistes bocagei :-
(1) "Linear fusiform spicules with inflated centre and extremities.
(2) "More delicate linear fusiform spicnles, spined throughont, all the spines being in the same direction.
(3) "Hexradiate spieules whose arms are more or less unequal in length, five being smooth at the commencement and conically inflated and spincd at the termination, and the sixth spined, feather-like, romudel, the spines increasing in length from the fixed end to the free.
(4) "Scopuline spicnles, consisting of a loug shaft and four rays terminating in conical heads surrounded by recurved spines.
(5) "Rosettes with five-rayed capitate arms.
(6) "The same rosettes with the axis stretched out linearly, shaft-like, and the rays arranged round it more or less spirally.
(7) "The same rosettes, with the rays of the shaft more confined to its centre and all simple (that is, not capitate, but pointed)."

In Aphrocallistes beatrix, Carter fonnd the spienles generally similar to those in Aphrocullistcs bocagci, yet some forms exhibited typical differences, namely, "the hexradiate spicules whose pointed arms are sparsely and irregularly covered thronghont with smooth spines curved outwards: scopuline spicules whose four rays were quad-
${ }^{1}$ Anu. und Mag. Nat. Hiut, ser. 4, rol. sit. 14, 350 ,
${ }^{2}$ Loc, cit, Pp, 419-452.
rangularly based on a hand-like expansion of the end of the shaft; a straight large shaft more or less beset with long thorn-like spines, most numerous towards the centre whore they are rertical, and at the extremities where they are divergent, each slightly curved and microspined; and a smaller kind in which the rays are straight smooth and capitate"

In 1875, in his Classification of the Spongida, Carter erected within the family of the Vitroohexactinellida a special group-the Scopulifera-in which he noted, as type, Aphrocallistes bocagoi, Wright.

Narshall (1876) ${ }^{q}$ ranked the genus Aphrocallistes in his group of Pleionacidx, and characterised it in the following worls:-"Polyzoic, walls with prismatic anastomosing radial tubes; individuals more or less tubular or ball-shnped, astomate, arranged into groups by partition walls. Framework-tissue possessing an apparent regularity. Spicules do not throughout constitute the groundwork of the siliceous beams. The latter are often strangely bent."

Zittel ${ }^{3}$ (1877) based his family Mellitionida on the genera Aphrocallistes, Gray Fieldingic, Saville Kent, Stawronema, Sollas, and noted the following characters:"Spongo body branched, spherical or plate-like. Wall completely perforated by unmerons tubular water camals and thus divided into honeyeomb-like chambers. Skeletal spicules with thick interseetions. Surface (naked? or) overspread by a delicato meshed or porous siliceous skin, which also covers the openings of the canals. Root absent."

Osear Schmidt found Aphrocallistes abundantly among the aponges of the Gulf of Mexico. ${ }^{4}$ He believed that the peculiar strueture of the six-sided prismatic parietal meshwork conld be explamed by a modification of the fundamental hexradiate spiculesin which all the sis rays do not eross at an angle of 90°, but two at an angle of 120°. He compares the lattice-like retiform transverse walls to the sieve-plate of Euplectella and suggests that they bad been formed during pauses in the growth. The shaft provided with prongs on both ends and on the middle, which was proposed as a characteristic feature of the species Aphrocallistes beatrix, O. Schmidt declares to be an accidentally intruded element, and expresses the belief that this specios is not specifically distinct from Aphrocallistes bocayei.

During the "Porcupine" Expedition a cup-shaped sponge fragment, $1 \frac{1}{\mathrm{~cm}}$. in height, was dredged off the sonth-west const of Spain from 1095 fathoms. This formed the swollen base of a Hexactinellid and was carefully described by Duncan in 1881^{5} as a new species of A_{p} hrocallistes. If this sponge bolongs to the genus Apturocallistes-which, however, according to Duncan's deseription of the continuous skoletal framework, can

[^84]hardly be regarided as certain-it would represent, to judge from the peculiarity of the isolated spicules, a new species differing at once from A_{p} hrocultistes bocergei and Aphrocallistes beatrix.

According to the report of Milne-Edwards, Aphrocallistes bocages was also dredged by the French "Travailleur" Expedition in the Atlantic Ocean, off the coasts of France and Portugal.

After Zittel, in his Studies ou the Hexactinellida, ${ }^{2}$ had mentioned that in the living species of Aphrocallistes a very delicate framework extended over the onter surface and the branches of the canals, Weltner deseribed (1882) a continuons covering both on the imner side and outer side of Aphrocallistes bocayei. In the case of the outer surfnce he noted the presence of a delicate covering with large inhalent pores, which passed into the characteristic parictal mesbes and also spread over the ostia on the inner surface. The outer membrane contained hexradiate spicules with an externally projecting fir-treelike ray and forming a regnlar meshwork; in the inner lay "the characteristic Aphrocallistes rosettes, the rod-like spienle (thorn spienle), and the greatly reduced form which, though only exhibiting four medium knobs, was yet recognisable as hexradiate, and lastly, a large well-devcloped hexradiate form which is often fused to the parietal skeleton." Morcover Weltner observed in his specimen "a thind plasma layer between these coverings of the outer and inner surfaces in the interior of the meshes (canals). This was for the most part well preserved and was interrupted only in the middle, while it was coutimued inwards to form an outer covering for the eavity of the sponge. In it the frec spicules of the internal covering were but seldom met with, although it stood in manifold connection with the latter by means of plasma-threads. This third layer," continues Weltner, "may indeed be an artificial product. I would not, bowever, Ieave it unnoticed merely on that account, because it seemed to me to show that the free spienles (flcsh spicule) do not as a rule extend into the interior of the plasma."

Charucter of the Gents, The wall of the cup- or tube-like body is supported by the boneycomb-like frametwork of the dietyonal skeleton. The radial canals which rraverse $3 t$, and are from 1 to 2 mm . in breadth, appear almost regularly hexagonal and prismatic. The septa between the latter form a network of beams, with irregular but predominantly three-sided meshes, from the margins and surfaces of which conieal pegs project, which are sometimes swollen and knob-like at their extremities. Where three such bounding plates meet lnterally the networks of beams usually form three-sided prismatic interspaces, and thus the margins of the six-sided prismatic canals or honeycomb-like mesh-spaces become somewhat truncate or rounded.

The strongly developed reticulate dermal membrane is continued without inter-

[^85]ruption over the whole outer surface of the sponge, and extends over the extormal openings of all the prismatic mesh-spaces. In like mamer the gastral membrane, which has a perfeetly similar strueture, extends internally parallel to the former, and covers the inner openings of the prismatic honeycomb-like meshes. Between the two perforated bounding membrames a fine skin oxtends deeply folded in fumel-shaped fashion; this forms a continmation of the wall of the ehambers, which are shaped like the finger of a glove, and lie around and open into the common central space. The latter is provided with an internal large exhalent orfifice. This remarkable fumel-shaped expansion of the chamber wall may be supposed to have arisen by amalgamation of some specially large external chambers whose dividing walls projected to some extent even into the excurrent central space (PI. LXXXIV. fig. 1; P1. LXXXVI. fig. 2).

The dermal skeleton consists of hexacts, in which each of the projecting outer rays has usually a tree-like appearanee, though sometimes reduced to a prickly peg or knob, or even in many eases to a small tuberele, so that finally the spienle in question is no longer to be regarded as hoxact but as pentact. Besides these dermal liexacts or pentacts scopule with knobbed or pointed terminal rays also oceur.

The gastral skeleton consists of diacts which are completely enclosed in the gastral membranc.

Among the loose parenchymalia, there are present in addition to the uncinates which project at right angles to the outor surface, small hexacts and hexasters of varions kinds, in variable abundance and irregular distribution.

It is doubtful whether Aphrocallistes beatrix, Gray, and Aphrocallistes bocugei, Wright, are distinguished by sufficiently marked and sufficiently constant pecnliarities to be regarded as distinct species. On the other hand, the new forms which, on account of thoir figure, 1 have named Aphrocallistos vastus and Aphrocallistes tuhulosus, I rogard as sharply defined "good species."

1. Aphrocallistes beatrix, Gray (PI. LXXXIV. figs. 9, 10).

Since 1 had an opportunity of examining in the British Museum the original specimen from Nalacen on which this species was established by Gray in 1858 , 1 can, in the first place, bear testimony to the correctness of Gray's description and figures of the microscopic structure, and can also confirm those of Wyville Thomson, Bowerbank, and Carter, in regand to the minute structure of the dictyonal framework and the isolated spicules. 1 may, therefore, refer the reader to these representations.

Among the comparatively insignificant, and hardly qualitative distinctions which have been noted in regand to the microscopio strueture of this form as compared with that first deseribed by Pereeval Wright (in 1870) from the Atlantic basin, specin! emphasis is laid on a spienlar form which lias been spoken of by all observers since Wyrille

Thomson as chamateristic of the species Aphrocullistes beatrix, Gray. This, which has been figwed by me in Pl. LXXXIV. figs. 9, 10, oeeurs irregularly scattered in great numbers throughout the whole parenclyma. While the one axis of the spicule tuas two rays greatly prolonged, and while each of these two loug rays divides into four diverging pointed terminals, the rays of the two other axes, which cross the first in the middle, remain simple short principals, which end in sharp points. The entire form may be therefore deseribed as a longitudinally extended oxyhexaster, in which the four short prineipal rays remain undivided, while each of the principats of the long axis, which are sometimes provided with lateral prickles, divides into four diverging, pointed torminals.

Since parenchymalia of this kind are not found in any other form of Aphrocallistes, it becomes possible to determine the separation of this form as a distinct species; I must, however, draw attention to the fact that in Aphrocallistes bocagei, which is also very similar in external appearance, I found widely seattered parenchymnl oxyhexasters, and similar forms were also figured by Oscar Schmidt in the Spongien des Mreerbusens von Mexico (pl. vi. fig. 3). They do not indeed completely agree with the above peculiar spicules, but they approach them, and evidence at least a clase affinity between the two forms. The view which Oscar Schmidt has expressed, ${ }^{1}$ to the effect that the spicule which is chameteristic of Aphrocallistes bectrix is an accidentally introduced foreign element I cannot accept.

For purposes of comparison with the other species of the gems. Aphrocallistes more carefully described below, I will here give a short summary of the most important microscopie skeletal characters, based upon my examination of the original specimen of Aphrocallistes bectrix, Gray,

The dictyonal framework is formed, as represented by Wyville Thomson ${ }^{2}$ and by Bowerbank, ${ }^{\text {a }}$ of a toterably irregular, narrow-meshed network with strongly thickened crossing knots. The beams are almost entirely and more or less thickly beset with small tubereles, but these tuberdes are stronger and more abundant on the spherical nodes of intersection, and on each of the strong conical pegs which project freely both on the dermal and gastral surfaces, and also in the interior of the radial prismatic mesh-spaces, The pegs, projecting into the lumen of the mesh-spaces, seldom stand exactly at right angles to the surface of the reticulate partition from which they spring, but are directed obliquely inwards towards the gastral cavity of the entire sponge. The middle portion of all the septa between adjoiming prismatic madial cauals consists only of a single layer of inegularly fused hexacts, and an irregularly triangular prismatic interspace is formed where three such septa meet.

The dermal skeleton consists of delicate hexacts in which the distal ray bears numerons narrow, curved, fir-trec-like, lateral prickles, while the five other straight

[^86]and similar pointed rays are beset only with short lateral prongs. Besides these hexacts, which form with one another a quadrate dermal lattice-work, the dermad skeleton eontains numerous scopule with their four or five knobbed prongs at right angles to the surfice, while the long slender smooth stalk runs out to a point.

In the case of the gastral skeleton unfortunately nothing certain could be discovered in the small dried fragment at my disposal; on the other hand, the loose parenchymalia were well prescrved in great numbers. There were nmmerons uncinates arranged at right angles to the bounding surface, and therefore parallel to the radial prismatic canals. The greatest breaulth of these does not occur at the middle, but in their outer third part, while the attennated gastral extremity gradually runs out to a fine point. The thin pointed barbs of the uncinates aro tolerably densely apposed. The peculiar clongated oxyhexasters, which have already been deseribed, occur seattered irregularly and in great numbers throughout the whole parenchyma.

2. Aphrocallistes bocagei, Wright (PI. LXXXIII.; Pl. LXXXIV. figs. 1-8).

Both among the Hexactinellida of the Challenger Expedition and among the others purchased by Dr. Doderlein in Enoshima, there are numerous representatives of this form. Some of these are well preserved in alcohol. The fully developed typical form is a tube gradually widening upwards, with numerons radial glove-finger-like swellings on the lateral walls. The axis of the entire tube, which may attain a length of 20 cm . or more, exhilits as a rule a slight curvature. The inferior extremity, which is firmly attached to the substratum, has the form of a small cup, the wall of which shows diver-ticulum-like swellings only a few mm . above the basal plate, which is from 3 to 5 mm . in breadth. These are at first quite low, but further upwards they gradually increase in length, and fimally attain a length of 5 cm . or more. The breadth of these diverticala, which always end blindly, measures on the under end of the tube in most cases only from 3 to 5 mm , but gradually increases in the middle and upper parts to a diameter varying from 1 to 2 cm . Very frequently much elongated diverticula occur here and there at a short distance above the base. These are bent obliquely downwards, reach the firm substratum or some laterally adjacent solid body, and become supports for the entire sponge (PI. LXXXIII. fig. 1). In many cases the diverticnla are arranged in more or less lougitudinal rows, which in the inferior part of the entive tule are usually four in number and arranged in a erucinte mamer. Superiorly this arrangoment becomes indistinet or is no longer to be seen. A well-marked whorled disposition of the diverticula 1 have not been able to observe ; on the other linnd, I now and again saw certain varintions from the normal conditions which are perhaps of importance as to the relation of this form to the others which, though separated off ns distimet specior, are at the same time closely related forms. On the one hand, cases are not unfrequent in whith a lateral
communication is established between two or more adjoining diverticula, while they are united at the base into a common simple tube or are in open comnection throughout their length. If this mion occurs between the diverticula belouging to the longitudinal row, it may result in extreme cases in the fonnation of a longitudinal fold, on which the individual diverticula note only indicated as short boss-like swellings. On the other haud, the long diverticula which oceur here and there are sometimes forked, and in this there lies the tendeney to form branches.

Where the upper terminal opening with its natural margin is preserved quite minjured it is closed, just as in Aphrocallistes beatrix, Gray, by a tramsversely stretehed narrow meshed latticc-fike plate. The latter is usually somewhat concavely incurved and becomes united to the honeycomb-fike lateral wall in a compact, somewhat toberculate margin. As already reported by Osear Schmidt and Marshall, several such thin lattice-like transverse partitions usually ocour in the interior of the tube, but I would call attention to some points of distinction between these intermal diaphragms and the terminal sieve-plate of other Hexactinellids. While the narrow-meshed terminal sieve-plate of other Hexactinellids is united all round to the body-wall so that (apart from the sieve-like meshes) a complete closure of the tube results, in this case, a semicircular marginal portion of the internal diaphragms remains unclosed wherever a lateral diverticulum opens into the large lumen of the tube (PI. LXXXIII. fig. 2). With regard to the occurrence, number, and arangement of these transverse septa I have found great differences. While some specimens well preserved in other respects possess, apart from the terminal phate, no trace of septa, others show three or more intemal diaphragme, but no constant relation to the whorls of diverticula can be recognised, so as to suggest the rednetion of the entire tube to scries of metameres. I regard it as most probable that during the growth of the tube a temporary provisional oechsion is effected by a transverse sieve-net, and that only after growth has ceased is a terminal regularly constructed lattice-work formed which entirely eloses the lumen. While the latter consists of tolerably similar thick round beams, varying from 0.3 to 0.5 mm . in diameter, which surround rounded polygonal meshes of tolerably uniform size, and while freely terminating rays only project here and there into the lumen of the meshes, the tramsverse septa in the interior of the tube have a somewhat different character, inasmuch as they consist of beams of very varions thickness which meet oue another to form a network at very diverse angles, in which the mesh-spaces are not rounded but have sharp angles (Pl. LXXXIIL. fig. 2).

The mincroscopic structure of A_{p} hrocallistes bocagei agrees essentially with that of the corresponding skeletal parts of Aphrocallistes beatrix, as represented by Bowerbank in his exeellent figures. ${ }^{1}$. The dense network of beams which forms the dividing septa of the six-sided prismatic meales of the wall cousists, as in the case of every dictyonal Hexactinellid framework, exclusively of amalgamated hexacts. These do not

[^87]however by any means form a regular lattice-like framework with cubical mesh-spaces. A framework with predominantly threc-sided meshes is in fact formed, on the one hand by the diversion of some rays from their original position at right angles to one another, on the other hand by quite irregular fusion of the rays of adjacent hexaets. In older portions these meshes appear distinctly compressed and rounded. The surface of the Leams may be completely smooth, or may be roughened by the development of more or less unmerous small pointed tubereles. The pegs projecting outwards toxards the dermal membranc, or inwards towards the gastral membrane, are always beset with numerous tubercles and are frequently swollen in a knob-like manner. While the freely projecting dermal pegs are usually straight, that is to say, usually stand at right angles to the surface, the projecting pegs on the gastral side are found to be mostly incurved or thickened inta short knobs (PI. LXXXIV. fig. 1). The ends of the free rays of the dictyonalia which project from the surface of the septa into the lumen of the meshes also exhibit rough conical pegs which are seldom directed quite at right angles to the wall of the canal, but project as a rule obliquely.

The dermal skeleton consists of hexacts which form a regular quadrate network and are provided with a fir-tree-like distal ray (PL. LXXXIV. fig. 8), and very variously formed scopulw. The four equally long transverse rays, as well as the usually distinetly shorter proximal ray of the dermal hexacts, are either smooth or somewhat rough on the truncated extremities.

In the dermal scopulo I observe that the shaft, which is of variable length, runs out at the inner extremity to a point, while the outer extremity, which is moderately swollen, or more rarely provided with a knot-like thickening, gives off four (more seldom three or five) prongs which either terminate in a point or are provided with a knob-like or clublike terminal expansion. Both on the pointed extremities and also on the terminal clubs or knous small lateral barbs usually oceur (PI. LXXXIV. figs. 4, 5). The branches of most of the scopule possess the nisual length of abont 0.07 mm . Scopule also occur here and there which have the branches twice as long, and cither terminate in points with small smooth knobs, or arc beset beneath the extremity witl small barbs (PL LXXXIV. figs 3,5).

In contrast to the Dietyonina hitherto described, the gastral sheleton of Aplorocallistes bocagei differs very essentially from the dermal. On the suface of the gastral wall 1 find neither hexacts nor pentacts, nor any trace of scopulm, but only diacts of variable length, more or less rough, sometimes even pronged, with rounded extromities and central knots variously developed. These diacts lie properly in the gastral membratic, but they also extend into the subgastral space, and scem not unfrequently to fise with the projecting, but froquently incurved and club-like swollen pegs of the dictyonal fiamework

The loose pareneliymalia include the meinates, which are disposed at right anglea to the bounding surface, and vary greatly in length and strength. The inner extremity
is frequently very feebly developed (PI. LXXXIV. fig. 2). In addition to the macinates, the parenchyma contains hexasters of various form and most irregular distribution. Sometimes one has to search long for one of these hexasters in a section, while in other cases the whole preparation appears to be permeated by them. Perfectly regular oxyhexasters, in which each of the principals runs out into four strong and moderately long, diverging, secondary rays, are comparatively rare. Usually one finds one or more principal rays terminating in simple points, while others run out into three or four terminal rays, In another frequent form the two principal rays belonging to one axis are very strongly developed, and divide into four stroug, diverging terminals, while the four remaining rays, which are cruciately disposed, and belong to the two other axes, rum out into perfeetly simple points, or are only partially divided into two terminal rays (Pl. LXXXIV. fig. 7). These latter spienles seem to be related to the forms characteristic of Aphrocallistes beatrix, Gray, and represented in PL LXXXIV. figs. 9, 10, while, on the other hand, small discohexasters sometimes occur, which agree in form and size with certain discohexasters, which oceur very frequently in Aphrocallistes vastus. These have a dinmeter of 0.03 mm ., and each of the short principal rays bears four to six somewhat curved diverging terminals, each of which is tipped by a small end plate, or merely by a spherical terminal knob (P1. LXXXV. figs, 8, 9).

In regard to the soft parts, I may state that the structure of the dermal and gastral membrane hardly varies from the ordinary Hexactinellid type, and the same may be said of the trabecular network which extends between these two membranes and the chanber layer. It is different, however, with the chamber layer itself. The most important peculiarity bas been already referred to in the generic diagnosis; it claims, however, more attention, especially since I was able to investigate carefully some comparatively well-preserved specimens.

In each of the honcycomb-like hexagonal spaces, which are quite open on both sides in the macerated skeleton, and penetrate the wall in a radial direction, there is a peculiar system of chambers, which opens on the gastral surface through a single wide round aperture ahove the lattice-work of the gastral membrane. Into the wide, canalicular space above this aperture there open laterally a number of thimble-shaped chambers of medium size, in the form of simple, closely-apposed diverticula, while from the dermal surface, three to five large blind diverticula also open into the same. These latter divertieula closely smround the wall of the tubular skeletal space, and are laterally so closely apposed to one another, that they form between them a wide, median, funnelshaped space. The inner wall of the largo diverticula which surroumd this funnel-shaped space is simply smooth, while their external wall adjacent to the surrounding skeleton is distended into chamber-like diverticula, just as we previonsly saw on the surface of the wide general excurrent space (Pl. IXXXIV, fig. 1). In this way a funnel-shaped membrana reticularis is so stretebed in the hexagonal honeycomb space, that the
circular ineurrent aperture of the funnel lies under the porous dermal membranc, while the blind pointed apex lies somewhat in the middle of the space, and turned towards the gastral membrame.

While a section at right angles through the wall, which shows longitudinal sections of the radial canals, exhibits the funnels in longitndinal or lateral section, that is to say; affords a lateral view of a chamber system (Pl. LXXXIV. fig. 1), a view from the dermal akeleton reveals in each of the hexagomal spaces, on the inner surface of the skeletal enclosure, a circle of chambers which surround a simple, central, funnel-shaped, space (PI. LXXXIII. fig. 4), and a view from the gastral surface into the wide, exeurrent tube, shows the septa which arise by the coalesconce of the large diverticula forming the funnel (PI. LXXXIII, fig. 3).

3. Aphrocallistes vastus, n. sp. (P1. LXXXV.).

The specimen represented on PI. LXXXV. fig. 1, in its natural size, was collectel by Dr. Dödcrlcin in the Sagami Bay (Japan), from a depth of 180 fathoms. There was also a small fragment firmly fixed to a Coral, and apparently of similne structure, probably belonging to the same specimen. They represent parts of the lateral wall of a large cup. Instead of the glove-finger-like sacculations which oceur in Aphrocallistes beatrix and Aphrocallistes bocagei, there is here a simple folding of the wall. Whether the toleably irregular, bulging folds, which are here and there attachod to the Coral branch were direeted longitudinally or transversely to the axis of the entire cup conld not be certainly determined, though I am inclined to belicye that they were longitudinal. In this connection it is interesting that in another specimen of Aphrocallistes bocagei, bought in Enosima by Dr. Gottsche, an indication of the longitudinal folding of the cup-wall could be recognised. A trace of the same is also to be observed in the figure of Aphrocallistes beatrix given by Gray.

Since the thickness of the cup wall amounts to 5 mm ., the mesh spaces, which are about 1 mm . in width, have become cakuls, which penetrate the wall transversely in a radial direction. The dermal membrane, whieh is still clearly visible in these dried specimens, extends in the form of a delicate skin over the whole outer surface. With a lens one can recognise a fine qualrate lattice-work formed of apposed dermalin. A quadrate lattico-like network of this kind is indeed entirely absent on the innor side of the partially-preserved gastral membrane, which has rather an irregular streaky appearance.

A more accurate examination of the dictyonal framework of the septa between the radial six-sided prismatic canals, shows that it consists of a single-layered network, with meshes prodominantly three- or four-sided. The beams of the network bear rays directed at right angles or obliquely to the dermal surface, and projecting freely
into the lomen of the caunls. From an examination of the often very obvionsly marked axial camals, it may be seen that the rays of adjacent dietyonalia are partly fused in the familiar longitudinal fashion (somewhat as in Forrea), partly in a more irregular arrangement, crossing one another arbitrarily, or connected at the interscetions. Sometimes all the six rays are concerned in the formation of the network, which lies approximately in one plane-an arangement which is obviously only possible through the great eurvature of some rays. Usually, however, one ray is bent at right angles or obliquely inwards, and is provided with a free point, which projects into the canals on either side. Whore the margins of three adjacent canals meet one another, the latticelike networks are slightly separated, and an irregular interspace is thus formed.

As in Aphrocallistes bocagei, the dermal marginal pegs of the dietyonal framework stand at right angles to the dermal membrane, while the longer gastral marginal pegs are in part curved inwards. The pegs on the inner surface sometimes project obliquely towards the dermal surface into the lumen of the canals, and are sometimes applied quite elose to the surface of the wall, but the free tubereulated end is always directed outwards towards the dermal membrane.

The beams of the meshwork often appear almost entirely smooth, while in other enses they are more or less richly beset with small tubercles. The freely projecting pegs all exhibit a rough or tubereled surface.

The dermal skeleton is distinguished by the strong development of the distal fir-treelike ray of the dermal hexacts. This is richly pronged and more bushy than in the other species of the Aphrocullistes. The mmerous scopulæ, which are present in the dermal skeleton, exhibit a shaft which runs to a point bencath, and forks externally into two, more rarely into three branches, after forming a simple expansion or an anuular thickening. The branches are rough on their outer extremities, and terminate cither in a simple rounded manner (PI. LXXXV. fig. 7), or in a very slight knob-like thickening.

In the gastral mombrame, as in Aphrocullistes bocagei, the hexacts are replaced by simple, straight, rough or pronged diacts of variable length, with rounded extremities and central knots (Pl. LXXXV. fig. 6) ; pin-like monacts are also seattered here and there (Pl, LXXXV, fig. 10). Whether the scopule, which are ontirely ahsent in the gastral skeleton of Aphrocallistes bocagei, occur in the present instance remains doubtful. It is trie that in the dried specimen and on the inner side of the cup-wall scopule ocenr which, like the dermal, consist of a terminally pointed slaft, and of two, more racely three knobbed and externally rougbened branches, but I am not sure that these are not suliscquent extrinsic intrusions.

The uncinates are distinguished by their length and also by the fact that their greatest dilatation usually lies much nearer the dermal than the gastral extremity: This latter appears much move slender, and usually runs out into a smooth (PI LXXXV. fig. 2) point, which is less frequently beset with lateral prongs. It is important to note
that the irregularly seattered loose parenchymal hexasters, which are present in large numbers, all bear terminal rays the ends of which are kuobbed or provided with small thick transverse dises (P . LXXIV. figg. 3, 5, 8, 9). The diameter of these discohexasters varies from 0.08 to 0.08 mm . The principal rays remain, as a rule, uniformly short and crowded, but the two rays of one axis are often greatly prolonged in comparison with the others, and it is just in such cases that the latter usually remain aimple (PI. LXXXV. fig. 5), while the former become divided into two to four terminal rays.

4. Aphrocallistes remosus, n. sp. (Pl. LXXXVI.).

Both among the sponges of the Challenger Expedition and among the Hexactinelida sredged by Dr. Döderlein in the Sagami Bay, there are dichotomonsly branched round tubes from 5 to 10 cm . in height, which are only from 3 to 4 mm . broad at the lase, but become gradually wider in the upper branches, and finally open out ly cup-shaped lateral and terminal branches from 8 to 10 mm . in width. The specimen represented from a photograph in PI. LXXXVI. fig. 1, in its patural size, was obtained from the Philippines (Station 210 of the Challenger Expedition, lat. $9^{*} 26^{\prime}$ N., long. $123^{\circ} 45^{\prime}$ E.), from a depth of 375 fathoms and a blne mud ground.

The tube wall consists of the same boneycomb-like framework of six-sided meshes or prismatic radial tubes, as in the cup-wall of the other species of Aphrocallistes; and the microscopic examination shows that the minute structure of the meshes or prismatic septa does not differ essentially from that already described.

The tolerally smooth network of beams, whieh is only here and there provided with delicate tuhercles consists of irregularly fused hesacts, and exhibits predominantly triangular narrow meshes. While the conical pegs on the dermal side run out to simple points, and are directed at right angles to the bounding surface, the terminal pegs on the gastral surface are elongated, provided with a rough pear-shaped end-swelling, and are frequently obliquely directed or somewhat curved round. The conical pegs projecting from the surface of the network of beams into the lumen of the radial tubes are directed obliquely outwards, that is to say, towards the dermal surface.

In the dermal skeleton, Lexacts ocenr with a very varionsly developed distal ray; which is sometimes quite fir-tree-like (PI. LXXXVI. fig. 8), sometimes club-like with lateral prongs (PL LXXXVI. fig. 4), sometimes simply rod-like or pear-shaped, or even quite rudimentary and kuob-like (Pl. LXXXVI. fig. 3). The prosimal ray equals or usually exceeds the four eruciately disposed transverse rays in length. More rarely- it is shorter than the others, which often exhibit min externally convex eurvature (P). LXXXVI. fig. 3) Besides the dermal hexacts, numerons dermal scopule ocear. These present al smooth, pointed, or terminally romnded stalk, and the outer expansion bears
slender diverging branches, each provided with a pear-shaped barbed terminal swelling, The branch stalks are smooth or roingh, and either straight or uniformly curved towards the exterior, or occasionally slightly flexuous (PL LXXXVI. figs. 5, 9). This seems to vary according to habitat, but also according to the individual.

The gastral skeleton consists exclusively of long rod-like diacts, which are rough throughout or terminally, and are provided with a central node of intersection. Their extremities, which are embedded in the gastral membrane, are simply rounded or slightly swollen. Of gastral hexacts or scopule I have found no trace.

The unciuates of the parenchyma vary greatly in length and form. Sometimes the greatest breadth occurs just abont the middle, sometimes nearer the outer extremity; sometimes the barbs are densely crowded, sometimes moro widely disposed, and so on.

The numerous irregularly scattered hexasters are, on the one hand, oxyhexasters with a variable number of terminal rays, which are not umfrequently curved, similar in fact to forms already described in the other species of Aphoocallistes (PI. LXXXV1. figs. 6, 11), and, on the other hand, regular or irregular discohexasters in which the terminal rays are also curved, and provided with rounded terminal knobs (PI. LXXXVI. fig. 10). In addition to these, simple regular hexacts occur; in some specimens very abundantly. In these the rays are slender and tolerably long, smooth or rough, and always ending in fine points ($\mathrm{Pl}, \mathrm{LXXXV1}$. fig, 7).

The soft parts, which I was able to examine on some well-preserved spirit specimens, do not differ in disposition or minute structure from what has been already described in Aplarocallistes bocagei.

Family III. Cobcinoporide, Zittel (Pls, LXXXVII.-XCI.).

The plate-like wall of the eup-, goblet, or plate-shaped, firmly attached body is transversely penetrated by more or less elongated funmel-shaped straight canals, which open alternately on onc or other surface (covered only by the sieve-like bounding skin), but are pointed and blend at the other end. Their length thus always corresponds to the thickness of the sponge body-wall.

Genns Chonclusma, n. gen. (Pls. LXXXVII.-XCI).
The dictyonal framework of the beaker or almost plate-like specimens is traversed by two systems of oppositely direeted funnel-shaped meshes or passages, which appert so aranged that each blind funuel extremity of the one system always oceurs between the circumjacent fumuel openinge of the adjoining passages of the other and oppositely directed system. Those oppositely directed passages represent the incurrent and ex-
current canal spaces, and in overy transverse section they may be observed to alternate with tolerable regularity.

The dermal skeleton consists of pentacts or hexacts with pronged terminal rays, and in addition to these numerons scopule of different forms occur.

The gastral skeleton consists of pentacts or hexnets, which exactly resemble the correspondiug dermalia. It also contains in most eases scopula like those which are found in the outer skin.

In addition to the prayenchymal uncinates, unmerous discohexasters oeeur, more rarely oxylexasters and sometimes atso simple regular hoxacts in variable numbers.

1. Chonclasma lamella, in. sp. (Pls. LXXXVII., LXXXVIII.),

In the neighbourhood of the Kermadee Islands (Station 170A, lat. $29^{\circ} 45^{\prime} \mathrm{S}$, long, $178^{\circ} 11^{r} \mathrm{~W} ., 630$ fathoms), the trawl hrought up some fragments of a plate about the size of a little hand, from 5 to 10 mm . in thickness, and provided with attenuated, smooth. irregularly undulating margins. They are in some places somewhat bent and irregularly thickened, but on the whole they appear tolerably flat. The soft parts are well preserved. The two lateral surfaces exhibit to the maked eye no noteworthy differences. Both sides are covered by a finc delicate porous skin, through which are seen the round openings of the passages, which are abont 1 mm . in width, and traverse the plate in alternately opposite directions. The distribution of these trausverse canals is not, indeed, quite regular, yet the general armangement of the rectangularly crossed longitudinal and transverse rows cannot be mistaken.

The two sides of the other macerated specimen are represented, from a photograph, in their natural size, on Pl. LXXXVII. figs. 1 and 2 . They exhibit a slightly bent, but otherwise smooth macerated plate of 3.5 mm . in thickuess, which was obtained at Station 148 A (lat. $46^{\circ} 53^{\prime}$ S., long, $51^{\circ} 52^{\prime}$ E.), from a depth of 550 fathoms on hard gromed, while the skeletal fragment figured on P1. XC. figs. 9,10 , and 11, in natural sizu, which was dredged at Station 56 (lat. $32^{\circ} 8^{\prime} 45^{\prime \prime}$ N., long. $64^{\prime \prime} 59^{\prime} 35^{\prime \prime}$ W.), from a depth of 1075 fathoms on Comal mud, appears to belong to the sume species.

The macemted dictyonal framework exhibits notable variations in the different regions of the plate. While the beams in the neighbourhood of the two surfaces form a tolerably narow-meshed, and somewhat irregnlar framework, which surromds the wide round openings of the funnel-shaped transverse canals, the middle portion of the $p^{\text {late }}$ exhibits a regular system of perfectly square or rectangular meshes (Pl. LXXXVIII. fig. 1). Since these rectangular meshes in the middic layer are mech wider than the meshes in the neighbourhood of the two bounding surfaces, and since the middle framework consists of beans, which are not only longer lut thimer than those on the surfaces, it is ensy to understand how this middle layer may readily break, and
then become spread over the entire plate in two lamelle. The beams of the framework are more or less richly beset with pointed tubercles. The freely-projecting prongs or conical pegs are further especially rough and tubereled, while in the interior of the skeleton portions occur in which the beams appear almost or entirely smooth.

The dermal skeleton consists of strong pentacts of variablo size, and in these the distal ray is entircly absent. The four cruciately disposed transverse rays are slightly and uniformly bent inwards, and each terminates in a blunt point. While the outer surface of theso transverse rays is thickly beset with strong conical prickles, which gradually decreaso in lieight towards the lateral margin, the inner surface is quite smooth (Pl. LXXXVIIL fig. 3). The simplo conical attenuated proximal ray varies in length, and is, on the other hand, uniformly beset all round with a few simple conical prongs, which stand out at right angles. ${ }^{1}$. In addition to the proximal radial ray of the pentacts, scopule extend towards the dermal membrane. These are to be reckoned among the smaller types. The stalk always ends in a somewhat rough point, and exhibits close bencath the forking an often sharply defined annular thickening. The four (more rarely three or five) teeth are quite distinct from one another, and somewhat divergent. They are either simply blunted or provided with an insignificant knob-like swelling.

The gastral skeleton lying on the other side of the flat section exhibits the same structure. Here also we find the same pentacts with a pronged upper surface, curved transverse rays, and a conical radial ray. The scopule are also similar to those of the dermal surface (PI. LXXXVIII, fig, 1). ${ }^{2}$

Among the parenchymalia, in addition to the normal uncinates of variable length and thickness, numerous small discohexasters oceur with somewhat rough straight rays, which may be slightly bent here and there, and bear terminally a small somewhat convex marginally fringed transverse dise. By division of one, or a few, or all of the rays into two or more (seldom more than four) terminal rays, discohoxasters of various forms arise, in which the terminal rays are about three times as long as the shaft from which they spring (Pl. LXXXVIIL. figs. 8, 9). Between these discohexacts and discohexasters, oxybexacts and oxyhexasters of the same size, and on the whole of similar form, occur. Thoy also exhibit a similar roughened surface.

The structure of the soft parts presents a general resemblance to that which we have already scen in the Eurctidm, except that, in relation to the much greater thickness of the wall, the afferent and efferent passages are longer and sometimes slightly ramified. From the subdermal lacune straight canals extend to near the subgastral spaces, and between these afferent passages lic the efferent canals, which are also straight, and extend from below the subdermal lacune to the subgastral cavities into which they open midely.

[^88]The efferent canals are surrounded by medium-sized, sharply dcfined thimble-like chambers, with their blind ends all turned towards the afferent cauals and the subdermal space. They are, indeed, surrounded by the loose trabeeular framework, which extends between them and the dermal membrane, and by the subdermal spaces, as well as by the afferent canals which traverse the fromework without being always sharply defined from it. It is noteworthy that the chamber membrane is often so penetrated by the small parenchymal oxylexasters that some rays of the latter projeet for a greater or less distance iuto the lumen of the chamber. On the outer wall of the chambers one frequently observes those groups of small cells whiel have been already several times discussed.

2, Chonelasma hamatum, n. sp. (Pl. XCI.)

In the locality in whieh the large plates of Chonelasma lamella were trawled (Station 170 A , lat. $29^{\circ} 45^{\prime} \mathrm{S}$., long. $178^{\circ} 11^{\prime} \mathrm{W}$., in a depth of 630 fathoms, on voleanic mud), there was also found the smaller plate figured in its natural size on P1. XCI. fig. 1. This is bounded by an irregularly undulating surface, and is only about 3 mm . in thickness, while it is provided with a thin rounded margin. Apart from some slight curvatures this plate also in general forms a flat expansion, and appears to have been firmly attached by the narrow extremity.

The structure of the tolerably regular dictyonal framework agrees essentially with that of Chonelasma lamella. The meshes are, however, narrower and are not markedly wider in the middle layer of the plate than near the surfaces. The tubereulation on the surface of the tolerably strong network of beams is not uniform throughout. In some parts it is very pronounced, in others it is almost entirely absent, with the exception of the projecting pegs. Small tubercled hexacts ocenr very regularly and are transversoly or obliquely soldered to the regularly formed framework of beams.

The alternating funnel-shaped canals, which traverse the plate, opening on the one side and terminating blindly on the other, have a maximum width of 0.5 mm .

The dermal skeleton consists of hexacts, each of which has a short distal ray, provided with a slightly knob-shaped thickening and densely beset with tubercles, while their four cruciate, long, straight, transverse rays and the still larger proximal ray are smooth at the base, but rough at the pointed extremities (Pl. XCI. figs. 2, 5). In addition to these dermal hexacts, scopulx of various forms occur, in which the stalk is provided with a rough pointed or romnded internal terminal portion, while the expanded outer extremity exhibits, elose bencath the teeth, an amular thickening or four erucintely disposed archings, or clsc gradally passes into the bases of the tecth. I have never been able to determine moro clearly than in this thickening beneath the teeth an intersection of the prineipal canal by two short transverse eamals disposed at right angles to it. These transverse canals do not, however, pass into the teeth, but romain straight and
terminate in the circular swelling or in ove of the four tabereles, while the prolongation of the principal canal is likevise straight, and terninates elose beneath the teeth. Hence I am of oquion that I can with certainty exclude the view that the teeth are to be regardel as curved priveipal rays, and maintain the opinion that they are terminal rays of a greatly shortened radial principal. These terminal rays are as a rule rough and straight, and provided with terminal kuobs. There are usually four, but three may also oceur. Exceptionally an S-shaped eurvature occurs, as on Pl. XCI. fig. 4.

The gastralia are so essentially similar in form and position to the dermalia that no special description is required. I may simply refer to Pl. XCL. fig. 2.

In the parenchymn tolerably regular nneinates of various dimensions occur in great unmbers, but extend nsually ouly throngh half the thickncss of the plate. They are all disposed at right angles to the surface. In the uncinates occurring near the dermal surface all the barbs lave their points towards the gastral side, while in the umeinates which lie closer to the gastral side, the points of the barbs are turned round and directed towards the dermal surface. On both surfaces therefore the mencinates would on gentle motion project ontwards from the sponge body. The unmerous small hexacts, which are for the most part fused to the dictyonal framework, but partly also occur free in the soft tissue, are provided with pointed tubercles, and each of the rays is obliquely pointed at the extremity. Moreover many elegant discohexasters also occur in the parenchyma, and exhibit various forms. Very frequently small rosettes, such as are figured on PI. XCI. fig. 6, oceur, and each of the moderately short basal rays bears four, five, or six terminals, which are curved in an S-like manner like petals, and lenobbed or provided with terminal dises. More rarely forms occur in which the basal rays are somewhat longer and more slender, and are united in a spherical central kuot. These bear on their outer extremities from three to four very fine long terminal rays with terminal dises. Whether the rosettes with loug rongh basal rays, which are represented on PI. XCI. fig. 7, and which I found bere and there in preparations of Chonelasma hamatum really belong to this species and are not merely intrusions, I have lately seen reason to doubt. In any case, however, should they really belong to this sponge, they arc of very rare occurrence.

The structure of the soft parts differs from that described in Chonelasmal lamelle at most in the greater simplicity of the straight afferent and efferent eanals which traverse the plate at right angles (PI. XCI. fig. 2).

3. Chonelasma deederleinü, n, sp. (Pl. XC. figs, 1-7).

Among the Hexactindlida which were collected by Dr. Döderlein in the Sagami Bay (Japai) there are some irregularly bent plates from 2 to 3 mm . in thickness which are preserved in the dry state. These are provided with a thin mululating margin, are from 2 to 3 cm . in breadth, from 4 to 5 cm . in height, and without doubt were attached to a solid
substratum by means of the narrow inforior surface. Thare is also a fragment of similar strueture preserved in spirit, and this has been espeeially serviceable for microscopic examination. Although the macroscopie and microseopic structure of this fragment essentinlly agree with those of Chonclusma hamatum, there ase several points of difference, especially in regard to the form of the isolated spicules, and these differenees appear to me to be sufficient for the erection of a distinct species. I have named this species in honour of Dr. Döderleiu who gave it over to me for examination.

In the dictyonal framework the two funnel-shaped systems of canals, which epen. alternately on the two lateral surfaces, are narrower than in Chonelasma hamatum, but this might be associated with the slight thickness of the entire plate. The beams of the network exhibit the more or less tubereled surfaces noted in the above species. There is further grent regularity in the square or reetangular meshes of the middle layer, while the meshes near the two surfaces appear more irregular and rounded.

The strands of beams which run parallel to both sides, and cross each other approximately at right angles, are for the most part perpendicular and parallel to the upper boundary. When this therefore is somewhat emred, as in the specimen represented in PI. XC. fig. 1, a more circular and radial disposition of the beam-strands restults.

The hexacts of the dermal and gastral skeleton are provided with a short, broad, almost oval, brush or fir-tree-like freely projecting ray, while the four moderntely long transverse rays and the strong conical proximal radial (which varies in length and penetrates into the parenchyma), are smooth at their base and rough towards the extremities (P1. XC. figs. 2,3). The seopule which oceur both in the dermal and gastral skeletor all have a shaft which rwas out to a fine point, but vary greatly in the form of the teeth and of that expanded portion of the shaft which bears them. The latter sometimes exhibits a simple thickening, or in bome cases an annular swelling or four cruciately disposed knobs, and into these the short transverse rudiment of the axial canal extends.

The teeth are almost always in fours and appear either as rods thiekly beset with barbs provided with slender terminal knobs, and running almost parallel to one mother ; or while remaining similar in form they may diverge slightly outwards (Pl . XC. fig. 6) ; or they are slender and show a tendency to become somewhat curved in an S-like manner (Pl . XC fig. 5).

In addition to the uncinates of variable strength which I have found only in the middle and dermal portions of the parenchyma, the latter contains diseohesasters of variable strength, and these bear on the extremity of every short basal ray three or four long, thin, diverging, somewhat curved terminal rays with pronged terminal dises (PI. XC. fig. 7). Sometimes the number of terminal rays on one or other princinal ray is reduced, and I even observed some discohexasters with irregular uudulating mays.

The structure of the soft parts does not exhibit any essential deviation from that nlready deseribed in Chonelasma temella and Chonelesma hamutam (PI. XC. fig. 2).

4. Chonelasma calyx, n. sp (PL LXXXIX.).

In contrast to the nhove deseribed simple plate-like forms, the species now to be noted, which I have established from three dried and partly macerated specimens obtained by De. Döderlein in Enoshima, has the form of a cup several decimeters ligh, with nipple or glove-finger-like radial protuberances from the wall, which is 5 mm . in thickness. The majority of these parietal protuberances, which have the thickness of one's finger or thumb, exhibit a terminal or subterminal circular aperture from 3 to 5 mm . in diameter, and are continued as thinner tubular or half channeled hollow irregular cylindrical processes, which cither extend obliquely downwards and reach the firm substratum, or unite with the adjoining processes of neighbouring divertieula (PI. LXXXIX. figs. 1,2). The whole wall is traversed by canals which open alternately on the inner and outer side, but the dried specimens at my disposal do not show the arrangement with equal clearness throughout.

The dietyonal framework, which consists partly of perfeetly smooth beams and partly of beams sparsely covered with tubercles, exhibits a thicker and less regular meshwork in the neighbourhood of the outer and inmer bounding surfaces than in the middle layer, where the meshes arc large and more uniformly rectangula:. The dermal skeleton consists of hexacts, each of which has a terminally corroded, knobbed, and fir-cone-like distal ray which is beset with pointed prongs, while the long conical proximal ray, and the four moderately long transversals, are either quite smooth or beset on their onter extremities with small tubercles. In addition to the hexacts, the very numerous radially projecting scopulæ usually hear six, more rarely five or four, barbed, more or less markedly diverging, knobbed terminal rays, or a cap-like swelling on the shaft which terminates in a rough point (PI. LXXXIX. fig. 6). The spicules of the gastral skeleton exhibit a similar structure, but the freely projecting (proximal) ray of the hexacts is often somewhat more slender than in the dermal hexacts. The scopulæ, moreover, vary considerably in the number of their barbed and usually markedly knobbed terminal rays.

The parenchymal uncinates are remarkable for their strength. The greatest swelling afways occurs in the anterior third dermal portion. Among the smaller loose parenchymalia numerous discohexasters and oxyhexasters must be noted. The number of the moderately long terminal rays varies, as has already been deseribed and figured in Chonelasma lamella. The same small discohexacts appear as in the above.

Chonelasma sp. (Pl. XC. figs. 8-11).
Besides the largest specimens figured in PI. LXXXVII, figs. 1 and 2, fragments of macerated dictyonal framerrork belonging to a Chonelasmu form were found at various stations on the Challenger Expedition. I have not been able to refer these with any
certainty to one or other of the above deseribed forms, nor are the charaeteristics sufficiently distinctive to permit of the erection of a definite species, In some of the fragments, however, several featmes are very distinetly developed, to some of which it seems worth to refer. It PL XC. figs. 9, 10, and 11,1 have given figares from photographs of a plate-like specimen dredged near the Bermuda Islands (Station 56, lat. $32^{\circ} 8^{\prime} 45^{\prime \prime} \mathrm{N}$., long. $64^{\circ} 59^{\prime} 35^{\prime \prime} \mathrm{W}$.), from a depth of 1075 fathoms and a coral mud ground. One surface, probably the dermal, has unfortunately been very much rabbed (fig. 11), so that on surface view only the deeper layers of the framework are to be seen. The surface represented in fig. 10 seems to me to be gastral, so that the very regularly formed layer of the framework, displayed with its distinctly rectangular meshes in fig. 11, lies close bencath the gastral surface. A section at right angles through the best preserved portion of the plate (fig. 9), displays very distinctly the alternation of the straight fumel-shaped spaces of the afferent and efferent canals.

Among aumerous small macerated fragments dredged near the Penguin Islands (Station 148 A , lat. $46^{\circ} 53^{\prime}$ S., long. $51^{\circ} 52^{\prime} \mathrm{W}$.), from a depth of 550 fathoms and a bottom of hard ground, gravel, and shells, besides the larger plates represented in P1. LXXXVII. figs. 1 and 2 , there was another which exhibited a very chavacteristic thickness. In the cross section (Pl. XC. fig. 8), as in the above instance (Pl. XC. fig. 9), the alternation of funnel-shaped cainal spaces can be detected. 1 am inclined to believe that the Scleroplegna herculewi (from Santn Cruz), referred to by Oscar Schmidt in his Spongien des Meerbusens von Mexico (p. 57), is a similar form.

In the neighbourhood of St. Thomas (Station 23 b, lat. $18^{\prime \prime} 28^{\prime} \mathrm{N}$,, long. $63^{\circ} 35^{\prime} \mathrm{W}$.), from a depth of 590 fathoms, and a Pteropod ooze bottom, other small Chonelasma fragments were obtained, as also on the coast of Portugal at localities not recorded.

Family IV. Tretodiotyide, F. E. Schulze (Pls, XCli--XCVIII.).

With irregulady arranged afferent and efferent canals, which penctrate the body-wall. and especially the more or less thick dietyonal framework, not transversely but obliquely, or in a longitudinal direction, or even in a coiled course.

Gems 1. Hexactinclla, Carter (Pls. XCH1--XCVI).

1885. H. T. Carter, Ann, nni Mag. Nat. Hist, ser. 5, vol. xv. p. 387.

History.-After I had conpleted my investigation of the Challenger Hexactinellida, and had given names to the new forms which I had determined, I discovered that the form designated by Carter Hexactinelle rentilabrum ${ }^{1}$ was identical with the species to which

[^89]1 had given the title Tretodictymm cyathos, I do not hesitate, therefore, to abandou my generic and specific designation for this form, and to adopt Carter's title, which has the priority. Thus tho genoric title Tretolictyum is wholly given up, and the two other species which belong to the same genus are no longer ealled Tivedodictynum tubulosum and Tretodictyun Rutum, but Mexactinclla tubulosa and Hexuctinellu lutu.

The specimen figured by Carter, unfortunately not in its eutirety, was obtained from Misali, Japan, at the extrance of the Bay of Tokio. According to his description, it closely rescobles the Phakellia ventilabrum, Bwk, figured by Bowerbank in his Monograph of British Sponges. ${ }^{1}$ "The surface is on both sides even and uniform; miformly seattered over internally with circular apertures about ie inch in diameter, and about the same distance apart, and externally with a dermal, quadrilateral, spienlar retienlation." " Wall about $\frac{1}{6}$ of an iuch thick, composed of two layers, viz,, one on each side of an irregiliur central plaue of condensed tissue, each layer consisting of plumose fibre eurving upwards and ontwards florally from the central plane of condensed tissue, strengthened by transverse fibres in their course."

Isolated spicnles are represented, according to Curter, by the following types:-(1) dermal pentacts; (2) uncinates, called barbale by Carter; (3) thin oxydiacts ; (4) scopulo with two, three, or four slightly divergent teeth ; (5) simple or spinose oxyhexacts ; (6) oxyhexasters and diseohexasters of different kinds.

Charwcter of the Genus. - The wall of each of the eup-shaped or tubular specimens is traversed by canals, which are not exelusively disposed at right angles to the bounding surface.

The dictyonal framework is principally compesed of radial, longitudinal, straight or slightly bent fibrous reticulate platos, about 1.5 mm . in breadth. These are separated from one another by spaces of similar form and breadth, but are at the same time bound together laterally by numerous transverse beams. A more irregularly developed fibrous notwork with round openings extends in some species over the onter, in others over the inner (gnstral) surface of the dietyound framework, and thus conceals either on the ontside or inside the above mentioned longitudinally directed radial plates and their cleft-like interspaces.

The dermal aud gastral skeleton consists of pentacts or lexacts, and numorous scopule of varions forms. In addition to delicate uncinates, mumorons oxylrexasters, discoliexasters, and more rarely swall oxyhexacts and discolexacts appear in the parenchyma.

1. Hexuctinella tubulosa, n. sp. (Pl. XClII.).

Simple or dichotomously branchod, sometimes also laterally nuastomosing tnbes about 1 cm . in dinmeter, with a wall rarying from 2 to 3 mm . in thicliness, rise from a that
lase, which may either have grown upon a solid body, or may have formed a lhat expmsion on somewhat loose elayey ground.

The largest of the specimens, bought by Dr. Döderlein in Enoshima in a dried eondition, attains a lieight of 10 cm . On the outer extremity of the tubes a simple smoothmargined oscular opening ocemrs. Through the dermat and gastral sieve-like skin the canals, which are fiom 1 to 2 mm . in width, may be rocognised.

In the dictyonal framework, which has been isolated by maceration, the gastral margins of the longitudinally disposed dictyonal plates projeet freely on the inner surface, while an irregular network of beams with round openings from 1 to 2 mm . in diameter extends over the exterior.

The dermal skeleton is formed of strong pentacts, with numerons inequafities over the entire surface, A round knob or peg represents the atrophied distal (sixth) ray; The long proximal ray and the four tangentials generally terminate in sharp points. Scopule also oceur, cach provided with a moderately long, terminally rough and pointed stalk, and bearing on the outer simple conical expanded extremity of the latter four rongh, slightly capitate or entirely unknobbed, parallel or slightly diverging, terminal rays (PL. XCHI. fig. 4). In some specimens numerous fine spicules, which run out to a point at both ends, oceur in groups close to the proximal ray of the pentacts, and project somowhat above the skin.

In the gastal skeleton, curiously enongh, I have found no pentacts or bexacts, although numerous seopule similar to the dermal forms were present in the familiar radial position (Pl. XCIIL figs, 2, 5).

The loose parenchymalin consist of very thin and short uncinates (PI. XCIII, fig. 3) of simple, sleuder, or somewhat rough hexaets (Pl. XCIII.) and oxyhexasters, each of which hears two diverging, short, aud strong straight terminal rays on each of the moderately long basal principals.

2. Hexuctinellat lato, n. sp. (Pls. XCIV., XCV).

Dichotomously branched tubes, which tend to anastomose, varying from 1 to 4 cm . in diameter, expanding superiorly in funnel-like form. They are also frequently crowded together laterally, and appear to be pitfed or swollen out here and there in an irregular mamer. The wall of the tube lias a thickness of 2 to 2.5 mm . Throngh it one can clearly recognise the radial and also the generally longitudinal, frequently undulating or meandering plates, with the intervening spaces, while on the inner surface only irregular ronnd spaces are to be observed through the gastral skin (Pl. XCIV. fig. 1). If completely macerated specimens it may be seet that, in the parallel longitudinal radial plates of the dictyonal framework, the longitudinal fibrons bunds exhibit an external
(zoot. CHALL. ENT.-TART LILL-1887.)
curvature towards the dermal surface. The lateral union of these lougitudinal madial plates, which are separated by spaces of uniform breadth, is effeeted by means of traus= verse bridges of the same dietyonal framework. These extend uniformly ou the gastral side, where they are perforated only bere and there by long oval openings, while similar bridges arehing over the interradial spaces on the dermal side have a more limited lungitmidinal extension. In this manner a canal system is formed, which is, for the most part, longitudinally disposed, and is here and there dichotomously branched. It opens towarils the outside by somewhat long longitudinal elefts, towards the inside by round or oval pores; and since the inner openings are frequently arched over by the extemal comeeting bridges of the adjoining radial plates, it often results that a trausverse section of a complete tube exhibits the appearance of a folded plate (PI. XOIV. fig. 3; PI. XCV. fig. 1). The beams of the fibrous framework bear small superficial knobs, which are either irregularly seattered or arranged in incomplete transverse rows (PI. XCV. fig. 2). The nodes of intersection are somewhat thickencd and knobbed here and there, especially in the outer layer of the framework.

On the outer (dermal) surface the dermal membrane extends quite uninterruptedly over all the clefts and openings, while on the imer surface the gastral membrane passes into the excurrent openings of the larger efferent canals, which in most cases traverse the wall very ohliquely,

The strong dermal pentacts almost invariably exbibit a button-, peg-, or knob-like rudiment of a sixth distal may. The proximal ray, which varies in length, and the four tolerably long, and in most cases slightly enrved tangential rays, terminate in points and are beset with small conical knobs all over in the case of the larger spicules, but only on the extremities of the xays in the smaller (younger) forms. Strong scopule ' also occur, in which the four parallel or slightly diverging, thick or slender, rough knobbed terminal rays usually arise just above an amnular quadri-tuberculate thickening of the stalk (PL. XCIV, fig. 8).

Fincly pointed slim oxydiacts extend here and there in bundles, close to the proximal ray of many dermal pentacts, in the dermal membrane, and even above the latter.

The gastral skeleton almost completely resembles the dermal. A distinction could only be found in the fact that the pentacts are less strong, and their projecting rudiment of the sixth ray is somewhat longer, so as almost to warrant the term hexact. The gastral scopule agree completely with the dermal.

The parcuchyma contains delicate uncinates, and numerous isolated, thin-pointed spicules, which are united in somewhat loose bundles. Besides small hexacts of varions dimensions and provided with small terminal knobs (Pl. XCV. figs, 3, 4). spherohexasters occur. These have a variable number of curved terminal rays, which are in most cases only of medium size, and we convex externally (PI. NCIV, figs. 6, 7,

[^90]13). Oxyhexasters, with long pointed terminal rays, rarely occur ${ }^{1}$ (PL. XCIV. fig, 10). The structure of the soft parts does not essentially differ from that observed in the Euretide. The few specimens of this form were trawled near the Little Ki island (Station 192, lat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long $132^{\circ} 14^{\prime} 15^{\prime \prime}$ E.), from a depth of 140 fathoms, ami a blue mad ground.

3. Mexuctinelle ventilabrum, Carter (PI. XCVI.).

The elegant simple eup represented on PL. XCVI. figs. 1, 2 (mensuring 8 cm . in height and 12.5 in greatest breadth), belongs to the colleetion of Hexactinellida which was made by Dr. Dödertoin in Enoshima, Japan. From a base aliout the size of a halfcrown, a strong, laterally-compressed stalk, 3 cm , in breadth and 1 cm . in thickness arises, and this is continued into the somewhat bent body, which is compressed in the sume direction. This somewhat resembles a boat, and its cavity extribits the openings of a row of twelve branching canals of approximately equal width. The cirenlar openings measure from 2 to 4 mm . in diameter (P1, XCVI. fig, 2),

Since the dermal and gastral skin in this dried specimen are ouly preserved here and there in small remmants, the coarser structure of the dietyonal framework can be recognised withont further trobble. As in Hexactimella late, the free outer margins of the radially and longitudinally disposed, reticulate, fibrous plates (1 mm . in breadth), distinetly project on the cxterual dermal surface, while on the gastral surface of the cup they are covered by the evenly expanded fibrons network. Instoad, therefore, of cleftr 1 mm . in breadth, ouly round pores of equal breadth oceur on the inner surface. The meshes of the dietyonal uetwork of fibres appear in many places to be almost regularly square, although the longitudinal fibrous strands frequently rum not quite parailel to the bounding surface, but in arched bundles fiom the middle layer of the wall, and diverge slightly towards the free outer and inner surfaces, so that their extremition project freely on the surfaces. The beams of the fibrous network are irregularly, atal more or less abundantly beset with low knols. The dermat skeleton includes strong pentacts like those in the skin of Hexactinelle tubutose and Mexactimella late, alke stroug, fou-toothed scopnlæ, and mmerons fine spicules which me pointed at both cnds. Censtituent eloments of exactly the same character are to be found in the gastral skelcton.

The parcuchymn contains minute, rough rods, with pointed extremities, which cownspond somewhat to the uncinates. There are also oxylexasters, with tolembly lons, diverging, terminal tays (PI . XOVI. fig. 8), further, diseohexasters with long hasal prineipals, and mmerons short (externally slightly convex) terminal rays (PL. XCVI. fig. 5), and finally, discohexasters with short basal principals, and it ferr (three t" five) straight or S-shaped, tolerably long terminal rays (PL XCVL, fig. 4).
${ }^{1}$ The spivintea figured on M. XCIV, figs, 11, 12, seem to bave come in accilentality, and wert not fount an earefuif se-examinution

Genus 3. Cyrtazdon, F. E. Schulze (P1, XCII.).
Votentina, ${ }^{\prime} 0$, Schmidt.
1880. O. Schmidt, Spongien des Meerbusens von Mexico, p. 58.

History.-Amoug the sponges of the Gulf of Mexico, Oscar Schmidt ${ }^{2}$ foumd some Hexactinellida of cylindrical, globular, or beaker-like form, which were procured from Morrolight, Barbados, and St. Vincent, from a depth varying from 100 to 300 fathomx These he has embraced under the specific mame of Volvulina sigsbeei. Their siliccous networks are united in an irregular lattice-work by strands, varying from $\frac{1}{3}$ to 3 mm . in thickness. Between these strands there are pores and passages, the outrr openings of which appear to be covered by a membrane. A true gastral cavity was not observed, but, on the other hand, a pitting here and there was regarded as psenulogastral.

The dietyonal framework exhibits knobbed and also smooth beams, These unito in some species in round tubercled nodes of intersection, while thickenings of this kind are entirely absent at the intersections in other species.

In the onter skin bexacts or pentacts ocew, and these are arranged in a regular network. Moreover, among free spicules there are (1) slender thorny spicules (uncinates), which, in the specimens procured from St Vincent, always extribited a central circular swelling; (2) clab-shaped brooms (seopule); (3) hexacts with large finelytoothed hooks on the ends of the rays ; (4) umbel-like rosettes (discohexasters), the: single ray in each of which is prolonged without forking, and terminates in a point, but with a little thickening before the extremity.

In the fragment figured in P1. XCII. fig-9, which was very kindly intrusted to me by Professor Oscar Schmidt for comparative examination, I was able to corroborate his important remarks on the striking want of uniformity in the dietyonal framework. 1 find on the outer surface greatly thickened beams, which are richly beset with large wartfike knobs; in the interior of the framework the beams in some places are ormamenter merely with small pointed knobs, white in others, on the contrary, they are quite smooth. While in some species densely tuberenlate nodes of intersection are present, these are completely absent in others.

I have indicated above the gencral characters which may be inferred from the specific fentures noted by Oscar Sclimidt, but the generic diagnosis of Voliutina, in contrast to that of some allied genem, may be formulated in the following manner :-

Cyrtaulon, F. E. Schulze (= Volvulina, O. Schmidt).
Cylindrical, conical, or beaker-shaped forms, in which the dietyonal framework con-

[^91]sists of irregularly united fibres, reticulated beams, with interposed irregular spaces mul passages, the outer orifices of which are covered by a dermal membranc. In addition to the regularly disposed dermal pentacts or hexacts there are seopule with knobiber branches. The parenchymn contains, besides uncinates, seopula-like spicules, each of which is provided with one prolonged principal ray, which runs out to a fine proint.

1. Cyrtudore sigsbeci, O. Schmidt (PI. XCII. fig. 9).

Since 1 am inelined to believe that the deseription which U. Schmidt (loc. eit., pp. 58,59) has given of his Volvulano sigsbeci was based on specimens of different species, I most, in regard to the minute structure, restrict myself in the first instance to that specimen of which only a fragment is available, as represented from a photograph in Pl. XCII. fig. 9. For an account of the more macroseopic characters I must simply refer to O. Schmidt's results.

We have here to deal with very variously shaped, often goblet-like specimens, whose wall consists of an irregular feltwork, with anastomosing civities both on the external and on the internal bounding surface, covered over by a porous skin.

The dictyonal framework consists of tubcreulate beams, in which the nodes of intersection are here and there, and especially near the surface of the body, thickened and beset with wart-like clevations.

The parenchyma contains menates with central thickened nodes, and scopula-like spicules with several thin prongs radiating out from the terminal knob of the stalk, and bearing marginally-toothed terminal dises. The dermal skeleton cousists of pentacts uid hexacts, and also of scopulee with knobbed prongs.

As to localities, 0 . Schmidt mentions (I) Barbados, 100 fathoms; (Z) lat. $32^{*} 9^{\prime} \mathrm{N}$., long. $82^{\circ} 23^{\prime}$ W., 158 fathoms ; (3) Morrolight, 292 fathoms ; (4) St. Vincont, 124 fathoms.

2. Cyrtaulon solutus, 11. sp. (Pl. XCII figs. 1-8).

Among the numerous Hexactinellida which were obtained by the Chatlenger at Station 192 (lat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long. $132^{\circ} 14^{\prime} 15^{\prime \prime}$ E.), near Little Ki Island, from a depth of 140 fathoms, on blue mud ground, there is one dried specimen which grew in the tulutar cavity of a piece of limestone, and which had the form of a cylinder 5 cm . in length and 2 cm . in breadth. As may be observed in the sketch given on PI. XCLI. fig. 1, the dietyomal framework passing through the body consists of irregularly mited flat or rounded beams from 1 to 2 mm . in thickness, which surround interspaces and passages from 3 to 4 mm. in breadth. As may be clearly recognised in some parts of the surface which have beet specially well protected by the surrounding stone, the whole was covered by a eylindrical mantle-like veil, which exhibits in the dried state a square-meshed network with large
and small spaces, and extented contimously over the spaces and openings, No wide gastral eavity or oscular opening is to be recognised.

The mieroseopic examination of the dictyonal framework reveals a somewhat iregular network of beams which are beset with moderately large smooth tubereles of irregular number and arrangement. The beans never exhibit a spherical thickening of the nodes of intersection. In dead portions the axial canals of the dietyonal hexacts are here amd there greatly enlarged, and nccordingly well marked. The dermal skeleton eonsists chiefly of moderately large, smooth, or only terminally somewhat tuberelel pentacts, which form by their apposition a beautiful square meshed lattice-work. In addition to this, bundles of fine spienles pointed at both ends jut out, and scopule of different forms ocem, but especially forms provided with rough pointed shafts and four strong, almost or absolntely parallel teetb, densely beset with barbs, These teeth spring from a simple conical expansion of the shaft, and possess no knoh-like terminal swellings ($\mathrm{P} \mathrm{NCHL}, \mathrm{fig} .5$)

On the surface of the large iuner strands and plates of the dietyonal fibrous framework there are no pentacts, lat ouly scopuhe, and unpointed fine spienles which also appear to constitute the skeleton of the gastral membrane.

In the parenchyma, and between the reticnhated beams of the dietyonal framework, there are unciuates, which usually exhibit a slight enrvature, and further, those spienles which are characteristic of the genns Cyrtaulon and were first described by Oscar Schmidt, who regarded them as discohexasters with a greatly prolouged ray. These forms exhibit a simple shaft, which runs out to a fine point, and is prorided on the pointed terminal portion with rongh knobs; on the other extremity with a knob- or ball-like thickening, which bears a somewhat large number of thin terminal rays with terminal dises. The thickening which occurs close bencath the pointed extremity of the arrow-like alaft in Cyrtaulon (Volvertinu) sigslece is here entirely wanting. This peculiar form of spicule may be best regarded as a modification of a bexaster, but I have not found any indications of the basal parts of principal rays, except the long shaft. All the thin terminal rays originate directly from the knobbed terminal thickening of that shaft, In addition to the scopulee with four thick rough teeth, already mentioned in the dermul skeleton, other forms with four thin smooth teeth and simple termimal knols apparently oceur in the parenchyma, in addition to those which bear six thin smooth similar teriminal rays with terminal kuobs or dises (PI. XCII. fig. 6). If one imrgines the number of these teeth to be increased and their position more inregularly radial, one can also understand the unusual form of parenchymalia. I have not found any regular hexaets in Ciptarton solutres.

Genus 4. Ficldingic, Sav. Kent (Pl. XCVII.).
1870. Saville Kent, Amm. and Mag. Nat. Hist., ser. 4, vol. vi. p. 219.
1876. Marahall, Znitachir. f, wiss. ZooL, Bd, xxvii. 1. 124.

History.-On a specimen of Lophohelia prolifera, var. anthophyllites, which was dredged ten miles off the shore of Cezimbsa, Portugal, from a depth of 500 fathoms, Saville Kent found ${ }^{2}$ in 1870 a Hexactinellid, distinguished by a pustalate rind of fine recticulated laminæ and numerous spherical internal bodies, kirying in diameter from 30 to $\frac{1}{5}$ of an inch. He named it Fieldingie in honour of Mr. Edward Fielding, alding the specific name of lagettoides, in reference to the delicate reticulate laminre associated with the cortex, which are so strongly suggestive of the internal lace-like layers in the bark of the lace-bark tree. His brief diagnosis of the new form was:"Sponge adherent, cousisting of a cortex of imegular reticulated spicula, having on its interior stuface ummerous reticulated lamine of extremely delicate consistence. Common cavity of the sponge containing numerous spherical aggregations of spicular retieulations ; these invested and brought into relation with the cortex by loose reticnlated filres of coarser structure, having a general hexradiate arraugement ; these fibres cylindrical, and to a considerable extent minutely and ereetly spined; frequently attached to them very diminutive spicula of the 'rectangulated hexradiate' type, these also minutely and erectly spined. Nutritive and exhalent functions most probably performel through the general retieulations of the cortex."

Marshall, who in 1876 ranked ${ }^{2}$ Fieldingia aloug with Aphocullistes as "aberrant forms" among his Pleionacide, suggestel that the form was probably a young Aphrocallistes.

Fictdiagio lagctoides, Sav. Kent (PI, NCVII).

The drawing on PI. XCVH. fig. 1 represents in its natural size one of the two dried specimens which were trawled by the Challenger oft Little Ki Isłand (Station 192, lat. $5^{\circ} 49^{\prime} 15^{\prime \prime}$ S., long $132^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{E}$.), in 140 fathoms, on blue mud gronnd. The surface of the knob-like specimens, which are as lange as a walnut, consista in the perfectly intact regions of a stroug external rind, associated with adherent gramules of sand and other forcign bodics. The rind appears here and there somewhat blistered and almost spongy, and consists of several lanclla of a very narow meshed and itregular network: An irregular framework of strong siliccous beams with partly square meshes (from 1 to 3 mm . in width) extends from the rind across the lumen. This framowork of heams exhibits monerous thick spherical knots about 1 mm . in diameter, nud with tolerabls.

[^92]uniform distribution. These oceur at intervals of 2 to 3 mm , and are not otherwise romarkable, except as local condeusations of the network of beams. Both on the beams of the wide meshed part of the framework, and on the outer sufface of the knots, small simple hexacts oceur fused together in variable numbers. All the beams of the framework and the small fused hexacts are more or less richly beset with small tubereles.

From what has been said there can be no doubt that the specimens in question belong to the species Fieldingia lagetloides, Sav. Kent, which Saville Kent found on a specimen of Lophohelie at Cezimbra, Portugal, and which he has figured and described. But it is to loe regretted that in many parts of the present specimens the remarkable blistered rind, which is of several layers, is insufticiently preserved for accurate examination. From the fragments, bowever, it may be seen that we have to deal with lattice-like lamelle, which exhibit the crossed tangential rays of numerous pentacts, in which the fifth ray projects inwards. Between these pentact rays, which are remarkable for their distinct axial canals, there extends a more or less well-devcloped, in part very narrow-meshed, network of connecting beams without central canals, and provided with rounded meshes. This is similar to what is found in the basal plate of many fixerl Hexactinellida, and in the regions of contact between these and solid foreign bodies. Since the free outer surface is covered with sand and other extrinsic elements, the supposition is confirmed that we have here to deal with a dermal skeleton altered by au admixture of foreign bodies.

Among isolated spicules several apparently typical forms occur. It is not possible to determine with certainty their normal araugement or stratification. In addition to various strong uncinates (PI. XCVII. fig. 9), simple straight smooth diacts frequently occur. These exhibit a central swelling or four cruciately disposed knobs, and their two extremities form a point which arises by a process of pitting (Pl. XCVII fig. 8). In addition to simple smooth and delicate hexacts (P1. XCVII. fig. 7), oxyhexasters ocour, which have several or all of their mys forked, The principal my usually remains very short (PI. XCVII. fig. 6), and sometimes, indeed, it is so much abbreviated that the terminal rays appear to rise almost directly from the node of intersection, and in this way a simple star with ten or more rays results (PL, XCVII. fig. 3). Discohexasters with two or more finc long terminals on each of the short principal rays, and with marginally toothed somewhat convex terminal dises, are tolerably frequent (PL. XCVII. fig. 4).

The scopule, which probably beloug to the dermal skeleton, exhibit four strong almost parallel teeth, which are beset with burbs, and are slightly knobbed, or terminate without any swelling. The tecth spring from the conically thickened extremity of the rough and pointed shaft. Less frequently the teeth diverge in the manner represented on Pl. XCVII fig. 5.

Geuns 5. Selerothomnus, Marshall (PL. XCVIII).
1875. Marshall, Zoitachr, f. wies, Zool., Bil, xxy,, Suppl. p. 171.
1876. J. Murie, Trans, Timu, Soc. Tonil, (Zool.), ser. 2, vol. i. 1876. Carter, Ilid., Appendix.

History.-The term Selerothumnus clausii was applied by Marshall ${ }^{1}$ to a bushybranched Hexactinellid obtained from an unknown source. It measured 50 cm . in beight, while the cylindrical branches, which were repeatedly forked, had a diameter of 3.5 cm . towayds the extremitics, and of 13 cm . at the basal ends. In the tolerably uniform framowork of siliceons beams, which consists of finsed hosradiate spicules with tubereled external surfaces, Marshall thought he perceived a continuous connection between the axial canals, which exactly met one mother in the fusion of adjacent liexradiate spieules, and thus remained in open commonication. The broad (5 mm . in diameter) and narrow (1 mm . in diameter) canals, which traverse the branches of the sponge, often mastomose with each other, and open outwards by orifices of variable sizc. Many of these excurront passages, moreover, possess a fringe in the form of a freely projecting euff, but on the whole the canal system seems to be indistinetly and irregularly developed in the dense tissue.

Among free spicules Marshall found (1) large-knobbed hexradiate forms, which fuse to form the continnous framework ; (2) very small fine regnlar hexradiate spicules; (3) broom-forks with five clubs, beset with delicate warts on each of the expanded portions, while their stalk, which is covered with similar warts down to a slight swelling, terminates in a short point; (4) longer broom-forks (Bescugabeln) with four long elubs, in which the stalk, like the spicular shaft, is beset with fine recurved hooklets.

In the following year, 1876, there appeared in the Transactions of the binnaean Society (Zoology), ser. 2, vol. i., a detriled paper illastrated by mumerous good figures, On Steere's Sponge, a New Genus of the Hexactinellid Group of the Spongider, by James Murie This bushy branched Hexactinellid was procured by natives from a depth varying from 80 to 100 fathoms in the neighbourhood of the Philippines, "between the strip-fike and parallel islands of Negros and Cebu." In its dried state it measured about 80 cm . in leight, and exhibited branches as thick as one's finger. The form is acomately described under the name of Dendrospongia steerei. Professor Steere had bought this beautiful specimen during his stay in the Philippines from fishermen "on the opposite eastern side of the ialand of Cebu, where no spouges axe said hitherto to have heen got from the sound or channel above-mentionecl" Murie reports "- "One day; while in the forest, Professor Steere was suddenly apprised of the arrival of the Challenger Expedition by a note from Professor Wyville Thomson, who had heard of lim and his whereabouts: He hastened on board, passing, as he assures me, a most agrecable day in the

[^93](zool. chath EXP.-PAMT LHI.-1857.)
-G然 13
company of our conntrymen. He doubts if the English maturalists obtained any other specimen of this spouge (Dendrospongia), though he told them of his one, and where and how nequired." In a note Murie made the following addition :- "Since reading this conmmication, Sir Wywille Thomson's retum has enabled me to show him the accompanying piates; thespeeies he does not recognise as being nomong their collections, although it is possible a less perfect specimen or fingmentary portions may be found among the stores of matcrial as yet imperfectly worked out."

According to Murie's description and figures, "The general surfuee exhibits several broad but very shallow impressions or coneavities which traverse the stem obliquely: The distinguishing feature of the branches is a series of tufts or rosettes, so continnous and interworen as in the main to present a whorl ranning successively round from base to apex, composed of a bunch of long parallel placed spieules, which issue from the axis of the branch at an oblique angle, and slightly spread ont at their free ends. The spiral hollow between the frill shows a delicate gossamer lacework eomposed of minute spictles, forming a rectangular chequer."

The principal fibrous bands of the network of beams, which is composed of fused hexradiate spicules, rum, accorling to Murie's representation, in a longitudinal direction in the axial part of the branches, but bend laterally in a bow-shaped curve towards the exterior, and terminate frecly in the more radially directed obliquely projecting fibres of the spiral frill. All were covered with short mucronate spines.

Among the spicules which lie isolated Murie described (1) long acerate, fusiform. inequilateral spicules of two sizes, large and small, both covered with spines, all sloping in the same direction ; (2) two forms of scopuline spicules, the larger with a straight shaft, and with microspined and indistinctly eapitate terminal rays, from two to four in unmber, the smaller with two to four rays opposite to one another, and expanded laterally like petals.

In regard to the position of these seopuline spienles, Murie ${ }^{1}$ records Carter's conjecture -illustrated by a woodent-that they may have lain parallel to the sufface in the dermal layer, and may have been crossed in smeh a way that square meshes were formed. He found (3) two forms of rosettes, of which the smaller bore six straight, smooth rays rising at right angles from the centre, and each terminating in a little discoid swelling bearing four to eight rays spreading in what Carter terms a flewr-fle-lis. Each ray terminates in a swelling which is expanded into a circulur convex head, borderod by four opposite and reeurved spines. The larger rosettes are very rare, and the globular still more so. Each of the six short, stout rays terminates in a quadrangular swelling, which bears several long, straight rays, ending in a quadrangulax, or, more frequently, pentangular cap or head, with free convex surface, but provided with recurved spines at the angles of the opposite surface. He also notes (4) single hexradiate dermal spienles, which form by the over-

[^94]lapping of their hotizontal mays the squares of the skin. The outermost tip of the exterior ray frequently beas the small rosette above described.

The most important peculiarities of the uew form: lave beon summarised by Miurie in the following briof diagnosis;-"Hexactinellid sponge charaeterised by its dendritic or shrubly contous, oceasionally attaining a height of 3 feet or possibly morc. Branches forking or dichotomous, with contiunous whorled secies of spicular tufts from base to apices. Skeleton only known ; basework composed of relatively stoutish glassy fibres of coalesed sexradiate and spinomucronate spicula, disposed in tolerably compact trabecula. Maie direction of filore longitudinal to axis in parallel, straightish, or slightly bent lines, where continned into exterior whorls ; in crossing fibres more irregular, as are the very pumerous exeretory camals. Oscula and pores of moderate size dismibuted all over the free surfaces. Flesh-spiculn aboudant, and of scopuline, weorate, and rosette shapes A dermal veil of slender interwoven Hexactinellid spienla prolably elothes the major portion, or possibly the entire sponge."

In a postscript Muric finally calls attention to the fact that his Dendrospongice steerei may be identical with the Sclevothammus cleusi, Marshall, deseribed a year before by Marshall,' so that the latter name must be accepted as the earlier.

To the memoir by Mmie, Carter has added an appendix in which he expresses the opimion that the fragment from the basal tuft of Euplectolla cucumer, which was at first referred by Bowerbank to Furrea occa, and later by Carter to Forrea densa na distinct from Forrica occa, and which was found to be rich in "scopuline spicules," is most proLably to be referred to Selerothomnus clausii.

Selerothamnus clausï, Marshall (PL XCVIII).

Of this remarkable bushy branched apecies, which diffors cssentially in external mpearance from all known Hexactinellida, only two skeletal fragments belonging to a dead specimen wore trawled by the Challenger Expedition in the neighbourhood of Timor (Station 194 A , lat, $4^{*} 31^{\prime} 0^{\prime \prime} \mathrm{S}$, long, $129^{\circ} 57^{\prime} 20^{\prime \prime}$ E.), from a depth of 360 fathoms ou volcanic mud. These are small, irregularly rounded, somewhat bent, and slightly knce-slaped branches of the thickness of one's finger, and from 12 to 15 cm . in length. The outer portion has been destroyed by abrasion or otherwise. The tolorably compact fibrous iranework exhibits, in longitudinal section, strands of fibres for the most part longitudinally dirocted, or arched towards the exterior, and laterally curved. They terminate freely on the outer surface, while between them other fibres extend approximately at right angles. The entire disposition of the dictyonal framervork, and especially the above-mentioned direction of the fibres, corresponds cxactly with the structure of the fizmework described by Murie, and represented in a figure which has been copied here

[^95]on PI. XCVIII. fig. 3. Noreoser, the resules of mieroseopic examination of the berims of the fromework are in complete accordance with the description by Marshall and Murie. All the beams of the network, the meshes of which are not always quite regular, though generally square, are more or less richly beset with prongs which are either low and pointed, or latger, lroader, and more aoute, as shown in PI. XCYIII. fig. 11. The whole framework is traversed by round cauls, from 2 to 3 mm . in width, which open out laterally:

In the comparatively well-preserved large specimen studied by Murie, whose original figure I have copied on Pl. XCVIII. figs. 1, 2, and 4, ring-like or spiral wreaths were found to originate laterally on the branches of the stock, while between these bands of approximately uniform breadth ocem: It is only in these wreaths that the extremities of the latcrally bent longitudinal fibres of the dictyonal framowork project fredy (PI. XCVIIL. figs. 2, 4). Although, moreover, in the case of the specimen examined by Murie, only the deepened furrows were covered with a dermal lattice-like network of delicate hexacts, forming square meshes, he still regarded it as passible that the entire surface of the whole sponge was covered with such a dernal network.

Since I was able, in the British Museum, to examine some miorosoopic preparations, which were probably mado from Murie's original specimen, and to compare the loose spicules preserved in great abundauce, and partly in their natural position, with those which could be discovered here and there in the fragments from the Challenger Expedition, I was able to demonstrate the most complete agreement between the two forms. The identity of the species is therefore indubitable.

The slender hexaets of the dermal skeleton are covered with small pointed tubercles, especially on the extremities of the straight rays which run out to simple points. The distal ray is shorter, the proximal louger than the four equal intersecting tangentials. The outer extremity of every distal ray seems to be associated with a regular floricomeFike hexnster, In the best preserved portions I found these on nlmost all hexacts of the dermal network (PL. XCVIII. fig. 5).

Fach of the six strong round and moderately short basal mys bears six terminals, which have the form of a liliaceons perianth, being slightly enrved. They beeome gadually thicker towards the outer extremities, and finally terminate in a spherical knob. It secms to me noteworthy that these freely projeeting spicules diffor in the formation of the outer extremitics of their terminal rays from the true floricomes of the Euplectellidee, \&e., though they agree in position and general form (PI. XCVIII. fig. 6).

In addition to the dermal hexacts with radial axial ray, strong dermal scopula oceur with rough shaft and four strong ahmost parallel teeth, which are likewise rough, and pass into a small terminal thickening (Pl. XCVIII. fig. 9).

Between the beams of the latticc-like dictyoual framework, strong uncinates oceur
(PL XCVIII. fig, 10), and also the singular spicules alrealy described lyy Marshall as aberrant broom-forks (Bescogabeh), which indeed rescmble the scopuate in many respects, though not agrecing with them completely. The somewhat rough straight slaft, which runs out at one extremity into an alropt point, is more or less richly beset with rough finger-fike or conical teeth of varinble size, and perpendicularly inserted. On the other somewhat thickencd extremity it bears four, more rarely five or three, rough finger-like terminal mays, which diverge more or less markedly, and are, as a ruto, slightly eurved (Pl . XCVIII. figs. 7, 8).

It is improbable that the floricome-like hexacts with spherical termiual knobs, which are to be found in the dried specimens here and there between the beams of the network of the dictyonal framowork, are to be regarded as parenchymal spicules. I am rather of opimion that they are necidental additions to the parenchyma, and derived from the skin.

Tribe II. INERMIA, E. E. Schulze (Pls. XCIX.-CI. ; Pls. CIII., CIV.).
Dictyonina without uncinates and scopule.

Family Meandmospongide, Zittel (Pls. XCLX-CE.; Pls. CIII., CIV.).
The body consists of a system of rounded, anastomosing tubes of tolerably uniform calibre, with a system of cavitics between. Through the latter the water reaches the interior, passing through the wall of the tubes, and is passed out through their lumen either into the gastral cavity or directly to the exterior.

Genus 1. Dactylocalyx, Stutchbury (Pls. XCIX., C.).
1780. Rozier, Jonrnal de Physique, October, t xvi, p. 315, pl. i.
1781. Lichtenberg, Magazin für das Neneste ans der Physik und Naturgeschichte, Gotha, 1781, Bd. i. pp. 68, 69.
1841. Stutehbury, Proc. Zool. Soc. Lond, vol. ix. p. 86 ; Anu. and Mag. Nat. Hist., ser. I, vol, ix. p 504 (Dactylaralys pumiceus).
1858. Bowerbank, Phil. Trank, vol. exlyiii. p, 279.
1859. Gray, Proc. Zool. Soo. Loml., vol. xxvil. p. 437; Anh. and Mag. Nat. Ilist, ser. 3, vol, y, p. 405 (Macandrewiu).
1860, Max Schultios, Hyalonema.
1891. Ethenberg, Monatabec. d. k. preuss. Akai. d. Wisis, Berlin, vol. i. p. 48.
1869. Nowerlank, Phil. Trans., vol. diii p. 747.
1863. Johnson, Proc, Zool. Soc Lonit, p. 257; Ann. atul Mas. Nat. Hist,, ser. 3, vol xiil p. 287.
1864. Bowerhank, Monographe of the British Spongiade, rol i.
1864. Kölliker, Icones hish., Trotoz.
1867. Gray, Proc. Zool. Soc, TanL, is 492.
1868. Gray, Ann. and Mag. Nat. Hist, scr, 1, vol. i. p. 161.

```
1868. Clams, Ueber Euplectella aspergillum.
1869. Wyvillo Thomson, PhiL. Trabs, vol. cix. p. T01.
1869. Bowerhank, Prac. Zool Soc. Imal., p. 66,
1869, O. Schmidt Mithoil. Natarw. Vorines Steierm,, p. 89.
1S70. O. Schmid, Grundzïge einer Spongionfaunn dez Atlant. Geliot.
1851. Carter, Aum. and Mag. Nat. Hist., 80r. 4, vol. vii. 114. 112-141, 268.
18i%. Gray, Amm and Mag. Nat. Hist,, Ber. 1, vol, is. p. 442,
1873. Cartor, Ann. and Mag. Nat Hist, zer, 4, vol. xii. p. }349
1875. Carter, Amu. and Mag. Nat. Hist., ser. 4, vol, xvi. 1.1.
187.5. Marshall, Zeitsehn. f. wios, Zool., Bd. xxr,, Suppl.
1875. Bowerhank, Proc. Zool. Soc. Lond,, p. 272.
1876. Marshall. Zeitschr, f. wiss Zool., TA. xxvii p. 113.
1877. Sollas, Ann, and Mlag. Nat. Hist., ger. 4, voL xis, p, L.
187%. Sollas, Amn. and Mag. Nat. Hist,, ser, 4, vol. xx. p. }285
1877. Zittel, Abhandl. d. k. Najer, Akad, d. Wiss, BL. xiii, p. 1.
1s78. Zittel, Abhandl. d. k. Faier, Akad. d. Wiss,, Ed, xiv, pq. 21-48, है3.
18%9. Sollas, Journ. Roy. Mier. Soc, vol, ii. p. 122,
1879. Agassiz, Bull. Mus, Comp. Zool, vol, x. p. 289.
1880. O. Schmidt, Die Spongien des Meerbusens von Mexico:
```

History.-In 1841 a report was given by Stutchbury ${ }^{1}$ on a sponge which was proctred at Barbados, one of the Antilles, and which exhibited a siliceons skeleton composed of fine tubes with netted walls. The following diagnosis was proposed :- "Spouge fixed, rigin, siliceons; incurent canals uniform in size; excurrent canals large, forming decp simusities on the outer surface, radiating from the root to the outer circumference." Stntchbury named it Dactyloculyx pumiccus.

Probably an illustrated notice which has passed from Rozier's Journal de Physique ${ }^{t}$ into Lichtenberg's Magazine ${ }^{3}$ also refers to the same genus. For a knomledge of this publication, which is chiefly of interest on account of the date of its publication, I have to thank Professor Marshall of Leipzig, who has sent me a copy of the text and of the figures. The title in Lichtenberg's Magazine ${ }^{4}$ is in the following words:- "Nachricht von einem seltenen Polypengebitude." "The strncture of the polype in the first copperplate shows a peculiar character and form not hitherto met with in any collection of the products of the sea. It is dazaling white, resembles a net, and the magnifying glass reveals a uumber of seattered chambers which are perforated in all directions; it is therefore umsunally light, and is very readily pulverised. Its clegant form approaches very near to that of the Coupe de Nepunc; but the resemblance is not confirmed when the two polype forms are placed side by side. It is difficult to refer this structure to its proper class. When kept under water it does not become larger, nor does it acquire any flexibility. With nitrie acid it does not effervesce. When a piece of it is calcined

[^96]it gives off, indeet, a smell like that of a burning animal body, bat it does not expand Fike other lithophites. If it is leated in a crucible over a strong fire it smells like burned gore, assumes a darkish colour, and becomes finally dazzling white, so that it canuot, like the orlinary Madrepores, heeome transformed into lime. Nor does the residue vitrify by the appliention of strong heat. A portion of this form gave at yellowish colour to white oil of vitriol, which was dae to the action of this acid on the animal part. The stone on which this structure is fixed, and which Mr. Badiez brought from Martinique, is a dense green lava mixed with erystals and dark prismatic schorl." ${ }^{1}$

In 1858, Bowerbank noted in the Philosophical Transactions (pl. xxvi. p. 312) some stellate spicules of Dactylocalyx pramiceus, Stutehbury, as examples of his "trifurcatohexradiate stellate" and "spinulo-trifureated hexradiate stellate spicules," and gave ${ }^{2}$ a good figure of one of these.

The Mocondrewicu azorice, which Gray first described in $1859,{ }^{3}$ and which he mited iil a groap along with Daetylocalys and Mytiusio callocyathes, does not belong, as later accurate descriptions show, to this category, being in fact a Lithistid. The same is true of Dactyloculyx pruttii, Bowerbank, of which some typical skeletal spienles
 and of which Bowerbank figured an isolated quadriradiate spicule in 1864 in his British Spongiadre, vol. i. pl. ii. fig. 53.

In his great Sponge System Gray formed in $1867^{\text {n }}$ a special fomily-the Dactylo-ealycide-within his order Corallispongia, and this family he characterised as "Sponges with massive, expanded, or flabellate, the network with angular meshes." The members of this family possess a "network irregular, not symmetrical," and consist of Macendrewie and Myliusia and of the genus Dactylocalyx, which was partly identified with Iphiteon, Valenciemnes.

The diagnosis of Dactylocalyre is as follows:- "Sponge expanded, with large sunken groves and oscules on the upper and lower surface. Spicules of skeleton tuberculated; spicular network, rugose, tubercular. Sarcode with scattered, radiated, or stellate spicules, divided into liranches near the base, and with knols at the tip of the rays. Sarcode studded with many-rayed stollate spicules, the six principal rays diverging on all sides, and divided near the base into several elongated cylindrical linear rays, which diverge from each other and are tipped with a small apical knob like the head of a pin."

Besides the Dactyloculyx prattï, Bowerbank, which is a Lithistid, and does not therefore belong to this group, Gray established two other species of Ductylocatyx, namely,

[^97](1) Dactylocalyx pumiceus, Stntchbury, named Dectylocaly.x pumicea by Gray, and identified with Iphiteon praicea, Valoneiennes (Paris Muscum), as a "sponge broad expanded, upper surface rather coneave. Hab. West [ndics, Barbados, St. Vincent;"I and (2) Dectylocalyx subylobiosus, Gray; a "sponge subglobose, with a deep central coneavity above; the onter surface with irregular anastomosing oseules. Hab. Malacea (?)" (pl. xxvii. fig. 1).

A short account of the nature of the continnous siliceons framework of Dactylocalyx was given by Claus in 1868 in his treatise on Euplectella asperyiltum. He says ou page 23 :-" We have thas to deal here not with united siliceous spicules, but with a fibrous tress-work of siliceons substance like the ceratose fibrous networks which oecur in the Ceratospongia." On the other hand, Wyville Thomson in the same year remarks,-" 1 believe that it would be safe to accept the generalisation that the continuous siliceous network, wherever it occurs in the vitreons sponges, is produced by the fusion of spieules of the hexradiate type."

A detailed description of all these sponges which Bowerbank ascribed to the genus Dactylocalye, Stutchbury, was given by the same anthor in 1869.3. After first separating off the genus Iphitcon, Valenciennes, from Dactylocalyx, he characterised the genus Dactylocalyx, Stutchbury, in the following manner:-Skeleton siliceo-fibrons, fibres solid, cylindrical." Iphiteon, on the other hand, thus:-"Skeleton siliceo-fibrous, fibres solid, cylindrical Retienlations symmetrical. Areas rotulate, confluent."

To Dactylocalyx he aseribed the following, in part, newly described species:(1) Dactylocalyx pumiceus, Stutchbary; (2) Dactylocalyx licteroformis, Bowerbank; (3) Dactylocalyx mucandrewii, Bowerbank; (4) Dactylocaly.x prattii, Bowerbank;
(5) Dactylocaly. masonis, Bowerbank; (6) Ductylocrilye bowerlanki, Johnson; (7) Dactylocalyx polydiscus, Bowerbank. Of all these, however, only the first, accarding to the figures and deseriptions, nanely, Dactylocalyx pumiceus, Stntehbury, is truly a Hexactinellid, all the others being Lithistida or Tetractinellida.

From Bowerbank's long description of Ductylocalyx pumiceus, Stutehbury, I shall qnote only the diagnosis:-"Sponge cyathiform, slightly petieclled, surface even. Oscula and pores mknown. Expansile dermal system, connceting spienla fureated attentato-patento-ternate, and dichotomo-patento-temate. Dermal membrane-tension spicnla smail, acerate and subequiangular triradiate spieula; retentive and dcfensive spicula necrate or cylindrical verticillately spinous, whorls of spines numerous and very large; and also attenuato-stellate, very minute and numerous. Skeleton:-rote irregular; fibre stout, irregularly and abundantly tnberenlated, apices of the tubercles mainly papillous. Auxiliary skeleton-fibres more or less reetangular, hexradiate, profuscly spinous, distal terminations clavate, large and numerons. Tension spicula

[^98]rectangular hexradiate, smooth, long and slender, radii subclavate. Retentivo spicula trifurcated attentato-hexndiate stellate, minute and very unmerons. Genmules memlutuons, aspicular." "Colow muknown in the living state. Hab).-Barbados (Dr. ('ntting) Martinique, M. Pléc, 1829. Examined in the skelcton state"

Of the genns Iphitcon-a mame which Bowerbank has ascribed to Valeneiomes, lowerbank aceuratoly described five species in 1869, namely, Iphiteon panicea (Valtheicnnes), Bowerbank, Iphitcon beutrix, Gray, Iphiteon sthblobosd, Gray, Iphitcon ingolli, Bowerbank, and Iphiteon cellocyuthes, Gray:

The essential chameters of tho first species, Ipteiteon pemicen, are established by Rowerhank from a specimen olitained at Porto Rico, and preserved in the Muscum of the Jardin des Ptautes, Paris. The dingnosis reads as follows : " "Spouge cyathiform, slightly pedicelled, Surface of rigid skeleton even. Oscula, pores and dermal membrane unknown. Skeleton symmetrically radial, radii abort and stout, areas of tho rete mostly six-sided spaces, withiu triangular ; fibre cylindrical, incipiently spinous. Tension spicula simple, hexradiate, slender, abudantly spinous, radii terminally more or lesa clavate. Rententive spicula spinulo-pentafurcated hexradiate stellate, fow in number. Gemmules simple, membranous, subspherical, irregularly disposed, very uumerons."

The second species, Iphiteon beatrix, Bowerbank, resembles Aphrocallistes beatrix, Gray, and has already been referred to in detail under the genus A phoocullistes.

The third species, Iphitcon subglobosa, Bowerbank, agrees with Dactyloculy, subylobose, Gray. Bowerbauk diaguoses this form" as "a massive sponge, somewhat cyathiform, sessile; suface unoven. Oscula and pores unknown. Dermal mombraneretentive spicula spinulated biternate minute, very numerons. Skelcton symmetrical radial ; areas confluent, somewhat irregular, mostly six-sided, spaces within triangular. Skeleton fibre at the external sufface coarsely and irregularly tuberculated; disposition of the tubereles sublinear. Auxiliary fibres rectangulated hexradiate, abundantly spinous ; radii spinulated. External defensive spicula fusiform acerate, very large and long, distal terminations occasionally incipiontly spinous. Interstitial spicula rectaugulatel hexradiate, very slender, madii subclavate, hasal my very long. Spicula of the membranes retentive spicula spimulo-quadrifurcate and pentafurcate hexradiate stellate, uumerous ; margins of the spinulate terminations crenulate."

The fourth species, I_{2} lhiteon ingalli, Bowerbank, agrees, according to Bowerbank himself, with Dectylocalyx promicou, Gray, which is said to bo distinet from Dactylocely. pumicens, Stutehbuy. Bowerbank gives the following diagnosis": - Sjonge oup-shajud. ligid skeleton; upper or exlalent amface with large intermarginal excurrent canals

[^99](200L CHALL. LXPR-FAHT Liti--1887.)
radiating irregularly from the centre towards the circumference. Surface even. Osenla, pores and expansile dermal system unknown. Skeleton fibre stout, more or less furzisherl with scattered warty tubercles. Auxiliary fibres abundantly tuberculated, terminating *pinulately. Insterstitial spicula rectangulated, hexradiate, large; radii nearly equal, attenuated and acutely terminated. Retentive spicula spinulo-quadrifurcate hoxradiate stellate ; terminal radii long."

The fifth form, Iphiteon callocyathes $=$ Mylivsin cullocyathes, Gray, belongs to another genus, Myliusia, Gray, which will be described more closely below.

Oscar Schmidt ${ }^{1}$ first called attention to the fact that the greater number of the forms described by Bowerbank as Dactylocalyx are not Hexactinellids at all, but belong to the Lithistida. According to Oscar Schmidt, the genus Dactylocalyx strictly embraces those sponges which ave charecterised by a triaxial type of spicule, "their siliceous netrork resembles neither the wide tubes of Forrea nor the prismatic tissues of A phrocallistes, but a more dense irregular tresswork. The habit of the body may nccordingly be very variable."

In addition to the meshed forms, Dactylocalyx pumicens and Dactylocalyx subglobosus, Osear Schmidt described and figured a third species, of very different appearance, under the designation Dactylocalyx crispus. From a short compact solid base, there rises a simple or divided funcel-shaped tube with a thin and somewhat folded wall, while the upper terminal opening appears to be either irregularly round or else sinuous and fissure like. Short tube-jike lateral protuberances or branches which are here and there arranged in distinet longitudinal rows open to the exterior by a ronnded aperture.

In an article on the classification of the sponges, published in 1872, ${ }^{3}$ Gray distinctly eurtailed his family of the Dactylocalycide as established in 1867. He removed the genus Macandrewia, which was regarded as representative of a special family, the Macandrewiadx, retamed the genera Dactylocalyx, Myliusia, Kaliapsis, and Discudermia, and characterised the restrieted family as follows:- "Spouge massive or expauded or cup-shaped. Skeleton more or less regularly reticulated, with augular openings diverging from the centre."

In 1873 Carter ${ }^{3}$ united Dactylocalys pumicers, Stutchbury, Dactylocalyx pumaicer, Gray, and Iphiteon promicea, Valenciennes, in his division of the Vitreohesaetinellida, in the subdivision of "species massive, excavated, shallow," and in a family for which " rosettes or flesh-spicules, many rayed, rays of equal length, straight, eapitate, sometimes only pointed," wore said to be characteristic, while he formod a special family for Dactylocalye subylobosc, Gray, with the following peculiaities :- "Rosette many mayed, rays of equal length, straight capitate, or with multitudinous rays of mequal

[^100]fength, straight and capitate, pappiform, or oecasionally of the first kind onee branched, or occasionally with echimated heads." The difference betweon Dectylocaly.x pumicens, Stutchbury, and Dactylocalyx pumicea, Gray = Iphiteon ingalli, Bowerbank, Carter found to consist in the fact that "the latter is charged, especially towards the surface, with loug linear spicules (sleuder, fusiform, slightly inflated, and spined for some distance at each cul), while these are not to be seen in Dactylocalyx pumiceus, Stutchibury.

In 1876 Marshall ${ }^{3}$ placed the genus Dactylocalyx among his Pleionacide, and characterised it in the following words :- "Fused latticed tissue of little regularity. Free spicules are represented by rosettes and irregular hexradiate forms of unknown significance." As speeies, he noted (1) Dactylocalyx pumiceus, Stutchbury, and (2) Dictylocalyp orispus, O. Schmidt.

In 1877, in his paper on Stauroneme," Sollas referrod Dactylocalyx and Aphrocallistes wh his family of the Aphrocallistide, distinguished by "sex-radiate skeleton spieules with mays making any angle with each other," and in an article On the Action of Caustic Potash on the Siliccons System of Spouges, ${ }^{2}$ he pointed out the irreguar arrangement of the spienles in the skeletal framework of Ductylocalyx pumiceus and Dectylocalyn: sibylobosus.

In 1877, in his studies on fossil sponges, ' Zittel referred Dactylocalyx with Periphougelte, Marshall, and Myliusiu, Gray, to his Maeandrospongidæ, which consist of meandering, entangled, and simple anastomising tubes or plates,

In the Journal of the Mieroscopieal Society, Sollas described a simple plain cuprshaped variety of Dactylocalye pemieens, Stutehbury, which he named Dactylocalys pamiceus, var. stutchduryi, or simply Dactylocaly.e stutchburyi. He called attention to the typical alternation of the outer and inver, or upper and under radial furrows or furrow-like depressions, described the continuous skeletal framework composed of united hexradiate apicules, and further some six-rayed, five-rayed, and simple spindle-shaped or thread-like isolated "flesh spicules." At the knots of these originally isolated sixrayed spicules, which are here united to the skeletal framework without recoguisable order, Sollas frequently saw the begiming of a hollow cetahedron, such as ocears in the Voutrienlites. This was seen to become so completely covered by siliceons lamelle that the knots in the older portions of the framework appeared to be solid throughout.

Among the Hexactinellida procured by the American Expeditions from the West Ludies, and examined by Oscar. Schmidt in 1880 , several species of Dactylocaly, were found, whidh corrobonated on the whole the opimions of Sollas. The form whill lumi previonsly been deseribed ly Schmidt as Dactylocalyze crispas wns now apparated from the genus, and regarded as a young form of Schmidt's Syringicitum situclii.

[^101]Ductylocalyx pumicens, Stutchbary, was found in the neighbomhood of Barbarlos at in depth of 103 fathoms; Ductyloculyx sulylobosus, Gray, near St. Lucin, in 116 fathoms, and also to the north-west of Havanna in 190 fathoms.

As a new species Sclmidt deseribed a drinking-horm-shaped Dactylocalyx (Dactyloculye potctorwn) dredged from a depth of 190 fathoms near St. Lucin. Its wall measurvel 15 to 2.5 cm . in thichness, and consisted of a very light and fragile lattice-work of fine tubes. It also exhibited external as well as internal deep pittings, the openings of which alternate on the surfaces of the walls, and appear on the immer side to be arranged in longitudinal rows. Further, the form described by Gray as Myliusia callocyuthes was referred by Oscar Schmidt to the genus Dectylocelys.

Generic Characteis. - The cap-shaped, thick-walled body exhibits both on the outer aud on the imer sufface irregular, but generally radial ridges, and interjacent furrows Since internal furrows correspond to external ridges, the whole wall seems to loe folded. It consists of a system of anastomosing, but mainly radial tubes, which opent internally, and perhaps also externally. The system of spaces lying between these anastomosing tubes is closed on the internal gastral surface. It is probable that in the living form both the extenal dermal and the internal gastral surface of the entire sponge we covered by a flatly expanded dermal or gastral membrane. In the dermal membrune pentacts oceur with unpaired hypodernal ray.

1. Dactylocalyx pumicous, Stutchbury.

From the original description of Stutehbary, afterwards corroborated by Bowerbank aud by Sollas in raference to two specimens from the Antilles Island, Barbados, and preservel in the Bristol Mnscum, Dectylocalyx pumicons has a firm, flut, cup-shaped body borne on a short, thick, massive stalk. It consists of a flat, plate-shaped roundish mass, 30 cm . in breadth, as thick as a thumb, and bordered by a slightly involute. alightly sinuous, roundel margin.

The radially-disposed furrows, which are frequently interrupted, alternate on the lower dermal and the upper gastral surface, and lieve and there exhibit dichotomons division. The very fine tubular network which forms the entire body is stone-like and very narrow in its mesties. The wall of the narow tubes is composed of finely tubercnlate leams, withont thickening at the nodes of intersection.

Sollas found loose spienles in the parouchyma in the form of small hexacts, in which the slendor mys were for the most part terminally thickencd, while individual rays were frequently considerahly elongated and somewhat curved: According to Bowerbouk ${ }^{1}$ the parenchyma includes oxyhexasters, with three long, slightly rurved terminals on each of the six short princinal rays, and also discohexasters with somewhat long terminals. The

[^102]Hormal skeleton consists, according to Sollas, of numerous rough oxypentacts. No uncinates or seopule were found.

2. Dactyloculy, subglobosus, Gray (P1. XCX.).

Through the kinduess of Professor O. Schmidt I obtained the half of an unfortunately much injured and partially macerated dried specimen of that spouge which Gray deseribed in 1867 under the titlo Dactylocalye sydylotosus, and figured in the Proceedings of the Zoological Society of London, 1867, pl. xxvii. fig. 1. I was thas able to study the skeletal structure of this form. While I can, without further comment, simply corrobonte the results of Gray and 0 . Schmidt as to the general form and macroscopic features, I have been led to some divergent conclnsions as to the mimiter strueture. To these I must therefore bricfly refer. Like Gray's specimen, and that figured by 0 . Sehmidt in his Spongien des Mecrbusens von Mexico (Taf. iv. fig. 8), the specimen lent me for examination, and represented from a photogroph in thio outer now in PI, XCIX. fig . 1, exhibitod a deep, thick-walled, pear-shaped cup, with a comparatively broad basis. The wall consists of a much folded plate. The clefts and furrows of the internal surface are narrower and more longitudinal than the more irregular cavities and furrows on the exterior.

While formor investigators have seen in the folded plate, which forms the entire wall of the goblet, only a compact mass traversed by small round canals, I find it to bc composed of a fine network of anastomosing tabes, 0.3 to 0.5 mm . in transvorse diameter. The main direction of the tubes forming the framework is indecd mdial to the surface of the entire sponge, but so many lateral branches of equal width are given off in every direction, anastomosing with adjacent tubes, that the whole appears as a thick and iregular felt-work. The cavities and interjacent spaces which oceur between these anastomosing tubes, and, of course, communicate with one another in all directions, have the same diameter as the tubes. While 1 found this intereanalicular system of cavities closed on the inner gastral surface by a retioulated plate, I saw their free npertires liere and there on the outer dermal surfice. Here too, however, they are doubtless covered over by the delicate porous dermal membrane. The water streaming in from outside mist find its way first into these interstitinl spaces, then tlirough the walls of the tulies into their lumen, and thence into the large gastral space, and perhaps also to the oxterior by the dermal terminal apertures whieh are prohably present during the life of the sponge. In fig. 2 of Pl. MCIS. I have given a diagrammatic representation illuatrating my conecption of the etrocture.

The dietyonal framework supporting the wall of these narrow fulns whibits moderately strong irregulorly tubereulate beama, with square, triungular; on romd meshes withont any definite regularity. The purcuchyma ineludes, besides simple
tuberculate discohexacts, aumerous discohexasters, in which each of the short simple principal rays bears four long terminals. These beeome gradually thieker towards the exterior, and fimully end in a small compact transverse dise. The size of these discohexasters varies from 0.05 to 0.1 mm . in diameter.

The dermal membrane coutains pentacts with rudiments of a sixtli distal ray. The four tangentials end in a rough terminal knob, while the longer proximal radial is usually pointed (PI. XCIX. figs. 3, 4).

Gray's original specimen is said to have been brought from Malaeca (?). O. Schmidt obtained his forms from St. Lucia, West Indies, from a depth of 116 fathoms, and from lat. $23^{\circ} 1^{\prime} \mathrm{N}$., long. $83^{\circ} 14^{\prime} \mathrm{W}$., from a depth of 190 fathoms.

3. Dactylocalyx (?) petclla, n. sp. (Pl. C.).

The completely macerated dietyonal framework displayed in Pl. C. fig. 1, probably belongs to a cup-or platter-shaped sponge, with walls at least a finger's-breadth in thickness. The tissue consists of an anastomosing network of tubes of very different calibre, varying from 2 to 4 mm . in width, and mmning in a generally radial or slightly eurved course. As to the structure of the natural hounding surface nothing certain cau be said.

The beams of the dictyonal framework, which form a network with approximately square or more irregular meshes, are moderately strong and quite smooth. Only the conical bosses projecting radially into the lnmen of the eanals or beyond its free bounding surface are beset with small pointed tubercles.

Since no loose spicules were found, it must remain somewhat doubtful whether the generic designation is correct.

Some specimens of this species wore obtained by the Challenger Expedition off the coast of Portugal, others to the south-west of Bermudas, from a depth of 1075 fathoms, and coral mud gromed.

Genus 2. Scleroplegma, O. Schmidt (II. O1. figs. 1, 2).

From the diagnosis which the author of this genus has given in his Spongien des Mecrbusens von Mexico, f. 56, it unquestionably follows that the genus should be ranked in the family Maxadrospongide, Zittel. It seems to me donbtful, howere, whether all the forms refirred by O. Schmidt to this genus were really Selevoplcgancte. On the contraty, from his own description, I am foreed to conclude that his Seleroplegma kenteria and Scleroplegric herculcum belong to another set of forms. But with this I have not moch to do, since I lave not been able to examine the original specimens of these two species. Thave, however, a half specimen of Selcroplegma conicum, Schmidt, which
though macerated has the dietyonal framework well preserved. This specimen, preserved by 0 . Schmidt himself, 1 have boen able to use ns a basis for an indopeodent investigation of the genus and species.

I aceept Sehmidt's generic characters exeept in their last chase, which is based on the two doubtful species above referred to. In abbreviated form it reads as follows :"Sponges of cylindrical or truncated conical form, with a similarly shaped thick-walleat boily cavity. The peripheral felt-work is wide-meshed, but strong and firm, or brittle. It forms round or prismatic tubes, which generally run obliqnely from the exterior to the interior, either isolated or united with one another, and opening into the gastral cavity. Between them irrogular intercanals occur."

1. Scleroplegma сонicum, O. Schmidt (PI. OI. figs. 1, 2).

Of this species I could unfortmately procure only the single specimen figured from a photograph in PI. CI. fig. 1. It was completely macerated, so that of the isolated skeletal elements no trace was left. The tubes, 2 to 3 mm . in width, which form the thick wall (5 to 8 mm .) of the cup-shaped body, are generally radial, and directed somewhat obliquely upwards and outwards. They open both on the internal gastral and on the exterual dermal surface by round apertures, and here and there exhibit anastomoses. The intercanals oecurring between these anastomose abundantly, and have a uniform width; they open, however, only ou the outer dermal surface, where the water enters.

The dietyonal framework consists of strong beams, superficially beset with small pointed tubereles, usually disposed in trausverse rows; The nodes of intersection are spherically thickened and beset with pointed tuberculated warts, which are especially well developed in the bonnding surfaces of the whole framework (Pl. Cl. fig. 2). There is it remarkable absenee of the conical bosses which, on the bounding surfaces of the dietyonal framework of other Dietyonalia, project for a rariable distance at right angles to the nodes of intersection.

Scleroplegma conicum was found near Morrolight, West Indies, at a depth of 292 fathoms.

Genus 3. Margaritella, O. Schmidt.

Margaritclla catoptychioides, O. Schmidt (PL CL. figs 3-8)

From the somewhat indefinite figure and deseription which U. Schmidt gives of this form in his Spongien des Meerbusens von Mexico, the boly seems wo exhilit a flat, enplike form, resulting from a connected system of tubes, In the fragment which I received for comparison from Professor O. Schmidt, some free spiculos were fortuantely retained,

[^103]The slightly irrugular dietyonal framework consists of moderately thick heams, somewhat unformly beset with fime tubereles. The nodes of intersection exhibit no thickening, and on the bounding surfnce slonder tubercle-like bosses of moderate length project frecty (Pl, Cl, fig. 3). The dermal membrane contains rough pentacts disposed regularly so as to form square meshes. In these spioules, the four uniformly long tangontial mys end in a knot-likeswelling, while the much longer proximal madial, which becomes narrower inferiody, is simply ronnded off or pointed. The parenchyma includes delicate oxyhexacts with somewhat undulating rays, which sometimes divide, and may alse "xhibit thickoned points of interscotion (PL. CI, figs, 5, 6), More frequently spherohexasters oecur of variable size, and with a variable number of terminal rays. The principal mys are cither moderately short, bearing six to eight knobbed terminals, about three times as long, somewhat markedly divergent and slighty eurved (PL. Cl. fig. 8), or they are so shortened that they apjear rather as a spherical thickening of the node of intersection. In the latter form the numerons, long knoblied terminal rays look like simple zudii from a spherical contre (P). Cl. fig. 7).
O. Schmidt notes that the form was dredged at Havanu, West Iudies, from a depth of 158 fathoms.

Genus 4. Mytersio, Gray (Pl. CIII).

1859. Gray, Proc. Zool, Soc Lond, rol. xxvii, p. 437 ; Ams. and Mag. Nat. Hint, set 3, vol v.
p. 495 (Mylumsa callorgathis). 1867. Gray, Proc. Zool. Soc. Lonul, p. 492.
1860. Bowerbank, Proc. Zool. Soc. Lond, P1. 66, 334 (Mtyliasia grayi).
1861. O. Schuidt, Grandzige einer Spongionfauna des Athant, Gebiet,
1862. Gmy, Ann, and, Mag. Nat, Hist., ser, 4, vol. is. p, 442.
1863. Carter, Ann and Mag. Nat. Hist., sen 4, vol sii. p. 349.
1864. Carter, Ann. and Mag. Nat. Hist., sem. 4, vol. xvi. f. 1.
1865. Marshall, Zeitschr. I. wiss Zool., Bd. $x x$ y, Suppl.
1866. Marshall, Zeitschr, I. miss. ZooL, Bd. sxvii.
1867. Carter, Amn. and Mag. Nat. Hist., ser. 4, vol. xix. p. 121.
1868. Solla, Ann. and Mag. Nat. Hist, se. 4, vol xix. p. 43 (Mytuwia aroyi); and vol xx. [b. 285 ,
18i7. Zittel, Abhandl, d. k. Baier. Akad,
1869. Marshall and Meyor, Nittheil. d. Zool. Mtus zu Dreeden, Ma, it p. 261.
1870. O. Schmilt, Spongen der Membusens yon Mexico, vuht i.
1871. O. Schmidt, Spongion der Moerhnsens von Mexico, vol, ii
1872. Weltner, Deitrige zur Kenntniss dor Spongien

History.-In $1859 \mathrm{Gmy}^{1}$ deseribed and figured a new sponge procared from the Weat ludies, which he regarderl as representative of a new genus, and named Myliusia, with the specific nome callocyathes: The generic title was given in honow of Christlob Hylius, who wha the first' to deserine the singular Umbeltularion groentandica. The

[^104]description ran :-"Sponge siliccons, fimmal-shaped, fixell by the base ; the upper surface smooth, marked with numerous minnte perforations placed in nealy parallel grooves, madiating from the centre to the circumference, and with numerous large, ohlong, rather unequal-sized perforations, which are fringed on the lower side with a high wall of a similar structure to the rest of the sponge ; these edges of the cavities cansing the under surface to be covered with unequal irregular-shaped tubes of nearly the same length, and more or less confluent together: some of these tubes are simple and sul)cylindrical, others are expanded and more or less crumpled on the edge around the eavity, so as to end in two, three, or even four more or less circular mouths." A magnificent delineation of the elegant sponge completed this accurate diagnosis.

In the systematic reviow of the sponges, which Gray gave in the Procecdings of the Zoological Society London, in 1867, he placed Myliusie in the family of the Dactylocalycide ("sponge massive, expanded or flabellate, the network with angular meshes,") clase to Dectylocalyx, and briefly characterised it on page 506 in the following words:"The sponge eonieal, cup-shaped, pierced with ummerous short truncated tubes, forming raised folded anastomising lamine on the lower surface."

A diagnosis of the genus Myltiusia, Gray, founded for the most part on the microseopie structure of the skeletal framework, was published by Bowerbank in 1869 in the Proceedings of the Zoological Society of London, part i. p. 66, and ran as follows:"Skcleton siliceo-fibrous. Fibres solid, cylindrical. Rete symmetrical, disposed is a series of erypt-like layers parallel with the external surface, with intervening plates of perforated siliceous tíssuc."

Wyville Thomson, ${ }^{1}$ in his scheme of Porifera vitrea, rejected Gray's genus Myliusiu, and referred the form il question simply as Ductijlocatyr callocyathers to the genus Dautyloculy.e. Moreover, Bowerlank ${ }^{2}$ subsequently found, "on microscopic examination of the structure of the type speeimen of Myliusia, Gray," that it was identical with that of his genus Iphiteon. He therefore referred Gray's Myyliusio callocyuthus, as Iphitcon callocyallus to tho gemus Iphitcon. Thus, then, the generic name Myliwsian became as it were free, and Bowerbank assiling himself of the fact, designated noother recently studied remarkable Hexactinellid from St, Viucent, West Indies, with the generie title Myliusic, and added to it the specific name groyi. The aeeuate deseription of the new species. Myliusia grayi, Bowerbank, which was illustrated with two good figures of the mieroscopic structure of the skeleton, undoubtedly showed the essuntial difference between this species and Gray's. Myliasice callocyathus, and certainly established the generic distinctness of the two. It is, however, vary much to be regretted that Bowerbank did not invent a new name for his new genns, as many errors and nubiguities would thes have been avoided.

Later authors have, however, by no means nlways attended to the essembial difterenee

between the two species Mylirsiet (Iphitem, Bowerhank) calloryathus, Gray, and Myliusio groyi, Bowerhank, but without further inquiry have assigned both to the same genus Mylinsin-a generic name which, after what has been snid, ought to be mpplied to Mylinsia callocyathus, and not to Mylursia grayi, Bowerbank, in caso the latter of the two species does not belong to the same geuus.

In 1873 Carter ${ }^{\prime}$ established a characteristio difference between Myliusia callocyethius, Gimy, and Mylinsie grayi, with respect to the rosettes. In Mylinsia callocyathns, the "rosettes are mmy rayed; rays of equal length, eqpitate, Hexed, and grouped en fear-de-lis, or occasiomally with straight and capitate rays;" in Myliusia grayi "the rosettes are mauy rayed, rays of equal length, straight, capitate."

In the menoir which Marshall published in 1876 on the affinities of the Hexactinellida= he semed inclined to identify Mylzusia callocyathus, Gray, with Dactylocalys. crispus, O. Sehmict.

In the description of Myliesio grayi, Bowerbank, which Carter gave ${ }^{5}$ in 1877, he notes that " "although Migliusie grayi presents the convoluted cerebriform appearnnce of Mylinsidt callocyathus, yet its minute structure is totally different, inasmuch as the knots or jumetions of the fibre in the latter are solid and round. not hollow and lantern-shaped as in Myliusia grayi?"

In his studies on fossil sponges Zittel ${ }^{5}$ places Myliusios grayi-probably with exelusion of Myliusiu cullocyathus, Gray-nlong with Dactylocelyx, Stutchbury, and Periphragelle. Marshall, in his family of the Mreandrospongide. "in which the sponge body consists of mendering, intertwining, nud anastomosing thin-walled tubes or lamiuæ, the canal system absent or searcely developed, the intercanal system, on the other hand, present. A tovering layer is wanting, or forms a colicrent siliceous skin on the surface."

In a report from the Dresden Zoological Museum (1878), Marshall and Meyer accurately described a new gponge from the Philippines as Myliusio sittelli, Marshall and Meyer. But sineo this form is doubtless closely related not to Mylhusia collocygathris, but to Myyliusio groyi, Bowerbank, wo shall not at this stage take it into cousidoration (see Aulocystis). The species in question mas foumd by O . Schmidt among the West Indian sponges of the American Expeditions.

1. Mylizisia cellocynethus, Gray (II, CIII.).

Specimens of this slegant species were procured from three stations by the ChalEenger Expedition, but of these none attains the sizo of the example described by J. E. Gray, and figured in the Proceedings of the Zoological Society of Eondon, 1859, pt, xvi,

[^105]${ }^{3}$ Zuthechir. f. wiss Zool., Bal xxvii pp 113-130.

[^106]They are, however, in part very well preserved in alcohol, so one can learn amothing of the structure of the soft parts. The two specimens representat in natural size on PI. CII. figs. 1 and 2 (of which fig. 1 represents two individuals united into onr) were obtained along with some fragments of other specimena, on blue mul gromd, in the vicinity of Little Ki Island (Station 192, lat. $5^{\circ} 49^{\prime} 15^{\prime \prime} \mathrm{S}$,, long. $132^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{E}$) in 140 fathoms. A somowhat harger cup was procured in the neighhourhood of Timar (Station 194, lat. $4^{\circ} 34^{\prime} 0^{\prime \prime}$ S., long. $129^{\circ} 57^{\prime} 30^{\prime \prime}$ E.) on volcamic mud, at a depth of 200 fathoms ; and a small dried specimen, ouly about 1 cm . in height, from St. Thomas, West Indies (Station 24, lut. $18^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{N}$., long. $65^{\circ} 5^{\prime} 30^{\prime \prime} \mathrm{W}$.) on Pteropod ooze in 390 fathoms. All these specimens have the form of a thick-walled cup which expands upwards from a nurrow basal plate.

The lateral wall consists of a plate from 1 to 3 mm . thick, which is simply folded and drawn out into radial open tubes. While in the small dried specimen from Station 24 these radial excurent tubes of the gastral cavity are only 3 mm . broad, and are ahnost all isolated towards the exterior, in the larger specimens from Stations 192 and 194, they have a tolerable breadth (as much as 5 mm . or more), and are fused to one amother laterally, so that they project externally in meandering lines or interwoven reticulate plates (Pl. CIII. figs. 1,2). The free upper margin of the entire cup exhilits a sinuous extornal curvature. This is also trwe of the regular funnel-shaped large specimen (10 cm . broad, and 7 cm . high) figured by Gray (loc. cit.). The figure suggests that the radial tubes have originated through closure of the parietal folds by growth of the entire body. One may regard the entire upper aperture of the cup or funnel as the chief osenlum, and the lateral orifices of the tubes as secondary or ineidental oscula. At all events tho water stream passes through the colerent plate in such a manner that it enters from the outside into the depressions, furrows, \&e., between the radial tubes, permeates the continuous plate, and then reaches the lumen of the tubes which open out Interally, or the central space which is in open communication with these, and thus reaches the exterior, whether it be through the outer openings of the raulial tubes, or through the large terminal aperture of the central (gastral) cavity.

The finer structure of the body is best stadied in sections at right angles to the wall plate; one of these I have combined diagrammatically on Pl. CIII. fig. 3 from momerous preparations.

The dictyoual framework consists of moderately strong beams. These are beset with numerous small conical hooks, disposed in great part in regular cross rows. The beams are mited with tolerable regularity, and form for the most part distinctly siquare, more rarely three-sided or five-sided meshes. The somewhat thickened nodes of inturscution arc provided with rough flat papillary rounded swellinge. It scems to me notervorthy that on the (outor) dermal as well as on the gastral surface of the dictyonal framework the nodes of intersection which are bere very ridhly provided with protuberout papille, are
to be contrasted with the corresponding nodes of most other Dictyonima in possessing, as a rute, no ficely projecting radial ray, but simple slightly arched extremitios (PL CIII. fig. 3).

The dermal skeleton contains hypodermal hexacts sometimes mixed with pentacts, and provided with smooth rays which are occasionally ronghened at the extremities. Of these the distal ray, which is alsent in the pentacts, is shortest, often simply rounded or even terminating in a small swelling, while the four tangentials which run out to a point, and the much longer proximal ray always tuper to a point. On the outer extremitics the hoxact hypodermalia support a floricome-like discolexaster in which each of the short principal rays bears seven (more rarely fewer) S-shaped terminals, which run out externally into a thickened hemispherieal transverse dise with a notched margin (PI. CIII. figs. 7, 8, 9). The spieules which constitute the gastral skeleton have an exactly similar form and disposition (PI. CIII, fig. 3).

Scattered throughont the dictyoual framework of beams I have also to note small simple hexacts with somewhat rough miformly tapering rays (PI. CIII. fig. 4), and oxyhexasters with short prineipals and long S -shaped pointed terminal rays (PI. CIII. figs. 5,6). Since there are two or three terminals on each principal ray, and since each of the six principals may cither remain simple and undivided, or may be divided into terminals, all transitions oecur between a bexact with five undivided somewhat rough rays and only the sixth ray forked, and an oxyhexaster in which each of the principal rays is diyided into three terminals, giving a total of cighteen (PI. CIll. fig. 5).

Genus 5. Aulocystis, n. gen. (PL. CTV.).
History, - In his sponge-system Gray' added to the description of Mylizsitit callocyathus, the following brief notice:-"There are two smaller speeimens in the British Muscom which probably belong to the same species. The smaller one was collected by the Rev. I. Guilding at St. Vincent in 1840, and the other was receired from the West Indies by Mr. Scrivener in 1842,"

These specimens, which were not further studied by Gony, were subsequently examined by Bowerbank, who, in 1869, gave the following account of them. While he maintaned that the specimen proeured by Mr. Sarivener in 1842 agreed in structure with Myliusia (Iphitoon, Bowerbank) callocyathes, Gray, "he fomm that the specimen collected loy the Rev. L. Guilding at St. Vineent differed widely in the structure of its skeletan from cither Iphiteon, Bowerbank, or Dactylocalyx He proposed, therefore, to npply Dr. Gray's generio titlo Myliusia to this species, instead of to Mylizaim (I_{y})/hiteon, Bowerbank) cellocyathus, Gray. He necondingly unmed the form Mylinsio groyi, and briefly diagnosed it as follows:-"Sponge sessile, massive. Dermal suface moknown. Surface

[^107]of rigid skeloton uneven and excavated. Oscula, pores and expausile dermal system unknown. Skeleton stratifich, forming a series of expanded crypt-like spaces. Fibre eylindrical, incipiently or minutely spinous. Interstitial spicula numerous, acerate, large and long, variable in size, disposed in lines at right angles to the stratification in loose fascicula of two to four or five together. Retentive spicula spinulo-multifureate, hexradiate, stellate."

The surface of the rigid skeleton exhibited a series of square or irregularly angular arens, the anglos of which were occupied by thin prenfurcted angle plates with their inner margins curved, so that, when combined, they left a large circular or oval orifice in the middle of each space. The mass of the oval aponge itself lie found to consist of a scries of thin sinuous skeletal plates, not more than one-third of a line in thickness. In sections of the rigid skeleton at right angles to the surfice of the sponge, he found that " it was formed of a series of erypt-like layors of skeletal fibre, each layer forming as it wrere a distinet and extensive crypt-like space, with short, stout, eylindrieal pillars with gradually expanded bases and capitals, the intervening portions of the shafts of the columns being irregularly studded with acutely conical incipient spines."

The two excellent figures which Bowerbank has appended to his description (loc- cit., pl. xxiii. fig. 8. and pl. xxy. fig. 1), show more clearly than the description itself that the knots of the rectangular meshes of the beam network are porforated in a manner quite similar to the fossil Ventriculites. They exhibit in the interior a delicate hexradiate axial eross, but consist externally of siliceous strands, which eorrespond to the margins of a regular octalıodron. This, too, was definitely stated by Carter in his deseription of the Hexactithellida in 1873." "Mylinsia grayi, both in generic form and strncture, has many distinguishing characters, especially that which consists in an octahedral lanter-like appearance of the joints produced by the vitreous fibre stopping short of the joint, and proceeding thence directly on from one arm of the hexradiate spicule to the other, so as to leave the centre intact and visible through the interstices."

An exhnustive and aceurate description of this Myliusia grayi, Bowerbank, was given by Cuter in 1877." Here he describes it as follows:-"General form hemisplacrical: geneal appearance cuteromorphons or cerebriform, sessile, consisting of tortuous anastomosing tubular cauals or passuges separated by equally tortuous labyrinthic intervalo. Tubular canals or passiges now terminating on the surface in round patulous or long tortuous gutter-like openings. Suface of tubular passages, both externally med internally covered with a dernal lager of small sexradiate spicules, whose honzontat atme, werlaping each other, form a continuous quadrilateral meshwork. Internat or body structure of the wall of the tuhtular passages composed of lozenge-shapel or lantern-like knots of vitreous fibre applied end to end, three or more layers deop, thus formimg a laminate mass of trapezoils united to each other at their angles in sucecssive rows, with

[^108]cylindrieal intorvals between them covering each other more or less rectungularlySkeleton spicules of three forms, viz, ($)$ small sexradiate, arms not inflated at their jumetion, alternately pointed, and thickly spined throughout ; (2) much harger sexradiate, the same but with the arms slighted iuflated at the extremity; (3) still mush larger, mispined, but uneven on the suface, and bere and there mierospined. Fieshspicules of two forms, viz, (1) rosette globular, consisting of six short arms, each of which is surmounted by five long capitate rays expanded in a vasiform manner; (2) bundles of minute hair-like undulating acerates like the trieurvate or low spiente."
"The small sexradiate," Carter continues, "beeome the centres respectively of the trapezoids, which are thus formed by the extension of a thread of vitreons sarcode, from one end of each of the arms of the sexradiate spicules to the other, strengthened at each attachment by subsiding threads and the arm of each end of the latter; finally increasing in thickness throughont till the trapezoid is fully formed and presents four sides, with eight lantern-like holes in them, one in cach triangular face, through which the sexradiate form of the original spienle may be seen in the centre intact. Spicules 2 and 3 form the fringe round the apertures which interknits with the body structure of the lamion internally, the latter or the supposed ncerate form extending beyond the former. both distally and proximally, while the flesh-spicules are seattered throughout the strueture unequally, that is much more numerously towards the surface."

Although Carter clearly recognised the easential differenec between Myliusia callocyathins, Gray, and Mylinsic groyi, Bowerbank, their generie soparation uppeared tu him unnecessary, perhaps because of the agreement in the "convoluted corebriform appearance." He included both in the same genus Myliusia. Carter, however, called attention to the fact that although the skeletal structure of Myliusia grayi agrees very elosely with that of many fossil Hexaetinellids, such as Scyphia, Vertriculites, Gatoptychium, dec, yet "the general structure of Myliusia grayi, although convoluted, is massive ani labyrinthie throughout, not enp-shaped or hollow in the axis, as that of Ventriculites, while Caloptychium consists of radiating tubes, more or less brarches round a bollow axis or sten, which in the horizontal section resembles Ventriculites."

On the other land, Sollas described in the same volume of the Anmals in 1877 a \quad uw fossil gems Stauronema, and assigned Myliusia grayi to the Ventriculitide, which are characterised by a "skeletal network having the nodes complicated by the prescuce of ut octahedral lautern about each one."

In 1878 Marshall and Meyer ${ }^{1}$ described a Hexactinellid from the Philippines dosely related to, yet specifically distinet from, Mylüsia grayi, Bowerbank. This they namel Miyliusia zittclii.

Of the three specimens examined, the best prescrved exhibits a system of meandering follded funnels which have fused with one another, besides wider tubes with walls sulp-

[^109]ported hy three to five layers of regularly coalescent bexradiate forms enclosing enbieal meshes. Here, too, as in Myliusia groyi and in many fossil sponges, each may of theliexradiate spicules is united at a certain distance from the node of intersection with one of the four adjoining mays by means of a siliceons bridge passing off at an angle of $45^{\text {a }}$, su that by means of these the appearance of an octahedral lantern with an internal axial eross is produced. Narshall, therefore, proposed the expressive name "lantern spicules." As to the oblique bridges between the arms of the central sexradiate spicules, Marshall was able to demonstrate their origin from the fusion of lateral hooks and prickles, which had liecome apposed to one another

Among free spienles Marshall and Meyer found in the interior of the adult tissue seattered rod-like forms slightly bent at one end, and very small hexradiate rosettes, which bear on the extremity of each ray from four to six tecti, arranged like tulip petals. On the other hand, the covering of the soft parts contains on both siles of the tube-walls numerons four-, five-, and six-rayed spicules. On the upper slender margin of the walls of the tubes there was in some places a dense palisale row of smooth miaxials, which are probably to be explamed as a peristomial wreath. The relationship between Myliusio and Coloptychium was particulady emphasised by Marshall and Meyer, but this difference was noted, that Coxloptychinm is monozoic, Myliusiu, on the other hand, polyzoic,

Oscar Schmidt also found the same species in the West Indian and Mexican region. ${ }^{\text {a }}$ IIe adds to Marshall's rescription the observation that many nodes of intersection in the dietyonal framework of the specimens examined by him are mperforated. He found, however, a central eavity with which a markelly irregular plexus of externally opening tubes commmicated. The meandering comre of these tubes often makes it difficult to distinguish the eamals and interemals. Among the free skeletal elements he noted "prism vosettes."

Schmidt regarded Myliwsio as a Cystispongia withont a covering layer, and provided with conspicnous lantern nodes in the lattice framework.

To the genus Cystispongia, Roemer, Osear Schmirt has assigned a new living formCystispongioe superstes, He has given a carefal account of the characteristies of the geuns Cystispongia established by Roomer, and more acenrately defined by Zittel, and of the single known species Cystispongia burse, from the chalk, as also of the living Cystispongia superstes added by lim.

1. Aulocystix yrayi (bowerhank), (PI. CIV. fig. 7).

There is in the British Musemm a dried round speemen about 2 cm. in bradth, zund $1 \frac{1}{2} \mathrm{~cm}$. in height, which Gray first described (1859 and 186\%) as Myliusio

[^110]callocyathus, the which Bowerhank afterwarls (1869) distinguished ar Myliusia grayi. According to the labal the form was found at St. Vincent, West Indies. Bowerhank briefly characterised it ${ }^{3}$ in the following diagnosis:-"Sponge sessilc, massive. Dermal surface unknown. Surface of rigid skeleton uneven and excavated. Oscula, pores, and uxpansile dermal system unknown. Skeleton stratified, forming a series of expanded rypt-like spaces. Fibre cylindrical, incipiently or minutely spinous. Interstitial spicula numerons, acernte, large and long, variable in size; disposed in lines at right angles to the stratification in loose faseiculi of two to four or five together. Retentive spiculic spiculo-multifureate hexradiate stellate." Bowerbank also gave ${ }^{2}$ good figures of several specimens. From these two fignres and from preparations which I was able to mako during my stay in the British Museum at South Kensington, it ean be distinctly seen that the dictyounl framework of Aulocystis groyi differs in several particulars from Aulocystis sittelii, Marshall. The most important difference consists in this, that on each of the nodes of intersection the oetahedral edges are formed not of twolve simple, cylindriesil, oblique buttresses, as in Aulocystis zittclii, but of twelve plates lying in the plane of the two connected axes, and perforated by several round or oval amooth margined holes of variable size. These phates expand to some extent in their different planes, so that in some places, especially on the free bounding surfaces of the entive dietyonal framework, conspicuous perforated siliceous membranes may be formed, as represented in one of Bowerbank's figures. ${ }^{3}$ The small conical tubercles which oceur all round the beams in Aulocystis sittelii, are bere present in ahundance on the freely projecting conical bossco, but elsewhere only on the edges of the perforated plates, and less abundantly, or not at all on the lateral surfaces of the same. The "long acerate interstitial spicules" of Bowerbank are slender, smooth, eylindrical neetles whieh are disposed at right angles to the surface, and are in my opimion not free oxydiact parenchymalia, but the very much clongated proximal radial rays of the pentact dermalia.

Isolated parenehymalia are represented by numerous diseohexasters with short principal rays, varying in size and in the number, strength, and length of the terminals. One of these is represented in PI. OIV. fig. 7. Besides these I frequently olserven bundles of those long and extremely fine terminal rays which characterise the graphiohexasters of Aulocystis sittelii. I foumd only a quite isolated oceurrence of small simple oxyhexasters. 1 did not observe that special form of discohexaster with medium-sized principals which is so abundant in Aulocystis zittelii (Pl. CIV, fig. 6).

Consequently we are led to regard Aulocystis grayi, Bowerbank, as a form nearly related to Aulocystis sittelii, but yet different cnough to be referred to a distinct species.

[^111]2. Autocystis sitteliik (Marshall) (PI. CIV. figs. 1-6).

Two specimens of this remarkable Mreandrospongid wero included in the rich collece tion of Hexactinellids trawled by the Challenger at Station 192, Little Ki Island, from it depth of 140 fathoms and a blue mud ground. They are fairly well preserved in spirit, have an oval form, and are about as large as a little man's fist. A smaller thind specimen, dead but intact in form, was trawled off Banda Islands (Station 194A, lat. $4^{7} 31^{\prime}$ S., long. $129^{\circ} 57^{\prime} 20^{\prime \prime}$ E.), from a depth of 360 fathoms and a volcanic mud ground. In form and size it resembles n hen's egg (PI. CIV. fig. 2). The better preserved of the two other specimens is figured on Pl. OIV. fig. 1 , in its uatural size. It forms an oval, somewhat bulbous mass, 11 cm . in length, and 6.5 in greatest breadth. The outer surface consists of π thin, smooth, soft covering plate. In certain regions this plate exhibits irregular stellate elefts, while at others thin, translucent, and fine sieve-like perforated regions are seen, with an interjacent connected network of namow, not translucont zones. Since not all the portions of this covering are preserved, it camnot be determined whether in round oscular aperture, which is suggested on the other specimens, is here really absent. Nor is it possible to discover the mode by which the sponge was fixed to its solid substratum, or its original position.

Traversing the entire internal space of this capsule is a well-preserved framework of irregular round tubes, a finger's breath in diameter, with firm walls 1 to 2 mm . in thickness, and exhibitiug on both surfaces numerous small groove-like depressions of variable depth and lreadth. From a median central space or short main passage, tubes which sometimes anastomose pass out radially to the external eapsular plate, on which they are directly inserted transverscly. These zones of insertion correspond to the non-transfucent zones of the eapsular covering plate, while the lumina of the tubes usually correspond to one of the round regions bearing a stellate deft. Between this convected aystem of tnbes there is a system of similarly anastomosing intereamals, which are covered ovor externally by the thin fincly-perforated regions of the covering capsular plater (II. CIV. fig. 1). Through the hatter the water passes from the exterior into the interranalicalar system, and through the tube-walls into the lumen of the anastomosing system of canal tubes, whence it regains the exterion through the elefts of tho covering plate or through the oscular opening.

The comnected dietyonal framework which supports the wall of the tunstomosing tubes, is characterised by the great regularity of the lattice of beams which surround the strictly square meshes and corresponding cubical spacel. The ample nodes of intersection are furnished with twelve beans representing the olges of a regular octahodron. Threc lieams extend as oblique buttresses betwectu cach two auljacent beams of the framevork, at aus angle of 45°, and at equal distances from the noule of intersoction. Both these buttresses nad the fredy projseting portions of the henms of the general framework
are furnishel with ummerous small tubereles and pointed elevations. The portions of the main beams, on the other hand, which lie within the space enelosed by the buttresses are perfectly smooth, aild are not inconsiderably thinner than the outer portions of the beans (P1. CIV. fig. 3). As Marshall and Meyer have noted in detail in the Mittheil. d. Zool. Masenms, Dresilen (1877), the oblique buttresses round about the nodes of intersection are really spine-like processes of the main beams, growing out in a given direction from the exterual surface of two ndjacent beams, until they finally mect and fuse with one another. That they are in fact simple spines is further demoustrater by the fact, which Marshall and Moyer have cmphasised, that they have no axial canals, which can be distinctly detected, on the other hand, in all the beams of the main framework, and even on those thin prortions which are enclosed by the lantern-like arrangement of the buttresses.

It need hardly be noted that here also the entire quadrate lattice-work is built up of single hexacts, in which the corresponding parallel rays are enclosed in a coumon siliceous sheath, and thas united.

Here and there, esprecially near the bounding surfaces, there are also simple, solid, slightly thickened nodes of intersection in the dictyonal framework.

The covering plate which encloses the sponge as in a eapsule, apparently arises from the outward bending of the tube-wall at right angles, or in a trumpet-like curve. This is distinctly seen in the macerated specimen represented in PI. CIV. fig. 2. In the two larger specimens it contains no connected skeleton, while in that trawled off Banda Islauds (PI. CIV. fig. 2), it is supported over a large extent by a dietyonal framework, whieh corresponds exactly to that of the tubular network, and is in fact a direct contimution of the latter.

In this form, better than in those obtained off Little Ki Island, a double prineipal canal can be seen, which seems to have opened with a free margin at the narrower end (Pl, OIV, fig. 2).

Seetions through the wall of the tube show distinetly in many cases the structure of the soft parts. The deeply folded chamber layer is connected to the dermal membrane by a somewhat uniformly developed external trabecular framework, which extends also into tho afferent elefts and passages. The internal trabeculre, on the other hand, only extend between the sicve-like gastral membrane and the internally projeeting folds of the chamber-layer (PI. CIV, fig. 3), without being to any marked extent continued into the efferent canals. The chambers themselves are comparatively small and simply thimble-sbinped.

The capsule has an average thickness of 0.3 mm ., and exhibits between the outer and the imer porous limiting membrane numerous passages and vesicular cavities, but in the Little Ki specimens, at least, no chambers.

As to loose spieules, 1 found in the paronchyma between the chambers in the tra-
becular network :-(1) simple oxyliexasters which are always beset with peinted spines; (2) discohexasters of various sorts, including isolated forms with short principal mays and six to ten loug markedly divergent terminals, in some cases strongly devcloped (Pl. CIV. fig. 7), and in others quite thin and delicato (PI. CIV. fig. 5). There is, on the other hand, a very abundant occurronce of discohexasters in which each of the long prineipals bears a tuft of six to ten, slightly divergent, fine, moderately long terminals (Pl. CIV. fig. 6). Here and there (3) graphobexasters ocem, with short primeipal mys und very long, extromely delieate, slightly undulating terminals, which form a loose divergent tuft on each priseipal (PI. CIV. fig. 4). In some places as a support to the dermal membrane of the tules, moderately strong oxypentacts ocenr with a liyporermal radial ray, usually somewhat elongated. While the fiternal portion of their rays is usually amooth, the outer ends are more or less abundantly leset with pointed tubercles. A roundel-off rudiment of a sixth (distal madial) raty is of very frequent oecturchee, and of variahle size. In strueture and size resembling these hypodermalia, hypogastral pentacts nceur with their tangential mays in the gastral membrane. On the external limiting membrane of the capsule there is a layer of liypodermal pentacts-wheh entirely resemble those above described. On the inner surface of the eapsule there is in many places no speciat skeleton, while other regions exhibit a layer of large oxypentacts with toothed ends to the rays, and arranged in contrast to the former pentacts with the radial unpaired ray directed outwards. The strands of tissue between the two parallel limiting lamellæ of the capsule contain either 10 spicules at all, or in cortain positions somewhat long straight rough diacts, with central swelling, and pointed or-slightly roundel toothed extremities.

bRIEF SISTENATIC SURVEY OF THE HEXACTINELLIDA DEscribed in this report.

Ordrr HEXACTINELLIDA or TRIAXONIA.

Sponges with very loose soft parts, and with siliceous spicules, which are either isolated or united into a convected framework, and belong or are reducible to the triaxial system.

Suborder I. LYSSACINA, Zittel.

Hexactinellida in which the spicules either romain altogether isolated, or are in part subsequently and irregularly mited by siliceous masses or transverse synapticula.

Tribe 1. HEXASTEROPHORA, F. E S.

Hexasters are always present in the parenchyma, The cilinted chambers are shamply separated from one another, and are thimble-shaped.

Family 1. Euplectellidia, Griy.

The dermal skeleton contains sword-shaped oxyhexacts with long proximal ray:

Subfamily 1. Eupieotelineie, E. E. S.

Tubular forms with transverse terminal sieve-plate. The lateral wall exhibits circular parietal apertures. The projecting distal ray of the dagrer-shoped hexact dermalia bears a florioome.

Genus 1. Euplectelle, Owci-
With basal root-tuft, Parenchymal oxyhexisters.

Species 1. Euplectella respergillum, Owen.
Somevhat ewred tube, slightly avidened touraxds the rpper end, bearing extemal rilges and cuff-like friuge Circular parietal gaps altemate with closed meshes, and ate disposed in spiral rows, nsecuding at an angle of 45°. The principal supporting spicules of the square-meshed framework are oxytetrects. The amnlar membrave round the parietal gaps contains strongly developed compressed oxypentacts. Zebu (Philippines); 05 fathoms.

Species 2. Enpilectelle suberea, Wyville Thomson-

Streight, somictolut bulging tube, without ridges or cuti. Circular parictal gaps altornate with closed arched meshes, and are spirally arranged, aseending at an angle of $15{ }^{\circ}$ The principal supporting spieules of the looscly united meshed framework aro strongly developed oxypsatects with distal radial ray: The eanveler membrenc of the perictal gaps contains straight knotted diacts and secptres. West of Gibraltar, 600 to 1090 fathoms; north-east of Bahia, 1600 fathoms; off the Berlingues, 1600 fathoms.

Species 3. Evplectello cucumer, R. Owen.

Straight, somewhat bulging tube, without ridges or cuff. Circular parietal gaps ulternate with closed arched projecting meshes, and are disposed in spiral rows, ascending at an angle of 45°. The swamit of euch protruding crelied mesh bects the projecting distal ray of a atrongly developed oxyhexaster: Seychelle Islands.

Species 4. Eupstectella jovis, O. Schmidt.

Straight tube, somewhat widened towards the upper end, without external ridges, but with a terminal marginal cuff. Round parietal gaps oceur in approximately regular spiral rows. The principal supporting spicules of the square-meshed framework are strongly developed oxypentacts, with long projecting distal ray. The annular membrane of the parictal gaps contains seeptres and S-shaped clasps. Antille Islands, +23 fathoms.

Species 5. Euptectello meoni, Marshall.

Straight phallus-shaped tube, with ocal eross section, without vidges or cuff. Cirrular parictal gaps arranged in longetudinel cuel trazserse roes. The principaI supporting spicules of the square-meshed framework are strong oxytetracts. The annular membrane of the parictal gops coutains compess-sheqeal oxydicets disposed tangentially.

Species 6. Euplectelle corcesvistellata, n. sp.
The principal parenchymal spicules (principatia) are long smooth oxydiacts with knotted thickening in the centre. The parenchymal oxyhexasters have strikingly thick and somewhat lony prineipal rays, each with four moderately short terminals. Middleof Pacific, 2750 fathoms.

Species 7. Eaplectella (?) nodosa, n. sp.
Straight sfightly bulging tube (with irregular pariotal gaps), without external ridges, The principalia are strong oxypentacts, in which the distal ray does not project beyond the external surface In some dermal oxypentitets the floricome is replaced by a tuft of oxydiacts with central nodos. Instead of the ordinary oxyliexasters; lophohexasters necur. Possibly lelonging to the genus Holascus. Bermuda Islands.

Genus 2. Regalvella, 0 . Sclimidt.

A tubular form firmly attached by means of a knobbed hasal portion.

Species 1. Regadrella phenix, 0. Schmidt.

The principalia are large oxypentacts, which bave their four tangential rays variously disposed in different directions. Parenchymal discohexasters with short principal and long terminal rays. Autille Islands, 221 to 280 fathoms.

Subfamily 2. HoLasciva.

Tubular. Without parictal gaps. Without superficially situated floricomes. Parenchymnl oxyhexasters.

Genus 1. Holusors, n. gen.
With root-tuft and uansversie sharply defined terminal sieve-plate. The interma gastral surfnee bears projecting longitudinal aud transverse lattice-nork ridges. HypuAlermalia, swork-shaped hexact with short rough distat ray, hesides which usydiacta anvadially apposed.

Species 1. Holeseus stcllatus, in. sp.

Principalia are oxypentacts with distal madial ray, or rarely oxylhexacts, The parenchyma includes oxyhexasters, some with straight, and others with long curved terminals. Graphiolexasters and pmoblily diseohexasters also ocem: The hypogastralia resemble the liypodermalia. Bucnos Ayres, 2650 fathoms.

Species 2. Molaseus, fibulatus, 11. sp,

The principalin are oxytetracts. Small oxyhexauts more externally. The parendhyma includes, besides the oxyhoxasters, momerons markedly curved two- (or froquently threc-) mayed fibule. The gastralia are oxypentacts without inwardly projecting radial iny. South of Australia. 2600 fathoms; west of Crozet Islauds, 1375 to 1600 fathoms,

Species 3. Holascus potcjecrix, 11: sp,
The principalia are oxyhexacts with long, sometimes curved, tangential rays, The purenchyma contains, besides the simple oxyhexasters, other forms in which the principal rays are externally thiokened, and bear tufts of strongly developed terminals. The gastralia :we somewhat large oxypentacts without frecly projecting radial ray. South of Anstralia, 1950 futhoms.

Species. 4. Holascrss vidleyi, n. sp.
The princijalia are substantial oxytetracts. The parenchyma includes, besides the ontinary oxyhexasters, othor forms in which the principal mays are mench thickened externally, and bear tnfts of strong terminals. Simple oxyhexasters with curved terminal rays have also an occasioual occurrence. The gastralia are slender oxyhexacts. Philippincs, 2225 fathoms,

Genns 2. Malcosicecus, n. gen.

Sack-like or tubular forms with loose walls, externally somewhat smooth, and internally honcycombed. The principalia are oxyhexacts with very long, thin, pliable tangential rays. The hypodermalia and leypogastralia are sword-shapel hexats with rough projecting my, which pertapss heara a flarieome.

Species 1. Mralecosrecths cistur, 1. A.

The parenchyma contains oxyliexasters with very fine long terminal rays, and small discohexasters with many terminals on the transverse disc-shaped terminal expansion of enoh principal ray. West of Crozet Iflands, 1375 fathoms.

Species 2. Matacosticenes mignicutaths, n. sp.
Besiles numerous oxyhexusters with fine straight or curved torminal rays, the parenchyma contains discohexasters with threo or four long and slightly curved terminal mays on each principal. The terminal riys of the floricomes only eshibit two to three strongly developed terminal claws. South of Sierra Lcone, 2450 fathoms.

Subfamily 3. Tegerine, E. E. S.

The thin wall of the sack-like or tubular body is penetrated by parietal gaps of iregular slape and distribution. The skeletal hattice-work of the wall usually forms met irtegular meshwork. Each projecting distal ray of the sword-shaped hypodermdiat hears a floricome.

Genus 1. Tagoria, u- gen.
With the single species, Tavgerict pudecret, n. sp.
A rigid sack-slaped hody firmly attached by means of a knotted base. Invegular roundish parietal gaps. The superior round terminal aperture exhibits an external wreath of short straight, and an imer crovn of long urched spicules. The principalia are oxytetracts, oxytriacts, md oxydiacts. The parenchyma contains discohexasters ond discohexaets. Graphiohexasters occur near the outer skin. The dermal skeleton contains slender hypodermal oxyhexacts. The gastral skeleton consists of strongly developed peutacts. Fiji 1shands, 610 fathoms.

Genus 2. Welteria, n. gen.

With the single spreies, Wallerice flemmingiiz, n. sp.
The wall of the sack-shaped body consists of a lattice-work with irregularly angular meshes of various size and form. It is contmued at one end into a funnel with square moshes. The distal ray of the hypodermalia is thickoned and rounded off. The parenchyma contains discohexasters with many, and others with few terminal rays. The Horicomes have numerous (fifteen) terminal rays on each principal. North of Kermadee 1slanis, 630 fathoms.

To the Euplectellida are also to be referred the following seven genera, which have not as yet been sufficiently investigated.

Genus 1, Habrodictyum, Wyville Thomson.

With the single species, Habrodictymm speciosum (Quoy and Gaimard).
Tubular forms with irregular parietal network, firmly attached by a knotted bazal portion. The lateral wall is diroctly continued withoot definite margin or cuff into the uniform gently arched terminal cupola. The parenchyma contains oxyhexasters with medium-sized principal rays and short terminals. Molucea Islands.

Genus 2. Eudictyum, Marshall.

With the single species, Eudictyrum elogans, Marshall.
The termimal sieve-plate is distinet indeed from the lattice-work of the tubular parietal skeleton, but is not markedly different. The parenchyma contains small discohoxacts.

Genus 3. Dictyoculyx, n. gen.
With the single species, Dictyoctlyx gracitis, in. sp.
A funnel-shaped skeletal network with altogether iregular meslieg, firmly attached to n substratum by means of a solid compact stalk. The parenchyma includes several kinfs of discohexasters, some of which bear on their terminal mays marginally toothed convex dises, and nthers lacernte eampanulate terminal umbels. South Pacific, 2385 fathoms.

Genus 4. Rlabdodictyum, O. Schmidt.

With the single species, Rhebedodictynm delidatum, Θ. Schmidt.
A very lank almost tubular cup, borne on a small compact basal plate. The parietal skeleton is traversed by round smooth holes, and consists of irregularly disposed longrayed bexacts which are cemented together. Bequia, 1591 fathoms.

Genus 5. Rhabdopectella, U. Schmilt.

With the single species, Rhabdopectella tinfinnus, O. Sehmidt.
A firnly attuchel cuip with skaletal beams cenientod together below; but consisting auperionly of free and isolated spicules. The parenchyma contains the uanal oxybexnsturs. and also other forme is which the strong termimal rays appear to sprine from a ecatral
node as the result of the disqpearance of the principals, Discohexasters also oceur in which the long lank curved terminals bear on their thickened external end a marginally toothed conyex disc. Other diseohexasters ocenr with five terminal rays on each moderately short principal. Of the five lacerate campanulate terminal dises of these terminal rays, the four onter are always markedly lager than the central. Rough, somewhat spirally curved diacts also oceur. Antille Islands, 994 fathoms,

Genus 6. Hertivigia, O. Schmidt.
With the single species, Hertivigia faldifera, O. Schmidt.
An irregular lattice-work labyrinth is borne on a firmly attached knotted base. Some of the parenchymal hexasters bear on each of the short principal rays four sickle-shaped hooks representing terminals. Antille Islands, 611 fathoms

Geuns 7. Hyalostylus, u. gem.

With the single species, IIyulostylus \#ives, n. sp.
A long slender stalk bears a soft folded eup of a somuwhat flattened, or triangular bilaternlly symmetrical form. The two larger smooth lateral surfaces pass by a rounded redge into one another, while the third narrower side is folded. Besides thread-like diacts with swollen roughened cads, the parenchyma inclades four different forms of rosettes, in which the terminal rays either terminate in long cylindrical clubs, or in terminal daws with convex terminal dises. Besides these, rough slightly spiral diacts occur: Sonth Pacifie, 2550 fathoms.

Family II. Asconexdmid正, (Gray).

The dermal and gastral skeletons contain pentaet or texact pinnli. The hypodermadia and hypogastralia aro pentacts. With parenchymal discohexasters.

Subfamily L. Asconenatina, F. E. S.

Cup, fumel-, of tithe-shaped forms borme on a stalls. The wall has the form of a thin loose plate.

Genns 1. Asconema, Sav. Kent.
With the single species, Asconema setubalense, Sav. Kent.
Fanuel-shaped form. The principalia are long riacto. Betweon these in the paren-
chyma small oxyhexacts, oxyhexnsters, and discohexasters oceur. The pimuli are for the most part pentacts. West of Portugal, Morocco and Scotland, 200 to 400 fathoms.

Genus 2. Auleseus, n. gen.

With the single species, Avtasens johistoni, n. sp.
Tubular form. The prineipalia are oxyhexacts and diacts. Between these in the parenchyma discohexasters and single plumicomes oceur. On the dermal and gastral pinulit the ray tumed towards the pareuchyma is more or less developed. Prinece Edward 1slands, 310 fathoms.

Subfamily 2. Sympagellinfe, E. E. S.

Ovoid, thick-walled, usually (or nhways?) stalked goblets with smooth, thin stperior margin. The parenchyma between the prineipal hexacts and diacts contains small discohexasters,

Genus 1. Sympagella, O. Sehmidt.

With the single species, Syntrugella nux, O. Schmilt.
On the terminal branches of a ramified stock ellipsoidal goblets are bone. The parenchyma contains, besides isolated plumicomes, ntmerous discohesasters with two to fonr delicate terminal mys on each principal, and also small elongated stars Florida, 98 to 123 fathoms; coasts of Spain and Portugal; Cape Verde Islauds, 100 to 128 fathoms,

Gonus 2. Polyphabdus, n. gen.

With the single species, Polyrtuebelus oviformis, in. sp.
Unstalked (?). Egg-shaped goblet slightly narrowed superiorly. The dermal pinuli are hexacts with thick sealy distal my. The parenchyma contains discohexasters with numerous terminal rays, South Indian Ocean, 1975 fathoms.

Genus 3. Batanites, n. get.

With the single species, Betenites pipeetta, 13. sp.
Obliquely stalkel. The parenchyma contains numerous small discohexacts. The dermal and gastral pinuli are hexacts with compressed, sealy, freely projecting ray. On the superior oscular margin they are directly continuons. Besides the small discohexacts, the parenchyma also includes discohexasters with long principal rays, which bear a tuft of short terminals. South Indian Ocean, 1950 fathoms.

Subfamily 3. Catlortacisx, F, E. S.
Mushroom-like, with long, cylindrical, hollow stalk.

Genus 1. Caulophucus, n. gen.
The dermal surface of the body, which is flattened from above clownwards, is either alightly convex or has become concave by the downward folding of the marginal portion of the flat body, The projecting ray in the dermal pinuli is short and broad, but long and weakly doveloped in the gastral.

Species 1. Coulopheacus letus, 1. sp.
The body consists of a flat circular disc with a downward-folded sharp-alged margin. The long cylindrical stalk passes by a trumpet-shaped expansion into the middle portion of the disc. The parenchyma contains discohesacts, oxyhexasters, and numerous discohexasters. The short dermal pinuli are almost all hexacts, the long gastral pinuli are, on the other hand, pentacts. West of Crozet Islands, 1600 fathoms.

Species 2. Canlophacus elegens, 11. sp.

The dise is either biconvex, or with down-turned marginal portion convex-concave. The parenchyma contains, hesides numerous discobexacts, also four-rayed discohexasters: The dermat and gastral pinuli are hexacts. The radial rays of the hypodermal pentacts are toothed. East of Japan, 2300 fathoms.

Genus 2. Trechycculus, 15. gen.
With the single species Tivachyceutus gnolittii, is. sp-
The long stalk is covered with long pointed dermal pentaet pinuli, and contains ns principalia long diacts which lie parallel in longitndinal series, and are firmly unitad by means of synapticula. Subdernally large sickle rosettes ocour, with four terminat mys on each priucipal. South Pacific, 2550 fathoma.

Family III. Rossmblto e, F. E. S

The demalia are always without a distal radial rays.

Gems 1. Lannginella, O. Schmilt.

With tho single species, Lanuginella prupa, O. Schmidt.
The body forms a cocoon-shaped, thick-walled sack with superior circular aperture, and is directly attiched by its blnat lower end. The paronchyma contains delicate discohexasters, plumicomes, and small discobexasters with numerons terminal rays on the broad terminal dises of the principals. Cape Verde Islands; Little Ki Island, 140 futhoms.

Genus 2. Polylophivs, 4. gen.

With the single species, Polylophus phatippinensis (Gray).
The eup-shaped, thick-walled body; provided with a wide cirenlar oscular aperture, is rooted in the mud by means of a basal tuft. The external surface bears spherical papille, from the roundod summit of which a tuft of long plouralin projects. From the papilize buds are frequently developed. The parenchyma contains uumcrous oxyhexasters with long rough principal rays, cach with three long markodly diverging terminals Single plumicomes also oceur. In the skin, above the medium-sized hypodermal oxypentacts, there lic small, rough, somewhat ineorved, eruciate antodermal tetraets. The plonrahia and basalia pass inferionly into anchors with four slightly curved transverse teeth. Little Ki lsland, 140 fathoms.

Genus 3. Rassella, Carter.

Thick-walled goblets of im egg- or barrel-like form, with circular osenlar aperture and deep gastral cavity. From regularly distributed amall boss-like elevations of the external surface a group of diact and pentact pleuralia project radially outwards, and by the nssociation of their tangential rays form a kind of veil. By a deep but regular and simple folding of the chamber layer, alternating afferent and efferent, namow, fumelnlaped, roulial canals are formed. The parenclyma contains oxyhexasters with very whort prineipal rays and various discohexasters. In thicdermal membrane rough pentacts almost exchasively occur.

Sucies 1. Rossilla anterctice, Curter.
Elougated egg- or barrel-shaped forms, firmly fixed or rooted among small stones by menns of short processes. The tangentinl rays of the pleural pentacts me so displaced to
one side that the outermost do not include much more than th right angle. The parenchyma contains oxyhexasters with long terminal rays disposed in a perianth-like fashion. South-east of Prince Edward Island, 140 fathoms; south of Kerguelen, 150 fathoms; east of Buenos Ayres, 600 fathoms.

Species 2. Rosselle veluta, Wyville Thomson.

At the lase tufts of long basalia project like the plenral tufts, and unite into an root anchoring the sponge in the mud. The four tangential rays of the pleuralin are crossod at right angles. The basalia end in anchors, the four teeth of which are somewhat markedly rocurved. Tho parenchyma contains plumicomes. West of Gibraltar, 651 fathoms.

Gemus 4. Acantlascus, in. get.

Thick-walled goblets firmly attached by the blind lower end. The gastral cavity opens superiorly by a simple smooth-margined round oscular aperture. Diact pleuralia project radially on the sides. The parenelyma contains oxyhexnisters and diseohexasters in varied form. The dermalia are small rough tetracts and pentacts.

Species 1. Acanthascus grossulavia, n. sp.
The pleuralia project as isolated spicules, so that the egg-slaped body comes to rescmble a gooseberry. The parenchyma contains discohexasters in which numerous terminals are borne on the broad terminal plate of the principal rays, while others lave the long terminals arranged in perianth-like fashion. The dermalia are for the most part tetracts, though pentacts also ocenr. The gastralin are spinose oxy hexacts. Possession Island, 210 fathoms.

Species 2. Acenthascus dubius, in. sp.
The parenchyma continus oxybexnstors in which the lung ferminal rays seem to spring direotly from the contral node, as the result of a markel ehortening of the priu: cipals. Besides these, discohexistors ocour with short prineipal mys. The dermalin are pentacts, the gastralia are rough oxyhexacts. South of Puerto Bueno, in Paragonia, 400 fathoms.

Species 3. Acanthetsents ractus, 14. त2.
From numerous gente elevations on the oxternal sufice, tufte of ractially dispeark oxydiact giemralia projeet. The parenchyma confains discolicxasters with eight ormare
rays, which brenk up, at their extremitios into a brush-like tuft of terminals, and also small diseolexasters, in which numerons terminals arise from the dise-shaped expansion of the principal rays. The dermal and gastral akeletons contain rough tetracts and pentacts. Japan.

Genus 5. Bathylorus, is gen.

Sack- or wine-skin-like forme with loose walls, and thin (always ?) oscular margin provided with a cuff-like marginal fringe of spicules. The parenchyma contains, besides large hevacts and dinets, also oxyhexasters, and in some species discohexasters. In the dermal skeleton, besides the smooth hypodermal oxypentacts, numerous rough autodermal oxytetracts oceur, and in some also sutodermal diacts and even monacts. The gastral skeleton contrins exclusively rongh oxylhexacts.

Species 1. Buthydor"s findriatus, is. sp.

A large smooth wine-akin-hike form, in which the thin superior oscular margin is ajuipped with a wreath of oxydiact marginalin. The parenchyma contains, besides the principal diacts, oxyhesnsters with long frequently S-shaped terminal rays. The antolermalia aro rough cruciate oxytetracts; the gastralia are rough or spinose oxyHexacts. North Pacific, 2300 to 2900 fathoms.

Species 2. Buthydorves stellatus, 11. 8].

From the external surface of the sack-shaped body, isolated oxydiacts project radially or obliquely outwards. The parenchyma contains numerons stas. The dermal nid gustral skeletons resemble those of Bethydorus fimbriatus. Alessier Channel, Patagonia, 140 fathoms

Species 3. Buthydorus spinosus, n. s.

Externally like Bothydorus stelletus. The oscular margin beare a wreath of spicules. The parenchyma contuins oxylecasters with long, somewhat way terminal naya, The nutodermalia are rougb oxytetracts, the gastralia oxyhexacts of varying size, sometimes rough, sometines smooth. Penguin Island, 1600 fathoms.

Species 4. Bathydorus baculifer, n. Ip.

Externally like Bethydorus spinosus. The parenchyma contains oxybexasters and discohexasters. The dermal skeleton includes numerous rough autodermal diaets and monacts. In the middle of the South Paeific, 2335 fathoms.

Genus 6. Rhubidoculyptus, n. gen.

Moderately thin-walled cups with amooth external sturface, ind sharp-celged smooth uragin to the wide oseular aporture. The inner surface exhilnts holes of variable sizothe apertures of the efferent camals. The principal ${ }^{\text {narenchymalia are dinots of variable }}$ length. The parencliyma also contains discobexasters and oxyhexasters, and further right-rayed rosettes with disc-bearing terminal rays on onch of the medium-sized principals. The dermal membrane contains rough diacts either exclusively, or plus rough pentacts, tetracts, and monacts. The gastralia aro rough oxyhoxaets.

Species 1. Rhabdoculyptis mollis, u. sp.

A funuel-shaped, somewhat compressed cup with a short round stalk. The paronClyma contains small oxyhexacts in which the rays near the point of intersection are beset with insward directed spines. The rays are frequently curved and may be also rednced to four or two. The dermal membrame contains only rough iliacts, and the gastral membane enly rough hexacts. Japan, 100-200 fathoms.

Species 2. Rhubdocalipitid roperi, n. sp.

A sack-shaped cup, which is direetly attached by its thick blind end. The parenclyma coutains oxyhexasters with short prineipal rays and long undulating terminals. The dermal membrane contains rougb pentacts, tetracts, diacts, and monacts. In the gastral and earalicular membrane there are weakly developed hexacts with tubercled or oniformly rough rays. South of Puerto Bueno, Patagonia, 400 fathomsi.

Genus 7. Civteramanha, Gray.
Stalked goblets with smooth exterual smffice. On the gastral intermel surffee the offerent canals open direetly into the gastral space, with round aperture of variable width. In the loose parenchyma, hesides medimm-sized hexaets num diacts oxyhexastors and discohesasters oceur of vaniable form nud size. The dernad memlranc contrins rough tetracts, pentacts, and sometimes also diacts, all three with eloh-shaped thickened end. The gastral memhrone contains rough pontacts.

Species 1. Cratemonorphan nucyeri, Gay:
A tulip-shaped 'mp, varying in size from a hen's tw a gousids ege, and sented on a stalk of the longtte and thickness of ones little finger: On the oscular marcin of the wids

[^112]gastral cavity there is a thin skin-fringe, 4 mm . in height. The parenchyma contains oxyhexasters with very short principals, and small diseohexasters with many terminal rays. The dermal membrane contains, besides many pentacts, some tetracts. The inner surface of the efferent canals bears small rough oxyhexacts. The stalk is penetrated by eauals. Zebu (Philippines), 95 fathoms ; Japan.

Species 2. Crateromorpha thierfelderi, n. sp.

The hollow stalk, somewhat thicker than a goose-quill, passes gradually into a spindleshaped cup, about the size of a hen's egg. The sharp oscular margin bears a thin dermal fringe. The outer surface of body and stalk is smooth; the inner surfnce exhibits the round variously-sized apertures of the efferent canals. The parenchyma contains oxyhexasters with somewhat externally curved terminal rays and small discohexasters. The dermal membrane contains rough tetracts and pentacts. Little Ki Island, 140 fathoms.

Speeies 3. Crateromorpha murrayi, n. sp.

A broad, superiody campannlate cup larger than a man's fist, with a stroug Lollow stalk as thick as a thumb, and a sharp smooth oscular margin. The external surface is smooth ; the internal surface exhibits ronnd, variously sized apertures of the efferent canals. The parenchyma contains oxyhexasters with terminal rays somewhat curved at their ends. The dermal membrane contains small rongh pentacts, tetracts, and less frequently diacts. The gastral membtane contains rough pentacts and tetracts. Little Ki Island, 140 fathoms.

Species 4. Getuteromorphar tumida, n. si).

The superiody expanderl stalk bears an irregularly ridged cup, somewhat larger than a fist, The superior, irregularly frilled, smooth, and somewhat sharp osenlar margin projeets straight upwards. The parenchyma contains oxyhexasters in which the long terminal rays are frequently curvel at their extremities, and also discobexasters with rather numerous long terminals. The dermal membrane contains tetracts, and less frequently diauts, or even triacts. Banda Islaude, 360 fathoms.

Gemus 8. Aulochone, n. gen.

Cylindrical or spherical crp-like forms, borne on tong tubular stalks: The oscutar margin is folded backwards in sucl a way that a portion of the originally internal gastral
wall has become the exterual wall of the body, while the other internal portion of the gastral wall, which exhibits the roundish excurrent apertares of the efferent canals, is continued directly into the internal surface of the stalk lumen. The fine quadratic lattico-work of the dermal membrane lies on the inferior surface of the body. The parenchyma contains between long diacts numerous oxyhexasters, and, though less abundantly, also discohexasters. The dermal and gastral membranes exhibit a predominant or exclusive oceurrence of small rough pentacts.

Species I. Aulochone cylindrica, n. sp-

The cylindrical body, about the size of a child's fist, exhibits a funnel-shaped gastral cavity, and on the superior everted margin of the gastral membrane a somowhat sharp, undulating edge, while the lower or true oscular margin is more unformly sharp and smooth, Among the numerous oxybexasters of the [arenchyma, much dwarfed forms oceur. The discohexasters have numerous terminal rays arranged in a tuft on each principal. Between the rough pentacts of the dermal membrane there are sometimes also similarly formol tetracts. The gastral membrane contains exelusively rough pentaets. North-east of the Kermadee Islands, 600 fathoms.

Species 2. Aulochonc lilium, n. sp.
The lateral surface of the bemispherical, rather than cylindrical body is somewhat puffed out, and passes not so much by a superior edge as by nn arched marginal region into the funnel-shaped wall of the gastral cavity, while towards the dermal inferior surface it is very distinctly dofined by a sharp-edged oscular margin. The parenchyma contains, besides numerous oxyliexasters with long rays, also discohexasters with S-shaped terminals arranged in ealyx-like fashiou. Both dermal and gastral membranes contain rough pentacts. Meangis lalnuds, north-east of Celebes, 500 fathoms.

Genus 9. Coulocalyx, n. gen.
With the single species, Cenloculyx tener, a, sp.
The simple cup-shaped body is gradually contracted inferiorly into a solid narrow stalk. From the smooth lateral wall long isolated oxydiacts project radially. Between the long diacts of the parenchyma discohexisters of variable strength project, in which the loug terminal rays are gradually thickened towards the outer end, and terminate in a marginally toothed hemispherical transverse disc. The dermal skeloton coutains oxynentacts with spines on the four tangential rays. West of Tristan da Cmha, 2025 fathoms,

Genus 10. Autocalyx, 14. gen.
With the single species Aulocaly, irregularis, n. sp.
A thin-walled cup, mneh folded, extended into lateral diverticula, and also conitinued into short laterally projecting tules. The cup is fixed by a firm irrogular base. The connected framework of beans consists of much curved hexacts, partly unitel by sgatpticula, partly soldered together. The parenchyma contains loose discohexasters with sbort or with medium-sized principal rays, bearing S -shaped terminals disposed in perinath-like fashion. Under the skin there are large hexasters in which each of the short prineipal mys bears six long diverging terminals, which gradually increase in thickness towards the round outer end, and are beset all round with backward bent pointed hooks. The dermalia and gastralia are rough medium-sized oxypentacts, Marion Islands, southenst of the Cape of Good Hope, 310 fathoms ; between Marion amil the Crozet Islands, 600 fathoms.

Genus 11. Euryptegma, 1. gen.

With the single species Euryplegma arriculare, n. sp.
Cup-or car-shaped plate, 3 to 5 mm . in thickness, with smooth convex outer surface, penetrated, however, by numerous longitudinally disposed, oval incurrent apertures, and a coneave internal sufface exhibiting numerous longitudinal ridges and papilla-like hosses 3 to 4 mm . in breadth. The excurrent apertures, 1 to 2 mm . in width, are found between the longitudinal ridgos and on the summit of each protnberance. The heams of the very irregular dictyonal framework, which exhibits numerous ladder-like structures formed by transverse synapticula, are beset with small seattered pointed tubereles, and exhibit no thickening of the nodes of intersection. The loose parenchymal spicules are small simple rough oxyliexacts and discohexasters of various kinds. Some of the latter hear three to five somewhat markedly divergent terminals, while in others the moderately short primeipals exhihit three to ten long S -shaqed rays, anited in a slender ealyciuc arrangement.

The dermal and gastral skeletons consist exclusively of oxypentacts, which bear small taberdes at the ends of the sharpened rays, but are otherwise smooth. Off Raoul Islands, north-eass of Now Zonland, 680 fathoms.

Tritic II. AJPHIDISCOPHOLA, F. E. S

Amphidises are always present in the limiting membranes. The parenchyma contains no lexasters whatever. A hasil tuft of filjes is always present, anchoring the cup- in
club-shaped spouge in the mud. The chambers are not exactly thimble-shaped, nor sharply marked off from one another, but form irregular diverticula of the membrana reticularis.

Fomily Hralosematid.e., Gray:

Both dermal and gristral membraties contain numerous pentact pimuli.

Subfamily 1. Hyalonematinaf, E, E. S.

The eompressed usually cup- or goblet-shaped body bears on the upper surface: a more or less sharply contourd round excurrent (osculax) region, and is only exceptionally split laterally.

Genus 1. Hyalonema, Gray:

At the lower pole of the funnel-shaped or more spherieal body, there is a long, parrow, sharply defined root-tuft, in which the spicules are at their lower end equipped with a fourtoothed anchor structure. No uncinates. The slender marginalia are superiorly pointerl diacts with toothed distal may.

Subgenus 1. Hycelonema, s. str.

The superior aperture of the gastral eavity is eovered by a sieve network which extends from the anmular rim with its cuff-like fringe of fine marginalia, either flatly over the whole gastral aperture, or sunk into a funnel-shaped ilepression.

Species 1. Hydulonemd sieholdii, Gray:
The almost cylindrical, inferiorly rounded, superiorly truneate body shows at itw inferior pole a twisted tuft of long spricules, almost as thick as a little finger. Thrterminal sieve-plate exhibits to cruciate zone of imperforate skin, lying ubove the fowe erossed radial scpta, and bears in the middle a central cone.

The upper portion of the root-tuft is surromeded by an cherustation of Pulyelene fetua, Max Schnltzo, and other conmensal Anthozoa are seated on the extemal skin. The parcnchyma contains small oxyhexacts with straight, mad othets with curved toother rays. The targer amphidises have lrond arched tumbels with eight rather hroad padileshaped rays. Japan.

Species 2. Hyalonema gracile, n . sp.
The inverted pear-shaped, superiorly truncate, inferiorly pointed body, is hardly as large as a plum, and forms a slender untwisted basal tuft without a Palythoc encrustation. The delicate terminal sicve-plate extends freely over the gastral cavity, which exhibits internally a central columella and four cruciately disposed radial septa. The parenchyma contains small oxyhexacts with straight, or curved smooth rays. The largo amphidises have moderately long arched terminal umbels with eight rather broad lancetshaped rays. Philippines, 2225 fathoms.

Species 3. Hyalonema divergens, n. sp.

The body las the form of an inverted, not belly-shaped, bell with the maximum breadth at the superior, transversely truncated end. Over the flat gastral cavity with its free central columellar cone, a delicate latticed network extends transversely. The basal, somewhat narrowed end gives off a bundle of rather straight and thick spicules, forming a basal tuft without a Palythoo encrustation. The parenchyma contains small oxybexacts, some with straight, and others with eurved smooth rays. The large amphidises have terminal umbels with somewhat transversely truncated extremity. The moderately long, but not very broad umbel-rays, with parallel margins, are almost straight and diverge rather markedly. Mid-Pacific, east of Maldon Island, 2425 fathoms.

Species 4. Hyalonema toxeres, Wyville Thomson.
The spherical boily, which is puffed out in the young forms, bears on its pointed infcrior end a brush-like diverging basal tuft with encrusting Palythoa on its upper portion. Free terminal sieve-plate. The parenchyma contaius small oxyhexacts, some with straight, and others with eurved rays, of which the latter are beset with barbs. Large, thick, somewhat curved diacts also occur Large amphidises like those of Hyalonema sicboldie. Near St. Thomas, West Indies, 390 fathoms.

Species 5. Hyalonema kentii, O. Schmidt.

Funncl-shaped body, with the sieve-plate intruding into the gastral cavity. The pareuchyma contaius small weakly developed oxyhexacts, some with straight, others with curvel, almost smooth rays. Large amphidises with broad hemispherical terminal umbels, in which the eight rays are broad lancet-shaped plates. West Indies, 300 to 1500 fathoms.

Species 6. Hyalonema poculum, n. sp,

Funnel-shaped. Sieve-plate bent inwards. The small parenchymal oxyhexacts lave all straight and somewhat rough rays. The large amphidises have hemispherieal terminal umbels and narrow pointed rays. Near the Island of Juan Fernandez, west of Valparaiso, 1375 fathoms.

Species 7. Hyalonema conus, in. sp.
Conical form. The sieve-plate somewhat flatly stretehed. Parenchymal oxyhexaets with straight smooth rays. Large amphidises with flat, broad, terninal umbels with eight broad paddle-shaped rays. South of Australia, 1800 fathoms.

Subgenus, 2. Stylocalyx, n, sulgen.
The aperture of the gastral cavity is not covered by a common sieve-plate, lut is quite open. The gastral space is crueiately divided into four chambers by radial septa.

Species 1. Stylocalyx thomsoniu, Marshall.

The body is approximately spindle-shaped. From the open aperture of the gastral space the columellar cone projects for some distance as a long and narrow smooth conical clevation, on which the four broad radial septa of the gastral space are extended upwards, The somewhat twisted tuft of basal spieules is superiorly coverosl by a Palythoo enerustation. The parenchyma contains small oxyhoxacts with straight smooth rays North of Shetland Islands, 550 fathoms.

Species 2. Stylocalyoc upertus, n. sp.

From the lower pole of the spherical or bulging body a slightly-twisted basal tuft (5 mm . thick) projects, covered on its superior portion by a Palythoct crust. The apex of the central cone does not quite reach the level of the oscular margin. The rays of the small parenchymal oxyhexacts are burved and beset with barbs. The large amphidises have bemispherically arched termiuni umbels with six broad, laneet-shaped radiating rays. The derual and gastral pinuli liave short toothod lonsal rays, und a slightly spunose radial. Sagami Bay, Japan, 345 fathoms.

Species 3. Stylocalyx tepmessus, 14. sp.

The body is of a flat cakeshape or approximately spherical, and attaims the size of a man's fist. The oscular aperture is comparatively uarrow, nud surrounded by a smooth-
margined mombranuas collar. The root-tuft beass no Palyfhoo encrustation, and consists of tolerably straight spicules: The central cone rises to the opening of the gastral cavity, which is traversed by four crneiate radial septa. The small oxyhexacts of the puremhyma are almost wholly provided with curved mays, which bear small barbs. Between these there are a few oxyhexacts with small barls on the strchight mays. The larger amphidises bear somewhat long, lacerate, campamulate terminal umbels, with eight stender pointed rays. The dermal pinuli have short, thick, rough basal mays, and a wadial beset with long lateral spines. The gastral and canalionfar pimuli have long rough basal miys, and a weakly developed ralial with short thin lateral spines. North of Mellish IAlands, Mid-North Pacific, 2050 fathoms.

Species 4. Stylocalyx claviger, 11. 5p.

The oscular margin of the oval body is sharp. The small parenchymal hexacts have delicate, smooth, nsually yquite straight rays. The large amplidises have broad, or somewhat highly arched terminal umbels, with eight loroad paddle-shaped rays. The dermal pinuli are compressed, with bushy superiorly somewhat truncated radial ray. The gastral pimnli, on the other hand, have a long spindle-shaped solid radial ray, which is beset only with short teeth and seales. Near the Penguin Tslands, 1600 fathoms.

Species 5. Stylacalyx globris, n. sp.

The spherieal body beas at the lasal pole a slender root-tuft of straight needles, without amy Palythoce enerustation, while the superior pole exhibits a comparatively small, circula, sharp-edged oscular aperture without a fringe of spicules. Frou the free central cone four cruciate sharp-edged radial septa extend. The small parenthymal oxyhexacts have smooth, slonder, straight mays, The larger amphidises have broad terminally trancate, tolerably short, terminal unbels, in which eight straight paddle-shaped rayo diverge markedly ontwards, The dormal pinuli have long, firm, roughened basal rays, and a moderately short bnshy radial ray, in which the strongly developed axial portion hears long bent lateral spiues, and ends in a conical swelling. The gastral piruli have ulso moderatoly long and rough hasal rays, but the radial which ruus to a thin point bears short caurved lateral spines. Near the Banda Islanis, 360 fathoms.

Species 6. Sigloculyx clegoths, 13. 81.
The approximately spheriend, but inferiorly conien body bears in the middle of the Whlignely trimeated upper surface an irregularly eontomed oscular aperture, above which
a slender pointed central cone distinetly projeets. The inferior pole bears a slender basil tuft of a few long gently eurved spieules. The parenchyma contzins many small oxyhexacts with smooth curved rays. The larger amplidiscs lave lacerate and bellshaped terminal umbele, with eight somewhat long rays, the pointed extremities of which extend almost to the middle of the amphidises. The dermal pinuli have somewhat short rongh basal rays, and a long sleuder radial, ruming out to a thin point. South-east of Christmas Island, Mid-Pacific, 2425 fathoms.

Specics 7. Stylocalyx terer; n. sp.

The oval or pear-shaped body exhibits a that conical narrowed basis, giving off a narow much twisted basal tuft of long thin spicules. The parenchyma contains numerous small oxyhexacts with smooth ourved cays. The large amphidises are approximately spherical, with hemispherical terminal umbels of eight to twelve paddle-shaped rays, alternating with those of the other side and almost reaching them. The dermal pinuli have a loug, slender, pointed and short-toothed terminal ray. South Pacific, 2550 fathoms.

To these there have to be added some species of Hyalonema which, owing to the insufficient preservation of the upper portion, or to inadequate deseription, cannot yet he referred to either of the above subgenem:-

Species 1. Hyclouema lusitanicum, Barboza du Bocage.

The long and strong spirally-twisted root-tuft is surrounded by a large Palythou crmst. The parenchyma contains small oxyhexacts with straight, or with curved smooth rays. The dermal punuli exhibit four short basal rays and a somewhat long distal with moderately long lateral spines. The large amphidises are olongated and slender. Their deep bell-shaped terminal umbels have eight slender blunt rays. Near Setubal, Portngal.

Species 2. Hyclonema cebuense, Higgiu.

The body has the form of a sculptors mallet with the broad portion upwards. The hasal tuft is thieker than a goose-quill, and is spirally twisted. The small parenchymal oxyhexacts have thin straight rays, which are carved outwands at their outer ends and bear lateral spines. The dermal pinuli are somewhat small and slender. The large amphidises are narow, with deep bell-shaped umbels, in which the cight arms arw slender. Thie pareuchyma contains slender oxydiaets with teeth which are directed towards the centre. Zebu, Philippines.
(zooll cmath. ExT:-PAHT LHL--1887.)

Species 3. Hycloneme terum, 2t. sp.
With narow oval oseular aperture. The parenchyma coutains small weakly developed oxyhoxacts with smooth curved rays, and also somewhat larger forme with thin straight smooth rays. The large muphidises have campanulate terminal umbels with twelve to thirteen lancet-shaped tays. The dermal pinuli have somewhat long smooth hasal rays, and a long, very thin radial. East of the mouth of the Rio de la Plata, 1900 fathoms.

Species 4. Hyclonema rolustum, u. sp.

The parenchyma contains small oxyhexacts with smooth or slightly ronghened cursed rays. Besiles these somewhat larger oxyhexacts occur with spinose straight rays. Them is a characteristic occurence of unusually large, approximately spherical amphidises, in Which the hemisplerical terminal umbels almost, or actually meet one another in the mildle. They consist of eight, or less frequently as many as twelve broad paddle-shaped rays. The dermal pinuli have short, thick, rongh, basal rays, and a long club-shaped, but at the same time pointed radial ray with moderately short lateral spines. West of the North Padific, 2300 fathoms.

Genus 2. Pleronema, Leidy.

The basal terminal surface of the round, goblet-or cup-shaped, thick-walled body bears ${ }^{4}$ broad root-tuft, not always sharply marked off. The lateral surface of the body also bears projecting tufts of spicnles. The circular oscular margin is surrounded (with the probable exception of one species) by a cuff-like freely projecting collar. The parenchyma of the body contains uncinates. Each spicule of the root-tuft bears on its lower end a bidentate anchor. The marginalia and pleuralia end externally in a club-shaped swelling.

Species 1. Pheroncmu cmar, Leidy:

Au egg-slaped body which is somewhat truncated both at its superior martower aud inferior broader pole. The gastral cavity is cylindrieal, about half the length of the Looly, and with a flat floor. The broad basal tuft cousists of numerous individual tuffs uhout half the length of the body. Slender tufts of spicules project radially in inregular distribution from the lateral surface of the body. At the somewhat rounded oscular margin there seems to be no special wrenth of spicules. The parenchyma contains small 4xylhexaets sparsely boset with lateral spines. The large amphidises have campanulate tuminal umbels with eight broad laneet-shaped rays, abd a thick knobbel axial heam.

The dermal pindi have four tolerably long, smooth and gradually pointed basal rays, and a moderately long distal which bears strongly developed upwarl bent apines. Sautia Cruz, West Indies, 180 to 248 fathoms.

Speciex 2. Pheronma carperteri (Wyville Thomson).
The body has a somewhat broad ellipsoidal form, slightly truncated at the apper and lower pole, of which the latter beas the broad basal root-tuft as long as the body; while the siperior pole is surrounded by the euff-like fringe of spieules round the osculum. The molial tufts projecting in irregular distribution from the lateral surface of the body form ma anuular zone for a funger's breadth below the oscular margin. The parencliyma contains long and short uncinates. The amphidises bave bemisplierical terminal umbels, each with eight moderately broad paddle-shnped mys. The dermal pinuli have long, smooth, pointed basal rays, and a moderately long, somewhat bushy radial. North of Scotland, 530 to 1600 futhoms.

Species 3. Pheronemu greyi, Sav. Kent.
The botly has the form of a bullfinch nest, with broad gastral cavity, occupying ahont two-thirds of a sploce, and bearing a long beard-like hasal tuft. The prostalia lateralia are almost miformly distributed over the whole outer surface, but form besides, as in Pheroneme cappenteri, a thick zone measuring a finger's breadth across below the oscular cuff. Otherwise the forms of spicules agree essentially with the above species. Portugal.

Species 4. Pheroncmur hemispharieum (Gray).

Body urn-shaped, with a concave indentation (aundar groove) both above and below ${ }^{1}$ goutle median swelling besct with tufts of spicules. The spicules of the broat hasal tuft project downwards as far as the body is long, and form a broad annular zoue round a central free portion. The parenchyma contains amall oxybexacts, in which the rays bear mised lateral spines. The demal pinuli have rough bast mys directed somewhat obliquely downwards, aml a ahort slightly bushy radial. The gastral piutif, on the other hand, have a long, slender radial ray. Zelm, Philippines.

Species 5. Pheroneman ylobosum, 1 n, si,

The bedy oecupies three-fourths of a sphere the size of a man's list, and bears on its superior trmeated extromity the mide oseular mperture of the flat gustral cavity: The
somewhat sharp-atged oscular margin bears a wreath of pointed spienles. Numerous tufts of radially disposed spienles project from the lateral surface of the bodly. The basul tuft is formed of numerous separate tufts of spicules, which are interlaced at the outer cods. In the external akin a thick network with irregular stellate struetures is recognisable. The parenchyma contains, besides medium-sized meinates, very numerous smaller forms with curved lateral spines. The large amphidises have a rather thick asial rod and hemisplicrically arched terminal umbels with eight broad paddle-shaped rays. The dermal pinuli have four rotgh, sulstantial, somewhat downward bent basal mys, and a moderately long bushy malial. Near Lítle Ki Fsland, 140 fathoms.

Specios 6. Pheroucma giganterm, n. sj.

An ellipsoidal body as big as a man's head, with a round oscular opening measming a hand's breadth across, and surrounded by cuff-like wreath of spicules. The smooth external surface bears small scattered tubercle-like elevations, from the apex of each of which a tuft of long radial pleuralia projects. These increase in length towards the lower end, and measure more than a hand's length in the root-tuft at the hase. The parenchyma includes, besides strong oxypentacts probably originating from the dermal skeleton, small spinous oxyhexacts and uncinates of various length and with short barbs. The large amphidises have a slender axial rod and hemispherical umbels with eight narrow rays. The dermal pinuli have rough losal rays of medium length, and a somewhat loug miformly broad tufted radial. Near Little Ki Island, 140 fathoms.

Genns 3. Poliopogon, Wyville Thomson.

The body forms either a phump goblet or a thin ear-shaped involute plate. The lower end forms a broad basal tuft, while the upper bears a delicate fringe of spiculen round the sharp-edged oscular margin. The smooth external latezal suyfuce beors so planal prostatio. The parenchyma includes, besides rough or spinose small oxyhexacts, melintes, and in one species also small smooth oxydiacts in variable abuntance and size. The two nuchor tecth of the basalia stand approximately at right angles to the long otmost smooth shaft. The marginalia are externally clut-shaped.

Species 1. Poliopogon amadou, Wyrille Thomson.
An ear-shaped semi-involute thick plate with sharpened oseular margin, bearing a short and slender fringe of spienles. A fine square-meshed latticework is borne hoth on the convex outer dermal, and concave inner gastral sufface. The parenchyma coutains apinose oxyhexacts nud numerots medimm-sized uncinates. The larger unphidisns have
somewhat conical, superiorly trumeate terminal umbels with eight somewhat liroad paddleshaped rays. The dermal and gastral pinuli have modenately long toothed loasal rays, bent in figure 8 fashion, and an elongated somewhat bushy lout peinted distal. Soutlwest of Canary Islands, 1525 fathoms.

Species 2. Poliopogon rigus, in. sp.

A very large, thick-walled, plump goblet, with a spacious gastral eavity more than a spau wide, and opening by a cireular osenlum. Besides the parenchymal spicules mentioned in Poliopogon amudot, there are here small smooth spindle-shaped oxydiuets, The large amphidises resemble in form those of Poliopogon amadon, but have somewhat longer terminal umbels, In the pinuli the radial ray is shorter and less thiekly spinose than in the otherwise very similar pinuli of Poliopogon amculou. Between the Raoul and Macaulay Islands, north of New Zealand, 630 fathoms.

Subfanily 2. Sempernllasia:

With the single geuns Semperelle, Gray:
With the single species Semperella schulteei, Gray.
The elongated club-shaped body bears at its base a brush-like root-tuft, but neither a simple round oseular aperture at its superior, gently conical end, nor a simple internal gastral cavity within. It is traversed by a conneeted system of thin-walled tubes, ns thiek as a little finger, assoefated with an axial main tube. Between these an approximately equal set of comnected interspaces are left. While the lumen of the counected (efferent) tabes opens on the four to six, rounded off and irregalar, longitudimal sides, and on the superior conical extrenity of the club-shaped body by a sieve-shaped corering with comparatively wide meshes, the interjacent (afferont) camal system is covered on the flat sides of the body by a fine-meshed quadratic framework. The skeletal spicules resemble, for the most part, those of Poliopogon amedou. The long uneinates liave, however, more strongly developed and somewhat curvei spines. Besides the long spinose oxyhexastors, aumerons redueed forms of the same occur, down to long spiny oxydiacts, and more ravely small uncinates with short spines and conically pointed extremities. The dermal pimuli have tolerably short, for the most part 8 -shaped basal tays, and a short, strongly developed, and pointed distal with atrong prominent lateral spines. The pinuli which oecur on the dermal sieve-work of the excurrent region are, on the other hand, long and stender, with somewhat short, upward bent lateral spiner.

The abundant and targe amphidises, which ocetr especially in the dermal seve-trork of the exemrent region, haven strongly developed and knotted axind yod, with eight broad padile-shaped terminals, somewhat conical, terminally traneated, short principal rays.

The boundary between excurent and inenrrent regions is marked by projecting toothed oxydiacts which run to a poist or are slightly club-shaped. Zebu, Philippines; Little Ki Island, 140 fathoms.

Snhorder II, DIOTYONINA, Zittel.

Hexactinellida in which the large paruchymal hexacts are from the first more or less regularly united as dictyonalia in a firmly eonneeted framework.

Tribe 1. uncinataria, F. E. S.

With macimates.

Subtribe 1. Clavularia, F. E. S.

Besides the pentact hypodermalia and hypogastialia there are groups of madiallydisposed clavule.

Family I. Farreide, F. E. S.

In the youngest (most external) portions of the tubes the dietyonal framework consists solely of a single-layered network with square meshos, in which the nodes of intarscetion bear on cither side a conieal boss projecting at right augles,

Genus 1. Farved, Bowerbank.

The stock, which is firmly ottached by an expanded base, consists of a dichotomously brauched tube tending to form anastomoses, or of a simple funnel-shaped cup. Beside each of the medium-sized hypodermal and hypogastral pentacts, there is a group of madially disposed alavule.

Sjucies 1. Fansed wece (Bowerbank), Carter.

Richly ramified dichotomous nad anastomosing tubes, which are gradually widened superiorly till they become as thick as a glove-finger. The parenchyma contaios numerous slender oxybexasters with Jong cylindrical prineipal rays, ench with three to four short, markedly fivergent torminals. The dermal clavule exhibit on their distal ead, duove a terninal swelling, an extemally convex marginally toothed transverse dise, or dse form transitions twwards a simple club type, with ovoid or citron-shaped terminal
kuob, frequently with a transverse riug of teeth. The gastral clavule are nhmost ahwayn well-developed, verticillate forms, with convex marginally toothed terminal dise and a very variable number of teeth. Sagami Bay, Japan, 100 to 200 fathoms; west of Manila, 700 fathoms.

Species 2. Farrer sollosii, in sp.
The parenchyma contains discohexasters with short prineipal mys and long delicate gently diverging terminals. They otherwisc closely resemble Farrec ocea. Sagami Bay, Japan, 100 to 200 fathoms.

Species 3. Farea vosmaeri, n. sp.
The parenchyma contains strongly developed oxyhexastors with long and stroug principal rays, and four short, markedlydivergent, usually somewhat outward bent terminals. Discohexasters also occur with short principal rays and wenkly developed long terminals, as also discohexasters with somewhat strongly developed, long prineipals, each with four short S-shaped terminals disposed in a cup-like form, and bearing terminal knohs, Sagami Bay, Japan, 100 to 200 fathoms.

Species 4. Ferrea clavigera, n. sp.

A straight main tube rising at right angles gives off transverse and terminal, branched and anastomosing secondary tubes. The parenehyma contains oxyhexasters with long principal rays, each bearing four makedly diverging terminals, The dermal clavule always exhibit a cluh-shaped distal ond, which is sometimes elongited mad quite smooth, in othor cases compressed and weakly developed, and provided with a simple or double trausverse circle of looks. The gastral clavulo all exhibit four cruciately disposed, much recurved anchor teeth. Near the Banda Islands, 200 to 360 fothoms.

Sultribe II. Scopularia, F. E. S.
Besides the hypodermal and hypogastral pentacts radially disposed scopulo occur:

Family L, Euretthem, F. En S.

Branched aud manifoldly austomosing tules, which either form on irregular frames work or the lateral wall of a cmp. The dietyonal framework in the mhalar wall always
consists of several layers, so that the outermost unds of the tubes never exhibit (as in Frurect) a single-layered network of beams.

Gents 1. Eurete (Semper), Carter:

A richly anastomosing framework of approximately uniform tubes, attached at several places to the substratum, and exhibiting numerous oscular apertures.

Species 1. Eurete semperi, n. sp.
The oscular terminal apertures of the tubes, which are almost as thick as a little finger, always occur on the free, transversely truncated ends of the muerons stumps, The somewhat irregular dictyonal framework consists of strong beams irregularly beset with fow little spines. The beams are united in spherically thickened nodes of intersection, which are richly beset with small tubercles. The parenchyma contains, besides the nucinates and simple oxyhexacts, numerous small discohexasters with short principal rays and moderately long terminals. The dermal scopulie bear on the and of a small conical expansion, four (less frequently five or six) erneiately disposed smooth, spiudlestheped prongs. The gastral scopulæ have four eruciately disposed prongs, in which the thin outward bent stalk ends in a club-shaped swelling, wbich is covered on to the smooth apex with small barbs. Near the Little Ki Island, 140 fathoms.

Species 2. Eurete schmidtii, n, sp.

A somewhat narrow-meshed systom of anastomosing tubes which measure about 5 mm . in width. The meshes of the rictyonal framework are predominantly square, and consist of smooth or slightly spinose beams with slightly thickened moderately spinose nodes of iutersection. The parenchyma contains, besides the varionsly disposed uncinates, small rough oxyhexacts and oxyhexasters with short primeipal rays, each with two termimals. Most of the dermal scopule bear on the distal end of the inferiorly pointed smooth stalk, a knotted swelling, with two to four smooth, pointed terminal prongs, while the others exhibit a thickening with four prongs with thin stalks and pearshaped terminal knobs with lateral barhs. The gastral seopulae belong exclusively to the latter type. Philippines, 102 fathoms; Japan.

Specics 3. Eurete farreopsix, Carter.

The irregularly anastomosing system exhibits tubes 4 to 5 mm . in width, and somewhat wiler intermediate spaces. The nodes of intersection of the predominantly square-
meshed dietyonal framowork are somewhat thickened and slightly spinose. The parchchymalia contain, besides the meimates, disposed at right angles to the bounding surfaces, and small rough oxyliexacts, small diseo-and sphero-hexasters, with four moderatels long terminals on each of the short principal rays. Both the dermal and the gastail seopule exhibit a marked and sharp dislocation on their four to six terminal prougs, which are equipped with pear-shaped terminal knobs bearing lateral barls. Near the Little Ki Island, 140 fathoms.

Species 4. Eurete carteri, in. sp,
Somewhat narow-meshed anastomosing systems of tubes 8 to 10 mm . in width, which open extermally by round or oval apertures not only termimally but also haterally: The somewhat irregular dictyonal framework exhibits spinose beams with but slightly thickened nodes of intersection, varying in different regions, but tolerably constant in the development of spines. The parenchyma contains, besides the radially disposed uncinates and numerons small oxyhesacts, irregularly senttered small discoherusters with short principal rays, and moderately long, irreynlarly undulating terminals, three of which nsually oecur on each prineipal. Both the dermal and gastral scopulo have four to six straight or slightly enrved, but never dislocated terminal prongs with barbed termimal knobs, Near the Little Ki lsland, 140 fatloms; Sagami Bay, Japan, 150 fathoms.

Species 5. Entrete marshalli, n. sp.
A somewhat wide-meshed fiamework of tubes of varying width (3 to 8 mm .), with round terminal excurrent apertures. The dietyonal framework with its predominantly square meshes exhibits, as in Eurete farreopsis, Carter, somewhat thickencd and spinose nodes of intersection. The parencliyma contains, besides the radial ancinates and amall oxyhexacts, also oxyhexasters with short principal rays, each with three to five long terminals. The dermal and gastral scopule exhibit no dislocation of the four terminal prongs which end in club-shaped barb-beset extremities: Near the Littlo Kii Island, 140 fathoms,

Species 6. Eurete bowerbantii, n. sp.
The single fragment as yet known consists of a fumed-shaped expanded tubule 3 to 10 mm . in diameter, provided with lateral branches 5 mm . in brendth. Thes somerlhat irregular dictyonal framework consists of sligbtly spluose beams without markedly thickened nodes of intersection. The parencliyma coutnins, besides the mdial
uneinates and small oxyhexacts, vumeroas oxyhexasters with strongly developed lony principal mays, eadi with four short, markedly diverging terminals. The dermal and grastral seopule exhibit straight, or slightly curved, lut nover dislocated prongs with larbed terminal knobs. Japan, 80 to 200 fathoms. Sugami Bay, Japai, 100 to 200 fathoms:

Genus 2. Poriphregelle, Marshall.

With the single known species Periphregella elisx, Marshall.
A cup- or funnel-shaped form, about a hand's leagth in height, with a lateral wall formet of an irregularly anastomosing system of tubes. A somewhat solid basal portion about as thick as a finger forms an attaching expansion, and passes gradually into the parietal tubes, which measure at first 3 to 4 mm . in width, but beeome gradually wider upwaris. These tulies arise from the folding of the primary plate-like funmel-wall, and are thus on the one hand in open communication with the large internal gastral cavity, and on the other by the round terminal aperture with the exterion. The beams of the tolerably regular, square or rectangalarly meshed dictyonal framework are amooth or slightly spinose, and exhibit no markedly thiekened nodes of intersection. The parenclyma contains, besides the usmally, but not exclusively radially disposed uncinates and small oxyhexacts, oxyhexocters with mather short principal rays, ench with two to four moderately long, exterually curved terminals, and also liscohexasters, with five or more medium-sized, thin, somewhat extermally convex terminals on each of the strongly developed medium-sized principals. The dermal and gastral scopula exhibit a stalk with elub-sliaped swollen onds, while on the other end, turned towarls the free bounding surface, thene tue four prongs with pear-shaped or sphorical, ழ̧arb-beset, termimal koobs. Many of the dermal scopule exhihit no thickening below the origin of their four gently outward-bent knobbed prongs. Moluceas; Jipan, 80 to 200 fathoms.

Genus 3. Lefroyellu, Wyville Thomson.

With the single species Lefroyelle decorrs, Wyville Thomson.
In the compact skelotal framework of the (1 cm . thick) wall of the syriuge-shaped body, thero are radially disposed longitudinal plates 2 to 4 mm . in breadth, which project inwards, unclosing lougitudinal furnows between them, while the external surface exhibits in the firm cortical layer numerous spirally or circularly disposed round nperturos, 3 to 4 mm . in width, with projeeting annular fringe. The beams forming the usually distinetly square meshes of the dietyoual framework, are in the neighharhood of the free bounding surfaces of the tubes slightly spinose, but are otherwise smooth, only here and there exhilhiting somewhat thickened noles of intersection. Bermudas, 1075 fathoms.

Family II. Melettionib.E, Zittel.

Sponges in the form of a ramified tube or of a cup with lateral blind diverticula. The dictyonal framework forms very irregular mesties. The parietal skeleton is lioney-comb-like, with tolerably vegulor hexagonel, radially rlisposed canals, aranged at right angles to the bounding surfaces. In each of these little comals the membrona reticularis, is continued in a fumel-shaped extension of tho laterally disposed, glove-finger-like chambers, across the canalicular lumen. The free outer surface is covered with the dermal membrane, and the inner surface with the gastral. The gastral skelcton is without scopule.

Single Genus Aphracullistes, Gray:

On the hexact dermalia the distal radial ray is more or less distinetly fir-trec-like with a lateral coating of spines. Besides these there are dermal seopulie, in which the prongs are usually knobbed, more rarely pointed. The parenchyma contains irregular oxyhexasters, and in many cases also discohexnsters.

Species 1. Aphrocallistes loccugei, Porcemal Wright.

An clongated, almost tubular cup, a hand's length or more in lieight, with numerous glove-finger-liko radial, and somewhat downwank directed diverticnla from the wall. The lumen of the cup is traversed at considerable intervals by several loose latticc-rooks septa, which correspond in their insertion on the sides to the lateral diverticula, and exhibit semicircular sections. The loose jarenchymalia are represented by meinates directed at right angles to the bounding surface, and also by hexasters of different kinds. Besides oxyhexasters with approximately equal principals and torminals, there are othera in which the axis is considerably elongated, and in which the two strong, more or less long prineipal rays are divided at their extremities into four markedly divergent moderately long terminals, while the four rays representing the two other axes remain, as a rule, undivided. Small discohexasters oceasionally oecus. Corresponding to the dermal hexact pinuli, there are on the gastral surface autegastral diacts of ramiable length, which are more or less rough, especially on their rounded extremities. The dermal seopula possess, for the most part, four straight somewhat diverging prongs with pear-shaped terminal knobs bearing lateral barbs. Besides these there are dermal seopulac with four pointed rough prongs, and others with four strikingly long, roitgh pronge equippel with small spherical knobs. Cape Verde Islands; Florida, 283 tathoms; Finglish Clumel. 700 fathoms; coasts of Spain ant Portugal ; Antilles Islands, 164 to 400 fathome: Atlantic coast of Franco.

Species 2. Apharocallistes beatria, Gray.
In form resembling Aphoocallistes bocagei, Wright, but much smaller and more delicate. Besides the uncinates the parenchyma contains almost exclnsively much elongated oxyhexasters, in which one (principal) axis possesses two long strong principal rays, oceasionally with a few latemal sjpines, and dividing into four strongly developed, moderately long, mid somewhat markedly divergent terminals, while the four other rays exhibit miformly short, simply pointed rays without terminals. Malacea.

Species 3. Aphrocallistes rostus, n. sp.

A large cup, 40 cm . or more in height, and 30 cm . in breadth, rising from a compact knobbed basal portion growing on the substratum. The lateral diverticula of the wall are flat and pouch-like, and longitudinally disposed. The parenchyma contains besides long uncinates, moat swollen near the outer end, numerous disco- or spherohexnsters with moderately long torminal rays of variable form and size. On the dernal hexaet pinuli the free distal ray is broad and bushy. The dermal scopule usually bear only two or three straight, somewhat uniformly thiek, terminally rough prongs without distinet terminal knob. The gastral membrane contains straight rough diacts, and occasionnlly monacts. Japan, 180 fathoms,

Species 4. Aphrocullistes vomosus, it sp.
Dichotomously branched tubes, 4 to 10 mm . in diameter, attached by moans of a compact basal plate. The branches open with round terminal apertures, The loose parenchymalia are represented not only by uncinates and by numerous small rough oxyhexnets, but also by oxy-and sphero-hexasters clongated in the dircotion of the main axis, with principal rays of various length, and with moderately long terminals, usually developed only on the two principals of the long axis. The dermalia have a weakly developed distal ray, which is frequently either almost, or wholly without the lateral spines of the pinuli. The adjacent dermal scopule possess four straight, or slightly dislocated prongs with spiny terminal knobs. The gastral mombrane contains diacts of various length, with rough and rounded ends. Japan, 80 to 200 fathoms; Plillippine Islands, 375 fathoms.

Fimily III. Coscinoforide, Zittel.

The smooth wall of the cup-, goblet-, or plate-like firmly fixed body is traversed by more or less clongated, fumnel-sliaped, straight eanals, which open alternately on either
surface, covered only by the sieve-fike bounding membune, but ond in a blind point at the other extremity. They thus always correspond upproximately it length to the parictal thickness of the spange.

Single Genus Chonelesma, ne gen.
The body consists of an upright plain or slightly curved plate about the size of a hand, and oxhibiting an irregularly chambered smooth free margin, or of a funnel-shaped cup with lateral glove-finger-like parietal diverticula.

Specios 1. Chonclasma lamella, n. sp.

The dictyonal framework enclosing reetangular meshes exhilits in its median region a loose strueture with wider meshes than in the neighbourhood of the two bounding surfaces. The beams of the framework are usually beset with small pointod tuberclos, and are connected without thickening of the nodes of intersection. The parenchyma includes, besides the uneinates and simple rough minnte oxyhoxacts, smali rough diseohexacts, oxyhexasters, and discohexasters with long terminal rays.

The dermalia and gastralia are strongly developed pentacts, in which the proximal or distal radial ray, as also the sides of the four tangentials tumed towards the free surface, are richly beset with short spines. Besides these the dermal skeleton contains seopulas, with four knobbed, struight prongs, which rise from a thiek stalk-node. Kermadec Islands, 520 fathoms; west of Kerguelen Islands, 550 fathoms; Bermuda Islands, 1705 fathoms,

Species 2. Chonelasma hamatum, 1. sp.

An upright, hand-shaped plate, 3 to 5 mm . in thickncess, with a slightly undulating curvature, and with irregular roundish margimal contour. The dictyonal framework resembles that of Chonelasma lamella. The loose pareuchymalia include, besides uneinates and numerous small rongh oxyhexacts which tend to become solderod to the dietyonal framework, small diseohexasters, some of which hear short prineipal rays with six to cight long, S -shaped torminals in perianth-like arrangement, while others possess long, rough, strongly developed prineipals, with short, S -shaped terminals. The dermal and gastral skeleton is formed of hexacts, in which the projecting radial ray is siort and besot with inconspienous spines. Besides these the dermal skeleton especially contains abudant scopule, some of which bear near the outer end of their salk an aumular swalling or four cruciately disposed bosses, in which an intersection of axial canals can be distinctly secu. Their four straight or slightly S-shaped prongs end cither in it simple munded off extremity, or in a minnte knob-like thickening. Kermadee Islands, 590 fathoms

Species 3. Chonelesmat dorferloinui, , 4. S1.
A slightly molulating upxight plate, with irregular rounded margin and somewhat thickened firmly attached hasis. The dietyomal framework agrees essentially with that of Chonclasme lemethe. The parenchyma contains, besides the meinates, numerous large, delicate discohesasters, with short principal mas on each of which three or four long. thin, somewhat curved or undulating terminals are borne. The dermal and gastral skeletons consist of bexacts with bushy, freely projecting radial ray, and of seopule with four strmight or slightly curved prongs, covered with short barls, and ending either in simply rounded, or in small knob-like extremities. Japan, 80 to 200 fathoms.

Species 4. Chonelasmu culyx, n. sp.
The body is cup-shnped, and over a band's length in height. The dictyonal framework of the cup and of the radial glove-finger-like parietal divertieuln consists of smooth or slightly spinose beams, and is slightly more irregular than that of Chonelusma lamella. The loose parenchymalia resemble those of the latter. In the dermal and gastral hexacts the freely projecting ray is somewhat compressed and clubbed, and is further beset with scale-like lateral teeth. The dermal and gastral scopnlme bear fow to six straight or S-shaped prongs, beset with barbs, and either rounded off at the ends or with a clubshaped thickening. Japan, 80 to 200 fathoms.

Family IV. Tretodiotride, F. E. S.

Uncinataria with irregnlar afferent and efferent canals which penetrate the bodywall, not at right angles to the bounding surfaces, that is transversely, but obliquely or longitudinally, or even in eurved course.

Genus 1. Hexcetinella, Carter:

Cup- or tube-shaped forms, with canals which traverse the body-wall in an oblique longitudinal direetion. The dictyonal framowork contains reticulate plates, cxtending between parallel canalicular spaces in a longitudinal or radial fashion.

Species 1. Hexuctinalla tubulosa, n. sp.
Dichotomous and anastomosing tubes as thick as a little finger, rising from an encrusting base, and opening terminally by terminal apertures. The beams of the dietyonul framework are tubercled, and unitel withont thickened nodes.

On the internal surface of the entire fubular skeleton there are longitudinal and radial plates alternating with grooves of equal breadth, while on the oxternal sumfee the framework is flatly expandod. The loose parenchymalia are represented not only by very delicate meinates and by umacrous small rough oxyhexacts, but also hy mumerous oxyhexasters, with rather long strongly developed prineipal rays, each bearing two short modarately divergent terminals, besides simple medium-sizod oxypenticts. The dermal skeleton contains scopuleo, with four approximately S -shaped rough prongs, which are at their extremitics only slightly, or not at all swollen. Tho gastral skeleton contains numerous similar scopuld, in which, however, the prougs are almost straight. There seom to be no pentacts in the gastral skeleton. Japain.

Species 2. Hexactinella kata, 11. ब1).

Ramified strong-walled tules, in which the branches, more than a thumb's breadth in thickness, expand superiorly in funnel- or syringe-like fashion, and open by wide terminal apertures several contimetres in width. In the longitudinally disposed radial plates of the dietyonal framework, whioh alternate with grooves or cauals of equal breadth, and are especially distinet on the external surfice of the tubes, it may be seen that the dietyonal beams radiate from the inside and from bolow towards the exterior and superior surface. On the surface of the predominantly square-meshed frametrork thore are minute tubercles, arranged for the most part in transverse rows. The loose parouchymal needles are represented by variously disposed weakly developed uncinates and numerous thin oxydiacts, also by small disco- or spharo-hexacts, with eytindrieal rays and torminal knols; by oxyhexasters with long thin terminals, and, lastly, by sphorohexasters, with two to six simple straight or S -shaped torminals of medium length. In the moderately large dermal and gastral pentacts there is usually a more or less conspienous rudiment of the sixth freely projecting radial my. The dermal and gastral scopula have four knobbed, slightly divergent, rough prongs. Little Ki Island, 140 fathoms,

Specics 3. Hexuctinella ventilabrum, Carter.

A thick-walled enp, widely open above, and laterally somewhat eompressed; borne by a broad firm base fixed to a solid substratum. The radial plates which extend lectweon the predominantly longitudinal and oblique canals, traversing tho wall ofton in eurved courses, are more distinctly seen on the outer, than on the imber surface of the akeleton. The beams of the predominantly square-mealied firmework are skawely beset with minute irregnlarly distrilnted pointed tubercles. The loaso paronehymalia are represontal not ouly by a few uncinates with slightly developed barbs, but also by
oxyhexasters with short principal and long termimal rays, and by discohexasters. Of these the one set have moderntely short principals and four to six long S -shaped terminals, while the others have loug substantial principals and numerous short, somowhat convex, terminals. The dermal and gastral skeletons contain compaet pentacts and four-pronged scopule, in which the rough, slightly eurved, or almost straight rough prongs are oquipped with slight termiual knols, Besides the dermal pentacts, there are bundles of fine radially disposed oxydiacts projecting beyond the bounding surface. Japan.

Geuus 2. Cyptauion (Volvulinct, O. Schmidt), n. gen.
The variously shapod body is traversed by very inrogular camals. The dictyonal framework forms an irregular feltivork of piates and strands. The parenchyma contains peculiar spicules, which may be regarded either as scopule with tuft-like or radiallydisposed prongs bearing terminal dises, or better, as discohexasters with one much elongated and strongly developed principal ray, and five others always much shortened, and bearing tufts of terminal rays.

Species L. Cyrtaulon sigsbeei (O. Schmidt).

A variously shaped, not unfrequently goblet-like form, in which the wall consists of an irregular foltwork, with eavitics in which the apertures, both on the external and on the internal bounding surface, are covered with skin. The dictyonal framework itself consists of tubercled beams, in which here and there, especially near the surface of the sponge, the nodes of intersection are thickened and beset with wart-like prominences, The parenchyma contains uncinates with central thickening and modified seopule, or discohexister forms with numerous thin prongs radiating out from the terminal node of the stalk, and bearing marginally toothed terminal dises. The dermal skeleton consists of medium-sized pentnets and hexacts, with typieal scopule mith knobbed prongs. Antille Islands, 100 to 300 fathoms.

Species 2. Cyrtoulon solutus, n. sp-

The only specimen as yet known is a cylindrical body within a cavity in a stone. The supporting framework is irregular with strands and plates. The dietyonal network exhibits small superficial tubercles, but no marked thickening of the nodes of intersection. The generically characteristic modifications of scopule or diseohexasters, which occur in the parenchyma instead of the typieal hexasters, exhibit on the knobbed and thickened end of the (otherwise pointed) stalk numerous thin radiating prongs or terminal rays, with small convex, margimally toothed terminal dises. Besides the pentacts of the dermal
skoleton there are scopulre of the ordinary type, some of which bear four uniformly thick and barb-beset prongs without marked terminal swelling, while others exhibit six thin, smooth, slightly S-shaped prongg, with minute marginally-toothed terminal dises, In the gastral skeleton I found no pentacts, or indeed any lypogastralia, except simplo scopule in their usual position, with four uniformly thick, barb-beset, unknobbed prongs. Little Ki Island, 140 fathoms.

Genus 3. Ficlelingia, Say. Kent.

With the single species, Fieldiagia lugetoides, Sav, Keut.
An irregular round, sometimes almost spherical body, which is usually ensheathed in a thin parallel enveloping eapsule, and traversed intermally by an irregular framework of thin round strands, which exhilnit numerous spherical compact knots, about 1 mm . in diameter, and occuring at distances of 2 to 3 mm . While the thin strands consist of a few long beams, beset with small, seattered and pointed tubereles, the spherical knots are formed of it thick framework of berms with a similar superficial appearance. Both the large, more or less clongated, and the short reticulate beams of the spherieal knots have abundant small rough hesacts soldered on to them, usually at right angles. These doubtless serve to enlarge or thicken the dietyomal framework, The leaf-like enveloping capsule which smrounds the larger portion of the spouge, consists of pentacts bound together in plates by a narrow-meshed network of synapticula extending in the tangential direction. The parenchyma contains, besides long meinates and simple small hexacts, oxydiacts with central nodes and shapened extremities, oxyhexasters with very short, in some eases almost undéveloped principals, and long smooth terminals, and also discohexasters with short principals and rather long, slightly eurved terminals. The dormal skeleton contains, besides the above-mentioned pentacts, scopule with four uniformly cylindrical, slightly divergent prongs, which are wholly covered with barbs, but exhibit no terminal swelling. Portugal, 500 fathoms; Little Ki 1sland, 140 fathoms.

Genus 4. Solerothamame, W. Marshall.

With the single species Selerothamus clensii, W. Marshnll.
A slumb-like, dichotomonsly bunched stock, with long, round, and terminal branches as thick as a little finger, and bearing spiral or amular pads a little finger's lireadth across, and alternating with somewhat narrower grooves. The somewhat thick dictyonal framework supporting the body consists of beams which enclose predominantly rectangular meshes, and exhibit superficially unmerous small, irregularly seattereil, wart-like aul pointed tubercles. They are united without nodal thickening. While the main strandk of fibres in the axis of the bramches lie longitudinally, ie., parallel to the axis, in the

Gigg 51
external portion of the branches the strands bend out towards the lateral surface, and end below the skin, ns is readily apparent on the macerated skeletons. The transverse beams between these principal strands are for the most part disposed at right angles. The afferent and efferent eanals which penetrate the whole body are irregular roundish passages, runuing in various directions, but in general across the branches. Since the spiral or circular grooves on the branches are covered over with a fine square dermal lattice-work, while on the annular pads the outward bent skeletal strands and the associated cfferent camals run at right angles to the lateral surface, it may be inferred that the afferent cauals pass to the interior from the large subdermal spaces inder the skin of the amnalar grooves, while the efferent canals open out on the pails. Isolated spicules in the parenchyma are represented not only by strongly developed uncinates, but by seopula-like spicules with a long, straight rough stalk, from which a few conical or finger-shaped elevations liere and there project transversely, and with fout markedly diverging, uniformly thick, rough mknobbed prongs rising from the thick extremity. The dermal skeleton contains liyporlermal sword-shaped oxyhexacts, with a floricome-like spherohexaster on the short radial ray. The prineipal rays of the latter are moderately short, and bear six long terminals, disposed in perianth fashion, diverging slightly outwards, gradually thickened, and ending in a spherical knob. Besides these hypodermal bexacts there are scopule with rough stallo narrowed inferionly, and bearing at the thick distal tnd four slightly S-shaped or straight, uniformly thick prongs, which are wholly beset with small barhs, and end in slight, knob-like, terminal swellings. Philippines; Timor, 360 fathoms.

Tribe II. INERMIA, F. E. S.

Dietyonina without uncinates or seopule.

Single Family Meandraspongiden, Zittel.

The body consists of a commected system of labyrinthine mastomosing tubes of approximatoly uniform width, between which there is a connected interstitial system of interspaces. The water passes by the latter into the interior; penctrates the walls of the tubes, and passes by the tubes either into the gastral eavity or directly to the exterior

Genus 1. Ductyloculyx, Stutchbury.

The thick wall of the plump and generally eup-shaped body exhibits both on the oater and on the inner surface broad irregular pads, and interjacent elefts or grooves. The external swellings correspond to the internal grooves, so that the whole appeas to
be folded. The thick wall of the cup thus folded consists simply of a system of anostomosing tubes, which open internally into the gastral eavity, and probably also directly to the exterior. On the other liand, the comneeted interstitial system of spaces between the above tabe work is closed on the internal gastral surface of the body, but probably covered extornally only by a porous skin, which admits the iucurrent water.

Species 1. Dactyloculyx pumicers, Stuchbury:

The body forms a broal flat cup which is bome on a short, somewhat meshed amil thim-walled stalk firmly fixed to the substratum. The cup exprads inton a broad (30 cm .) thin-walled plate- or cup-shuped body; which is laterally provided with a somewhat backward bent, gently sinuous, rounded margin. The radially disposed groovos of the extermal inferior and internal superior surface here and there exhibit a dichotomons extemal divisiou. The tubular network is very narrow meshed and the whole thick comected skeleton is firm and strong. It is composed of finely-tubereleal beams without thickened nodes of intersection. The loose spienles of the parenchyma are represented hy small hexacts with lank, terminally thickened, in part elougated and somewhat curved rays, and also, according to Bowerbank, by oxyhexasters with three long, slightly curvod terminals on each of the short principals, and lastly by discohexasters with somewhat long terminals. The oxypentacts described by Sollas are to be referred to the ilormal skeleton. There is no trace of uneinates or of seopule. Barbados; West ludies.

Species 2. Dactylocalyx subglobosus, Gray:
A deep, thick-walled goblet in which the grooves on the gastral or intermal suffies are less broad than those on the external. The parenchyma contains, besides hexacts with torminal knob-like thickenings (spharohexticts) numerous discohexasters of various size, with long terminal rays, but no oxyhesasters, The tangentinl mas of the rough dermal pentacts are terminally club-shaped, while the longer proximal radial ray rims out to a point. West Indies.

Species 3. Dactylocilyx putella, n. sp.

The dictyonal framework of this probably flat patelliform species, of which only a fragment of macerated skeleton was proeured, consists of smooth beams forming au approximately square-meshed network, and forms in annstomosing system of tubes which in many respects resemble those of the other species of Ductyloccthy, , but are at least twiec as broal. (Perhops identical with Iocmellu contzmesse, U, Sclimidt, loc eit.) Bermuda, 1075 fathoms ; coast of Portugal.

Genus 2. Morgaritella, O, Schmidt.

With the single species Meaygratellec caloptychioides, 0 . Schmidt.
From the somewhat indistinct description and figure given by U. Schmidt, ${ }^{1}$ the body of this sponge forms a flat cm , the wall of which consists of a system of comnecterl tubes and equally wide intercmals. The dietyonal framework enclosing polyhedral meshes consists of weakly developed, richly tubercled beams, which are mited by slightly thickened nodes of intersection. The latter bear tubercle-like warts where they oceur near the surface of the network. The parenchyma contains loose spicules in the form of weakly developed oxyhexacts, dclicate oxylhexasters with a few short terminals and very short or wholly reduced prineipals, and finally somewhat substantial sphrarohexasters in which the prineipal rays are often so much shortened and connected by siliceous masses into a central knot, that the numerous long knobbed terminals appear as if radinted out directly from the centre. The dermal skeletou contains rough pentacts in which the four tangential rays are knobbed, while the proximal radial is simply rounded off or somewhat narrowed at its extremity. Hasana, 158 fathoms.

Genns 3. Soleroplegma, O. Schmidt.

Thick-wnalled cup or eylinder in which "the brittle parietal feltwork consists of round or prismatic tubes, which run for the most part obliquely from the outside inwards, either isolated or united in small numbers, and open into the gastral cavity." Between the tubes there are irregular intercanals. ${ }^{2}$

The only species really known to me is Sceroplegmes conioum, O. Schmidt.
The somewhat smooth internal wall of the spherical goblet exhibits the openings of several wide tubes, arranged in tolerably distinet longitudinal rows. The external surfnce is traversed by a habyrinth of grooves. The beams of the polyhechal meshwork are beset with transverse rows of eonical tubereles, and are united in nodes of intersection, which are thickened especially on the surface of the lattice-work, and beset with groups of tubercle-like warts on the free surface. The loose spicules are quite undetermined. West Ludies, 292 fathoms.

Genus 4. Myliusia, Gryy,

With the single species, Mylizsiar callocyathus, Gray.
A thick-walled substantial enp, with an originally simple plate-shaped wall, from which, by continued parietal folding, a system of tuber las arisen. This system com-

[^113]ununicates on the one hand with the fumel-shaped gastral eavity, and on the other hand opens laterally to the exterior by numerous mulially disposed and oceasionally connected tubes. Between the latter there is a tolerably wide intorcaualicular system, which does not open, however, into the gastral space. The polyhedral dietronal franework, which penetrates and supports the mueh-folded plate or tube-wall, consists of firm heams, which are beset with pumerous transverse rows of small eonical tubereles, and umited in slightly thickened nodes of intersectiou, lieset with lorond tubercled warts. On the dermal and gastral surface of the dietyonal framework there are specially thick nodes of intersection, which never exhibit frecly projecting spherical bosses, ats in most of the other Dictyonima. The loose spiculos of the parenchyma are small lank oxyhexacts, further, oxyhexasters with short principal rays and long S-shaped terminals, diaposed in perinuth-like fashion, and, Jastly, discohexasters with short principals, cach with a varying numbor of long S-shaped externally thickened terminals, forming it uft and bearing marginally toothed terminal dises. The dermal and gastral skeletons contain pentucts or sword-shaped liesacts with roundel ends, and with a floricome-like discoliexaster of the ahove type, usually attached to the freely projecting radial ray. West Lndies; Little Ki Island, 140 fathoms; Timor, 200 fathoms; St. Thomas, West Indies.

Gemus 5. Aulocystis, n. gen.

The body consists of an anastomosing system of tubes. The dietyonal framework encloses square meshies, i.e., cnbical spaces, and consists of tuhercled beams, in which the modes of intersection exhibit twelve oblique rod-like buttresses, extending betiveen the six intersecting beams, so that the sides of a regular oetahedron are representel. The parenchyma contains loose oxyhexasters and discohexaztors, Oxypentacts peem in the dermal and gastral skeleton. Graphiohexasters are found beneath the skin.

Species 1. Aulocystis gouyi, Bowerbank.

The octahedral edges of the ("perforate") notes of intersection in the diotyonal framework are properly not formed of simple, eyfindrical, obliquely disposel buttresses, but the external margins of plates which stroteh between the interseeting locrms, and are transversely perforated by several round porcs of varjous sizo. Over the free bounding surface of the whole dietyonal framerrork these plates aro so much developed, especially in the tangential direction, that they form here and thore, by fusion, a porforate siliccous membrane. The parenchyma containe numerous discohexasters with short prinuipal mys of different sizes, and with a variable number of tomimals; also small isolateat oxy hexastern. with graphohexasters here and there under the skin. Discohexasters, with medium-
sized prineipals and termimats of equal length, such as oeeur so abundantly in Aveocystis sittelii, are here wholly absont. On the pentact dermalia the proximal radial ray is much drawn out. St. Vincent, West Indies.

Species 2. Avelocystis zittelii. Marshall.
Pear- or egr-shaped form, from the size of a hen's egg to that of a man's fist. The system of annstomosing thin-walled tubes, ns thick as a finger, exhibits a central main phsisage, or two may be present. From the latter, simple or slightly branehed anastomosing tubes radiate outwards, and between these there is an irregular system of wide anastomosing intercanals. The whole system of tubes is covered externally with a thin smooth enveloping capsule, which at the end of the primeipal passage and lateral tubes exhibits cleft-fike or irregularly stellate apertures, while the portions of the eapsule above the intercamals consist of a more uniformly porous plate or skin, through which the water enters the spongc. The dictyonal framework supporting the walls of the tubes seems to be very regularly constituted, and consists of beams with pointed tubercles, enclosing meshes usually exaetly square or cubical. They are united by nodes of intersection, which are so surrounded by strong beam-like oblique buttresses, with tubercles but without axial canal, that the edges formed from the latter are the edges of a regular octahedron. The direct continuations of the beams within the octahedron are weakly developed and smooth, but provided with axial canals. The loose parenehymalia include small, somewhat regularly formed, oxyhexasters, various discohexasters, isolated delicate graphiohexasters, and in certain regions long oxydiacts with central swelling. The ordinary form of discohexaster is that with medium-kized principals and almost equally long terminals, and more mrely that form with short principals and long delicate terminals, or that with short principals and long strongly developed terminals, with thick terminal dises or knobs. The dermil skeleton consists, like the gastml, of oxypentacts, with rough ends to the rays. There is almost always a rudiment of the atrophied sixth ray represented by a small rounded tubercle. Philippines; West Indics; Little Ki Island, 140 fathoms.

Key for tile Determination of Genera and Speghes.

This Table includes those living Hexactinellide in which the structure is sufficiently well knowu to admit of aceunate chameterisation.

A. With amphidises and without hexasturs, 1.B. Withont ampibilises and with hexastors,VII.
II.261
II. Myalonematine
A deniler, long, very sharply defined basal tuft of spicules with four-toothel anchor spicules(IIyctomema, Gray), III.
A broad, short, less sharply sepuratol bnaal tuft of apicules with bidentate anchor a picules,
HI. Hyalonema,
The rays of the sunll parouclymal oxybexacts areaitogother struight,1
Some of the auall parunchymal oxyhexacts have strnight rays, while others am distinctly curvel, a
The mys of the small parenchymal oxyhexacts are altogether curved, 19
I The onter ends of the vays of the small parenchymal oxjhexacts bear outwardly bent lateral spince, Hyalonema cxtrumse, 228

,
The rays of the small parenchymal oxylexacts have no curved lateml spines, and are dithor poriectly smoothor alightly rough,
2 sponge-body of a pericctly conioal form with oscular sieveplate on the broad upper ant. The smallpareachymal oxyhexacts are rough,
Spongo wot exactly conical bat more or less mwollen out, The pumehymal oxy hexacts are smooth, 1
3 The terminal umhels of tho larger amphidisea haveslender, pointal marginal rays
The teminnal nmbels of the larger amphidises bear broad, shovelehapel, marginal nays Oygonama entios, 209

+ The dernal pinulh have short, somowhat choody appresmel tatemal spines on the projecting ray, which is always sender and usully cnids in a lomg drawn out point, Hydanuma Themumifis, 211
Thin dermal jumuli have a broal, wiperiorly trumete matinl my with lang distant latoral ppines. Theer i- 140 neciliar siemoplite.1. Aimunescormona, inciuling the single fanily Hyalomenatidir,Cupshaped (axequtionally plate- or parshuped) bisilywith a single round aharply sontoureil terminalescular region,
Elouguteal elub-shaped boty with iuternal amatomosing tubular network and natrow lateral osenlar zones, .
tubuar network and parrow hatoral oschlar zones

1. Axpuniscoriones, inciuding the single family Hyalouematidir, Cupshaped (axceptionally plate- or varshuped) basly with a sinule rouml alarply sontoumel terninal
IV.
ti. 21 .
IV.2\%

2
5
1II. Higatumema-contiuned,PAOX AKD FLATE
5 lody eg eblaped. The gantral piuuli have a long thick, spinillesshapel swollen radial ray, with short lateml teeth. Terminal umbels of the large amphiidises are archad, Hjalonema rarigerwit, 920
Budy exactly splicrical, with firm dermal skeleton, The gastral piunli lave a thin ralial ray, with short, curvel, lateral spines. Terminal umbels of the large amphidises are conical, Hyclonema plobies, 221
6 Both kinds of parenchymal oxyhexacts, or only those with straight rays bear lateral spines on the raye, 7
All the parenchymal oxyliexacta liave exclusively smooth
rays, 87 The Lateral apines on the raya of the parenchymal oxy-hexacts have their points direetel towards thecentre Oscuilar sieve-plate present, . .
The lateral spincs on the rays of the parenchymal oxy- hexacts are directed towards the exterios. Osenlar sieve-plate present,
Hyatonema toneres, 201Hyalonema séphoditi,190
The lateral spines are insorted at right angles to the straight mys of the parenchymal hexacts, Hyatonema mbustam, 299
8. Body of au exactly conical form. Large amphidiaes occur with very broad terminal umbels and brond smooth marginal rays, An oscular sieve-plate is present, . H//alosiemin henfǐ, 207
Boly more or less awollen out. There are no large amphidisca,9
9 The dermal pinuli beat short, strongly devoloped basal rays, 10
The dermal pinuli have Iong, slender, basal rays, 11
10 The dernal pinnli have a very slender tadinl tay withupresed short lateral teeth and sleniler pointedterminal portion. The straight, slender, long, lateralweth of the terminal trumentel amplidise-tenminalumbela diverge inwards. An oscular sievejlateis present, .
Hijalinema Haxcyens, 199
xsvuL
Thie dormal pinmli have somewhat long lateral teoth on the distal say. Tho terminal umbels of the larger amplididics ure doeply bellshaped, IIyaJomana lusitanicum, - 22511 The dermal pinuli have a long, very thin, markedlypointed radial ray, with short closely appressedlateral teoth. The large amplidises boar twelve tothirteenlancet-shapredieeth on themargin of the disos,
Hyalonema Inиме 328

12 The small parenclymul axyhexacts have oblique inwardly ilitectod lateral spinis of harts on their rays,
The rays of the small paranchynal oxybexacts ate quite sminath,

IIyatianina smeste. 136 x×115.
is

13 Thie body has a cup-like or truncatod oval form, with wide orcular pperture, withoul distinct sievemombrane. The targe nuphidises have boad, henrispherical arched turmimal discs with only six broad terminally laneetshaped marginal rays,Hyaforema apirtutn,214
xxxvit., xxxvili

14 The larger, though still comparatively manall amphilises, have campanulate terminal dises with eight rather long rays, whose pointer enile ranch almost to the middle,

The larger amptidises have an approximately spherical form. The bemispherical terminal umbels eshibit eight to twelve liroad terminally rounded margimal raye, which ofton mect, or altemate with fhoed of the opposite sillo,
IV. Numerous radialiy projecting pleumilia (Plueromeats, Leidy).
Without ratial plouralia. Extermat burface sunooth (Polípoyon, Wy\%. Thomam),$+17$
V, Phervariaut, Leidy.Boily markedly tanger than brand,
Body not longer than hroad, 3
1 Body met or pear-shapid, narrowred sumeriorly. Tho brail tuft consiats of several isolated tufts of neerllas,

 239

Horly resemblee a nommath broad vilipsord. The broail hasal taft is hushy,
9. Farallel to the cuftike wroath of marginalia, projecting is a fringe round the oscular margin, thero in bulow the oscular margin a connectad annular zome of pleuralia, measuring about a finger's breadth,$\therefore 1$
 294
V. V.XXXI:五
17.
Hyaloneman logons; 423xxxh.
 27
xXXV., $\mathrm{XXXXt}_{\text {. }}$XLII.

2
Plemachick -aryentrn, 341
V. Pleronema-contimued.

PAOS ANB VLATA
No cormeeted circlet of pleuralis below the coscular bonder, but somewhat unifoumly distributed tufte of pleuralia,

Pheroncina giganterm, 250
XLC, XIVK.
3 Body rosembling a chaffinch's trest, forming about twothinds of a sphere, with very long lasal tufts,
On the external surface of the body, which occupies then-fourtha of a sphere, there is hoth below the oscular bordes and above the basis an anmlar conatriction, an that the whole hisis birl's-nest form,
This liody, which ocempies three-fourthe of a sphere, has no occular constriction, and is superiorly somewhat flattened, .

Pheroneina glolosumia, . 248 SLIV.
VL Poliopagon, Wyr. Thomsan
The body forms an car-shmped plate, The parcnchyma contains no spooth oxydiacts, but only spinose nucinates, -

The boly forma a very thick-walled, approximately sphericsl gohlet. The parenchyma includes amall apindle-shapoi smooth oxydiacts,

Polionojon gigas, 257
XLViI, XLVHI.
VII. The skeleton eithor consists exclusively of isolntal spioules or exhiliits synapticula and ladder-likn comuections, resalting in ant irregular secoulary union of various large spicules inta a eonnected compact frumework (Lyssacim, Zittel, 1.2) ; Hexasterophorn, F. E. S.),
Besides the isolated spicules there is an early and regular fusion of uniform hexacts, independent of synapticula, and forming a compact connected framework, with no lolder-like atruetmes (Dictyonina, Zittel),
VII Hexastemomioha, F. E. S.
The dermal akeletom contams hypodermal dagget-shaped bexacts (Eurlectimios), -
LI.

The antodermalin and antogastralis are peutact or loxact piunli, in which the parenchymal radial ray is altogether wauting of ouly weakiy developed (Ascosertitioy),
The autodernalia bive no distal rullin xay (Rossmutma),
IX. Euplectmbida

Tutaitar forms, with torminal sieve-platn mud lateral circular patintal pores. On thin distal radial my if the dagger-shaped hexact hypodermalis it floticome is satted (Efplicteminic),
VIII.
XLIX.

XIX.

XXX.
X.

Tuhalar forms without lateral parictal apertures, mad without extemal floneomes (Howascoxik), .

HEPORT ON THE HEXICTLNELLIDA.

IS. Eumectellide-Nonfinuel.
The faterul wall of the saik or tulie iike boily is traversel by imgular jarietal apurtures of vatiable form and size, and is partially supportiod by a franuwork of united parenchymal spicules The distal radial zay of the dagger-haped hesact hypealermalia bears a Hoticome (Thazionge), XT1.
X. Euraectalika
With basal root-taft, Tho paruchymu contains oxyhex-asters (Eirplicellla, Owen),
SI.
Attached lig a firm hasia to sollid bodiers. Theparonchyma contains discohexasters (Feyarlicila,0. Schmidt),
N1.
XI. Eeyilectella, Owen.
In each of the meahes which me formed by the intas saction of the longitulinal and eireniar prinepal strands of fibces, there is i parictal pore. The pariotal pores are thes arranged in regular tamsvens and longituidinal rows, Fiphtectella oirssin, is
Perforate meshes altemate, usually with some regularity, with imperiorate, so that the parictal pores apdisposed in ohtique spiral rows of irregularly,1
1 Curved tube, with externally projecting ridges antsuperior amnuiar cuff,
Explesteller appecyilium, 64L. - IV
Straight tubee, without extermilly projeeting ritged, 2
2 In the middle of each pariotal convexity, lying betweenevery four pariotal pores, thore is a stronglydeveloped oxyhoxaci, with a distal ray projoctingfor some distance onfwards,
Without these principal hexacts in the centre of the convex parietal clovation,3
3 The amnular membme of the parietal gope contains sceptre-like monacts, 4
Explectilla mereman, 76
No sceptres in the amnier membrane of the purrutal grys. $\$$
4 The imunlar mezninnes of the parietal gape inclades, hesides the scoptros, S-shapod-clasps, Biederfetlajurisis 7
Withont S-rhaned claspa, Airydectetia surhewa, Y E
is
4. m.
5 The abundant parenchymal oxyhexasters have long and extraordinary thick principol rays, 81

Parenchymil oxyhexatere, not as yet observod, and therefors either viry yparsely present or aitogethier thoont,

Xill

PAGE AND PLTAE

XIL. Reguifellu, O, Sclumidt, with the single spocins,
XIII On the intemal surfocs of the sotuewhat finu and compnet tuhe-wall, there is a rectumplat meabwork formed from longituatinal and ammelar bands, and forming pit-ike alepressions in the meshes (Iliulastris, F. E. S.),
The intermal surface of the very loose body-wall exhibits irregularly distributed tound apertaves of the efferent canals (Maliconarrus F. E. S.), - ,
XIV. Holascas, E. E. S.

The principalis are oxypentacta or oxyhexacte, ; I
The principalia an oxytetracte, besides which oxyhexnets also oceur,
1 The gastralia are hexacts. . . . Holascus atellatas, . . 86

2 The gastralia are oxypuntiets, The paronchyma contains fifulas,

That gastrafia are oxyhexacts. No fibule in the pavenchyma,
XV. Malacosacens, F, E. S.

The parenchyma contains amall discohexasters with numerous terminal rays on the tranaverse terminal dises of the principal rayn,

There are in the parcuchymia no small diseohexastens with minerous lerminal rays on the transverse terminal portions of the principal mys. Floricomes with two or five terminal alawe on each terminal ray,
 84
flolasus posejamif, $\quad 89$Hodasius polejamif, $\quad 89$

ILotasmus 市bulatios,
87
ILotasrus 方matatios, 87
$x y_{1}$, sve $_{2}$
Holasems rilleyi, 60
Muhnowaccue mantur, 91
xivis.
 93

XVI. Tagmais, F. F. S.

Roundish, panally eirenlar parietal gaps Ovar the oseular apertuze there is ath arched cupola of madial quicules (Taryería, F. E. 8.),
Parietal gays irregula, augular (TVतleri(u, F. E. 8.), ,
SVH. Taytria, F. E. S., with the eingle apocies,
XVIII. I'atervia, E. E. S, with the cingle gpecies,
XIX. Ascisentamas F. F. S.
The wall of the enp, funinel, or tube-shaped body consistes of a thin logere piata (Aaconematica),
XVII.
XVIIL.
Tegria pmblota, 94
viL., vili, xi,
 $\mid x, 1$, ., xi.
The wall of the (alwayal) stalked polilut-shapei body is somewbat thick aml fitm (Sympacelion.ti), XX
stall (Caunormarsit);
XXIII.
SXVIL

XXXIX Acanthaserm F. E. S.

XL. The autodermalia of the oocoonshiaped body aro all tetracts (I.mugisillir, O, Schmidt),
Desides the tetract antodernalia many sliacts occur (Rhatulomalyptur, F, E. S.),
XL1. Laninginella, O. Schmidt, with the single species,
N1II. Altaterocatyptior, F. E. S.
Fumel-ahapol. Autodermulia exclusively diacts,
Sack shapech Autodermalia are pentacts, totracts, diacts and monacts,

With great parenchymal hexasters, in which each of the short principal mys bears six long diverging ferminals, which gradually increase in thickuess towatils the romed outer end, and aro beset all round with backwardiy hent pointed hooka (Aulocalgr, F. E. S.), with the aingle species,

Without such great herantere, whose long terminal rays increase in thichness towards the round onter end, and are beset all round with liackwarilly hent poiuted hook: (Enraplegma, E. F. S.), with tho single specine,
XLIV. From the lateral surface of the bedy long plemat diacts project (Cantocaly, , F, E. S.),
XLV. Cauturaly, F, R. Sn with the singlo speris,

SLVL The osculur margin is not folded buok, lut fensins up. right, surrouming with a shary fringe the suporior goatral cavity opening of the cuprabipal body

The osculur cuargin ie folled back for some digtinue mis thut a portion of the gustral surface forms the external wall of the bots (A)Howtionio, F E. S.),NLIIL. With great parenchymal hexasters, in which each of tholerminais, which gradually increase in thicknesstowatils the romed outer end, and aro beset all
round with backwardily bent pointed tooks(Aulocalgr, F. E. S.), with the aingle species,
The external curfioe of the loody is mooth.
2eve ola (Crat-romenghter, Gray),

1

$$
\text { Arautliasries cacluos }=148
$$

NLIL
 134
Rhuldocaligntius millia, 15 BLxas,
Rhadobocalyptur requeri, 158
Autimatys inregziacio. 15
tix-
Eanypligna axricmlare, 176 ika, Gray.
Hody (not inclnuing stalk), highor than lrooul, . .
Body (pot inchulity stalle), broader than haghl. . . 3EAUE AKD FLATE:
1 The form of the body is tulip-like. The oscular fringe forms a thin mundar phate alroust 1 cm , in height. The terminal rays of the parenchymal oxyhoxasters ure atraight, Civeferomnupter-meyeri. 161
The form of the body is oval. The osenlar margimal fringo is incougpicuous, nbont 2 mm . The torminal Ryy of the parenchymal exyhexaters are diatinctly S-duped, . Eratiommontia llieffetiors, 164 1811.
2. The oscutar mirginal fringe is sharply angular, and forms the broalest poetion of the body. The terminal rayn of the paronchymal oxyhexagters are bent round it thoir extmomitios. Conteraumergdux marrayí, 164
The usculir friug is less extonded than the median portion of the puiffel out hody. The terminal mys of the pareuchymal oxyhexasters aro straight Chateronunipha twinida, 166
axvit, ExyII.
XLNIIL. Awochone, E. E. S.
The parenchyma contains, beeides other spicules, flori-comes,
Aulochone Ratum: 171
The Horiconurs an altogether absent, Anlochone cylintrica, 168Exvill.
SLLA. Drorronina, Zittel.
With dietinctly devolopeil uncinates (Uncinataria,F.E.S.),
Without distinct uncimates (Inermia), L.XX1The dermal and gastral skeletous contain clamfou(Clavularia),L1.
Without clavula, bet with seopula (Scopularia), III.
LL. Cluvelatia, with the single family Farreide, and the single genue Forvea, Bulk:
Branch dubular atock with a straight principul stem, the dormal clavulim have mostly simoth edges, Farrea elanigura. 287 Lyxy,
Franched anastomosing tubinlar atocks, withont is atruight pribeipal stom,1
I The parenchyma contains no tiferhexastors, Fawour ama, 277
Discohexantory occur in the parencliyma, 2
2 The hexatent accurring in the parmechyma awn es-clusively discohexatars, with lote Lirninal mys, -
Farreat pellusǐ, . . 286
of the parenchymal boxesters, some me oxyhexasters,with short terminal nigs, utul others discohexveters,with long temminala,Famea cuspary,286
LII. Scorvisma.
The dictyomal frmenork exhibita a honeycomb-fike utruture; the wall of the exp or tubellike skeleton is merularly fraversed by hexagomal parietal apertures (Мrintioxibze),
The dietyonal akeloton extribita no sueh honcycombed utrueture: : LIV.

Thu body catufite of a dirhotomoualy temurheit tuhn,
The body has the form of a oup with litoml diverricula,
1 The traverse fatnol dtrorticula of the cup-shapet body are llat and pouch-like, and disposed perpendrou- larj): The parenelyma contains no oxy, but omy disco- and spherohexaters,
Thir tateral divertiontia are ithent-fimgerekipel. The garonchyma gontains oxybexasters,
Apherocallistor ramovif, 315
Exxyz 1
Aphirocallived tastun 315 2
2 The axylexazters of the parcuchyma are nill much dongatad in a fongtruinal direction. The four principal raysat nghi angles to the fatter, rematu simple and ahont, Aphrocaltiven beatrieg 309
The orgheragter of the parenchymi are, for the most parr, mulformily stallate. Some iphewohernatera осоur, dylirocallides hocugn, 311

1.1) Hods plate of raphlapeal. The dietsomal framemark exialiftr mbularly allertatiog, straight, or fumbel. thapud ponmang, belotging to the afforent anil uffernit canals, wlimh pemitrate the loody trall tramimetely (Concisorwan, $=$), IV:
The dietrotmil frimewnet does not exfilitit remplatly aiternating, ithisht, afferont and efferent prosagen traveraing the wall 1VII.
EV- Cosersorounx, Zattel, wift the single gemu Chonilasma, F.E.S.
The body lake a liat tabolar form,
Tho boily bas the form of a cup with tateral thimbile. like divertionia, L.1.
Chowelasaina valyza 327
Crmantanma lamotio. 313
$\pm \times x 514,-8 \times 2014$
Herata cecur in the durnat skelaton, with a stort distal laterally rimone org, 1

1. The fanmelizns wumain cheolevasters sith logg rough primipal rays, anil short S-hajmit teminal, Chuchasan h himatume: 321
CEE 53

LNII Eefroyello, Wyx. Thomson, with the aingle spocies, Lefroyilta ilecora. 301PaCP AXD THATE
1.XIII. Therobictyidit, F. E. S.,
Phah-like ramificd stock with ouncwhat solid cylindrical brnnches, on which amular or squinal zones of in- curront and excurcent regions alternate (Selomo Alanmus, Marshall),
LXIV.
Alammus, Marshall),
Body eup, tnbes, or eat-bhapod, LXV.
LXIV. Schrothiammas, Marebalt, with the single Epecies,
Sctcrothannии elousii, 337 xоvie.
EXX8IE
LXV. Dody samounted by a traf-iike enveloping eapienle (Fielitiugảa, Sav, Kent), .
IXVI.
Dody without leaf-ike enveloping capsate, LAYII.Fiklitingin lajettoitios, \& 333LKYI. Ejeldingia, Sav. Koui, with the single species,Fieldingin layetlointer, \& 333xevil.
LXV'II The parenchyma contains scopuln-like spicules bearingsumerous jrougs with traukgore torminal diacespringing from in terminal kuols on the long pedicel(Cyrtarilom, F, F. S.),
Hody in the form of a ramiffed, slightly anastomosingtubular feltwork, of of a cm_{s}, in which the thickwall is traverand by oblique, or twietel afiraent andefferent eamuls, without seconula-like parenelymalspicules with radial prongs (Haxactinella, Cartar),
LSV7IL Cytaulon, E. E. S,
The body-wall is mpported by a feltwork of plates ofthe ilfetyonal framework, which enclose romedcavitios. The nodes of intersection ure hero andthem thekencd, and near the surface of the bodybeset with warts, .
Cyntaulon aiguber, 333
L.XVIII.

LXIN.

The body-wall is mpported by a feltwork of plates of
the difotyonal framework, which enclose romal them thickend, and near the surface of the body beset with warts .
The actyonal framework forms au irregolar network of beams and strunls swlich taverse the cylinulrical loriy. Noles of interection without thickening or warts, - Cyrtaulon solutura $\quad 331$ xCH331xC1.
LXIX. Hexactinella, Carter.
The holy cousiath of a dichotomonsly mmified foltwork of uniformly wide, here anil therc anastomosing tubes,
The liody oonsiate of a dichotomously limanched tube,
the terminal twige of which exhellit fumel-ahapod expabsions,
Misuctinolla latia, 327
326
IItartinalla tuhullea,xeni.
xere, sov.
The body forms a eqpreated on a firm basis, becamingparkailly wide, but somewhat latconlly comprised,
Henictinellu ventilatirum, 390
xcri.
EXX. The body cothiata of a syitem of thin-walled tuhes of approximately uniform calibre, with an interruediate ayntem of eavities (Maxpmosrosain. i),

LXXL. Manspbosponatins, ZitteL.

The very regular dietyonal framework ouclosing cubieal mcshes has perfornted nodes of intersection with octahodral idyes (Anlocystiv, F. E. S.),

IXXH.
The nodes of intorection of the dietyonal framework are simple and imperforato,

LXXIII

LXXIL. Aulocyetis, E. E. S.
The octahedral edges of the perforatell nodes of intersection of the dictyonal frimework are formod of simple oblique roumil buttesseek. The parenchyma contains ahondant discoliexasters in which the terminal rays are as long as the principals, .

Aulocystis zilletii, . 359
The octahedral odges of the perforate nodes of the diotyonal framework ate formed of the sometiues repeatedly perforite phates, which extend between the intersecting beams. The principal mys of the parenchymal discohesasters ato much shorter than the terminals,

Aulocyatis grayi, $\quad 3 a \%$
LXXTIL The noden of intersection of the dietyonal framework are thickrned and besct with broad tuberculate wurts (3tyliuxia, Giray),

LXXTV:
IXXV:
Myitinora
The nodes of intersection of the diotyonal framework possess no broad tuherculate waits (Dactylocollyx, Stutchibury),

LXXIV
MXXV:
Myinora
EXXIV, Mytiusia, Gray, with the simglo qpecies, : Myithora callocyathac, 352
EXXY. Dactylocaly, Stutchhury.
The body forms a antly expanded thick-walled cup, which
The body forms a tatily expanded thick-walled cup, which
consists of a syatem of natrow tubus, only 1 to 2 mm . in width, The parcnchyma coutains, besides other isolated spicules, osyhexasters,
The body forms a deep thick walled goblet, which comista of a systent of narrom (only 1 to 2 mm . consists of a system of narrom (only 1 to 2 nim.
iu width) tubes. No oxyliexastors in the paren. chyma,

Dactylocalys pumitew, 346

Dactylacalyas sulgighobows, 347
The flat body consiate of tubes 3 to 5 mm . in width,
1.MAII. Autorystr, E. CH5 XCIX.

[^114]
GEOGRAPHICAL DISTRIBUTION.

MISTOR:

A eareful synopsis of the habitats of all the Hexaetinellida definitely known in 1873 is given by Carter in his memoir On the Hexactivellidre and Lithistidte. ${ }^{1}$ The results of Carter's summary are tabilated here with several additions, and with the use of the specifie designations which I have adopted.

| Speries. | Locality. |
| :---: | :---: |
| 1. Eupletella askergillum, Owen. | Philippines. |
| 2. Epplectella cucamer, Dwen. | Seschelles. |
| 3. Hobmidivdgua sjevianke, Wyville Thamson. | Moluceas |
| 4. Ancouemus eetubalensi, Sav. Kent. | Portugal. |
| 5. Sympayilla пал, 0 , Schmilt. | Florida |
| 6 Eammane lla pupa, O. Schmids. | Cape Verile Islants, St. Iugo |
| 7. Polylophus plitionimensio, Gray: | Philippines. |
| 8. Rossila anitorstioc, Carter. | Antarctio Sea (South Pacitic): |
| 1). Rosilla mida, Wyville Thomion. | South of Feroio litamis |
| 10. Crutorounorpha meyer', Giay. | Philippins, Zubui |
| 11. Hyalomama siobeliti, Gny. | Japan. |
| 12. Inglourena hesitamichm, liocage. | Portural. |
| 13. Plervimma ama, Leily. | Sunta Criz, Thest Indies |
| 14. Plicromama curpenteri, Wyville Thomson. | South of Forive Islunds, |
| 15. Plomomema greyt, Sav. Kent. | Portugal. |
| 10. Photminmu heming inting, Gray: | Platipuines, Zolua, |
| 17. Sompupellu achuitai, Somper. | Phillpptier, Zobus, |
| 18. Faresu acra, Cartor. | Seychelles, |
| [9. Farpm sjL (roclmarld, Sav. Kent). | Pirrugal: |
| 20. Eirrea sp, (Jacmula, O. schmidt), | Eetween Florida and CubaL |
| 21. Farrea (7) inviudibuforis, Carter, | Caribbean Sca, West Indios, |
| 22. Eurte sit (stupNicimima, Somper). | Philippines Zolus. |
| 23. Ajuticuilistes bovayel, Wright. | Portugal. |
| 21 Ayderocallistes luatros, Gmy. | Malacers. |
| 25. Findingla laydfoider, Sar. Kcm, | Portugal. |
| 26. Dactulocilye puwicous, Stutchbury, | Earkudan, Went Endia |
| 27. Dectijlordys minglulwasu, Gray. | Malacea. |
| 28. Myficsta nallorgillics, Gray. | Weat Indices |
| 39. Aulucyutis yrayl, Dowerkank. | Si. Vincunt, Weat thidus. |

[^115]From this it appears that in 1873 six specimens were known from the neighbomhood of Portugal, viz :-

1. Acomoma ecfubafens, Sav. Kent.
2. IIgulowiana lwsifanizam, Nocage.
3. Pheromexiog grayi, Sav. Kent.
4. Farrea sp.
5. Aplosocallistes tocagei, Wright.
6. Fiellingia lagelloider, Sav. Kent.
from the Plilippines six speeies were also known, viz:-
7. Eiq dectelle My-gillan, Owen.
8. Potglophins plilitpinersio, Gray:
9. Cratemmurphat meyerl, Gray.
10. Senquerlla sehuiter, Semper.
11. Eurvte sp, (simplicisgina, Semper).
nud finm the West Indies five speeies :-

12. Autocystis grayi, Bowerlank.
and lastly, one or two species from widely separated localities.
From a list published a few years ngo by Marshall,' in which several additional forms wero included, and a few bathymetrical data were also furnished, the author drew the following conclusions (op, cit, p. 151):-"From this survey it is seen that the Hexaetinellida lave a horizontal distrilnition from abont 65° north latitude to about 50° south, and a vertical distribution from about 500 to over 4000 fathoms. It may seem striking that several localities have yielded a relatively large uumber of Hoxactincllid species, eg., Portugal, Florida (and the West Indies), and the Philippines, but it must be noted that the two first regions have been specially explored by deep-sea expeditions, while the Philippines are the home of an exeeedingly keon fishing fork, who wo wide awake to the faet that any new form means gold to the finder."

Without entering on any detailed review of the several reports which have been made on the distribution of the Hexactinellida, I shall tabulate all the trustworthy and defnite notices of locality with which I am nequainted, so far ns they refer to sufficiently defined species. The first of the two synoptic tables is arranged zoologically according to my system, the second aceording to tho localitios. I have further makked all the localities on the accompanying map of the world. In this way the state of knowledge independent of the results of the Challongor Expodition is clearly indicated.

[^116]
TABLE 1,-Synopsis of tue Hexactivelaios hitherto kxown, with them Habitats, as ascemtaned apart from the Cuallengea Collection.

A. Clearly defined Forms.

Table I.-continued.

B. Insufficiently defined Forms.

Table Il-Synopsis of the Habitats of Hexactixemida, as kioms apart

1-ATLANTIC OCEAN,

Table II,-contimuel.

Tabse 11-continued.

A glance at the map shows that there were four principal regions from which the cousiderable collection of Hexactinellida gathered before the Challenger Expedition had been obtained, viz.:-

1. West of Europe from the Shetland Tslands to the Straits of Gibraltar.
2. Near the West India Islands, from Florida to Trinidad.
3. Near Japan, and espeeially in the Bays of Tokio and Sagami.
4. Near the Philippines, especially off the island of Zebu.

Besides these there are a fow isolated localitics in the North Sea and the Mediterranean, off the Cape Verde Jslands, the Seychelles, Isle de Bourbon, Malacea, Moltocas, and in the Antarctic Ocean.

From these results it is obviously impossible to gain anything but an approximately plausible conception of the true distribution of the Hexactinellida. At the outset the fact has to be noted, that only in the four localities specially noted as the origin of the majority of the known forms and individnals, was the sea-bed satisfactorily examined below a depth of 100 fathoms. This was done on the Western European coasts by the dredgings of English and French expeditions, off the West Indin Islands by the explorations of Agassiz nnd Connt Pourtales, off the Philippines by the onterprising mud successful activities of the fisher folk, and off Japan by a few naturalists and especially lyy Di. Döderlein.

It is of eourse impossible to decide whether other localities noted in the Mediterminean, Indian Ocean, \&ec, represent the occurrence of Hexnetinellida in altogether sporadic distribution, or the existence of a vichly doveloped and perhaps widely distrilhuted fuma, of which a few localities have been by chance discovered.

In regard to the distribution of the several suborders and families it is impossible for the same reason to glean many certain results. It is, however, worth noting in this vounction that none of the localities are tenanted exchusively by any one family, but that all indude representatives of different groups of the system.

GEOGRAPHICAI. DISTRIBUTION OF THE CHALEENGER HEXACTINELLIDA.

After the above brief summary of the most important facts in regard to distribution known before, and independently of the Clallenger Expedition, I may proceed to an account of the results which are now available.

I shall first give a tabular survey of all those stations of the Challenger Expedition at which Hexactinellida were obtained, inclading notes of the distribntion in depth, the nature of the ground, and the number of specimens. The stations are arrauged according to the route of the espedition, and I have also noted the distribution on the map accompanying this Report, in such a way that the marks indicate at least the great division, and as a rule the family to which the species in question belong.

TABLE IIL-List of Hexactiveluda colleoted during the Challenger Expedmos, ahranged accomding to Stations.

| Station, | Lecality, | $\begin{aligned} & \text { Dently } \\ & \text { in } \\ & \text { Fathom } \end{aligned}$ | Nature of Fettom, | | Specien, | No. of Speeimena |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV. | Bouth-zat of Cape St. Tincent. | 600 | Phue mul - | ... | 1. Euqiectitla sulicren, Wy\%, Thommen, *
 2. Hivalonenna husifaaicum, Marboza du Docage. | $\frac{1}{1}$ |
| v. | Weat of Gilizaltar, + + , | 1000 | Globlgerina anze, | 385 | 1. Eapentells pule ma, Wyv, Thommen, - | 1 |
| 3 | Sputh-weat of Canary Islands, | 1晹 | Hard ground, | 37.0 | 1. Potiopogom amadou, Wyv. Thomson, : | 2 |
| 23 | Oif St Thema, Weat Inalies, | 450 | Ptorpiod oote | * | | 1 1 1 |
| 21 | North of Et Tlinmas. West Indies, | 320 | Pteroiod ooze, - | - | 1. Huatainma tareres, W5v, Thomion,
 2. Farner arto, Carter.
 5. Apdrocnltisten bocagr, Ierce Wright,
 4. Mgtuela callocimathu:'Gray. | $\begin{gathered} 3 \\ \text { few } \\ \frac{1}{1} \end{gathered}$ |
| 33 | Fast of Bummudas , . , | 450 | Coral mul, | *.9 | 1. Lefreyella derom, Wyv, Thouson, | 2 |
| 60 | South-west of Earmulas, | 1074 | Coral mud, | $38+3$ | 1. Fupientelfa natem, E, E, S,
 2. Thuddodictymm defiratum, F, E. S.,
 3. Aulocatye irryulara, Y, E, B,
 4. Farret sit.,
 5. - datroodiaster bocagro, Pere. Wright,
 6. Chanilumato ath
 7. Drasplocalyx patdla, F. E. S., | $\begin{gathered} 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ \text { meveral } \\ \frac{1}{2} \\ \hline \end{gathered}$ |
| 73 | West of Aroreb, , \quad, | 1000 | Pteropod oorat : | 394 | 1. Heaionema (Stylocalyax) thansoni, F. E. S_{i} | 1 |
| 91 | South of Cape Tirife Litimit, | 1150 | Volcanie mul, | \cdots | 1. Sympegelka niar, O, Sclunddt, | 1 |
| 124 | Fant of Hilo Nan Francieco, Hrazil | 1600 | Hed mud, - | ** | 1. Euplectella ruderca, Wyr, Thomsom, ,
 2 Phironimis carpenteri, Wyv. Thuusan | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |

Tabif III．－contimued．

| Station | tesality： | $\left\lvert\, \begin{gathered} \text { Degut } \\ \text { Fathums } \\ \text { Fid } \end{gathered}\right.$ | Nature of Bettom | | Spueter． | No．if syent mintili |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1358 | Off Tistan ila Cutiba．．． | 1000 | Hard gream， shuthe，eravel，
 Volcanjo andif | \％ | 1．Jïryen mil | 1 |
| 145 | South－enst of Frince Eftwant 1elanil， | 149 | | \because | 1．Ranaulfo antaretico，Cursera | 1 |
| 1453 | South ornat of Prince Eflwanl IEland， | 310 | Folcanie saml | － | 1．A Aluatw jinh antorn，2，E．S．，
 2．Aufinalye imcumkini，F．N．S． | $\frac{2}{1}$ |
| 14 | Weat of the Crozet Islandis， | 1373 | Globigeritia oute， | 350 | 2．Hulasens yhatatuin，E．1：8．，
 2．Matacomicons mikan，F．E．M． | $\frac{1}{1}$ |
| 147 | West of the Crozat falanils ． | 1600 | Distontooze， | 349 | 1．Firlanaz jiluytatua，F．E．S，

 3．Buth pharac minmirs，E．IE，

 Y．L．X－
 | 1 3 1 1 1 1 1 |
| 148A | Suuth of the Crozet Istants，： | 650 | Hard zroundi． gravel，shells | － | 1．Acontharcuz grosuleria，F．F．B．
 2．Choderlannin fuwdite，F．E．S．，
 ㅇ．．Hernelinitly ap， | $\frac{1}{1}$ |
| 149 H | Ot Kerguelen Itand，－． | 127 | Volcame－mud，， | $=$ | 1．Foauthe untanctica，Corter． | geveral |
| 150 | Suuth of Kerguileu Islaul，－ | 150 | Cosrse gravel | 354 | 1．Inuelts untavilich，Carter．．－ | тиan ${ }^{\text {\％}}$ |
| 16.5 | Lat $62^{\circ} 49^{\circ} \mathrm{S}$ ，long， $95^{\circ} 41^{\prime} \mathrm{E}$ ， near Anfaretie Cirele． | 1975 | Diatom poze， | a． | 1．Potgrtuddur suyarain，F．Hism， | 1 |
| 137 | Antarotiv Oonam， | 1280 | Datam 304e | 324 |
 | $\frac{1}{1}$ |
| 158 | Lat． $50^{\circ} \mathrm{I}^{\prime} \mathrm{S}$ c，long． $128^{\circ} 4^{\prime} \mathrm{E}$. | 1800 | Globigerima ooze， | 335 | | L |
| 160 | Southwest of Btolbourne， | 9300 | Liel clay，－． | 389 | | 1 |
| 160 | Eaut of Now Zealaid，．． | 700 | Eiue mud， | 40.0 | 1．Hexactinelill（ivellen） | － |
| 170 | $\begin{aligned} & \text { North-east of Kermalec } \\ & \text { IIlonila, } \end{aligned}$ | 630 | Voluanic mule． | 38.5 | 1．Watterin jtamianif，F．E，B．，
 3．Nuryntegmat ancirolum，F．13．S．
 3．Pulcopergai yiocr，P．E．S．，．
 4．Far⿻日禸 worn，cratiats

 E．Chourtionan uminathin，F．E．S． | 1 3 1 1 1 1 |
| 171 | North of Enoul 1 | 600 | Hard ground，－ | 295 | 1．－Autachoai rq／imitrici，F．E．S\％ | 1 |
| 1745 | Off FijiIstanils，
 Buuth－iast of Cape York， Trave Sitait， | 610 | Cural mmul | 39.6 | 1．Tapprion puthera，E，EREret | 1 |
| 184 | | 1400 | Gloligerini ooze， | 360 | | 1 |
| 192 | Qat Ettle Na lulant，．． | 140 | Thue muilo ： | \％ | 1．Lonupanelfa prpac，O．Schmilu， | tw |
| | | | | | \＃．Podylophas phitiopinemab，Cartor，
 3．Oxiteronarzuta diverindiri，E．E：S | $\begin{aligned} & \text { Beveral } \\ & 1 \end{aligned}$ |
| | | | | | | $\frac{1}{1}$ |
| | | | | | | 5 |
| | | | | | 7．Smanetha whutx－Sempler， | 2 |
| | | | | | $8_{8}^{8,}$ Eunde atuprn E．E．S． | 1 |
| | | | | | 9．Nomot numinalit．b．Su， | 1 |
| | | | | | 11．Eurckefarroumis，Carter，－ | 1 |
| | | | | | 12．Emmude， | $\frac{3}{4}$ |
| | | | | | | $\frac{4}{1}$ |
| | | | | | | 1 |
| | | | | | | 3 |
| | | | | | | 4 |
| | | | | | fis，Moryanimm，－＜ | |

Table III.-continued.

| Statiom: | Lecality. | $\begin{gathered} \text { Depth } \\ \text { in } \\ \text { vathoma } \end{gathered}$ | Nature of Bottorm. | $\left\lvert\, \begin{gathered} \text { Bottom } \\ \text { Tem- } \\ \text { vernture } \end{gathered}\right.$ | Speciel | No. of Specimiens. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 103s | Oif Banda Islande, .f. | 360 | Volcanic mat, | -4. |

 3 Farma cterngerm, F. E. S.,
 1. Sclerothumииия त(ausii, Marahall,
 大. Mylitaifa cullacyalhins, Gray,
 is. Aitocgutis =ittelí, Marshall. | 3 1 1 1 1 2 |
| 201 | Off Samhonngan, Mindanao, Philipmines, | 82 | 8tauts, gravel, - | 1tw | 1. Earch schmidiif, F, F. $S_{t,} \quad$. | 4 |
| $20 \overline{6}$ | Weat of Luson, , | 1050 | Blue mule, | 370 | 1. Hyarimeme sip , , , | 1 |
| 204 | गnilippines, | 700 | Mine mail, . | 516 | 1. Farroce occa, Carter, . . . | 1 |
| 209 | Philippites, Zobu. . - | 行-100 | Mue muc, - | 210 | 1. Kupictella asperyilium, Owun- -
 2. P. plophes phniliwpiaensis, Carter,
 3. Chaternmoryha meperi, Ciray,
 4. Semperella schultié, Semper, | mury heveral few 2 |
| 210 | Philipplnes, , . . | 375 | Blue mul, - | 512 | 1. Ajibrecallitea famusus, F. E. \& B $^{\text {a }}$ | 1 |
| 211 | Wert of Dtindana, Thüppines, | 2295 | Bine mud, - | 50.5 | 1. Holascus ridlyin, E. E. S, .
 2. Hyalonemee gracile, I. E. S.: | 1 |
| 14 | Soutlienat of Mindanac, Philipuines, | 500 | Hhue mud, | 41.8 | 1. dinleelowe likiam, F. E. Sh, ! - | 1 |
| 929 | Sugatil lay, dapani : | 395 | Green mud, | 41.1 | I. Hypalosienta (Stylocalyx) appertum, F, E. Sn, | several |
| 2904 | Breutit of Jipamb | 775 | Grean mud, | 37 ¢ | L. Dietguaine, | 1 |
| 24 | Kaso of Nipon, Japan, | 9300 | Teut clay | 357 | I. Cinfophiucus clegona, E, U, S.,
 2. Rathphorail finalivat ia, E. E.S.. .
 8. Hyutoncmu Polustinit, F. E. S.,
 1. Hyglonenue Bu4 | 3 1 1 1 |
| 819 | Lat. $36^{\circ} 10^{\prime} \mathrm{N}$, , long $1788^{\circ} 00^{\prime} \mathrm{E}$, | 2050 | Globigerinb ooze, | 351 |
 F. E. 8 ., | $\stackrel{1}{\text { neveral }}$ |
| 388 | Lat. $3 \mathrm{~T}^{\prime} 41^{\prime} \mathrm{N}$. , long. $177^{\prime \prime} 4^{\prime} \mathrm{W} .4$ | 2900 | Hed clay | 354 | 1. Dathydorua fimbriatas, F. E. S., | 1 |
| 471 | | | Globigerime voap, | 35.0 | L. Healontina dierogots, F, E. S., .
 2. Hoafuncma (Stulocityir) dipmssam, R. E. 8 .
 3. Hyetoncrua (Stylectya) elcoane, E. E.8.,
 4. Hyatarkmes sty | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| 372 | | 2500 | Railiolarian ooze, | 35.1 | 1. Earrrid (\%). | 1 |
| 274 | North-wuit of Caroline Islunds, | \% 20 | Hardiolatian enze, | 351 | | 1 |
| 481 | South of Talitit , , .. | 2895 | Hed olay : - | $3 \pm$ | 1. Dinteralgry gracils, F. E. \&.,
 2. Diatyonine | 1 |
| 286 | | 2735 | Ited chay, - . | 8.8 | 1. Buthurdoras baculfor, E. E. S. .
 2. Dictyonime, | 3 |
| 989 | Lat. 31/ $41^{\prime} \mathrm{S}$, long. $181^{\circ} 983 \mathrm{~W}$ | 3550 | Ned clay, - | 34.8 | 1. Hyuloztplis dions, F, E. S.
 2. Tuechycautus gkritui, F, E. S. .
 | 1 |
| -4]s | | 8 cm | Globigevina coze, | 814 | 1. Dictyonime, ; ; | 7 |
| 300 | Oif Jun Prautala, . , | 285 | Globigerina oose, | 125 | 1. Hjulonamau poczlusi, F, E, S., | 1 |
| 305 | Chamel lenting: to the Magellan Strait | 140 | Plue mud, | t+* | I. Bathydorus atellatuo, F, E, Sy, : , | 1 |
| 310 | Chamel loudiug to the Magellan Btiait, | 100 | Hilue mind, , | 46.5 | 1. Acanthatus dufius. E, 12, S,
 2. Rhatchselypues rapicit, F, E'S., | 1 |
| 320 | Sonth-mast of Monte Vhleo, : | 000 | Green mand, . | $37-2$ | 1. Rasella antarctica, Corter, - * | 8 |

Tabie III.-contimed.

| Station | Locatity: | $\begin{gathered} \text { Devith } \\ \text { Min } \\ \text { Vuthatis } \end{gathered}$ | Nature of Bottom. | ILottion Tим perature P | Specien, | Nin of syooti H1HE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 323 | Fhat of Monte Vidieo, | 1900 | Bher muil. - | 281 | 1. Ifpatuboma tarte, f. E. R | I |
| 告3 | Wuat of Stonte Vidoo, | 2550 | 1time mat, - | 397 | 1. Holaarus stellitm, F. Ei. \% , | 4 |
| 338 | Weit of Tristan dis Cunlan. - | 2025 | Globigeritia ooze, | 85:3 | 1. Conderulyestenicr, K. R. 8., : :
 | 1 |
| 343 | Ahouth of Azocusion, | 425 | Volcnniesami, - | 103 | 1. Aphesattiarca foragoct, 1ere. Wriphe.
 2. Distyonine. | i |
| 314 | Off Agtension, is - | 129 | Volcanie sand, - | \rightarrow | | 1 |
| 388 | | 2950 | Otohigarima poze. | - | 1. Motacomoreur miguifufatus, F. T. Sos | 1 |

A glance at the maj shows that the Hexactinellida are by no means confined to the few localities hitherto chronicled. On the contrary they ace widely distributed in all the oceans, and the majority of the Challenger specimens alone have not been found in localities where Hexactincllida were previously discovered, but in locadities whieh are new for the group.

As the table shows, it was ouly at 58 of the 275 stations (i.e., $21 \cdot 1$ per cent.) which were explored with dredge and trawl that Hexactinellida were obtained. And althongh these localities occur very uniformily over the whole route, nowhere is there any groat interval between two successive localities. The greatest distance occurs between Stations 94 and 124, but it has to be noted that this portion of the return route, which included twelve stations where no Hexactinellida were fomd, was crossed at one point (Stations 102 and 348 , lat. $3^{\circ} 10^{\prime} \mathrm{N}$., long. $14^{\circ} 51^{\prime} \mathrm{W}$.), whare (Station 348) a Hexactincllid was discovercl.

If we follow the course of the experition, we see that in the first place to the west of the English channel (Stations IV., V.) some Hexactinellids wore captured, and that afterwards, to the south-west of the Canary Islands (Station 3), the stately Poliopogon cmadou was fished up. The booty became somewhat richer off the West India Island of St. Thomas, where, at the two Stations 23 and 24 , six different species were procured, The next locality, off the Bermudas Islands (Stations 88 and 56), yielded in all eight apecies. West of the Azorcs, and afterwards off Cape Verde, two species were found. After a long pause two forms were captured off the coast of Brazil (east of the Rio Enu Franciseo). On the tour from Bahia to the Cape of Good Hope, a fragment of a Hexactincllid was obtained near Tristan da Conha, while near Prince Edward Island three different species rewarded the search. This last region seems indead to have been tolcrably rich in Hexactinollida, since some degrees further east first two, and soon afterwards six, different species, and off Crozets Islands, again three werc obtainced, Near

Kerguelen Island and 5^{\prime} south of it there was an abundant occurrence of the large Rossella entervetice, whide still further southwards, at Station 156, another Hexactinellid was found. At Station 157 (lat. $53^{\circ} 55^{\prime}$ S., long. $108^{\circ} 35^{\prime}$ E.) two forms were fonnd, and $24^{\prime \prime}$ further cast (Station 160) another, and ngain a fourth south-west of Melboume. Neither on the south-enst coast of Australia, nor on the royage from Sydncy to New Zealand, was there any sponge booty captured; but to the enst of the North 1sland of Now Zealand some Hexactinellid spicules at lenst were obtained, and near the Kermadec Islands as many as six different species. Near the Raoul Istand was the labitat of the delicate Aulochone cylindriou, and off the Fiji lslands the beautifnt Tiggeria was trawled. After a break some Hyalonena fragments were again obtained to the south-cast of the Torres Strait. The richest haul of Hexactinellida was obtained in the neighbourhood of the Little Ki Island, where no fower than eighteen different species were found, some of them of large size and represented by several specimens; near the Banda Islands also six species were obtained, but after that it was not till the Philippines-long known as rich Hexactinellid localitieswere renched that several forms rewauded the search. Of the seven different stations in the Philippine region, the locality between the islands of Zebu and Bohol, famons as the seat of the almost mereantile eaptare of Euplectelle asperyithum, yielded not only numerous specimens of Euplectella aspergillum, but several of the well-known typically Philippine species, such as Polylophets phitippinensis, Crateromorpher meyeri, and Semperella schult:ci, while at the remaining six stations, only one, or at most two sqecies were obtained. On the way from New Guinea to Japan no Hexactinellids were obtained, bat in Japanese waters, in the Sagami Bay so industriously explored by Dr. Döderlein, one species of Hyctoneane at least was found in great abundance. A Dietyonal form was aks found to the south of the bay. Eight degrees cast of Yokohama, at considerable depths, foum remarkable forms were found, and again as many degrees further east some elosely allied or identical species. On the long voynge from the Sandwich Islands to the equator no traces of Hexactinellids were discovered. On this side of the equator, however, at some adjacent localities near the line, as many as four different species of IIyalonema were trawlel. After that two species were found some degrecs south of Tahiti, and S° to 10° to the south-east first two and then three forms. Again in the sontl-enst portion of the Atlautic (Station 293) a fragment of a Dietyonal sponge was discovered; while noar the island Juan Fernander a Hyalonema, and at two stations in the Magellan Strait, first one and then two species were captured. On the return voygige through the Atlantic, the sonthern portion yielled no Hexactinellids, until several degrees to tho east of Monte Video, at throe distinet stations, the search was again snceessful. After that to thic west of Tristan da Cwima and near Ascension Island single specios were obtained, and lastly 3^{*} north of the equator, at considerable depths, a single form belonging to the romarkable genus Malacoscecus was procured.

In regard to the number of species found at the different loealities this greneral fact may be noted, that at most of the stations only one or two species were foumd, while ouly a few yielded several or many forms. The statistics on which I based this result in my preliminary communicntion ${ }^{1}$ have been slightly altered by the additions of some localities, and by changes in the determination of a few species, but these modifications are on the whole unessential, and the results stand thus. Of the fifty-eight soundings on the occasiou of which Hexactincllida were found-

| 3.4 yielied only | | | 1 species, | |
| :---: | :---: | :---: | :---: | :---: |
| 12 | " | H | 2 | \# |
| 3 | $\stackrel{ }{\prime}$ | , | 3 | " |
| 4 | " | " | 4 | " |
| 3 | " | n | 6 | " |
| 1 | " | , | ; | " |
| 1 | " | | | |

In his work La vie au fond des Mrers, Filhol cites the statisties in question from my preliminary notice, and odds the following remark:- "Il résulte de ce tableau que dans plus de la moitié des cas les espèces d'Hexactinellides out étê trouvées isolées. Cette observation ne concorde pas avec celles que nous avons pu faire dans la partic de P'Atlantique nord, parcourue avec le Talisman, où les chaluts n'ont mpporté qu' exeeptionellement une seule espècc. Les Askonema ont ćté trouvécs avec les Aphrocallistes; les Hyalonema, les Euplectelles étaient preque toujours associées." A possible solution of this apparent divergence in the results of two deep-sea expeditions, will be alluded to below when the general results as to the geographical distribution of the Hexactinellida are summed up.

The number of individuals of the same species found at one place is but rarcly considerable. Generally ouly one or two specimens of each species were obtained at the same locality. Sometimes, however, a considerable number of specimens were found at once, as was the casc with Ferrech occa near St. Thomas, West Indies, Aphrocallistes bocagei off Bermudas, Rossella contarctica near the Kerguclen Islands, Polylophus philippinonsis and Pheronemat globosum at Little Ki Island, Hyalonema depressum in the middle of the North Pacific, and finally, Ciateromorpha meyeri, Polylophius philippinensis, and especially Euplectella aspergillum at the Philippine Island, Zobu. Of the latter indeed, which was eagerly sought after, in a well-known locality, nemrly a hundred specimens were obtained.

As to the richness of the different seas and regions in Hexactincllidn, it is, in the first place, of interest to notice the absolute number of species found in the three great oceans. The following tables (IV. and V.) exhibit the state of the case in regard to this and similar points:-

[^117]
Table IV:-The Hexactixblida of the Challenger Collechos

DISSACENA.

| | ATILNTIE OCEAN. | BOUTH LYDIAN OCEAN. | PACIPIC OCBAM: |
| :---: | :---: | :---: | :---: |
| 1. Efplactrlatina ($158_{\text {(ucies). }}$ | a. Iupictella auderci.
 - Enplertella modon.
 8. Hàmmen itelletert.
 4. Matoc waccul nopuinularua.
 5. Rhakodictyan dolicotum. | 1. Holacem Bibuilataa

 3. Melenmencert vestus | 1. Euplectella aspergillum.
 2. Euptetella cruasistellitit.
 3. Hidebny Fidkyf.
 4. Tegrivi zadolina.
 5. Wattrrii ficamingit.
 6. Diedyacolye gracilí,
 7. Hyakoatulas तlewz. |
| 18 Species). | 1. Sympagitla nux | 1. Atuloargis jufastonf.
 2 Polyrtikitus ociformile.
 3, Endimierspipetto.
 4. Crnutopazatut fatat | 1. Canalonitucus clorane
 2 Contophaciur yp
 3. Truchyemuar gursitth, |
| III. Roscelumz (10 8pecies) | 1. Rowelld antarction.
 2. Coutondox bater.
 3. Alifocutig itmyitlonts. | 1. Noarello anitarcties.
 - Anonthavas grasmataria.
 a. Buthemotit tparome.
 4, Andocilye iticyotione. | 1. Sernativella pupa.
 2. Ithulophus phifippiequais.
 3, Acmntlamete fubfuz
 4. Blothydorins fimbriatha.
 5. Bathyndoras itoloutha
 6. Bathyclorus baentlfer.
 F. Rhabdamtpotitis riper.
 8. Eratenompuyut meperti.
 9. Cetatcromprotha therferideri,
 10. Ontcromorpha inarruyz
 11. Gevterramirgota furarldel.
 18. Aulochone cotionfried.
 18. Auiondoncliliwa.
 14. Eargyplegna outriculare. |
| IV. HIALOKEMATIDE: (19) Species) | 1. Hyaftaminia bustrcs

 2. If infonima feilanievorn.
 4. Higaloncrada trinue:
 5. Itpalamina sp,
 6. Plucmariva cirepentort.
 7. Pelioprogan amadou. | 1. If yalourme conin.
 2. Hyatomina (Stylocatyen) tionsgryan: | 1. Indonemas incrikic
 2. Hedenema dixermas.
 3. Aypuloremia poectiat.
 4. Hymloncara(Sydorolax) opertami
 ENM,
 6. Hyaloncma (Ssyloculyo) globus.
 7. Himfonena (S\& flocalgu) ckegnu
 8, Hyakuncma robuatnu.
 Q. Hindamemasy
 10. Pherowarma alotopam.
 11. Phepounitit ifomiteum.
 13. Paíopupor sipas.
 13. Simpertlir sehultas. |
| Specice of Lessocina, | 18. | 18 | 38 |

ARRANGED ACCORDING TO THE OCEANS WHENCE THEY YERE OBTATNED.

DICTYONINA.

| | ATLANTIC OCEAN: | SOUTH INDIAN OCEAN: | PACIFC OCEAN. |
| :---: | :---: | :---: | :---: |
| V. FABMEthat
 (tspecka).
 ML Bumitibe (0) syeples). | 1. Parwa meat.
 2) Eौन
 1. Lefrojellatecoms. | 1. Furica wif. | I. Durrae accit.
 2. Aurran elarigena.
 9. Earreit.
 1. Eurces tomperh
 Q. Eurole aetuidtil:
 4. Eirre farnugne
 4. Ennute corthi.
 5. Eurche nuarsinild.
 6. Euritil. |
| | 1. Aphrocultita tacagi:
 1. Chemilaniait th^{2} | | 1. Ap abicalliates riminnas.
 1. Chondume Ramilloi
 I- Chorflosma homatua |
| IN. Tarronceryme (a Spectin). | | 1. \#exactinelta al | 1. Fixactinction fatur
 F. Cytandom mutue
 3. Fiddargta lapottioves
 4. Sidereltamenus claandi. |
| X. Meantro srostame (8 Sporice) | 1. Dionoplocalye prutello.
 2. Mplinat collox jufhus.
 1. Dietyouiae. | | 1. Myrtusia collopputau.
 12. Aunacystio ruthtia
 1. Dietyonine: |
| Speuter of Dietyonim, | \$ | 3 | 12 |
| | | | 1. Hexatinimil |
| Spocior of Honneti uellinta, | 31 | 16 | 詨 |

table V.-Tie Hexactinelida of the Chabenger Colegotion, arbanged

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Likt of alit the Streits in mix Challencem Cownetion.} \& \multicolumn{2}{|l|}{SOBTH ATHANTIC OCRAN.} \& \multicolumn{2}{|l|}{SOUTH ATA MNTIG OCEAS,} \\
\hline \& Speciria \& Stationi. \& Spiocies \& Station. \& Speciel. \& Station. \\
\hline \& \begin{tabular}{l}
1. Euyfetello apperyillum, Owam, \\
2. Eivplectalla saberom, \(\mathrm{Wyy}^{2}\), ThomHoa, \\
3. Eryplecilla crossimittata, E. E. schules, \\
4. Eripicetilla- \\
i9) nadowir, \\
E. E Schalze, \\
Watue, 'F. E. S. Schulze. \\
5. IFolasens atctathe, F. E. Schnlee, \\
4. Ifolesens Ninfatut, F. F, Schnimo \\
7. Holuscus puolioc̆cil, E. K Schulat, \\
8. Holasria ridiry, F, E Schulte, \\
9. Mulncowicius rustas, F.E.Sohulae, \\
10. Malasostocus unyinicidatua, F. E. Schulse, \\
11. Traseria jurleAra, E. E, Schnine, \\
12. Walteria steamintil, E. R Schulze, \\
13. Dint uocolye macitis, E. IS Schulze, \\
14. Ehuladiotyam ditinutua, Schmiat, \\
15. Myaloetylua divan, E, E. Soluike \({ }_{4}\)
\end{tabular} \& \& \begin{tabular}{l}
1. Eroplectelle mbicion, \\
2. Eupiterllla nodoma, \\
3. Matcessaciux wम: suiculatas. . \\
4. Fhadidoilictyum de licutam,
\end{tabular} \& IV, \(\mathrm{V}_{7}\)
50

348

\#0 \& | L. Exyifecterla andiercos, |
| :--- |
| 2. Holascue mellatas . | \& 184

384

\hline | 15. |
| :--- |
| Ascones- |
| | \& | 16. Autarme jolnstont, E. E. Schulze, 17. Sympnetlie nue, O , Schriall, 15. Anlaphodas bofiapuits, E E. sichuler, |
| :--- |
| 19. Malamifer priexta, is. E Schulse, 20. Coudephorcua lutus, ¥. P. Schulze, |
| 21. Caslophiacus clegana, F. E. Scholee, |
| 29. Caulaphacua afin. . |
| 23. Thadhomitit gurvittii, $\overrightarrow{\mathbf{F}}$. i. Schule, . | \& \[

$$
\begin{gathered}
1456 \\
97 \\
156 \\
156 \\
177 \\
241 \\
276 \\
248 \\
289
\end{gathered}
$$
\] \& 5. Sympiturla nsx. \& 94 \& \&

\hline \[
$$
\begin{aligned}
& \text { III. } \\
& \text { IWistit } \\
& \text { ILU.… }
\end{aligned}
$$

\] \& | [21. Eravgindlo pape, o. Schmidt, - |
| :--- |
| 25. Polytophiva pullypinchasis, Gray,: |
| 96, Wassella autarrifil, Carter. . |
| 27. Aemuthaseres aressularit, Fi F. Schultio. |
| 98. Acenthasivis diblive P. E Schnlè |
| 20. Bath indurne Jiabratus, E. E. Schulae, |
| 30. Tith midernes atdlutus, F, E Schulze, |
| 41. Dathimarua pinaine E, E. Sclmite, |
| Schulse, |
| 33. Nunddroet/5ptes vorperi, E. E. Schultic, |
| 34. Chatovosuryatua nuryepi, Omay, |
| 35. Crroforuarpha thiotidider, E. E. Schate. |
| 36. Cryteromoryika mumagh $\overrightarrow{\mathrm{F}}, \mathrm{E}_{\mathrm{E}}$ Schuize, |
| Behulte, |
| Schulae, : |
| 94. A whochory Lías, F. E. Schule, |
| 40, Caufacal gas trnor, F. E. Schuine., |
| 41. Aulucolya imegularis, E. B. |
| Suchales, | \& \& 6. Autncalyx inveguIaria, \& 66 \& | 3. Rosecla antarction, |
| :--- |
| 4. Catưónlys tencr, | \& 329

838

\hline
\end{tabular}

according to the Eive Peiseipal Marine Disthibutional Areas.

Table V.-continued.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Coulectios.} \& \multicolumn{2}{|l|}{SOETH STLANTIC OCEAK.} \& \multicolumn{2}{|l|}{KOUTII ATLANTIC OCKAN:} \\
\hline \& Spectina. \& Station \& Species \& Station. \& Species, \& Station \\
\hline \begin{tabular}{l}
15. \\
Hyalongo \\
MATIDE:
\end{tabular} \& \& \& \begin{tabular}{l}
7. II jutancuit foxives, \\
 \\
2. Himinarna Laxitontден. \\
10. Patiopryoa maurdanc,
\end{tabular} \& 21
73
IV

3 \& | 6. Hyalearsiac trone: |
| :--- |
| f. Hyalouchas siv, - |
| 7. Pheroicata carpentert | \& \[

$$
\begin{aligned}
& 394 \\
& 338 \\
& 124
\end{aligned}
$$
\]

\hline \[
\left.$$
\begin{array}{c}
\text { Vin } \\
\text { BEtois }
\end{array}
$$\right\}

\] \& \& \& | 11. Fanma Benm, |
| :--- |
| 19. Firmen ak, | \& | 29 |
| :--- |
| 23.56 | \& \& 1858

\hline \& | |
| :--- |
| |
| 71. Eurde furcopuin, Carter, |
| 72, Runck cartol, D. E. Sehalxs |
| 73. Eurit unirahallt, F. I. Schulzw, |
| 7t. Eefryy.ffe dinतr, Wyv, Thomsh, | \& \[

$$
\begin{gathered}
109 \\
901 \\
190 \\
398 \\
192 \\
3 k, ~
\end{gathered}
$$
\] \& \& 3 \& , \&

\hline | VIL |
| :--- |
| M15 |
| 6am上 | \& | (i5. Euretin, |
| :--- |
| 7no dphrocnitiater bacuget, Teranal \{ |
| TVigha, |
| 7. Aphwoultlater pamponng, F, E: Schuire, . | \& 192

313,98,
34,601,
541
910 \& 14. Ajeroweitioter bos \& 23,23,50 \& 2. Apatrocillitits 6an. roen. . \& 343

\hline | vili. |
| :--- |
| Cosetmo ponine | \& \& 1485

170.3
1703
2450,
$313: 3$ \& \& 92, 56 : \& \&

\hline \[
$$
\begin{gathered}
\text { IX } \\
\text { Thinor } \\
\text { Dtorins }
\end{gathered}
$$

\] \& | [81. Hexantinilladata, F. E. Seliuhre, 183. Ifoxutivella ap. |
| :--- |
| |
| 84. faldindin laystoites Son Kosit, |
| 85. Sclerothamat doundi, Man hall: | \& \[

$$
\begin{aligned}
& 198 \\
& 108 \\
& 192 \\
& 191 \\
& 1191
\end{aligned}
$$
\] \& \& \& \&

\hline \& | (80, Dactulonaljas juitine, E. E. Bctualre; |
| :--- |
| |
| 88, Aufuryetia zituli, Jumplall, |
| Sb_{4} Dietyonive, |
| D0. Mexactioeliul, | \& \[

$$
\begin{gathered}
26 \\
24,29 \\
1010 \\
104,204 \\
290,359 \\
169
\end{gathered}
$$

\] \& | |
| :--- |
| 15. Theromit cuitiocyan | \& | $2 d$ |
| :--- |
| 21 | \& 10. Dictyonine, . \& \$33

\hline
\end{tabular}

Table V.-continued.

| south indias ocras: | | จӧth caumic ockas. | | SOUTH PACIFIC OCEAN. | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| speies | Station. | Specien. | Station | Speciek | Station |
| 12. Hyploncma onus
 13. Styrocalya Clavigur | 15s
 147 | 9. Hipelonitma gracilf,
 10. Stimional ge miotfres.

 12. Igatimenea rabarstum, 2
 13. II yatoncman yi4
 14. Scmporther schntisa, - | 211 2432 241 2006,211 2020 | 18. Hyaloneme diverychh .
 19. Hyodameman pocntam,
 20. Sithloculyar ifprozrat,
 9ㅜㄴ Stolocalyx globis,
 22. Stylucatyx alegant.
 23. Hyarlancman - IN,
 94. Pheromema globosum;
 2. Phernnema givanten.
 26, Palionigan vious,
 27, Semperefla soluttel, | |
| 14. Firsargly : . | 147 | 15. Parran mea, . . | 95 | 28. Firree ocan,
 20. Sirmor durigiont.
 50. Farrelil4 | $\begin{gathered} 283 \\ 124 \mathrm{~s} \\ 274 \end{gathered}$ |
| | | IG. Binte selimiluit, - . | 30 | 31. Earcte amperit
 32. Eurdr fummation
 33. Burrt carrem
 34. Eurcte maratullif, | $\begin{aligned} & 192 \\ & 190 \\ & 190 \\ & 190 \end{aligned}$ |
| | | 17. Aphroallatar rimarus, . | 210 | 35. Euretia, | 19 |
| 15. Chandinma lamilias, - | 148.4. | | | 36. Chonelasna lamelta, -
 37. Chonvtusun hamatum, | $\begin{aligned} & 176 / \mathrm{s} \\ & 770 \mathrm{~A} \end{aligned}$ |
| 10. Hecractivalio equ - | 145as | | | 38. Hucructinerial lation
 38. Cyntinution ustiatur
 | $\begin{aligned} & 202 \\ & 1029 \\ & 109 \end{aligned}$ |
| | | IS. Dietryonite, \sim a | 23m | 42. Myliuria callocyathus
 44. Aulceestio aitede.
 43. Dictyamines. .
 44. IEractinallint? | |

Of the ninety different species of Hexactindlids abtained on the Challeager E.spedition-

But it is obrious that these figures taken by themsclves, sithout reference to the number of dredgings and tramlings, do not give any correct representation of the nbundance of Hexactinellida in the difierent regions. It is necessary to take into account for each ocean the total number of dredgings or trawlings, and the proportion of these which yield Hexactinellida. The percentnge figures for the sepante regions must then be compared with the statistics of the whole expedition.

Out of the total 276 dredgings or trawlinga only 58 yielded Hexactinellida, which gives a percentage of 21.1 over the whole. Of the 125 dredgings or trawlings in the Atlantio 19 yieldeel Hexactinellidn, ie, a percentage of 15%; of the 32 eearches in the Indian Ocean 11 were successful, i.e., 344 per cent.; of the 119 in the Pacific $2 S_{\text {, }}$ i.e., 23:5 per cent., were rewarded with Hexactinellid booty,

Thus we see that of the three oceans the Athatic appears to be by far the poorest in Hexactinellids, and in its percentage of $15 \% 2$ is not a bittle below the general arerage of 211 ; while in contrast to this the Indian Ocean is richest, and in ita percentage of $34: 4$ is considerable above the average, which the Pacific with its $23: 5$ pee cent. only slightly excends.

If in the case of the two lareest oceana the northern be estimated apart from the southern half, then the proportionate statisties stands as follows :-

From this it is apparent that the northern portion of the Atlantio is not so rich in Hesactinellids as the southern, and that in the Pacific also the northern half is somenhat surpassed by the southern.

Furthermore, it must bo carefully noted that this comprataion takes into account only the localities, but neither the number of the discovered siecies nor the absundance of specimens. When tho mumber of species are also computed the proportione stand as follows:-

| | North Athantic | South Athantie. | 1 wilan Ocean. | Nusth Dueille. | South Pacific. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of dredging or irawl. ings-in all 276 . | 79 | 46 | 39 | 47 | 72 |
| | 125 | | | 119 | |
| Number of species of Hexas-finellidn-in all 89 . | | 10 | 16. | 18 | 4 |
| Percentages of species in rela tion to the numbier of drelginge or trawling: -ain un aseruge $32 \div$ | 215 | 217 | 60 | $38 \cdot 3$ | 611 |
| | $19 \cdot 1$ | | | $47 \cdot 1$ | |

The total number of Hexactinellid species fonnd at the 276 Stations explored with dredge or tram is 89 , i.e., $32 \div$ per ecut. At the 125 localities explored in the Athantic, Q4 different Hexnetinellid specios were found, i.e., $19 \cdot 1$ per cont,,-and of these 17 were got from the 79 dredgings or trawlingo in the North Atlantic, i.e, 21.5 per eent, while in the Sonth Atlantic 46 searches yielded 10 species, i.c., 217 per cent. The 32 dredgings or trawlings in the Indian Ocean yiclded 16 different speeies $=50$ per cent, In the Pacific the 119 localities explorch by dredge and trawl yielded a total of 56 species, or $47 \cdot 1$ per cent., and of these 18 sqecics or 38.3 per cent. were found at the 47 dredgings or trawlings in the northern, and 44 species or 61.1 per cent. in the 72 searches in the southern region.

It is evident that the pereentage expression of the nbumdance of Hexactinellids is quite altered when we eonsider the number of spocies as woll as the localities of capture, though the relative proportion for the different oceaus, or northern and southorn regions, is but slightiy changed. On this computation the Atlantic, and especially the North Atlantie, is scen to be poorest in Hexactincllids, while the Indian Occan is richest. Only the southen lalf of the Pacifie appears considerally riclice than in the provious table, in faet ovon richer tham the fudian Oocm. The proportionate richuess thes stamls as follows:-

| Nort | South Mluntic, | | Indian Ocana. | c. |
| :---: | :---: | :---: | :---: | :---: |
| 15 per | 217 | 38 | ज0 jue c | 61 |

The richest localities on the Challenger Expedition were in the Atfantic at the Weat Indian Islaud of St. Thomas and at the Bermudns, in the South Indian Ocean in the region
between the Prince Edward and Crozet Islands, in the Pacific off the Kermadee, Little K i , and Philippine lstands.

In the middle of the ocems, as woll as near the continents, Hexactinellids were indeed found, but generally speaking the abundance of species was less at a distance from the maniand, and in the middle of the great ocean basins, than in the neighbourhood of the continents or island groups.

It is necessary now to pass to the more detailed distribution of the individual groups in the rarious seas.

In the Atlantic 16 species of Lyssacina were found, in the Lhdian Ocean 11, and 37 in the Pacific.

If we consider again the number of localities at which dredging and trawling explorations were undertaken, we have the following results :-

As to Dictyonina, the Atlantic yielded 8, the Indian Ocean 3, and the Pacific 18 species. And in reference to the number of dredgings and trawlings in the same sea, these figures represent for the Atlantic 6.4 per cent., for the Indian Ocem 9.4 per cent,, and 15.1 per cent. for the Pacific.

In regard to the separate families of Lyssacina, the Atlantic yielded 5 species of Euplectelhidr, the Indian Ocean 3, and the Pacifie 5, that is to say, in reference to the number of dredgings and trawlings, 4 per cent. for the Atlantic, 9.4 per cent, for the Indian Orean, and 6 per cent. for the Pacific. And here it should be noted further that the three species of Euplectellidee found in the Indian Ocean belonged to the genera Holascus and Malacosaccus, i.e., to the subfamily Holascinæ, while in the Atlantic and Pacific representatives of all the three subfanilies were discovered. Of Asconematidre the Atlantic yielded only 1 species, while in the Indian Ocean 4, and in the Pacific 3 were fotund. A reference to the relatively smnll number of dredgings and trawlings undertaken in the Indian Ocean, proves a special abundance of Asconematide in this last region.

The Atlantic yielded 3 species of Rossellider, the Iudian Ocean 4, and the Pacific 14 species, which mostly bolonged to the Crateromorphine.

In the Atlantic 7 Hyalonematide were found, in the Iudian Ocean 2, and in the Pacifie 19 species.

In reference to the Dictyonima, if we take all the Unemataria together in consideration of the small number of representatives of the separate fanilies, we find that 1he Atlantic yielded 5 , the Indian Ocean 3, and the Pacific 15 species, that is, in reference to the number of dredgings and trawlings, 4 per cent. for the Atlantio, 9.4 for the Indian Ocean, and 12.6 for the Pacific. In a comparative survey of the separate
genera within this group it is striking that in the Pacific alone 5 species of Eurete were found, while this genus did not occur ouce in the other two oceans.

Mreandrospongidæ were represented only in the Atlantic and Pacific, in each by e speciess.
Further details as to the separate genera and species yield the following results. The genus Euplectella was found in the Atlantie aud Pacific, but not in the Indian Ocean. The beautiful Eupplectella aspergillum was only obtained at the one fumiliar locality, namely, at the Philippine Island, Zcbu. Euplectella orvessistelleta was also found in the Pacific, but at a great distance from the mainland. Euplectelle suberea and Euplectella nodosa appear to be restricted to the Atlantic.

In each of the thres oceans one or two representatives of the gemus Holusens were discovered. Malacosacous was found at one locality in the Atlnntic, and in the Endinn Ocean. The two Thegerino ocrur in the Pacific; Tageria pulchre mear the Eiji Islands, and Walteria Aemmingiz off Kermadec.

Of Asconematide, only one speeies, namely, Sympagella mux, was found in the Atlantic, near the Cape Verde Islands; four species in the Indian Ocean, viz, Polywhabetus oviformes, Aulascus johnstoni, Bulanites pipette, and Caulophacus latus, and two in the Pacific, namely, Ccudophucus elegans to the east of Yokohama, and the peculiar Trachycaulus gratittii in the middle of the South Pacific.

While the Rosselidæ were represented in the Athantic region only by the samall Lanuginella pupa, found off Little Ki Laland, and by Polylophus phalippinensis, near the Philippine Island, Zebn, Rossella antarctica was found both in the South Pacific and in several regions in the South Indian Ocean, and in especial abundance near Kerguelen. Of the genus Aconthaseus, one species, Acanthascus grossulariat, was found in the Indian Ocean, the other, Aconthecscus dubius, in the Pacific portion of the Magellan Strait. The species of Bathydorus are similarly distributed in the same two oceans, Bathydorus spinosus occurred in the Indian Ocean, near the Crozet Islands; Bathydorus fimbriatus, Batloydorus Zaculifor, and Bathydorus stcllatus, in the Pacific, the first in the North Pacifie at two localities, Bathydorus baculifer in the middle of the South Pacific, and Bethydorus stellatus in the Magellan Strait, where Rhabelocalyptus roperi also occurred. All the four Challenger species of Crateromorpha were found in the Pacific, Crateromorpha meyeri from the neighbourhood of the Plilippine Island, Zebu, Crateromarplia thierfelderi and Cicteromorpha murrayi off Little Ki Island, and Cirateronorphat tumida off one of the Bunda Islands. The species of Axtochone were also obtainod in the Pacific, Aulochone cylindrica from the Kermadec Islands, and Aulochone litium from the Philippines. On the other hand, Caulocalyx tener was found in the middle of the South Atlantic, and Aulocalyo imegularis both in the Atlantic near the Bermudas, and in two localities in the South Indian Ocean, namely, near Prinee Edward Island and off the Crozets. Finally, the Dietyonal-like Euryplegmace anrioutare was found in the Pacifie near the Kcrmadec Islands.

Of the numerous species of Ityolomeza no one form was represented in two oceaus, In the Atliutic Hyalonema toxerrs wns found near St. Thomas, Iyaloneme (Stylocetlyx) thomsoni wost of the Azores, IIyalonema hisitcnicum to the south-west of Portugal nud west of the Straits of Gibraltar, as also at mu undefined loeality in the middle of the South Atlantic. The two sprecics of Myalonema found in the South Indian Ocean were Hyaloneme comus to the south-west of Australia, and Hyalonema (Stylocalyx) clavigerwas to the west of the Crozets Islands.

Of the species of Pleronema the Challenger found Pheronemas cerpenteri in the Atlantic to the north-east of Bahia, and Pheronema globosum and Plewonema giquanteum in the Pacific, off Little Ki Island in the Malay Archipelago. Poliopogon amadou occurred in the Atlantic, south-west of the Camary Islands, and Poliopogon giges in the Pacific, betreen the Raonl and Kermaded Islands. Semperclla schulteci finally was obtained both at the well-known locality near the Philippine Island, Zebu, and also in the Malayan Archipelago off Little Ki Island.

As to the Eurreide, Farred occo ocourred both in the Atlantic off the island of St. Thomas, and also in the Pacific at the Philippine and off the Kermadee Fslands, while Farret claeigere was only found in tho Paoific near the Banda Islands. Undefined species of this rewarkable, and apparently widely distribated genus, were found in all the tliree oceans at various localities.

Five species of Eurete were found in the Pacific, four of them off Little Ki Sland aud one at the Philippines, but in the Indian Ocean no Euretid mas found, and in the Attantic only the single species Lefioyella decore off the Bermudas. Aphrocallistes bocagei occurred at several localities in the Atlantic, Aphirecallistes remosus only in the Pacific at the Philippines. Chonclesma was represented in all the threc oceans, by Chonelasma lamella hoth in the South Indian Ocean (near the Crozets Islands) and in the Pacifie (off Kcrmadec), by Chonclesmus Ramatum only in the Pacific at the last named locality: Some undefined fragments of Chomolesme occurred at different localities in the Atlantic.

Of Tretodictyide the Challenger found in the Pacific Hexuctinelld 7ete, Cyptoukon solutics, Ficldingict lugettoides, and Sclevothamass clowsii, all near the Little Ki Island, and in the Sonth Indian Ocean an undefined Hexaotinella fragment near the Crozets.

The Mreandrospongide found in the Atlantic were Dactylocelys pratello off the Bermudas, and near the Spanish Coast, and Mytiusia callocyathus off the West India Tsland of St. Thomas: The Pacific yielded Myliusia callocyathus off Little Ki Iskad and near the Bandas, and likewisc Aulocystis sittelii.

In regard to the proportionate rielmess of the two temperate and the tropien zones, it is nenessary first of all to note the absolnte number of localities yielding Hexactinellida in these three regions. The number of species in each zone must then be noted as in the following tnbles (VI., VII.), and these statisties collated with the total number of drodgings and trawlings in the respective regions.

TABLE VI．－Distminution of the Hexictinelidida of tae Cilalifeger Collferios in the phfferent Zones．

| | NOHTH TENHERATE ZONF： | | TROHICAL ZONE | | SOUTII TEYITEATE：ZOSE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6：SNAUTNA－
 1．Eiplectelatua （15 8iccien）． | 1．Syijtctella anheras，
 2 Sheptedellic Mulatin，
 3．Rtadeloplotymı dalootam， | | 1．Eupterullauzjergitlam，
 2．Kimbetathe niterros．
 3．Sigipervelle cresaratcllatts，
 A．Hefarous villey
 5．Milucosimia ungriculataí，
 a．Trytrio puleinct，
 7．Didyonuly y inatila．，． | | 1．Afoluseva tollaties，
 2．Iforcacura ribulctun，

 7．Mrathwaceur mutita
 5．Hidtrria jcmainhat．
 0．Higulantglat airite） | |
| 11．Ahoonamatides． （ 8 spreien）． | 1．Cleutophoena devana，．
 1．Coufophacus sp， | $\begin{aligned} & 268 \\ & 341 \end{aligned}$ | 1．Spmpegitla mux， | 9.4 | 1．Aivarpas johyshang ．
 2．Polmrialdua artorniz．
 3．Bricunits muptel
 1．Guutonaracui latus．
 5．Truzh yeamlar ymittl， | $\begin{aligned} & 145 A \\ & 150 \\ & 189 \\ & 146 \\ & 280 \end{aligned}$ |
| III．Rosstuma （19）specief） | 1．Dathyderica fitatriatius，
 2．Auluculye（racguluris， | $\begin{gathered} 34 \mathrm{~B}_{1} 24 \mathrm{I} \\ 60 \end{gathered}$ | 1．Lamagizatla gigxt，
 2．Polytonias phítippinth ले
 3．Cotoromarphit meprri，
 4．Creteromorpkia theofeleder，

 6．Crateroatorghar tamida，
 7．Aulochonetikx， | 198
 190
 192
 19.4
 214 | 1．Rosoclla antarction，
 2．Acuathrawna innesuidaria，
 3．Arenthascue dubius，
 4．Thuthymorus afltatus，
 5．Bith whonss zpinosak－－
 6．Bachipdorus bacilife：
 7．Nhabilinatioptua toppris，
 8．Aufarlune cylladries，
 9．Autocolyziompularia
 10．Guifodalge tencra
 11．Burypleymu ョariculate， | |
| 1V．HYazonkMatize
 （21 Speciex）， | 1．Hyatonema（Syplocatox） ajectam．

 thanmini，
 1．Honlonewa fisylom（yu）
 itcyectum．
 4．In utonomaluaifionicum，
 5．If nilonemia moleatum；
 i．Hyafarme ple，
 万．Pullopegon amidous． | | | | | |
| Spreies of Lymacinit， | 14 | | 明 | | 93 | |
| DICTYONLSA－
 Y．EAhuertye
 （4）Species）． | 1．Niamkars， | 86 | 1．Fiurria aceat．
 9．Elarm davigera，
 3．Flamion＝1
 4．Farreid， | $\begin{array}{r} 2 i .907 \\ 194 \\ 93 \\ 42 \end{array}$ | 1．Firerasicea，
 2 Narter ap， | 170A 1855.147 |

Table VI.-continued.

| | NOH\%1 TEMPERATE ZONE: | | THOPLCAL; 7ONE. | SOUTII TEMPERATK ZONE, |
| :---: | :---: | :---: | :---: | :---: |
| VI. Entitine
 (6species). | 1. Idstogdlu decona, | Station. | | |
| VII. AELETHOsiai (2 sperios) | 1. Aytircalliata boxysk | 56 | 1. Aplimocultiota bocoged; $\left\{\begin{array}{r}24,34\} \\ 314\end{array}\right.$
 | |
| VIII. Coscisoponithe (3 Speris), | 1. Chanelamasip., | 56 | 1. Crouchemur tig, - 23 | 1. Chomilumina huarlla, 145a
 2. Chowatunaa uncinatam, 17, |
| IX. Tueromatims (5speriey)- | | | | 1. Hemetinuthe sp, , 248s |
| X. Mzasimokpoxarne (3 specten). | 1. Dactylocatye patella*. | 56. | 1. Mytiariat collorgathow, $\left\{\begin{array}{l}21,192, \\ 1940\end{array}\right.$
 9. Autoesatio =luclil, . 193, 194 | |
| | 1. Dictyouine, , | 2985 | 1. Mectromines * $\left\{\begin{array}{l}102.881 \\ 343\end{array}\right.$ | 1. Dietyonibe, - - 986 |
| Specier of Distyoninn, | 6 | | 19 | 6 |
| Specios of Hexactimellita, | 30 | | 45 | 1. Hexactinellin, , 169 |

TABLE VII-Distribution or the Hexactinellida of the Challenger Collectmon in the Northern and Southern Halves of the Thopical Zone.

It may be seen from the above that in the north temperate zone, out of 76 localities which were explored with dredge or trawl, only 11 yielded Hexactinellida. In the tropies, out of 99 dredgings or trawlings 22 were snceessful in the discovery of Hexaetinellida. In the south temperate zone, ont of a total of 101 dredgings or trawlings, 25 localities yielded Hexactinellids. Expressed in percentages the results are as follows :-

It is thus evident that the north temperate zone is by far the poorest in localitics yielding Hexactinellids, and further that not the tropical, but the south temperate zone fumished both absolutely and relatively the greatest number of Hexaetinellida.

The statistics are somewhat different when we consider not the number of localities, tut the number of Hexactinellid species. In this connection we sec that

| 99 | ${ }^{\prime}$ | " | tropical | n | 45 | | $=45 \cdot 4$ | " |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101 | \% | " | south tamperate | " | 36 | | - 35.6 | |

The tropics are thas richer in species than even the south temperate zone.
In regard to the proportion of Hexactinellid localities in the entire northem and sonthern liemispheres, considered in reference to the total number of dredgings and trawlings, the statistics show that in the northerm hemisphere out of 126 dredged and trawled localities 22 yielded Hexactinellids, and in the southern hemisplere ont of 150 dredged and trawled localities 36 yielded Hexaetinellids. The percentage proportion for the northern hemisphere is thus $17^{\circ} 4$ per cent, and $24^{\circ} 0$ for the southern hemisphere, so that the latter contained many more Hexactinellid localities than the former.

The total number of species found in the north hemisphere was thirty-four, while sixty-six were obtained in the south. If these numbers be collated with the number of dredged and trawled localities in each hemisphcre, we have out of 126 searches in the north 27 per cent, as ngainst 44 per cent. out of the 150 in the south. Thus the south hemisphere is seen to be about twice as rich in Hexactinellid species as the north.

Of the 50 dredged and trawled localities in the north tropical zone, 11 yielded Hexactinellida, and the number is the same for the 49 localities in the south. This, therefore, gives for the north tropical zone a percentage proportion of 22 per eent., as against 22.3 per cent. for the sonth tropics. The above noted important difference in localities yidding Hoxactinellids in the north and south hemisphems does not therefore hold true in regard to the tropies.

The proportions aro different when the diundance of species in the north and south tropies is taken into consideration.

The number of species found in the north tropical zone amounts to 18 , as rgainst 32
in the sonth. And since in the northern region 50 localities were explored with dredge and trawl, and in the sonth 49 localities, the percentage proportion for the formor is 36 per cent, as compared with $65 \cdot 3$ por cont. for the latter. The south tropical region thus considanaly exceeds the north as regards the abmalance of species.

And if in the same way we compare the two temperate zones in relation to the abundance of Hexactinellid localitics and species, the northem region shows, when compared with the sonthern in regard to localities, $14 \cdot 4$ per cent. as against 24.7 per cent., and $26: 3$ por cent. as ugainst $35 \cdot 6$ per cent. in regard to the number of species.

There is thus a much greater abundance of Hexactinellids in the south temperate than in the north temperate zone, which is doubtless in part referable to the mach greater extent of occau in the former.

In regard further to the distribution of the subdivisions in the different zones, a review of Table VI. yields the following results :-

| a. Lymacina | (In the north tempernte zone, | | | | | | 14 species. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In thin tropies, | , | | | | . | 26 | , |
| | (In the south tempente wone, | | | | | | 29 | " |
| | Thi tho north temperate zone, | | | | | | 6 | |
| 6. Dictyonima | In the tropics,. | | | | | - | 19 | " |
| | In the south temperate zone, | | | | | | 6 | |

In relation to the total number of dredgings and trawlings the pereentage proportion stauds as follows :-

| a. Lssaucia | $\left\{\begin{array}{l} \text { In the north temperate zone, } \\ \text { In the tropice, } \\ \text { In the south temperate zouc, } \end{array}\right.$ | | - | | | 184 | cent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | \% | | | 26.3 | , |
| | | | - | . | | 28.7 | " |
| b. Dictyonina | In the north temperate zone, | | | | | 79\% | " |
| | In the tropices, | | | | | 19.1 | " |
| | In the south tomperate zone, | | | | | $5 \cdot 9$ | " |

It is thus evident that throughout the Lyssaciua preponderate, especially in the south temperate zonc, where they are almost fivo times as numcrous as the Dictyonina, while they are more tham twice as abundant in the north fomperate zone, and proponderate by at least 7 per cont. in the tropics.

In regard to the abundance of Lyssacina in the different zones, it is evident that the north temporate zone is considerably poorer than the tropical, and that the latter is excelled by the south temperate zouc.

The relation is quite differont with the Dietyoniua, of which the south temperate zone contains the fowest, while the northern region a few more, and the tropics a relative abundance.

If the Lyssacina of the northorn hemisphere be contrasted with those of the south,
it is seen that 25 species are foumd north of the equator, as against 47 to the south, while of Dietyonina 18 belong to the north, and 20 to the sonth hemisphere.

And since in the north hemisphere there were 126 drelgings of trawlings, as against 150 in the south, the percentage proportions for 100 dredgings or trawlings are as follows:-The Lyssacina occurred in the north hemisphere in the proportion of 19.8 per cent., as compared with 31.3 per cent, in the south; the Dictyonina are represented in the north bemisphere by 10.3 per cont,, as against 13.3 in the south.

The absolnte number of Lyssacina found in the north tropics was 11, as compared with 18 in the south. And if the number of dredgings or trawlings in the north and south tropics are taken into consideration, the percentage proportions stand as follows22 per cent, in the north tropieal zone, and 367 in the south.

Of Dietyonina 7 species were found in the north tropical zone, as against 14 species in the south. And this expressed in percentages of dredgings and trawlings means 14 per cent. for the north tropies and $28^{\circ} 6$ for the south.

If we now pass to the consideration of the several families, it will be seen that most of them are represented in all the three zones, though generally in very varying abundance. It is noteworthy that the Euretidee and Mreandrospongide are wholly absent from the south temperate zone, while the northern regiou cxhibits a similar absence of Tretodictyidæ, and only one representative of all the other families of Dietyonina. The tropies on the other hand include representatives of almost all the families, and one at least from among the Asconematidx and Coscinoporides.

Whilo the Euplectellide are represented by several forms in all the three zones, the north temperate zone, which contains the genus Euplectella itself, yielded no Holascida, which ocour both in the tropies and in the south tomperate zone. It is a striking fact that the Asconematidx, which oceur somewhat abundantly in the south tenperate zone and likewise in the north, are represented in thie tropics only by a single species. The Rossellidæ oceur in considerable abundance in the tropics, and in espocial abuedance int the south temperate zone, but are represented only by one species in the northern region.

The Hyalonematidæ exhibit a tolerably uniform distribution through all the throe zones, with a slight preponderance in the tropics.

The tropics are especially rich in Farreidre and Euretidee, to which have to be added two species of Melittionider, sovoral Tretodictyide, and two species of Marandrospongite, a distribution in striking contmst to that of the two temperate zones, in which these families either do not occur, or are represented only by a single species.

A more detailed survey of the genera and species shows that the species of Fuplectelle oecur only in the north temperate zone and in the tropies, being apparently absent in the southern region. Euplectella aspergillum and Euplectelle crassistellata appear to be tropicad, while Erplectella nodose was confined to the north tenperate zone, nad Euplectclla suberea occurred in both these regions.
(8OOL CHALL. EXP.-PAMT LIIL-1887.)

The genus Holascus is especially represented in the south temperate zone, where three species occurred, while the tropies only yielderl one species, and the north temperate zone none at all. Of the two knomn species of Mulucosacens one was found in the tropics, the other in the south temperate zone. In the same way of the two Tegerine, the one, Taegerice pulchas, oceured in the south tropies, and the other, Walteria flemmingii, in the south temperate zone.

In regand to Asconemntide, Aulascus jolenstoni was captured in the south temperute zone', Sympagella mux in the north tropics, and Polyrhabelus oviformis and Balanites pipette in the south temperate zone. Of Caulophacine, Caulophucers latirs was found in the south tomperate zone, the other species, Carlophacus elegans, far removed in the northern region, and finally Trachycaulus gurlitti in the south temperate zone.

Of the genus Rossella, the only species obtained on the Chrillenger Expedition, Rossella antaretica, was entirely confined to the south temperate zone, where it was found at four different localitics. In regard to the two species of Acenthescus and Bathydorus, two at least belong to the fauna of the south temperate zone, while Bethydorus fimbriutus oceurred at two localities in the northern region. Rhabdocatyptus was represented by one tropical species and by a secoud in the south temperate zone. It seems a notewortly fact that all known species of Crateromorphe were found in the tropies, while Aulochone was represented by one species in the tropics and by another in the south temperate zonc. Avloculy.e inreguleris appears to be widely distributed, since it was found both in the borth and south temperate zones. The peeulinx forms Ceulocalyx tener and Euryplegma auriculare belong to the south temperate zone.

Of the species of Hyaloneme, which were somewhat uniformly distributed in all the three zones, several were found in two zones, viz., Hyalonema (Stylocaly,c) depressuns both in the tropics and in the north temperate zone, and Hyalonema (Stylocalyx) clegans both in the tropics and in the south temperate zone. The species of Pheronema fonnd by the oxpedition belong to the tropics, the two specios of Poliopogon to the tempernte zones (Poliopogon amadou in the borth, Poliopogon gigas in the south), while Semperella schultsei was tropical.

Farrect ococe ocenred predominantly in the tropies, and Ferrea clavigerce exclusively so, while undefined species of Farvea were found in all three zones, All the five species of Eurcle obtained on the expedition were tropieal, while the benutiful Lefroyella decora occurred in the north temperate zone.

Aplerocallistes bocagei occurred both in the north temperate and in the tropical zone, but Aphocullistes ramosus was found in the latter alone.

Chonelasma lamalle and Chonelasma uncinatum ocarred in the south temperate zone, and undefined specimons of the same genus in each of the two other zones.

The tropios yielded Hexcectiaclla late, Cyrtanlon, Fieldingice, and Selorothalmmes, while in the south temperate zone only an undefined specimen of Hexcoctinelle was found.

The only representative of the genus Dactylocalys procured by the Challenger Expedition was found in the novth temperate zove. On the other hand Myliusia callocyathus and Aulocystis sittelii were found in several localities in the tropics.

I have discussed in some detail the topographieal distribution of the Challenger Hexactinellida, hecause I believe that the uniformity of the exploring and collecting methods, ns well as the wide oxtent of the exploration, make the results of great valuc.

In estimating the number of speeies obtained by the Cliallenger in different localities, it is instructive to compare the statisties with those which are afforded us by the prolonged and enthusinstic industry of Dr. Döderlein, who made during his lengtliened residence in Japan a collection of Hexactinellids, partly by purchase in Enoshima, and partly by his own dredging in Misaki Bay near Tokio, which was also explored by the Challenger. The results of his explorations have been described in detail in this Report along with the Challenger material. His collection included in all 16 species :-

1. Euplectelle oweni, Marshall, dry.
2. Acanthasous cactus, F. E. S., dry.
3. Rhabidocalyptus mollior, F. E. S., dry.
4. Civateromorpha meyeri, Gray, dry.
5. Hyalonema sicholdii, Gray, dry.
6. Farrec occa, Carter, well preserved in spirit.
7. Farrea vosmaeri, F. E. S., dry.
8. Farrect sollasii, F. E. S., dry.
9. Periphrayella eliss, Marshall, dry and well preserved in spirit.
10. Aphocallistes bocuyel, Wright, in spirit.
11. Aphrocallistes ramosus, F. E. S., well preserved in spivit.
12. Aphroeallistes rastus, F. E. S., dry.
13. Chonelasma doclerleinui, F. E. S., well preserved in spirit.
14. Chanclasma calyx, F. E. S., dry.
15. Hexactinella tubulost, F. E. S., dry.
16. Hexactisella cyuthus, F. E. S., dry:

On the Challenger Expedition three soundings were made in the Bay of Misaki, at Stations 232, 236 and 236a. Station 232 yielded, from a depth of 345 fathoms, several spocimons of Hyalonema (Stylocalyx) aqertum, and Station 236, from a depth of 775 fathoms, a fragment of an undefined species of Dietjonina. In the cursory exploration of the Challenger only two Hexactinellida were thus obtnined at the shme loeality where the prolonged search of Dr. Dödorloin was rewarded by finding sixteen species. It is further of interest that among these sixteen species, the spocies found by the Challenger-Hyalonema (Stylocalyx) ajertun-is not included, though it
oceurs in a smaller collection of Hexactinellida dredged by Dr. Hilgendorf at the same locality, and also graciously placed at my disposal. Of couse one cannot conelude from this single instance that at all the localities explored on the Challenger Expedition, eight times as many species would have rewarded a more prolonged exploration, but the facts above commmicated are calculated at lenst to convey an impression of the relatively small proportion of the really existing Hexactinellid species that rewarded the search of an expelition so splendidly eqnipped and successfully conducted as that of the Challenger. And if one further considers that in spite of the large number (276) of dredgings or trawlings undertaken, immense mariue regions, especially the North Arctic and the greater part of the Indian Ocean, were hardly tonched upon, and that in many of the regions traversed only sample scarches were made, one cannot avoid the conviction that, in spite of the relatively important increase of knowledge obtained by results of the Challenger Expedition, only a small percentage of the really existing Hexactinellid species have as yet been discovered.

BATHYMETRTOAL DISTRIBUTION.

IIISTORY.

In regard to the hathymetrical distribution of Hexactinellida, Marshall ${ }^{1}$ gave in 1875 the following summary of the few results then available:-

| Species. | | Depth in Fathoma. | Autharity, |
| :---: | :---: | :---: | :---: |
| Pliexmema (Holtenix) carpenteri, | \cdots | 650 | Wyv. Thomson, |
| Inytome | - . | 83 | Wyv. Thomson. |
| Aphiraralliden bucayei, | \bigcirc | 700 | Wyv. Thomson. |
| Sympagella nux, : | - | 100-120 | Pourtales. |
| Holtomia prorrtatesij, O. Schmilt, | | 150-333 | Pourtalis. |
| Farrea facunda, O. Schmidt. . | | $130-450$ | Pourtalcs. |
| Dinctylocalye crispus, O . Schmidt, | \bigcirc | 270 | Pourtales, |
| Habmolictyam speciosom, . | - | 83 | Quoy and Ginimard. |
| Smpyrella achalted, \rightarrow. | 1 | 200 | Ludeking. |

This list was extended by O. Schmidt's ${ }^{7}$ report upon the Hexactinellida collected by A. Agassiz in the Gulf of Mexico, especially near the Lesser Antilles. This fist, retaining O. Selmidt's nomenelature, is given on the next page.

From the above it will be seen that the depth varied from 100 to 2410 fathoms, with the exception of the record of Cystispongict, said to have been found near Iukatan at a depth of 20 fathoms. On this very divergent number of fathoms much weight must not be laid, since there is a possibility of error or of misprint, all the more probable since at two other localities the same species was found at depths of 136 and 292 fathoms. Leaving this divergent instance ont of account, we get from Alexander Agassiz's bathymetrical statistics an average of about 500 fathoms, while 100 fathoms is the minimum depth at which ruy form was fonnd. Withont attempting to gather up all the seattered reports as to depths at which single Hexactinellid forms were fomd at varions localitios, I shall content myself with noting that Dr. Dödorlein ${ }^{2}$ found in the Sagami Bay, Japau, various Hexactindlids (especially Aplooccllistes, Farree, and Hyalonecmue, at depths of 80 to 200 fathoms, It is also necessury to note some reports which havo recently appeared in the results of the Ereueh Expeditions of the "Thlisman." and "Travaillenr," by M. Filhol ${ }^{4}$ and M. Perricr: ${ }^{\text {a }}$ According to these Phoronema wore dredged from
t Marshall, Z iteclir, f, wiss, Zool, Did. xxv. Supplement, p, 149.

[^118]depths of 600 to 2200 metres, and one Pheronema fragment from 4789 metres. Asconema setubalonse was dredged from a tepth of 410 metres, and A_{p} hrocallistes locagei from 860 to 2200 metres. At p. 278 of his work M. Filhol notes:-"Les Hexactinellids peuvent être considerées comme de véritables habitants des grands fonds." And Edounrd Perrier gathers $u p$ the results on p. 244 of his work in the following words:-"A"ll large des eottes de France, de Portugal et d'Afrique, c'est à un peu moins de 1000 mètres que Ton commence à rencontrer les Pherouema et les Aphrocallistes. Ces éponges sont tout à fait communes de 1000 ì 1500 mètres, et s'associent alors aux Hyalonema. A partir de 1500 mètres elles deviennent rares et sont remplacées jusqu'a 2500 mètres par les Euplectelles. Aux profondeurs plus grandes les éponges sont moins communes, et sont surtont reqrésentées par les Farrea. Ainsi les Hexactindlides elles-mêmes, qui sont les vraies éponges des grands fonds, se maintiennent dans les parties supéricures de la zone abyssale."

BATIIYMETRICAL DISTRIBUTION OF THE CHALLENGER HEXACTINELLIDA.

In order to afford a ready survey of the main results of the Challenger Expedition in regard to the bathymetrical distribution of the Hexactinellida, I have compiled Table VIIL, ill which the horizontal divisions mark out intervals of depth of 100 fathoms each from 100 to 1000 fathoms, and of 500 fathoms cach from 1000 to 3000 fathoms, while the vertical columns correspond to the four families of Lyssacina, and the two main divisions of Dietyonima, the Uncimataria and Incrmia.

This table shows distinetly that Hexactinellida oceur in varying abundance only from about 100 (more exactly 95) up to 3000 (more exactly 2900) fathoms.

Thus the previously determined character of the Mexactinellida as specifically, and in fact exclusively, deep-sea forms is indubitably established, and the maximum depth previously known (2410 fathoms aceording to Agassiz) is execeded by several hundred fathoms, with a maximum of 2900 .

In order to express clently the bathymetrical distribution of the Hexactinellidn in the different oceans, it is convenient to tabulate not only for the whole group, but also for the several divisions, the statistics of depth and abundance, both in their absolute and percentage relations. This is done in the following table:-

TABLE VIII.

| $\frac{1}{2}$$\frac{2}{2}$$\frac{3}{4}$$\frac{1}{4}$$\frac{1}{4}$ | No. of Drodghata of Trawhige | | | Buplecteilide | | $\frac{1}{8}$ | A=cosemation | | | Rosseminiz | | | $\frac{\text { d }}{\frac{1}{H}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\frac{\frac{1}{5}}{\frac{0}{6}}$ | | $\begin{aligned} & \frac{5}{9} \\ & \frac{1}{4} \\ & \frac{1}{4} \end{aligned}$ | | | | | | 塞 | | | | |
| 1t093: | 42 | \cdots | . | | | | | | | | | | |
| $\begin{gathered} 9510 \\ 100 \end{gathered}$ | 3 | 1 | ± 2 | $\left\{\begin{array}{l} \text { Eaptevithe } \\ \text { 4iphoithem, } \end{array}\right.$ | 85 | 909 | | | | Pdylontues patitupinausion Crofriominzthas matyers | | $\begin{aligned} & 15 \\ & 66 \end{aligned}$ | $\begin{aligned} & 109 \\ & 4 \end{aligned}$ |
| $\begin{gathered} 101 \text { 10 } \\ 200 \end{gathered}$ | 02 | 5 | 192 | | | | | | | Rozellas anifordion,
 Lavumineuta
 Por $\tilde{y}^{-\mu / 2 m}$
 Potydophan 10.tibpüsuasis. Cratorvanary ina thicicitorts जnezraty.
 Defhyndurua atolhatas, | | $\begin{gathered} \left\{\begin{array}{c} \frac{127}{127} \\ 100 \end{array}\right. \\ 120-140 \\ 129-140 \\ \frac{192-140}{129-110} \\ 140 \end{gathered}$ | 1169 135 151 114 109 102 148 102 307 |
| $\begin{gathered} 201 \text { ta } \\ 390 \end{gathered}$ | 8 | + | \cdots | | | | | | | | | | |
| $\begin{gathered} \text { 301 to } \\ 400 \\ \hline \end{gathered}$ | 15. | 7 | 53.9 | 1 | | | Anlienend jok내ำดl, | 310 | 145 | Ihabilocalijptas racki.
 Acanthasans dubries, Condoxumaryinn tawille : | | $\begin{aligned} & 400 \\ & 400 \\ & 380 \end{aligned}$ | $\begin{gathered} 310 \\ 7310 \\ 19 \pm 4 \end{gathered}$ |
| $\begin{gathered} 40120 \\ 5000 \\ 500 \end{gathered}$ | 11 | 6 | 345 | $\{$ | | | | | | Auloatam MWuns. . | - | 500 | 211 |
| $\begin{gathered} 50144 \\ 600 \end{gathered}$ | 10 | 5 | 50 | $\left\{\begin{array}{l} \\ \text { Eupzectoita } \\ \text { Euberva, } \end{array}\right.$ | 600 | IV. | | | | Acrathasmes. jrassultaria, Finsadia. antanctita, A ulochure cyliadriou, | | $\begin{aligned} & 5050 \\ & 500 \\ & 000 \end{aligned}$ | $\left.\begin{array}{r} 1481 \\ 330 \\ 177 \end{array} \right\rvert\,$ |

TABLE VIIL．－continued．

| Hyalomegatios． | | $\frac{\stackrel{~}{E}}{\frac{5}{5}}$ | Uschatataina： | | | $\frac{\frac{8}{5}}{\frac{\pi}{6}}$ | Ixemane． | | $\frac{\frac{1}{5}}{\frac{!}{5}}$ | | | 音 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Somperalta rochulter， | 95 | 290 | | | | | | | | | | |
| | $\left\|\begin{array}{c} 129-140 \\ 199-169 \\ 129-140 \end{array}\right\|$ | $\begin{aligned} & 192 \\ & 192 \\ & 193 \end{aligned}$ | Eurete． schuiritith， sompurt， cartori， farropinis， Hexactivelan tatc， Cyrtanton solutus， Frudingia lagettoides， | | $\begin{gathered} 102 \\ 129-140 \\ 129-140 \\ 129-110 \\ 129-140 \\ 129-149 \\ 129-110 \\ 124-140 \end{gathered}$ | $\begin{aligned} & 201 \\ & 992 \\ & 199 \\ & 199 \\ & 192 \\ & 192 \\ & 192 \\ & 192 \\ & 192 \end{aligned}$ | | $\left\lvert\, \begin{aligned} & 129140 \\ & 129-140 \end{aligned}\right.$ | $\begin{aligned} & 192 \\ & 192 \end{aligned}$ | Dictyoning，．． | 129－140 | 192 |
| | $\begin{aligned} & 315 \\ & 350 \\ & 390 \end{aligned}$ | $\begin{gathered} 299 \\ 199 \\ 24 \end{gathered}$ | Fitreas
 clanigurs， soderatamwns ctrrusff， Ajubrecithiste4 Farros manusaz， ofrot， Aithrinaticefes nociegri， | | $\begin{aligned} & 300 \\ & 300 \\ & 375 \\ & 375 \\ & 390 \\ & 390 \end{aligned}$ | $\begin{gathered} 1944 \\ 134 \\ 19 \\ 24 \\ 24 \\ 24 \end{gathered}$ | Mytiamits callopyathus， Aulongsts zicusia． | $\left\{\begin{array}{c} 3 m \\ 300 \\ 300 \\ 300 \end{array}\right.$ | $\begin{gathered} 194 \mathrm{~A} \\ 2 \mathrm{t} \\ 194 \mathrm{~s} \end{gathered}$ | | | |
| | | | Aphracollister bocolgo，
 Firreme明， Chenckisnata 5 J, Lefroyilla decara： | $+$ | $\begin{aligned} & \left\{\begin{array}{l} 120 \\ \frac{25}{450} \\ 450 \end{array}\right. \\ & 850 \\ & 150 \\ & 435 \end{aligned}$ | $\begin{array}{r} 34 \\ 343 \\ 93 \\ 23 \\ 23 \\ 23 \\ 23 \\ 38 \end{array}$ | | | | Dietyonike，．． | dis | 907 |
| | 600 | IV： | Chondianna
 Zamatios
 Ifencisuillat
 明， | － | $\begin{aligned} & \text { B50 } \\ & 550 \end{aligned}$ | $\begin{aligned} & 48 \mathrm{x} \\ & 148 \mathrm{i} \end{aligned}$ | | | | | | |

Thbie VIII-continued.

Table VIII-contimued.

This table reveals at onee the remarkable fact that a large number of loealities yielding Hexactinellids, and a rich ahundance of species oceurred in moderate depths of 95 to 200 fathoms, while the depths from 200 to 300 are quite without Hexactinellids, which become again moro abundant both in localities and species at depths from 301 to 700 fathoms, disappearing again in depths between 701 and 1000, and finally oceurring in moderate abundance lietween 1000 and 3000 fathoms.

If regard be first had only to the number of Hexactinellid localities and their percentage among the total number of dredgings and trawlings undertaken at the relative depths, the following table represents the bathymetrical statisties for successively large rauges of 500 fathoms:-

| Depth in
 Fathoms. | Number of
 Dredgings or
 Trawlings. | Number of
 Localitios with
 Hexactinellids, | Percentage. |
| :---: | :---: | :---: | :---: |
| $1-500$ | 105 | 19 | - |
| $501-1000$ | 29 | 10 | 18 |
| $1001-1500$ | 31 | 7 | $34 \cdot 8$ |
| $1501-2000$ | 35 | 7 | $2 \cdot 6$ |
| $2001-9500$ | 38 | 8 | 20 |
| $2501-3000$ | 33 | 6 | $21 \cdot 1$ |
| $3001-3500$ | 4 | 0 | $18 \cdot 1$ |
| $3501-4000$ | 1 | 0 | \cdots |
| | | | \cdots |

In the above summary one fact might possibly eause misunderstanding, namely, that the first region is noted as 1 to 500 , although it is well known that in the upper 94 fathoms no Hexactincllids whatever ocenr. If one excludes the dredgings or trawling not deeper than 94 fathoms, and regards the first bathymetrical region as 95 to 500 fathoms, then out of the total 63 dredgings or trawlings, 19 yielded Hexaetinellids, i.e., 30.2 per cent., which is a deeidedly larger figure than that given in the table, 18 per cent. It is thus seen that most Hexactinellid localitios were between the depths of 95 and 1000 fathoms, while boyond this the frequency gradually decreases, finally disappearing below 3000 fathoms.

If the number of species be considered in relation to the number of dredgings or trawlings at the various depths, it is convenient to follow the plan of the large Table VIII. (p. 456) and separate the region from 1 to 94 fathoms from that from 95 to 100 . and then to continue up to 1000 fathoms with ranges of 100 , and with ranges of 500 up to 3000 fathoms.

| Doptli in Fathoms. | Number of Dredgings or Trawlinga | Number of Localities with Hexactinellide. | Number of Species. | Percantage of Species in Dredgings or Trawlings. |
| :---: | :---: | :---: | :---: | :---: |
| 1-94 | 49 | | 管 | |
| 95-100 | 5 | 1 | 4 | 80 |
| 101-200 | 20 | 5 | 30 | 77 |
| 201-300 | 8 | | * | |
| 301-100 | 13 | 7 | 14 | 108 |
| 401-500 | 11 | 6 | 6 | 54.5 |
| 501-608 | 10 | 5 | 7 | 70 |
| 601-700 | 9 | 4 | 8 | 88.9 |
| 701-800 | 3 | \ldots | \ldots | +t+ |
| $801-900$ | 3 | \% | * | \cdots |
| 901-1000 | 4 | 2 | 2 | 50 |
| 1001-1500 | 31 | 7 | 14 | 45.2 |
| 1501-2000 | 35 | 7 | 14 | 40 |
| 2001-2500 | 38 | 8 | 10 | $39 \cdot 4$ |
| 2501-3000 | 33 | 6 | 4 | 12.4 |
| 3001-3500 | 4 | \ldots | \ldots | , |
| 3501-4000 | 1 | ... | ... | ... |

From this summary it will be seen that at depths from 95 to 200 fathoms the probability of a dredging including a Hexactinellid is somewhat large (77 to 80 per cent.), and similarly in depths from 301 to 700 fathoms. Whether the negative results of the Challeuger dredgings or trawlings for the depth 201 to 300 and 701 to 900 are really so striking as they at first sight appear, I shall leave as a moot point; the very small absolute number of dredgings or trawlings in these depths must obviously be taken into account.

Within the zones from 901 to 2500 fathoms the abundance of Hexactinellida appears to remain approximately constant at from 40 to 50 per cent. Between 2501 and 3000 a marked decrease in the number of species (to 12.4 per cent.) takes place, while at depths beyond 3000 fathoms no Hexactinellida at all were dredged.

If a tabular smrey, fike that given above for the Hexaetinellida as a whole, be taken of the several subdivisions, the following statistic shows the relative distribution in the first place of Lyssacina and Dictyonina.

From the following table also it will be seen that at the slight depth of 95 fathoms only Lyssacina were dredged, and that Dictyonima were unrepresented, but that at depths from 101 to 1000 fathoms Dietyonina ocem in equal or slightly greater abundance.

On the other land the Dietyonina are far excelled by the Lyssacina in all depths beyond 1000 fathoms.

| Depth in Fathome | Number of Dredgings or Trawliage. | Number of Localities with Hexactinellids | Lyssacina, | | Dictyonina. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Number of Specier | Percentage in Dredgings or Trawlings. | Number of Species. | Percentago in Dredgings or Trawlings. |
| 1-94 | 42 | | | | ** | \cdots |
| 95-100 | 5 | 1 | 4 | 80 | | |
| 101-200 | 26 | 5 | 9 | $34 \cdot 6$ | 10 | $38 \cdot 5$ |
| 201-300 | 8 | ... | \ldots | | - | |
| 301-109 | 13 | 7 | 7 | 53.9 | 7 | 53.8 |
| 401-500 | 11 | 6 | 1 | $9 \cdot 1$ | 5 | $45 \cdot 4$ |
| 501-600 | 10 | 5 | 5 | 50 | 2 | 20 |
| 601-700 | 9 | 4 | 4 | 44-4 | 3 | $33 \cdot 3$ |
| 701-800 | 3 | \ldots | ... | ... | - | \cdots |
| 801-900 | 3 | \% | " | 9 | \cdots | \ldots |
| 901-1000 | 4 | 2 | 1 | 25 | 1 | 25 |
| 1001-1500 | 31 | 7 | 10 | $32 \cdot 3$ | 4 | 12.9 |
| 1501-2000 | 35 | 7 | 13 | $37 \cdot 1$ | 1 | $2 \cdot 9$ |
| 2001-2500 | 38 | 8 | 13 | $34 \cdot 1$ | 9 | $5 \cdot 3$ |
| 2501-3000 | 33 | 6 | 7 | $21 \cdot 2$ | 1 | 3 |
| 3001-3500 | 4 | \ldots | +. | ... | ... | IT |
| 3501-4000 | 1 | ... | .. | ... | ... | ... |

If the number of species of both divisions be computed for bathymetrical regions of 500 fathoms, and withont reference to the first 94 fathoms, then the statistics read as follows:-

| Depth in
 Fathoma. | Number of Dredgings or Trawlings. | Lysacina. | | Dictyonina. | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Nimber of Species. | Percentage in the Dredgings or Trawlings | Number of Species. | Percentage in the Dredgings or Trawlings. |
| 95-500 | 105 | 21 | 30 | 22 | 31 |
| 501-1000 | 29 | 10 | 35 | 6 | 20.7 |
| 1001-1500 | 31 | 10 | 39.2 | 4 | 129 |
| 1501-2000 | 35 | 13 | $37 \cdot 1$ | , | 2.9 |
| 2001-2500 | 38 | 13 | $34 \cdot 1$ | 2 | $5 \cdot 3$ |
| 2501-3000 | 33 | 7 | 21.2 | , | 3 |
| 3001-3500 | 4 | . + | ... | \ldots | ... |
| 3501-4000 | 1 | \cdots | \cdots | ... | \ldots |

From the above this fact is distinctly evident that the Dictyonina show a much more rapid decrease of species downwards than do the Lyssacina. The percentage figures of the latter over the whole, from 95 to 3000 fathoms, vary from 20 to 37 per cent, while the percentages of the Dictyonina over the same range decrease somewhat
gradually from 21 to 3 per cent. It is therefore cvident that in general the Dietyouina live at much less depths than do the Lyssaciua, which are distributed with much groater uniformity over the entire bathymetrical range of the Hexactinellidu.

If the consideration of these relations be extended to the several families (subdivisions in the cuse of the Dietyonina), very remarkable differences obtain in regard to the four familics of Lyssacina. In spite of the alsolute smallness of the numbers, the differences seem striking enough to merit notice here.

In regard to the Euplectellide, including Euplectella aspergillum, which lives at a depth of 95 fathoms, the following table shows the distribution in regions of 500 fathous:-

| Depth in Fathoms. | Number of Euplectollide. | Percontage in tho
 Dredgings or Trwlings |
| :---: | :---: | :---: |
| $95-100$ | 1 | |
| $101-500$ | \cdots | 3 |
| $501-1000$ | 3 | $\cdots \cdot$ |
| $1001-1500$ | 5 | $16 \cdot 5$ |
| $1501-2000$ | 3 | $8 \cdot 6$ |
| $2001-2500$ | 3 | $7 \cdot 9$ |
| $2501-3000$ | 4 | $12 \cdot 1$ |

Euplectellids are thus widely represchted from a depth of 95 fathoms (Euplectella usperyillum) down to 3000 fathoms, and so far as an estimate with intervals of 500 fathoms is a guide they nppear to be distributed with tolerable wiformity at all depths. That no Euplectellids were found on the Challenger Expedition between 100 and 500 fathoms is probably accidental. It is an interesting fact that the only Enplectellid occurring at a depth of less than 100 fathoms, viz,, Euplectella asperyillum, belongs to those forms which, like the Dietyonina, exhibit a connected latticed framework.

Like the Euplectellidæ, the Asconematidæ are represented down to the lowest zone. The largest number of species oecurs at depths between 1501 and 2000 fathoms, and from that region the number decreases both upwards and downwards, as is shown in the following scale :-

| Depth in Fathoms. | Number of Asconematider. | Porcontago in tha Dredgiags or Trawlings |
| :---: | :---: | :---: |
| 101-500 | 1 | 17 |
| 501-1000 | * | . |
| 1001-1500 | 1 | $3 \cdot 2$ |
| 1501-3000 | 3 | 8.6 |
| 2001-2500 | 9 | $5 \cdot 3$ |
| 2501-3000 | 1 | $3: 3$ |

The Rossellide exbibit an entirely different distribution. The maximum number of species oceurs in the zone from 101 to 500 fathoms, whence it decreases very markedly downwards, while two forms were found at a depth of 95 fathoms.

| Depth in Futhims | Number of Nossellidar. | Percentage in the
 Dredgings or Trawlings. |
| :---: | :---: | :---: |
| $95-100$ | 2 | 40 |
| $101-500$ | 10 | 17.3 |
| $501-1000$ | 4 | 14 |
| $1001-1500$ | 1 | $3 \cdot 2$ |
| $1501-2000$ | 2 | $5 \cdot 7$ |
| $2001-2500$ | 2 | $5 \cdot 3$ |
| $2500-3000$ | 1 | 3 |

In contrast to the above, the Hyalonematidre again exhibit a more uniform distribution over the entire bathymetrical range. At a depth of 95 fathoms, a single member of this group (Semperella schulteci) was found, while in each of the successive zones of 500 fathoms three to six species occur, until the number sinks to one in the greatest depths, as the following scale indicates :-

| Depth in Fathoms | Number of Hyalonemntidat, | Percentage in the
 Dredgings or Trawlings. |
| :---: | :---: | :---: |
| $95-100$ | 1 | 20 |
| $101-500$ | 6 | $13 \cdot 4$ |
| $501-1000$ | 3 | $10 \cdot 4$ |
| $1001-1500$ | 3 | 9.7 |
| $1501-9000$ | 5 | 14 |
| $3001-2500$ | 6 | $15 \cdot 8$ |
| $2501-3000$ | 1 | $3 \cdot 3$ |

In regard to the Uncinataria alone, what has been noted in regard to all the Dietyonina is even more conspicuons, the maximmm number of species occurs in the bathymetrical zone from 101 to 500 fathoms, whence it decreases rapidly downwards to the smallest figures at the great depths, This is expressed in the following scale :-

| Depth in Fathoms. | Number of Ureinataria. | Percentage in the
 Dredginge or Trawlings. |
| :---: | :---: | :---: |
| $101-500$ | 15 | 20 |
| $501-1000$ | 5 | $17 \cdot 3$ |
| $1001-1500$ | 3 | $9 \cdot 7$ |
| $1501-2000$ | 1 | $9 \cdot 8$ |
| $2001-2500$ | \cdots | $\ldots \cdot 3$ |
| $2501-3000$ | 1 | $3 \cdot 3$ |

The Inermia, which only oecur in the lesser depths and even there only spazely, furnish the following scale :-

| Deph in Pathous. | Number of fintria. | Hercentage in the Drodginge or Truwlings |
| :---: | :---: | :---: |
| 101-500 | 2 | $3 \cdot 4$ |
| 501-1000 | T | |
| 1001-1500 | 1 | $3 \cdot 2$ |
| 1501-2000 | \% | \%\% |
| 2001-3500 | \ldots | \% |
| 2501-3000 | \ldots | \% |

Though the facts expressed above may seem to furnish somewhat scanty material for collating the bathymetrical range with the cliaracteristics of the several genera and species, I shall at least attempt to utilise the results of the Expedition in this direction.

In the genus Euplectelle the familiax Euplectclle aspergillwm was simply found as before near the Philippine Island, Zebu, at a depth of 95 fathoms, and therefore in comparatively shallow water; Euplectelle suberea occurred off the Portuguese coast at depths of 600 to 1090 fathoms, and also to the north-east of Bahia at a depth 1600 fathoms; Euplectelle nodosc occurred at a depth of 1075 fathoms near the Bermudas, and Euplectelle crussistellute, on the other hand, at the considerable depth of 2750 fathoms in Mid Pacific.

The fonr specics of the new genus Holasens frequent the greater depths, Soveral occurred in the South Indian Ocean between Prince Edward Island and the Crozets, others south-west of Anstralia, others near the Philippines, aud others again east of Monte Video, at depths varying from 1375 to 2650 fathoms. With an approximately similir range from 1375 to 2450 fathoms, two species of Malacosncous were procured in the Indinn Ocean to the west of the Crozets Islands, and in the Atlantic, west of Guinca. Tho two beatiful Tregerine, Tregeria pulchra and Watteria flemningii, were found in the Sonth Pacific, near the Kermadec and the Kandave Islands respectively, at the moderate depths of 620 and 630 fathoms.

In regard to the Asconematide, the genns Aulescus, with its single species Aulascus johnstomi (like the typical genus of the Asconematine, Asconemu itself, which was not obtrined on the Challenger Expedition) occurred at the comparatively slight depth of 310 fathoms, near Prince Edwand Island. The branched Sympayella max oeemred near the Capo Verde Islands at a depth of 1150 fathoms, while the two other Syupagelline, Polyrhabdus and Balanites, were found in the southern portion of the Indian Ocean at depths of 1950 and 1975 fathoms. The stalked Caulophacino were dredged from
(2OOL CHALH. EXT,-FAHT LHH.-188\%.)
still greater depths; the tivo species of the genus Cauloplacus itself occurring near the Crozets Islands and in the northern portion of the Pacific at depths of 1600 to 2300 fathoms, while Trachycoulus gurlittii was dredged in the Sonth Pacific from a depth of 2550 fathoms.

The Rossellidu were represented at the well-known locality of Euplectella aspergillum, off the Philippine Island, Zehu, at a depth of 95 fathoms, by Polyloplius philippixensis and Crateromorpha meyeri. The former also oceurred off the Sunda and Little Ki Islands at depths of 129 to 140 fathoms, ulong with two other species of Crateromorpha and the small Lanuginelle pupa; Rossella antarctica was found at similar depths in the South Indian Ocean near Prince Edward and the Kerguclen Islands; and one species of the genns Bathydocus (Bathydorus stellatus), which is otherwise characteristic of the greater depths, was found in the Magellan Strait at a depth of only 140 fathoms. Representatives of the gencra Aconthasous and Rhabdocalyptus oceurred along with a Crateromorphet, Rossella antaretica, previously found in somewhat higher bathymetrical regions in the Magellan Strait, two species of Aulochone, and the peculiar Euryplegma auriculere, near the Kermadec Islands, at depths of 300 to 600 fathoms; Aulocalyx iregularis was found at the greater depth of 1075 fathoms near the Bermudas, and at 1600 fathoms near the Crozets Islands.

The maximum depth as yct known for any Hexactinellid was that of the genus Bathydorus, 2900 fathoms. While Bathydorus spinosus occurred to the east of Prince Edward Island at a depth of 1600 fathoms, Bethydorts fimbriatus was found about 20° to the east of Japan at a depth of 2300 , in the middle of the North Pacific down as far as 2900 fathoms. In the middle of the South Atlantic, at a depth of 2025 fathoms, the peculiar siecies Canloedyx tener oceurred.

The Hyalonematid found in shallowest water was Scmperella scloultizi, which was found off the Philippine Island, Zebu, in 95 fathoms, at the Molncers, off Little Ki Island, in 129 to 140 fathoms. At the last mentioned locality two species of Pheronema were also found, while the Atlantic species Pheronema carpenteri ocemred to the south of Pernambico at a depth of 1600 fathoms. Of the two large species of Poliopogon, the one oceurred at a depth of 630 fathoms near the Kermadec Islands, the other to the sonth-west of the Camaries at a depth of 1525 fathoms.

There is a wide interval in the distribution of the different species of Hyalonema. While several are fornd at depths of 345 to 390 fathoms, most of them ocour below 1000, and thence down as far as 2550 fathoms, which is the depth attained by Iyalonema (Stylocalyx) elcyans.

The small but peenliar gemus Farrea is represented at very various depths. Some lorms oceur between 300 and 400, others not ahove 2600 fathoms. It is different with the closely allied and externally similar Emretida. The four different species of the genus Euretc itself were all proctred at the Moluceas, off Little Ki Island, from depths
of 129 to 140 fathoms, while the beautiful Lefroyellu decona was dredged at the Bermidas from a depth of 435 fithoms.

Aphrocallistes also occurs at very diverse depths. Some forms were found near thi Plilippines at 375 fathoms, and off St. Thomas at 390 fathoms, while others oceurrod off Ascension and St. Thomas at depths of 420 to 450 , and others finally at the Bermudas at a depth of 1075 fathoms. Among the Coscinoporide, the genus Chonelasma was represented at depths of 450,630 , and 1075 fathoms in the North Atlantic, the South Indian Ocean, and the South Pacific. Among the Tretodictyides the genus Mexcuctinella oceurred near Little Ki Island at a depth of 129 to 140, off the Crozet Islands at a depth of 550 fathoms. Cyrtaulon and Fieldingio also ocenrred only noar Little Ki Islnud at depths of 129 to 140 fathoms, while Sclerothamnus was found near the Banda Elands at slightly greater deptlis, dowu to 360 fathoms. Of the remarkable Mreandrospongide, Dactylocalyx was found below 1000 fathoms (1075) near the Bermudas. Myliusia eallocyathus, and Aulocystie sittelii, on the other hand, occurred at the comparatively slight depth of 129 to 140 fathoms off Little Ki Island, and at depths of 360 to 390 fathoms near the Bermudas and St. Thomas.

INFLUENCE OF THE NATURE OF THE GROUND.

It is necessary to consider in the first instance what kind of ground or bottom is favourable to the occurrence of Hexactinellids. For this purpose the different kinds of sea-bottom may be noted, along with the number of dredgings or trawlings on each ground. Those searches must then be noted which yielded any Hexactinellida, so that their proportion to the total number for each kind of bottom may be estimated.

Then the proportionate abundance of species on each kind of bottom must be collated with the number of dredgings or trawlings. In Table IX. (p, 470) the data for this purpose are given and the general results may be summarised thus :-

| Nature of the Dottom. | Number of Dredgings or Trawlings | Number of Dredgings or Trawlinge with Hexactinellids. | Percentage with Ifexactinellids. | Number of Species. | Percentage of Sprecies. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I. Smi, | 22 | 5 | 22.7 | \% | 92.7 |
| 2. Gravel anil stones, | 3 | 9 | 66.6 | 2 | 66.6 |
| 3. Hind ground, | 17 | | 235 | 6 | 35.3 |
| 4. Coral mud, | 16 | 2 | 125 | 7 | 13.8 |
| 5. Voleanic mud, . | 34 | 4 | 16.6 | 14 | $58 \cdot 3$ |
| 6. Green mud, - | 17 | 1 | $5 \cdot 9$ | 1 | $5-9$ |
| 7. Reed mud, . | 11 | 1 | 9.1 | 2 | 18\% |
| 8. Ind (inclating hine mus), | 53 | 12 | 22.6 | 32 | $60 \cdot 4$ |
| 9. Red clay, - | 39 | 6 | 154 | 11 | 28.3 |
| 10. Globigerima poze, | 53 | 10 | 19 | 13 | 94.5 |
| 11. Pteropoid ouze, | 10 | 3 | 30 | 7 | 70 |
| 12. Pauliolarian ouze, | 4 | 9 | $\boxed{60}$ | 9 | 50 |
| 13. Diatom oozr, - - | 4 | 3 | 75 | 9 | 225 |

From this summary it is seen that the suallest number of localities yielding Hexactindlida ocenrred on those bottoms which are described as green mad and red mud. A somewhat small number were also dredged from Coral mud, volcanic mid, and red clay, and then from Globigorina ooze and mud (incloding blne mud), on all of which the percentage of Hexactinellid localities is over twenty-two. The same may be said of the sindy and rocky ground. The localities on Ptcropod ooze were somewhat more abundant, viz,, 30 per cent., and on Radiolarian ooze yet more so, viz., 50 per cent. The lighest numbers refor to gravel and stones, 66.6 per cent, and to Diatom ooze, 75 per cout,

The statisties are somewhat different when the number of spocies found on the different bottoms is taken into considcration. Here again green mod and red mud yielded the smallest percentage of forms, viz., 5.9 per cent, and 18.2 per cent, rospectively. Then
follow sand with $22 \cdot 7$, Globigerina ooze with $24 \cdot 5$, and clay with $28 \cdot 2$ per cent., while hard ground yielled $35 \cdot 3$ per cent., Coral mud $43 \cdot 8$ per cent., and mud (including blue mud) as much is $60^{\prime} 4$ per cent. Radiolarian oozo yielded 50 per cent., gravel and stones $66^{\circ} 6$ per cent., Pteropod ooze 70 per cent., and Diatom ooze as many as 225 per cent.

As one would naturally expeet, the forms equipped with root tuft were principally found on soft muddy ground, ou the various kinds of mud and ooze, and on red clay, while those adherent to solid bodies occurred partly on liard ground, gravel and stones, partly also on mud, both voleanic and Coral, on Pteropod ooze and on sand, being in such cases usually found attached to projecting stones or other solid bodies.

Most of the Euplectellidæ, which possess a developed basal tuft, oceurred on mud (including blue mud), several also on Globigerina and Diatom ooze, and one species on each of the following-Coral mud, red clay, and Rauliolarian ooze. Of the firmly attached Trogerinee and less definitely classifiable forms, several occurred on Coral mud, one form on voleanic mud and another on red clay.

Of Asconomatidæ threc species occurred in Diatom ooze, two in Globigerina ooze, and one species on each of the following-sand, volcanic mud, and red clay.

The Rossellidx were represented on very diverse bottoms, the majority (nine species) on sand, several (three on each) on red clay and voleanic mud; two on sand, two on hard ground, and two on Diatom ooze ; one on gravel and stones, and another on Coral mud.

The Hyalonematidx (Amphidiscophora) were altogether absent from sand, gravel and stones, Coral mud, and Radiolarian ooze; while hadd ground, green mud, red mud, and Diatom ooze, each yielded one species ; volcanic mud and Pteropod ooze cach two ; red clay, three; mud (including bhe mud), six ; and Globigerima ooze, the majority, mamely, cight.

In regard to Dictyonina, the Uncimataria were altogether absent from green aud red mud; one species occurred on each of the following-gravel and stones, red elay, Globigerina ooze, Radiolarian ooze, and Diatom ooze; two were found on sand, threc on liard ground, and the same number on Coral mud, fon on Pteropod ooze, five on volcanic mud, and ton on mud (including blue mud).

Of the few Incrmia which were obtained by the Challenger, Coral mud and Pteropod ooze each yielded one, while volcanic mud and mud (including blue mud) each yielded two species.
table LX.-Retation of the Hexactingllida of the

| | Sanil. | Gravel ani 8tones, | Iand Gromid. | Coral Mach | Volcante \$unt | Green Mad. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Station | Station. | Station. | | $\begin{aligned} & \text { Wathria statiou. } \\ & \text { flewamagii, } 170 \mathrm{~A} \end{aligned}$ | Station, |
| $\begin{gathered} \text { Ancosinas: } \\ \text { This: }\{ \end{gathered}$ | Anluans joblastoni, 145 A | | | 4 | | |
| Rosertions: $\{$ | | Rogedla antarction, 150 | Audouthone oylindrica, 171 Acanthascus grosuluavia, 148a | Audocalyz integularis, 56 | Rowille anfarction, 149it Cruteramorphia trovida, - 104a Euryilequa, Antimlars, 170 a | |
| Aarimitscomiona.
 8. Hyadong. Matid. | | | PWimporos asadou an | | | 3 Sylonalye opertus, : $\quad 39$ |
| Uscrestaima | Dict youme,
 Aphrocalliste
 bocagei, 343
 $\$ 4!$ | Ewrete selvinititi, 201 | | | | |
| | | | | Datylowifure pathilit +56 | | |
| | 5 Localities 5.8 puries | 2 Localities. 2 Specian, | 4 Loculities G Sjeulet. | 2 Localitien.
 78 pectios, | 4 Lotalitics. 14 species. | 1 Incality. 1 Spectes |

Chatengel Collechon to the nature of the Bottoar,

| Hedi Mtud. | Dfud uniman Stuc. | Hed Clay. | Gioligerime Oozer. | Preropod Ouze. | Radiolarian Soze | Viatura-Ooze. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ccc} \text { Encploctella } & \text { Station } \\ \text { nulvreo, } & 121 \end{array}$ | Station.
 Dexactinimial, 169 Enurictella sutarea, 1V. a Titancut nellativa, 325 ridikit. 271 | | | Station | Station
 Eviptectella crabsistellata, 974 | Station Holasews $\begin{array}{ll}\text { findidate } & 177 \\ \text { potefatil, } & 157\end{array}$ |
| | | Cazopontacas elegnans, 241 | $\begin{aligned} & \text { Canlyphonus } \\ & \text { op, }-240 \\ & \text { (tart, }-883 \end{aligned}$ | | | |
| | | | | | | Eethynformt qumptas: 147 Aultratyz irregulatis, 147 |
| Pheronema sarpaiteri; 121 | | | | Styticative thwanont, 73
 Hyolonemaz foterest. | | Syinoatyz ctarigor. 147 |
| | | Dictyonine, $-\left\{\begin{array}{l}281 \\ 286\end{array}\right.$ | Thictyomine | | Farreid, , 272 | $\begin{aligned} & \text { Farसt } \\ & \text { a5, } \end{aligned}$ |
| | rallueswathur, 116 Auteryitil
 | | | Myduris calloeyathus, 94 | | |
| 1 Lorality, 2 sjpecies. | 19 B.omptitict. 32 \$pecies. | 6. Localition. 11 sprecies | 10 Looalitiens 1. Species. | 3 Lenalities
 7 Specie. | atacalitios 2 Specien. | 8 Lacalitirs. iSpecte日 |

TABLE X.-Survey of the Hexautinellida in the Challexger Cohlifotion, and of other sufficientio descheed Forms, with their Looalities, and the Number of Spectiens obtained,

Tame X-contiaued.

(ZOOL. CHALL EXF.-MART LIL.-1887.)

Table N-contintued.

Table X.-continued.

Table X-contivued.

Table X.-confinued.

Table N--continred.

Table X.-contimual.

Ltst of Spectis of hecent Iexactinemida ambanged Alphabeticaliny.

deurthamene cortise, in. gen, ot -ip., this Report, p. 148, 1887
dutiun, ps. gen. it sp., this Report, 15. 147, 1887
 1887
difusta ingmulionlum, Wyy, Thomson, Phil. Trans, elix., 1869
Alcyonclum aqpergil? 1862
corbiciloc, Bwblk., Mhil. Trans, , 1862
p platimosum, Blainville, Dict A Sci Nat., tom, Ix. p. 499 1830
". paluafum, Bwlk., Piil. Trans., 1869
th yeorimerni, Qnoy et Gaimard, Voyage de PAstrolabe, 1893
Any trikischsbipilearm hyulonezuatis, Ehrenberg, Monatsber. d. k. prenss Akad. I. Wiss, Derlin, 1, S51, 1867
Aphrocallieter hentric, Gmy, Proc Zool. Soc. Loni., vol, sxvi. p. 114, 1858
ut bocagei, Pers Wright, Quaxh Jomm. Mier. Sei., vol, x, p. 1, 1870
n Tamesus, n. लूh, this Report, p. 319, 1887
") vastes, n. 3p, this Eeport, p. 317, 1887
Aeroneman hentii, O. Sohmitt, Spang. Mecth, v. Moxico, p. 65, 1880
" entubalemon, Snv, Kent, Monthly Mins, Journ., D. 205; 1820
Adtanm johnelomi, to gen. et sp, this Roport, p. 118, 1887
Avilocalys irrepularis, I. gen. of 8 p , this Report, p. 174, 1887
dulochone ryliadrica, n. gen. et sp., this Report, p. 168, 1887
n. Mium, n. gen. et sp., this liqport, p. 171, 1887
Aulorystix grayil (Bwbk., spe), Proc, Zool Soc. Lund., P. 335, 1869
i. Sittchi (Marhhall, 日p.), Marsh. प. Meyor, Mritheii. Zool. Mus. Dresden, 1877
Aulodictyum rootiforwm, Marsh a Moger, Mithnil. Zool, Mms. Dresden, 1877
m focundum, O. Schmidt, Spong. Meerb. V. Mexico, In- 43, 1880
n intermeduan, Marah. in. Meyer, Mittheil. Zoul. Mus Dresden, 1877
\# moodewavil, Sav. Kent, Monthly Mier. Journ., 1870
Bolauiter vinctla, n. gen. et sp, this IEeport, p. 122, 1887
Batluylorise baculifer, D. gen. et sp, this Report, p. 154, 1887
fublriatus, n: gen, et sp., this Report, p. 151 1887
n epinosud, n. gen. of sp., Iltis Roport, p. 153 , 1887
" stellatas, s. gen. et sp, thils Report, p. 152, 1887
Culiplora, Gray, Am, ant Mag. Nat. Hist, ser, 4, vol. ix. p. 450 , 1872
Callisphacro grayi, Sav, Fent (ap.), Ann. anil Mag. Nat. Hist, see. t, vol. vi. p. 311. 1870
Cartevia Japonica, Gray, Proc. Zool. Soc. Lond., 1867, p. 540, 1867
Couloculys tener, n. gon. at ap, this Report, p. 172, 1887
Canlophactis defouse, in. gen. et sp., this Report, p. 136; 1887
latus, in gen. et sp,, this Renort, p. 124, 1887
Chouelatane calys, ni gen et sp, this Teprort, p. 326, 1887
dinderkeinit, it. gon. it $s p$, this Feport, p. 32t, 1887
". homutum, n. gen ef sp, thiil Feport, p, 393, 1887
" lamella, n. gen. et sp., this Report, p. 321 , 1887
Corlatella mectiona, Gray, Proc. Zoul. Soe Lond., p 530 , 1867
Graternmorpid meyeri, Gray, Amn. and Nag. Nat. Hist,, ser. 4, vol x. p. 110, 1872
" marrayi, 31. sp, this Report, p. 164, 1887
of Thieridderi, 1. P1., this Report, p. 164, 1887
.t turuiflo, it ip., this Report, p. 166, 1887
Cypthella futec, O. Sclmidh, Spong Muerb, v. Mexien, p. 46, 1880
tigrtantou sigricei, O. Schmidt, il gen., Spong. Meerb. v. Mexico, p. 58, 1880
.1 molutus, n. gen. et spl, this lieqort, p. 332, 1685
C'yatispongra superyteo, Q. Schmidt, spong. Meerb, v, Mexico, 1880
Buclylocalyn atorica, Wyv. Thomson, 1hii, Trane, vol. clix. p. 70t, 1865
is Bourertaukivi, Johnson, Proc. Zool. Soc, Lond. p. 255, 1863
(*) callocyathus, Wyv. Thomsen, Miil. Trans, vol, olix, p. 701, 1869
\Rightarrow crispus, O. Selmidt., Spong, Atlant. Gebiet, 1870
(1) Tedenpformie, Howorbank, Froc, Zook Soc. Lond., 1869, p. 69, 1869
imgalli, Gruy, Mnn. and Mige. Nat. Histi, aer. 4, vol. i, 1868
marandreacit, Bowerbank, Iroc. Zool. Soe. Lond, 1869, p. 69, 1869
". Maeomi, Dowerbank, Proc. Zool. Soc. Lomd., 1869, p. 65, 1869
.. patello, n. sp, this Report, p. 350 , 1887
" polyelisens, Bowerbank, Froc, Zool, Soc. Lond, I869, p. 96; 1869
" patularum, 0, Sehmidt, Spoug. Meerb, v. Mexico, 1880
" prattii, Bowerbank, Pbil Truns, vol. clii., 1869
" pumiceu, Stutchbury, Iroo. Zool. Soc. Lomd, 1841, p, 80, 1811
n futchburyi, Sollag, Jouru. Roy, Mier. Soc., vol. it. p. 22, 1879
" sulogloloons, Gray, Proc, Zool. Soc, Lond, 1867, p. 492 , 1807
" Larcu, Wyv. Thomson, Phil Trans, vol. chix p- 701, 1869
Detaca fawaido, Bowerbank, Proc, Zool. Soc. Lond, 1876, p. 585, 1876
." vígullasa, Bowerbank, Proc. Zool. Soc. Lond., 1875, \& 272, 1875
Dendrapongzia steric, Murie, Trans. Linm. Soc Lond. (Zool.), ser. 2, vol. i. ph. 5, p. 219, 1877
Diareltila corme, O. Schmidt, Spong. Meerb, v. Mexico, 1880
$"$ murelta, O. Sehmidt, Spotig. Meerb, v, Mexico, 1880
Dictgoculye gracilis, n. gen. et. sp, this Report, p. 105, 1887
Diplacolitur mirtum, 0. Schmidt, Spong. Meerh. v. Mexico, 1880
Eivdictyum cleyans, Marshall, Zeitschr. I. wiss. Yool., 1575, Ba, $x \times v$. p. 211, 1875
Euplectella-aspergillum, Owen, Proc Zool. Soc. Loul., vol. ix. p. 3, 1841
corbicula, Claus, Grundziige d. Zool., 4 Aufl. p. 220,
corbicula, Claus, Grundziige d. Zool., 4 Aufl. p. 220, 1880 1880
4. crassiatelluto, n. ap., this Report, p. S1, 1887
.. енеиmer, Owen, Trans. Limn. Soc. Lond, xxii. 2, p. 17. 1857
jovic, O. Schmidt, Spong. Meerb. v. Mexieo, 1880
vammillaris, Bowerbank, Hep. Thirtieth Meek Brit, Assoc, 1, 217, 1861
(7) nolosa, n. spet this Report, p. 82, 1887
necerit, Herklots and Marahall, Axch. Neerl., iii. p. 435, - 1868
" rolewata, Bowerlank, Rep, Thirtieth Meet. Brit. Assoc, p. 217, 1861
speciona, Gray, Aun and Mag. Nat. Hist, zer, 3, vol. xviii. p. 487, 1866
"" Aulerwa, Wyv. Thomson, Nature, xiv. p. 93, fig. I, 1876
Eurele barcerkanivi, n. sp., this fieport, p. 297, 1887
cartort, u. sp, this Report, p. 296, 1887
farreqpis, Carter, Amm. and May, Nat. Hist, ser 4, vol six. p. 121, 187
markhalli, n. Ap., this Jeport, p. 297 , 1885
-liauiltit, D. sp, this Report, p. 293, 1887
ellatizit, Glaus, Grundzuige th. Zool,, 4 Aufl. p. 220, 1880
(t. retaj-ri, i. sp., this Report, p. 399, 1885
 1868
kiarmikyma atariculare, u. gen. et spa thisy Ieport, p. 176, 1887
Farcu acdecatc, Eowerhank, Pros, Zool. Soc. Lomi, 1875, p. 972, 1875
clavigora, It. sp, this Repiort, p. 267 , 1887
i. Necana, O. Schmidt, Spang Mearh, v. Mexico, p. 45, 1880
(200L CHALL EXP-PART LIII.-1887.)
Firrear densa, Cirtor, Amn, and Mag. Nat. Hist, ger. 4, vol, xii. pe 315, 1873

- Jacmuda, O, Schmidt, Spong. Athut Gubict., 1870
- farmopsies, D. Schmilt, Spong Heark, v. Mexico, P, 4t, 1880
of jistulata, Thowerbank, Mroc. Zool. Soc Lond., 187 B , p, 476, 1875
ii gacsiot/, Jlowerbink, l'oe. Yool. Sor Lond, 1875, 14.373, 1875
ícermís, Dowerhanle, Broe. Zool, Soc. Lond., 1876, 1876
inffantibulari, Carter, Anm and Mag. Nat Hist, sen, 4, vol. xii,, 1879
 1873
. irreyularix, Bowerbank, Proc. Zool. Soc, Lond., 1876 , 1876
(1) Tavid, Fawerbank, Proc. Zool, Soc, Lomit, 1875, p, 278. 1875
(\% aceu, Bowerbank, Phil. Teans, vol, ctili, 1862
porvititer, Lowerbank, I'roc. Zool, Soe. Eond., 1875, p. 279, 1875
porurnatio, Bowerhank, Proc. Zool. Soe. Lond., 1876, 1876
.4 pocillum, Bowerbank, Proc. Zool. Soe. Lond., 1875, 1. 273, 1875
roluata, Bowerbank, Proc. Zool. Soc. Lond., 1875, p. 562 , 1875
solluah, n. sp, this Report, p. 986 , 1887
spüulira, Dowerbank, Froc, Zool. Soc, Lond., 1875, p. 500, 1875
apiuanissima, Doworbank, Proc. Zool. Soc. Loud., 1875, p. 508 1875
spinulenta, Bowerbank, Proc. Zool Soc. Lond, 1875, p. 279 , 1875
7 tubulala, \& Kent, Moutlily Micr, Journ, vol. iv., 1870
" raludu, Bowerbank, Proc. Zool. Soc. Lond, 1875, p. 507. 1870
" vemaent, it. sp., this Report, 1. 286, 1887
". woadrarcli, Say, Kent, this Report, p, 477, 1887
Fidïningia Jagetloíles, Sav, Kent, Ann. and Mag. Nat, Hist, ser. 4, vol. vi. p. 219 , 1870
Maloorictyim carbienla, Wyv. Thomann, Aul and Mag, Nat. Hist, aer, 4, vol, i, p. 114, 1868
". sperionail (Quoy and Gaimurd, ap), Wyv, Thomson, Ann, and Jlag. Nat. Hist,, scr. 4, vol. i P. 114, 1868
Hertirgia , falelfera, O. Schmidh Spong. Meerh. v. Mexico, P. 6\%. 1880
Heteritullit costhíula, Gmy, Froc Zool Soe. Lonil, p. 531, 1867
Hemasiaella lata, in. sp, thin Report, p. 397, 1887
" tubulase, ti. sp., this Report, p. 32s, 1887
". watifalorm, Carter, Aun. and Mag. Nat. Hibt., ger. 5, vol. xy. 1. 397. 1885
Holoscus fibulatur, il gan. et sp , this Report, p. 87 , 1887
") molejaëviz, n. geth, et 5p, this Report, p. 89, 1887
(4. Tilllih, in gen. el sp., this Ficport, y. 90, 1887
v. sfellatus, n. gen. of ap, this Report, p. 86 , 1887
Holledia narpenferi, Wyv. Thamson, Phil Traus, vol. clix. p. 701, 1869

4. grayk, Marshall, Zeitsolir. £. wiss. Zool., Ek. 天xv., Suppl., p. 742 , 1875
-. puorfalesiz, 0. Sohnidt, Spoog. Athant. Gehiet., p. 14, 1870
n- acous, O. Selmilt, Spong, Atlant, Gubiet., 1. 15̄, 1870
 1877
Hipalorkata ponsreti, Itrandt, Dhll. Acal. St. Pelersb,, vol. xvi. p. 65, 1807
Dyatonena ajzize, Brandt, Symb, ad polyp Hyaloch, spect.; 1859
(1. Marshall, Zeitache f. wiss, Zool., Md. xxv, Suppl, p. 142, 1873
xumahom, Lowerbank, Froc. Zool. Soc, Lond, 1877, p. 456 , 1877
averiam, n. sp., this Report, [.-214, 1887
arcticam, Armauer Hanseu, Norske Northnys Exp, xiii, Spong, p. 19, 1885
relurens, Higgin, Ann and Mag. Sat. Hist., ser. 4, vol. xv. p, 87%, 1875
davigorum, 11. ap., this Report, p. 320, 1887
3 comus, n. 环, this Roport, p. 204, 1887
Ilyolonema ilepresum, in s1, this Itoport, p. 217, 1887
divergene, in sp, this Peport, p. 199, 1885
degoose, n. sp, this Report, D. 293, 1887
-. glolut, D. sp., this Report, p. 321 , 1882
1887
" gracile, H. 3p, this Rophet, 1. 190, 1880
" toceut, Wyv, Thomsou, Phit Trank, vol, cilx. p. 701, 1860
 1804
5. midalille, Gray, Proc Zoot. Soc, Lout, 1857, p. 278, 1857
6. parrain, Sars, On some Nemarkable Forms from Great Depths, 1872
pocalum, n. ap., thit Report, 1. 208, 1887
i. Fobautum, it. sp, this Report, p. 229, 1887
" sclueltai, Sempor, Verhandl. Gesellach. Wiipzh, Bd. i. p. 29, 1868
". vinkelaii, Gray, Synogs, Cant. Hrit. Mns., 1. 77, 1834; Prom, Zool. Soc. Loud, vol, iit. p. 63 , 1835
toarrwi, n. sph, this Roport, p. 924 , 1887
femar, n. sp., this Report, p. 228 , 1887
(1. Thomsoui, Marshall, Zeitschr. f. wiss. Zool., HL xxv. SuppL, 1875
tareres, Wyv. Thomson, Naturv, vol. viii. p. 247, fig. 34, 1873; Atlantic, vel. i. p. 273, 1877
Hijalostylua diere, n. gen. et sp., this Ripport, p. 110, 1887
Hynduthauma fudctärgij, Herklots and Marshall, Arab. Neerl., iii, p. 435 1868
Hyatolhoris husilanice, Gray, Ime. Zool. Soc. Lond, 1867, p. 117, 1867
Iphiteon bratrix, Bowerbank, 1roc. Zook. Soc Lonil, p. 66, 1869
7. callocyathee, Bowerhank, Proe. Zool. Soc. Lond., p. 66, 1869
*. inyulli, Bowerbank, Proc. Zool. Soc. Lond., p. 66, 1869
" pamiceam, Bowerbank, Phil. Trans., voi. clii. I. 147, 1862
". pumicec, Bowerbank, Phil. Trans, vol. exlviii. p. 279, 1858
\#) andogloboea, Bowerhank, Proc Zool. Soc. Lond., 1860, p. 66, 1869
Joandla compresa, O. Sclmidt, Spong Moerb. v. Mexico, 1880
Libaria vemispharioa, Gray, Ann and Mag. Nat Ilist, set. 4, vol. xi. pi 385, 1873
Lanugiuclla pupa, O. Schmidt, Spong, Allant, Gebiet, p. 13, 1870
Efroyella devira, Wyv. Thomson, Allantic, vol. i. p. 403. 1875
Teiobuldium, O. Schtmidt, Spoug Mearh, v. Mexico, p. 65, 1880
Malamacoue naguiculatio, in. ben. et ap, this Report, p, 93, 1887
". rastas, it. gon et ap, this Report, p. 91, 1887
Margarifella adoptymioufles, O. Sclumilt, Spong Meorb. v. Mexico, p. 54, 1880
Meyerclla slaviformis, Gray, Ann and Mag. Nat. Hist., ser. 4, vol. 天. p. 76, 1872
Mowriua claviformiv, Gayy, Arm. and Mag. Nat. Hist., ser. 4, vol. x. p. 134, IRTI
Mgitusiok calloryalhue, Emyy, Proc Zool. Soc. Lonil, 1859, p. 437, 1859
*. grajh, Boworbank, Proc, ZooL Soc Lond, 1869, p. 66, 1869
(1) hassin, O. Schmidt, Spang Mferl, v. Moxios, ph 52 , 1880
4 Eittewh; Marshall ami Moyer, Ahitheil. d. Mns. Dresh., 1877
Pouturndilium, О. Schmidt, Spomg, Meerb. v. Mexioo, p. 59, 1880
Parariodingia norialis, Yaillant, Comptes rendus, Load. Paris, xoiii p. 931, 1881
Periphoragella ehian, Marshall, Zoitsohr. f. wiss Zool, Bd. xxx, Suph., 1870
Thermema amme Leinty, Froc: Acad. Nat Su. Philad, 1869, p. 9, 1868
carpmuteri, Sav, Kont, Ann and Mag. Nat. Hist, ser t, vol, ri. p. 183, 1876
-. gigautewat, n. ap, lhis lieport, 1. 250, 1887
gloloovera, if np., this Report, pe 248, 1587
 18.10
Meronema hemispharrictum, Gray, Ant. and Mag. Nat Tlist, net. 5, vol. xi. p. 235, 1873
parfuilf, Filhol, La vie an fond les mers, 1 , 983 , 1885
" Telation, Garpentor, Not. Proe. Roy. Inet. Grcat Brit, vi. p 33 , 1871
Puliupogon amadou, Wyv Thomsow, Nature, vol, viii p. 29, Hg. 1, 1873 ; Atlantic, vol. i. p 175, 1877
If gigar, n. sp, thix Reqert, p. 257, 1887
Polyloplues plilipqineneio, n. gen. et sp, this Report, it 133, 1887
Polyriadiue uniformi', 4. gen. of sp, this Reqort, p, 121, 1887
Peetalia ypobntow, Gray, Aun, and Mag. Nat. Hist., ser, 4, vol, xi. y, 284, 1873
Purisíphonia clarke;, Dowerbank, Proc. Zool. Soc. Lund., 1869, 1, 342, 1869
Repmerella plianis, O. Schmidt, Spang, Meerh, y, Mexico, p 61, 1880
Thintotocalyptus moltis, n. gen. ct ap., this Repart, 1. 155 , 1887
". roeperi, n. gen. et sp, this Report, 1. 158, 1887
Rhabloilictyum delicatum, O. Sclumidt, Spong. Meerb. v. Mexico, 阝. 46, 1880
Rhatroppectelfo tinfimuz, O, Schmitt, Spong, Meerh, v. Mexico, 1. 62, 1880
Phabvostauridiun retortula, O. Schmidt, Spong, Meerl, v. Mexico, p. 59, 1880
Rosella autarclica, Carter, Ann. and Mag. Nat. Hist, ses. 4, vol. ix. p. 114, 1872
". philippincuess, Gray, Amn, and Mag. Nat, Hist, sar. 4, vol x. p. 134, 1872
" Felata, Wyv. Thomsun, Depths of the Sea, 1. 419, 1873
Scleroplegna conicka, O. Schmidt, Spong. Meerh, v. Mexico, p. 57, 1880
" hreculemm, O. Schimidt, Spong Meerh. v. Mexico, p. 57, 1880
." lanterna, O. Schmid, Spong. Meerh. V. Mexico, p. 56, 1880
„ बeriatum, O. Schmilt, Spang Mearb, V, Mexico, p, 57_{1}, 1880
Selerifhamuan clansif, Jarahall, Zeitsehr. f. wiss, Zool., Bil. xxv, Suppl., p. 171, 1875
Seankella nchultse, Gray, Aun. and Mag. Nat. Hist,, ser. 4, vol. ii. p. 376, 1868
Spangia melancyro, Brandt, Symbolaz mi pol. Hyal, 1859
". spiuisnex, Brandt, Symbolæ ad pol. Hyal., 1859
Stylocalyet rpetus, n. subgen. et ep, this Keport, 1. 914, 1887
claciger, n. subgen. et sp., this Report, p. 220,
claciger, n. subgen. et sp., this Report, p. 220, 1887 1887
 1887
+1 Neqares, n. subgen. et sp, this Report, p. 223, 1887
iv plobus, in subgen. et sp., this Report, p. 221, 1887
\# Fhomsami, Marshall, sq, n. subgen., Marshall, Zeitechr. f. wiss. Zool., Ph xxv., Suppl. 1875
in lomer, in anbgem, et ap, this Report, p. 244, 1887
Sympagella mus, O. Schmilt, Spong Atlant. Gebiet., p. 15, 1870
Sypingidikm sittelii, O. Schmidt, Spong. Meerb, v. Mexico, p. 46, 1880
Tagovia _ bulchra, n. gen. of sp, this Reqport, 1. 94, 1886
Trachyrautus gurlittii, n. gen, et ap., this Report, p. 19s, 1887
Truchaptelia elegans, Fithol, La vie an fond des mers, ph, viii., 1885
Vazella pourtalesii (0 . Schmidt, sp.), Gray, Aum and Mag Nat. Hist, ser. 4, vol. vi. p. 300, 1870
". saceur (O. Schmidt, sp.), Gray, Amn. and MLag. Nat. Hist., ser. 4, vol. vi. p. 309. 1870
Volvalma sigzeet, O. Scbmidt, Spong. Meerls. v. Mexico, p. 58 , 1880
Walleria flemmingï, n. gen. et sp, thil Feport, p. 96, 188π

THE PHYLOGFNY OF THE HEXACTINELLIDA

After a detailed investigation of a group of aumals, it is incumbent on every naturalist who aceepts the evolution theory to attempt the appreciation of his results in their relation to the phylogeny of the group.

In attompting to draw conclusions from the results of my investigation of living forms, I am indeed conscious that such deductions as to pedigree cannot clain to have any absolite certainty, and that the less since, in spite of the splendid work of Zittel, the anatomical and embryological facts can be but slightly supplemented by the results of palaontological research. Certain skeletal portions of fossil Hexactinellida, and especially the connected framework, have indeed sometimes been found wonderfully preserved, nud, after separation from adjacent material by careful maceration in acids, have even sidmitted of very intimate study. But the siliceous spieules ocemring loosely in the parenchyma, and specially important for diagnosis, are as a rule not preserved at all. Of the soft parts there is furthermore no trace ; and, finally, the fossil remains that have been found represent only some small divisions of the entire class. I must therefore restrict myself simply to collating the conclusions drawn from the living forms with the few results of palieontological research, to show at least to what extent they harmonise.

In the discussion of the phylogenetic relations of living Hexactinellids to one another and to knowu fossil forms, I shall have repeatedly to refer to the papers which I have in the past year laid before the Beriin Academy. ${ }^{\text {. }}$ There can be no doubt, to nuy evolutionist, that the close resemblanee, both in general structure and details of organisation, which is expressed in the grouping of diffcrent forms in the systematic mities of species or even genera must be based upon, and explained in terms of real relationship. But the greater the extent of the syatematic eategories, the greater usually are the gaps which are seen to exist in the living fauna, and the more difficult does it become to determine the aetnal relationships. The conventional method of representing the various forms in a continuons scries is felt to be much more insutficient when dealing with the larger divisions than when expressing the relutions of the usually simpler virictics of a species or of the members of a gemus,
${ }^{1}$ Athanill, 4, Kounith Premas. Aheil, 1596.

G昭69

- This becomes at onee very exident when we consider the two great subdivisions of Lyssacinn and Dictyonina, which, according to most modem investigators of sponges, and in my opinion also, may be recognised in the Hexactinclida. The question at once arises whether these two divisions, regarded in classification as of appreximately equal importance, are to be expressed by the forking of a common stem, or are not rather to be considered as the contimons but snceessive dirisions of one ramifical tree. In the first case we must suppose that the two divisions with divergent forms originated almost or quite contemporancously from a common ancestral form, and that each developing by itself in a special direction gradnally exhibited the distinctive characters of the modern forms, In the second case we have to suppose that the ancestors of the higher division mist at first lave had the characters of the lower, and have been systematically included within it,-we must suppose, that is to say, that the one division sprang from the other.

But before 1 proceed to the disenssion of this nad similar questions, 1 shall briefly review the relative opinions of previous investigators,

In his researches on Hexactinellida, ${ }^{1}$ published in 1875, Marshall says:- "The state of skeletal coalescence" (in which the axial canuls of the framework beams are said to form one connceted anastomosing system) "I regard as phylogenetically oldest, as that from which lave developed the Hexactinellida with free siliceons elements, and especially those with prolominantly hexradiato spicules, which may be regarded as simply inherited. By adaptation we account for the large series of frequently very beautiful forms, for which Bowerbank has invented such an elaborate nomenchatnre. The third state, that of fusion, appears to arise in different ways: (1) by the simple union of the ensheathing substance of two adjacent spienles; (2) ly lamella-like structures which extend like bridges between two adjacent but not directly apposed spicules; (3) by the development of lamellar layers of flinty material round two parallol and adjacent spicules."

In the memoir entitled Ideen uber die Verwaudtschaftsverhalitnisse der Hexactinelliden, ${ }^{2}$ Mashall has more definitely expressed his conclusions as to the phylogeny of the Hexactinellida. Starting from a Chalynthus-like nucustral form withont skeleton, be regards it as probable that in the wall of this simple aack somewhat firmer longitudinal, circular, and radial strands of "hardened protoplasmic material" were developed, intersecting at right angles, and forming a connected fibrous framework with square or cubical meshes. "The next form," Marshall continues (loc. cit, p. 119), "is thus a sponge with simple connected siliceous lattice work, in which the central canals are abso comected, and which has not yet aequived any functionally important free spienles. From such a simple Protohexactinellid there have developed, on the one hand, forms like Sclerothcomuns, with single free spicules, and, on the other hand, forms in which
the connection of the axial camals no longer occurs, though secondary development atill results in the formation of a comected skeleton, and in which there we no special needles developed besides the regukar hexacts. On this plyylogenetin theory, Euvete" (which according to Marshall is entirely without isolated siliceous clements) "is of importance, while an ontogenetic recapitalation of the development is illustrated by the extremely simple emlryo of IIycelonema, which I (Marsliall) have described."

From the still cxtaut genus Sclerothamus, representing the ancestral form, Marshall derives the group of Synauloide, in which "the lumina of the spicules, as well as the spicules themselves, are continuously connectel with one another, so that the whole lattice-work of the sponge is penetrated by a uniformly connected system of tubes." The other modern Hexactinellida are united by Marshall into the group Asymauloidxe, " in which the lumina of the stalks of the varions spicules are never eonnected, but each spicule, so far as its cential filaments are concerned, forms an independently developed individual. Where a lattice-work is developed, that is exclusively the result of a syneytium formed by the secretion of layers of siliceous material."

We thus see that Marshall regards the presence of a special form of dictyonal framework as the oldest type of Hexactinellid skeleton, from which the forms described as Lyssacina (with isolated bexradiate spicules) have afterwards developed. In many of the latter a secondary union of the hexradiate spicules again results in the formation of a connected siliceous framework (the dictyonal framework of our Dictyonina), and at first of this alone, as in Eurete, but afterwards also with the association of adjacent isolated spicules. In other derived forms the secondary fusion of the spicules has not oceurred, but the form of the isolated spicules has become more or less complicated.

In 1877, in his Studies on ossil Sponges, ${ }^{1}$ Zittel applied the results of his investigation of abundant pakeontological material to the elucidation of the system anil phylogeny of the Hexactinellida. His conclusions agree in several points with those of Marshall, hut differ not inconsiderably in others, "Were it true," Zittel says (loc. cit., p. 19), "that the compact Hexactinellid skeleton was developed from a special framework of delicate protoplasmic strands, then the older fossil forms must necessarily, on Marsball's theory, lelong to the Symauloide. This is not, however, ly any mems the case, My researehes on fossil forms have shown that the comected lattice-works consist without exception of fused hexradinte spicules, in which the axial canals are indeel frequently apposed and scem to form closed and connected tubes, but are in reality always separate, while they usually Fie, as in the living genera Farvea, Eurete, and Aphrocallistes 50 that the axial filments of the different hexacts are seen to be distinotly separate."

Aftor Zittel had shown that, oven in Sclerothomacs, the asinl camals of the lattire fravework do not form im open anistomosis, but we referable theoughout to single

[^119]fused hexacts with blind processes lying side by side, lee was led altogether to deny the accuracy of Afarshall's gronp of Synauloidre. He also threw doubt on the correctness of Marshall's representation of Eurete, Semper, as a Monacid. On this necome Zittel divides all the Hexactinellida into two main divisions,-Lyssacina, in which "the skeletal spienles generally remain isolated, and only united by protoplasm" and Dictyonina, in which "the skeletal spicules are fused in a regular way, and form a connected latticework with enbical or polyhedral meshes," The soldering of the spicnles into a compact conneeted framework, as occurs in some Lyssacina such is Euplectelle asperyillum, cannot be identified in mode or nature of union with the regular fusion of a distinet dictyonal skeleton. The irregularity of arrangement, and the inhibition of further development of the spicules as the conseqnence of this external mion, demonstrate the secondary importance of the former case.

For the further classification of the Lyssacina, Zittel emphasises, like Marshall, the degrec of differentiation exlibited by the loose spicules, and forms three families:-(1) Monacide (Zittel), with only a single form with loose skeletsl elements, including also the few known fossil Lyssacina (like Astraospongia, Röm, and Starractinclle, Zittel); (2) Plcionaeidre, Marshall, in which the main mass of the skeleton consists of regular hexacts, in association with broom-forks and rosettes (Asconema, S. Kent, and Lenuginella, O. Schmidt); and (9) Pollacidæ, Marshall, in which the form of the skeletal and loose spicules is very manifold, especially in the dermal skeleton and in the lining of the cuteric cavities, while the base usnally bears a root-huft of long siliccous spicules (numerons living and some fossil forms). The Dictyonina, on the other land, are divided by Zittel into a large number of families with complicated characteristics.

In an essay by Mashall and Meyer ${ }^{1}$ on some new or slightly known Philippine Hexactinellids, Marshall withdraws his opmion as to the continuity of the axial caual system in the framework of Sclerothumnus, and this abandons the group of synauloid Hexactinellids.

In $1880{ }^{2}{ }^{2}$ O. Schmidt discusses these systematic questions in detail. He says (p. 41) that "the conception which one is apt to associate with the division of the Hexactinellids into Dictyonina and Lyssacina, namely, that each group for itself has originated from one or several common ancestral forms, and that all the Dictyoniua, and especially the recent forms, are more closely related to onc another than to the Lyssacina, is certanuly not in accordance with the facts. The rolation between these two divisions appears indeed to be much closer; the phylogenctic branches have probably repeatedly crossed, and are interlaced ly connecting twigs. In one of the new genera, Hertwigic, this inseparable relationship is expressed in the most convincing way, since this sponge at the branched base is distinctly dictyoual, but forms further up, where it consists of inegular tubes and plates, a transitional type, and finally, still further up and towards the exterior,

[^120]exhibits a beautiful Lyssacine structare. The same transition is exhibited by Rhectedn. dietyom and Rhabdostauridiom."
"At any rate the Lyssacina were onee the sole representatives of the flexactindidia. As a Lyssacine every Dietyonal form must still begin its development, though this stage may only perhaps last for a very short time. And thus there was at any stage the possilility of the Dictyoninal form becoming again reduced to a Lyssacine. The stiffest and most brittle Dietyoninal framework differs after all only in degree from that of the laosest of the Lyssacima."

My own researches have convinced me that there is indeed a certain antithesis between Lyssacina and Dietyonina, which may be justly rocognised in the distinction of these two systematic divisions of the order Hexactinellida, but that this difference is oot fundamental, nor involving the separate origin of the two divisions, but that it is rather one of degree and in no way suggesting a hard and fast separation.

In distinguishing the two groups, Zittel laid stress, howevor, not merely on the simple fact whether the principal spicules were or were not united into a firm comnected framework, but rather on the manner in which this union was effected. It mast be allowed that what is regarded as the eharacteristic dictyonal mode of framework formation, viz,, by close apposition of the two corresponding arms of adjacent hexradiate apicules, and the formation of a common sheath, is indeed very frequent, and in some Dictyonina, like Aulocystis, or in the youngest portions of Farrea stocks is even normal or perhaps constant, but it cannot be overlooked that it is extromely common to find that the mode of union of the dietyonalia is in part, or here and thero throughout, essentially different. Zittel indeed called attention to the fact that beside the hexradiate spicules united as above indieated there were others "which left the series and had their rays soldered arbitrarily to the rest of the framework. When one or two rays of such irregulady disposed spicules become united by chance to the thickened centre of a hexact, the result is obviously the apparent origin of more than six rays from one centre of intersection. Other irregularitios may also arise by the enrvature or direction of individual rays, so that two rays in one axis come to lie no longer in a straight line." If these deviations, which may be readily detected io most Dictyonina, are really only exceptions to the typical mode of union which Zittel supposed to obtain, then the stinmp and certain separation of the Dictyomina from the Lyssacima with connected framework caunot be said to be serionsly affected. But there are, besides, not a ferm Hexactinellida in which the supposed typical mode of mion is either not to be detectefl at all, or only here and there after carcful search, and even then in a fashion so far from chameteristie that among the countless deviating and arbitrary interseetions of the majority of the rays the exceptional occurence of the typical mode may be indeed regardel as a matter of elrance. Thas, for example, in the different species of the genus A phurocallistes known to
me, the typical muiou of the dictyonalia is wholly absent, although no one has any doult that Aphrocallistes, in the general structure of its skeleton, and especially in the structure and disposition of its isolated spientes, belongs to the Dictyonina, and is to be referred to the neighbourhood of Enretide and Coseinoporida. As an instance of the second case, where a skeleton which is macroscopically like many dietyonal frameworks contains ouly isolated examples of two hexradiate spicules uniting in the typical fashion, I may refer to Eirryplegma entrieuture.

In regard to this form I have indeed hesitnted for a long time whether I should refer it to the Lyssacina or to the Dietyonina. At first, in my memoir Uebor den Ban und das System der Hexactinelliden, ${ }^{1}$ I regarded it as a Dictyonime, but have finally preferred to place it among the Lyzsneina, and beside the Rossellidæ, which, both in regard to the structure of the loose weedles and the absence of nucinates, it resembles more elosely than it could any Dictyonine form. In its other characters it is, however, Dietyoninelike, though the absence of uncinates and scopule give it a peculiar appearance and must always make its position exceptional.

It was a fact of mmch intercst to me that my respected colleague Professor Zittel unhesitatingly referred a macerated skeleton of Euryplegma, which I asked him to examine in the Bertin Zoological Institute, to the Dietyoninal type, while allowing that various microscopical sections of the same skeleton completely resembled the Lyseacina in the spienlar union of the framework.

There are, indeed, other distinctive characters between Lyssacina and Dictyonima than the mode of union of the spicules, but these also establish, not a fundamental sepaation, but only a difference of degree. Previons investigators have noted the readily verified fact that in all emphatically Lyssacine types, which form a comnected skeletal framework, there oceurs, besides the simple soldering of the spicule branches, another very frequent mode of mion by means of short connecting bridges, the so-called synapticula, which bind together more or less approximated rays of adjacent spienles, which are not, however, in actual contact. By the development of numerons synapticula at ipproximately miform intervals, there arises a sealariform strncture, which is regarded by some as characteristic of the Lyssacina with connected framework, and as contrasting them with the Dictyomina. But while it is indisputable that such scalariform structures occur with great frequency, indeed quite regularly in the framework of Lyssacina, it is incorrect to assume that they are absent from all Dictyouina. I have observed them, though not frequently, yet quite typically developed in indisputable Dictyoniua, such as Ficldingic lagettoides, S. Kont, which in its uncinates and scopnlee is certainly one of the Dictyonine series.

Another fact, to which I first called attention, is the early umion of the dictyonalia simultaneonsly with the development of the associated portion of the body, which is, so

[^121]far as we know, a contrast to the subsequent, and late union of the various spicules in certain Lyssacina. In the latter it is deferred till after the differentiation of the body has made cousiderable progress, and then ouly gradually develoje from a given centre in the already perfected body:

But although 1 regard this difference as most conveniently diagnostic of the two gromps, 1 must allow that it also represents ouly a qualitative differenee. The dictyoninal spicules of the Dictyomina were once, as Marshall first cleandy demonstrated for Aulocystis sittelii, frec spicules, and the union gradually progresses from the younger to the older portions of the body. We also know of many Lyssacina with comected skeletal framework, like Rhabdodictyum delineatum, O. Schmidt, Auloculyx imegularis, F. E. S., and especially the above-mentioned Ewryplegmut auriculure, E. E. S., in regard to which we are by no means certain, whether, as in species of Euplectelle and some other Lyssacina, the process of fusion or the formation of synapticula take place some time after the differentiation of the sponge-body, or shortly after its incipient formation. In regard to those Lyssacina iu which an abundant fusion of spicules forms a compant lase attached to solid bodies, it is very probable that the fusion of the spicules begins somewhat early at the lower end, and progresses gradually upwards to the upper margin. The upper end of many Lyssacina with latticed framework las been long simee earefully deseribed, as O. Schmidt has done for his Hertwigia falcifera and other Hexactinellids, and known to consist solcly of loose isolated spicules, while the lower end exhibits a well-developed fusion.

We thus see that the relation at present demonstrable between extant Lyssacina and Dictyonina does not suggest a long-established separatiou of the two groups, but rather a gralnal modification of certain Lyssaciue groups into Dictyonina, while others haye remained at the undoubtedly older Lyssacine stage.

We do not, indeed, know the development of the Dictyonina, but it is to be expected that they possess at first ouly isolated spicules, and recapitulate probably for a short time the Lyssacine stage, before a regular fusion of hexacts oceurs, and the typical dictyonal characteristics set in.

It appears to me further a very noteworthy fact that the results of my bathymetrical statistics show that the Lyssicina occur predominantly in the greater depths and far from the coast in MFid Occan, while the Dietyonima are clifefly found in moderate depths and wear the coast. The Hexactinellids of the Challenger Expedition, which were obtained from the greatest depths belong to the simplest and most typical Lyssaciua, as for example certain species of Holrescus and Bathydorus, especially Buthydorns fimbriatus, which was dredged in Mid Pacific from a depth of 2900 fathoms.

Furthermore, in some species of certain Lyssacine families, such as Euplectellida and Fossellide, we find in the very iregular and long icferred fusion of the larger spicules into a compact connected framework, what may be regarded as in incipient developmont of a dictyomal skeleton.

The dictyonal character is, therefore, regarded as aequired, by some groups in the far past, by others at a later stage, while many do not in any way exhibit it. Thus we may exphin that in former eprochs Dictyonima and Lyssacima are found to have oceured together as they now do.

If we now take a survey of the various main and side branches of the bypothetical genealogical tree of the Hexactinellids, so far as that can be sketehed out from the results of living forms, we are at once brought to face a deep division, affecting both soft parts and skeleton, betiveen the Amphidiscophora or Hyalonematide on the one hand, and all the rest of the Hexasterida on the other.

While in the latter the membrana reticulais, which is doubtless so important in relation to the nutritive process, appears to form throughout appproximately equal thimbleshaped chambers, longitudinally apposed to one another, in the Hyalonematide it is more or less iregular in its contour, and forms chambers not so sharply separated and without any typical structure and of approximately equal size. It seem to me that this peculiar condition of the membrana reticularis in the Hyalonematidæ perhaps suggests a relatively lower grade of differentiation, and is at auy rate a not umimportant deviation in the general structure, which otherwise closely resembles the other Hexactinellida. But the Hyalonematide are yet more distinetly separated from the others in the constant and peculiar possession of the siliccons elements known as amphidises (or birotule), as also in the complete absence of hexasters which occur in all the other Hexactincllids, While these facts point to a marked independenee of the Hyalonematids, and to a distinct separation from all other Hexnetinellids, there are also certain other characters which occur with great constancy and uniformity within the whole group, but less so in other divisions. Thus we pote the constant mode of attaehment in the muddy bottom by means of a basal tuft, and the way in which the entire outer surface is covered with pinuli.

One cammot therefore but suppose an early separation and an independent development of the Hyalonematide or Amphidiscophora, as is represented in the genealogical tree by the deep cleft separating this important and at present richly developed branch from the other Hexactinellids.

Among the other Hexactinellids, which are without amphidises but contain hexasters, and may therefore be conveniently designated as Hexasterida, one group of families distinguished by the presence of uncinates may be somewhat sharply separated off from the others. These Uncinataria are all Dietyomina, and have apparently at an early stage separated into two divergent branches, namely, on the one hand, the small, but shuply defined family of Farcide, distinguisticd by the single-layered structure of their square-meshed lattice-work in its youngest growths, and also by the exclasive possession of the remarkable clarule in their limiting membranes ; and, on the other haud, the Scopularia, which exhibit in their scopule spicules so peculiar and charac-
teristie that one ean hardly find a more striking proof of close relatiouship. Of less importance, though in detail often not without striking peculiarities, are the characters which distinguish the four living families of Scopularin. Thrus, for oxample, the family of Melittionidre, though including only the single genns A_{p} procallistes, with a few species, is so sharply defined and removed from the other families by the hexagonal, prismatic, honcyeomb-like radial perforations of its flat dietyonal framework, that one must assume a long, independent, aneestral serics, that is to say, a somewhat early separation of the twig from the common branch of the Scopularia. The characters of the primitive portion of this branch appear to me to be represented in their teast modified form by the family of the Eurctida, where the structure is comparatively simple and slightly differentiated, especially in regard to the-ufferent and efferent canals penetrating the body-wall. For while in the Euretide the afferent and efferent canals, which traverse the thin wall of the tubes forming the entire sponge, are quite short and usnally sack-shaped, of simple uncharaeteristic form, the efferent canals of the Melittionidre are straight, hexagonal prisms, those of the Coscinoporidm straight, narrow, and usually long, alternating funnelis penetrating the body-wall at right angles, and those of the Tretodietyide, fimally, are of iregular course. And as to the other Hexasterida which contain no uncinates, the family of the Mreandrospongider, which flonrished in the Cretaceous period, is distinguished by the structure of the body, which consists of a system of anastomosing, meandering, thin-wallel tubes, with an interjacent system of anastomosing canals.

But while these Mæandrospongidre have long since become true Dictyonina, the other families of Hexasterophora, without meinates, have either entirely preserved the Lyssacine character, or they nearly approach the Dictyonime type by the more or less marked soldering of the larger spicules into a connected framework, which develops with inereasing age. Of the three families-Euplectellide, Asconematides, and Rossellidx, the first bas a markeilly separate position, due to the bexradiate character of the spicules supporting the skin (lyypodermalia), white the others exhibit only pentact hypodermalia, with an internal radial my. While in the Asconcmatide antodermal pinuli are also developed within the skin, giving to this Hexisterid family a very peculine character somewhat resembling that of the Hyalonematide, in the Russellidm such autodermalia, with a freely projecting fir-tree-like miy, do not occur. It is difficult, if not inded impossible, to determine, with nny certninty, the relationship of theso three allict families. It is olvious that the Euplectellides, both in their relatively simple, saccular or tubular form, and also in their hexradiate dermal spicenles, have retained primitive characters, so that one need not wouder that very simple related forms are found at a comparatively carly period. On the other hand, both in the parenchyma of several spocies, such as Dictyoculy, gracilis, and also in the extremitics of the dermal projections of many genera, c.g., Entlectelle, Titgerice, Waterio, \&e,

Ggg 65
very complicated, highify differentiated spicules (discohexasters, floricomes, \&e.) occur, and so many species incline towards fusion of the large spicnles and formation of a connected framework, that one cannot regard these forms at least as primitive.

A very simple structure is exlibited by certain tubular or snocular Rossellidee, as for instance, Bathydorus fimbriatus, from the great depths. On the other hand, there are species, like Aulocalyx imeguiaris, which, both in the formation of a connected supporting framework, and in the complicated structure of the isolated spicules, oceupy a decidedly bigher grade. Such are the members of the entire division of Crateromorphine, in which a more or less firm long stalk is formed, and the chamber-layer exbibits a complicated folding. The Asconematidm cxhibit a remarkable affinity with the otherwise indisputably far-remored Hyalonematidæ, in the possession of autodermal pinuli. Here there can hardly be any direct inheritance, either of one family from the other, or of both from a commou ancestor. I am rather of opinion that the tendency to form lateral teeth is very generally distributed among Hexactinellid spicules, and is expressed in development whenever such would be physiologically advantageous or specially useful for the preservation and strengthening of the organism, as for instance iu the formation of weapons of capture or defence on the autodermalia projecting from the skin. I believe that the tendency may be expressed in far-remored Hexactinellids, without there leing any transmission by inheritance, And this opinion is supported by the fact that, among the typical Scopularia, there are isolated cases in the various genera and species, e.g., in Aphrocallistes and again in Chonelasma decderteinä (but not in Chonelasma tamella), in which the distal radial ray of the bypodermalia, projecting more or less beyond the skin, exhibits exactly similar teeth, and thus most distinetly evidences the formation of a pinule.

In the following sketch of a genealogieal tree, ineluding those Hexactinellids which I have investigated, the opinions above expressed are graphically represented.

When an attempt is made to collnte the results of the iuvestigation of living Hexactinellids with what is known of fossil forms, an array of difficulties besct the task. Above all it is unfortumate that of the great majority of fossil forms ouly the dictyonal framework is known, so that there is no possibility of induction as to the configuration of the soft parts, nor as to the form, number nnd disposition of the isolated skeletal elements which are so pre-eminently chatacteristic, and so extremely important, in spite of Zittels opinion, in determination of relationship. Again, the blanks in the geological record are here even more serious than in most of the other groups. From eutire geological formations either no Hexactinellids are known, or only slight traces. Zittel indicates an obrious explanation in the following sentences:'- Our knowledge of the fossil Hesactinellids is limited to isolated remains of a developmental series; widely separated (both in time and space) the links of which perlinps lie buried in the deposits now sunk

[^122]

beneath the sea-level, or in still mexplored regions. Under these circumstances it is not yet possible to construct a gencalogicat tree for the rarious genera, so we mist dismiss to a pre-Siluriar time, where the light of experience no longer guides us, all the hypotheses which wonld derive the Hexactincllida from the Tetractinellida or Monactinellida."

An explanation of the sudden appenmence of the fossil Lithistide and Hexactinellida may be reasomably sought in the mode of life exhibited by their modern representatives. Both groups are especially inhabitants of the deep-sea, and ouly in the former deep-sea deposits can one hope to find their fossil remnins in any abundance.

If therefore we have to refor the origin of the Hexactinellida to a pre-Silarian period of which no certain representatives are preserved, we cannot obviously expect from pakeontology any conclusion as to the manner of their origin or the nature of the primitive forms. It is, however, of importance, that even in the Silurian period both Lyssacine and Dictyomine forms appear to be present. In the later mesozoic formations which are so rich in Dictyonina (especially the Jurassic and Cretaceous), hardly a hint of Lyssacina is to be found, while now they form amoug living forms a large majority-a fact which appears to find its explamation in the improlability of the preservation of forms with a loose spiculur framework which would fall to pieces with the destruction of the soft parts. The following considerations may, however, appear not unworthy of close examination.

From the fact that the modern Hexaetinellids all live at a considerable depth, afways below 95 fathoms, Zittel has already drawn the conclusion that they were probably from the first deep-sea forms.

From the bathymetrical statistics of the Challenger Hexactinellida, it is seen that the Hexactinellids now living in the greater oceanic depths are almost exclusively Lyssacina, and that the modern Dictyonina are, with the oxception of one very simple geuns, all confined to the relatively lesser depths, between 100 and 1500 fathoms. The conclusion, therefore, secms warranted, that in ancient times also the Lyssacina preilominantly occurred in the greater depths, while the more differentiated Dietyonina inhabited, as they now do, relatively shallower waters, at no very great distance from the coasts. Now if one may assume that the deepest regions of the great oceams bave remaned permanently covered with water since the Palieozoic period, while only the shallower regions near the continents were here and there raised above water, and thus became now recessible to the bammer of the paleontelogist, we cun undesstand why we find in certain Jurassic and Cretaceous deposits so many and highly differentiated Dietyonina, but only slight hịts of Lyssacina, even in eirenmstanees which would not exclude their preservation, or at least that of their characteristic spicules.

Hitherto I have restricted myself to the Hexactinellida themselves; I shall now consider their relation to the other groups, begiming with the ealcarcous sponges.

It may be assumed as a generally acknowledged fact that the ealeareous sponges are
distinguished as a separate group, not ouly in the substance out of which the skeleton consists, but alse in the form of the component spicules.

One is therefore indined to suppose their very early divergence from the great sponge stem. On the other hand, the marked uniformity of their skeletal elements lead one to suppose that they have had a common starting point, i.e., a monoplyletic origin. This nupposition is coufirmed by the certain fact that the Sycones in their ontogenctic development pass through a distinet Ascon stage, and that between the Sycones and Leucones recent investigations have discovered many connecting links, as has beon shown especially in the Challenger Report on Calcareous Sponges by Polejaeff, and von Lendenfeld's researches on Australian forms.

A closer relationship comiects the siliceons, horny and soft sponges. In regard to the last I lave previously shown, that both on account of the incongruity between the different members of the group, and the obvious relationship between certain forms and indisputable horny and ilinty spouges, the group camnot be regarded as independent, closed aud uatural, but must be split up and its members referred to different positions on the genenlogical tree near their various congeners, and regaded as twigs degenerate in respect to their skeleton.

In regard to the horny sponges there seems to me no other supposition possible, but that of regarding them as origiuating from flinty or flinty-horny sponges by the gradual reduction and final disappearance of the siliceous spicules.

The more abundant and differentiated the horny substance the more degenerate the flinty skeleton, until finally, as in many Chalinida, which approach the true Keratosa, we find only very simple smooth spindles, which I am compelled to regard as the extreme of the phylogenetic scries of siliceous spicnle modification.

In my memoir on the family of Plakinide, I have shown in detail why it is that in the long and continuous series of transitions between the typical regular tetracts and the simple straight spindles, exhibited both in individual species and often in one individual, as well as in the skeletons of nearly related species, it is impossible to regard the straight spindle as the primitive form from which the triacts and tetracts have been formed by the growth of new rays, but necessary to regard the tetracts as primitive and ancestral, from which the triacts and diacts have arisen by atrophy and degeneration of the various rays. Oscar Schmidt ${ }^{1}$ was led to the same conchasiou by a detriled investigation of other Tetractinellida, and especially of the Ancorinide, where it may le very readily seen how gradual reduction of the typieal tetracts, only modified into anchors by the clongation of one ray, leads finally to simple rod-like spicules, and further how within those genera, which, like Ccominus, have acquired rod-like spicules, degenerate anchors here and there persist, showing the mode in which the rods lave, originated from tetracts.

[^123]I may therefore regard it as indubitable that in many cases the regular and typical tetracts have, by gradual reduction of individual rays, given rise to dinets and even monacts. I do not mean to say that all diacts and monacts have originated in tetracts. On the contrary, previons investigators of the Hexactinellida have shown, what I think I have also elearly demonstrated, that in this group at least the very abundant and richly developed diacts and monacts have arisen, not from the regular tetracts of the Tetraxonia (the so-called chevaux de frise), but from the regular hexacts of the Triaxonia. But while there are numberless extant transitions from the Tetrasonia with typical tetracts to the strict Monaxonia with only straight diacts or monaets, there are among living, and, so far as I know, among fossil sponges no transitions from the Triaxonia to strict Monaxonia, so that we have no reasou for the supposition that the latter have been evolved from the former. The ease is somewhat different in regard to some sponges without a skeleton, hately discovered in Australia by von Lendenfeld (such as Bajalus ${ }^{\text {b }}$) in which the structure agrees so closely with the soft parts of several Hexactinellids that one is inclined to suppose their derivation from the latter by a total loss of siliceous spicules.

Under these circumstances, the supposition is legitimate, that all the Monaxonia, and the Keratosa which have probably developed from them, luve originated from the stem of the Tetraxonia. And since the spicules of the Lithistidm, as O . Schmidt, Zittel, and others have conelusively shown, are derivable from the regular tetract type, we may thus regard the Tetraxonin with simple regular tetracts as the starting point for all the flinty and horny sponges except the Hexactinellida.

For the possibility that the Hexnetinellida also stand in genetic relationship with the Tetrasonia, I find no basis of facts. In 1870 O. Schmidt ${ }^{2}$ expressed the same opinion in the following words:-"Betweon the type of spicule in which the rays are determined by the three-sided pyramid and the triaxonial type, there are, so far as the forms go, no relations. The sponges in which these two types occur appear to be distinct and separate independent twigs, in regard to which one must distinguish clearly between the general homologies and the adaptive analogies."

We thus reach this conchusion, that the sponges may be grouped along three main stems, which may indeed be regarded as springing from a common root-a very simple primitive sponge without a skeleton-but which remain separate from this root onwards, without exhibiting any connecting links.

This may be expressed in the form of a genealogical tree (see fig. 9).
Now if we may regard it as probable that each of these three main stems, which represent the divisions of the great crowd of sponges, namely (1) Calcarea, (2) Tetraxonia with Monaxonia and Keratosa, and (3) Triaxonin, possessed to start with, either exclusively

[^124]or predominantly, that form of skeletal clement from which the rest have developed, we must, after determining this fundamental form, strive to understand why in each individual stem the specific form of spicule must be what it is.

In regard to the calcareous sponges, Haeckel expresses, in his epoch-making monograph, the conviction, based both of anatomical and em bryological fuets, that the findamental and primitive form of all calcareous sponge spieules is the regular triradiate form, and in association with that, perlaps, though less widely distributed, the simple rod-like form. But by "regular triradiate" Hacckel means a threc-rayed spienle, in which the rays, perfectly similar in size and form, meet at equal nugles of 120°, and all lie in one plane. Haeckel' shows that even yet the triradiate spicules are throughout the firm supports of the body, while the tetracts oceur as the protective weapons of the gastral surface, or the rods of the dermal; and he draws the conclusion "that the triradiate forms originally and primarily played the principal role, while the four-rayed spicules first arose only as internal adaptive modifications on the gastral surface, and the rod-like forms as external and thexefore secondary differentiations."

As of special importance in regard to the formation of this specific form of spicule (triradiate) in the soft parts of the primitive calcareous sponges, Haeckel notes ($\mathfrak{p}, 377$) a peculina process of "biocrystallisation, i.e, a compromise of the erystallising tendency of carbonate of lime and

Fini $8,-$ Genealogical Tree of the Porfors. the organic processes of the protoplasm." The calcareons spicules of the Calcispongie are, aecording to Haeckel, to be regarded as " biocrystals or form-individuals ocerpying a mertian position between m inorgamic crystal and an organic secretion, and in their origin expressing a compromise between the crystallisntion of earhonate of lime and the formative activity of the fnsed cells of the syncytiom." "The original and fundamental form of all three-rayed and four-rayed spicules is the absohtely regular triact, which may be considered is a hemiaxonial form of the hexagonal erystal system, in which the carhonate of lime crystallises is calc-spar."

[^125]O. Schmidt has also occupied himself with the notion of explaining the form of the typical sponge spicules in terms of the erystallising tendencies of the different suhstances. He says; "The question is a diftientt one, how far the nature of the lime and the flint determines the rayed and anchor-shaped forms related to the three-sided prism. For the flint the explamation holds good, but not for the lime. But while in the groupe of triaxial siliccous spicules (hexaets and their derivatives) we have only to choose between the triaxial and the binaxial mod monaxial system, and the hexagonal does not come into account, we must remember the fact, inconvenient to mineralogists, that quartz crystals arising in amorphons matrix not unfrequently exhibit axial deviations from the hexagonal system, and that we may the more readily expeet in our sponge spicules with organic basis and admixture other forms than those of the erystallographie systems."1

For my own part I unst pronounce against such an attempt to bring the form of the sponge spicules, whether they consist of earbounte of lime or hydrated silica, into relation with the crystallising tendencies of these substances in the way of origin or explanation. In the first place, in regard to the siliceous spicules, the fact has to be noter that the silica in them never ocenrs in a crystalling state, but is always present as completely amorphous hydrated silica or opal, as is shown, for instance, by the fact that they are not doubly but only simply refractive. This is therefore against the supposition that the various skeletal elements can be reduced to or derived from the crystallisations of the substances of which they consist. Furthermore, we cannot ignore the extraordinary abundance and frequent importance of the deviations of the mays from the typical angle at which they ought to staud to one another, nor does the marked eurvatures of the ruys accord with the supposition of defined crystalline axes.

I must rather maintain that the form of all the sponge spicnles is determined by the organic matrix in and from which they originate, and that the formative forces are in no essential way different from those which are everywhere exhibited in the shaping of the living organism and its parts.

And though we still know very little about the forces determining form, yet in these skeletal formations it is possible here and there to detect factors which, though they do not indeed explain everything, yet make much at least more intelligible.

If one can distinctly demonstrate a natural and necessary connection between the form and disposition of a skeletal clement and the function which it discharges, one has, from the standpoint of utility and natural selection, rationalised the appearance of that form nud disposition.

In regard to the question why the typical and primitive spicnle in the calcarcous sponges should be the plane, regular, triradiate form, in the Tetraxonia with their

[^126]derived allies the Monaxonia and harny sponges the regular four-rayed form (spanischo Reiter), and in the Triaxomia (Hexactinellida) the regular six-rayed spicule, it seems to me of essential importance to note the differcuce of the architecture of the soft parts in these three principal groups.

The Ascones, which may be regarded as the starting grom in the calcarcons sponge scries, exhibit, as is well known, in the simplest instance, a fixed thin-walled tube open at the free end, and with its side wall peretrated by uniformly distributed eirenlar pores.

In the much-varied group of Tetraxomia and their descendants we may consider the typical form as that of a thick-walled cap; in the compact wall of which roundish or quite spherical ciliated chambers lie erowded together like the acini in an acinose glamed. Such at least are most of the Tetractinellida and Lithistida, numerous Monactinellida and horny sponges, though deriations alao ocem, as in the flat crusts of many Plakinides, which ean hardly be regarded, however, as typical or primitive forms.

The typical structure of the Hexactinellida is very different.
The exceedingly loose wall of the typically sack-slaped body exlibits, between two abundantly penctrated, thin, parallel boumding lamelle, a single layer of large, sack-shaped, viliated chambers, connected both with the outer dermal and inner gastral membrausby it trabecular system of thin thread-like strands. In simple and young forms thesethin connective-tissue trabeenlee run predominantly in a radial direction betweon the chamber-layer and the two limiting lamelle, or directly between the latter, and are Hsually so elosoly united with one amother by tangential uniting strands that one usually observes six threads at right angles to one mother at each node of intersection. This simplest structure is not of course persistent throughout. And in many casces, doubtless, the insufficient preservation of the soft parts does not permit of the recognition of the original disposition of the trabeculas.

Let ns now consider how the spienles, regavded as typical and primitively chatacteristic, are disposed in the very variously constituted tissue of these threc divisious of sponges.

The regular three-rayed spicules of the Ascones are well known to occur tangentially embedded in the wall of the tube, and in such a way that one ray lies parallel to the axis directed backwards towards the base, while the two others run obliquely forwarls and to the side, each usually embracing a parictat pore posteriorly,

In the Tetraxonia the typical regutar tetracts ie in their simplest and most normal form between the spherical ciliated chambers, while, as a vale, the regions withont Nhambers, viz., the margin, basis, and neighbourhood of the large canals, contain morn or less markedly differentiated spicules:

In the Thioxonia (Hexactincllida), finally, the typical regular hexacte are found nlmost exchusively in the strands of the traleenlar framework, while in the chamber-wall
(zOOL CHALLI EXV-DART LHL-18S5.)
Ggg 64

Ito spienles ocour, and only melh modified vements in the two limiting lamelle, the lonsis, the oscular margin, \&o

If we assmme that the spicules in the body-wall serve essentially only for the support ow stiffeniug of the soft parts, it is to be expeeted that that form and disposition of the *keletal clements will in each case be developed which in the given circumstances is lest fitted to give the necessary firmmess to the body-vall.

1 am decidedly of opinion that it can be shown with convineing probability that such a nocessary reation does exist between the structure of the soft parts in eaelt of the three principal groups of sponges and the characteristically typical forms of spicule

Yos 11. -Triarte itiegonel so thitt half of the tatarystere ate oceupieal hy then central portlons and the other half by their convergent nyss.
which we regard on anatomical and developmental gronnd as primitive and fundamental for each gromp.

If a plate is to be perforated by the maximum number of uniformly large spherieal pores in such a way that the lumina of the pores have a certan scope for expansion or contraction, these pores can only exhibit one definite mode of arrangement, namely, that of the cells of a boncyoomb, and will leave a network with somewhat broad beams between them.

If the plate consist of a mass which requires to be supported by the deposition of lard parts, and if these are, on the one hand, to preserve the maximum of firmess, and on the other to allow of a certain degree of expansion both to the entire tube and also to the
intogacent pores, then the trimdiate spicule is the fittest form. These can be distributed in such a way thut each interspace betwoen three adjacent pores is occupied by a regular triact with each of the three rays lying at miform angle between two aljacent pores (fig. 10), or they may be disposed so that only half of the interspaces between the pwres are occupied by the central portions of the triacts, while the other half contain the points of convergence of the extromities of three rays of three adjacent triacts (fig, 11). This latter mode is exhibited by numerons very simple ealeareons sponges of the Ascon tyiw. For the case of au open tube, fixed at one end, and with the other (oscular) extremity free, careful consideration will show that the latter mode of disposition is the most advautageous. In this way the houndary of each pore, especially on the lower margin, is strengthoned by the forking of the triact which embraces it pasteriorly, and the whole sponge-tube is better strengthencl by the relatively longer spicules thru it would hasw been on the former plan. We may therefore regarl the devdopment of the regular triact as that conditioned and demanded by the stmeture of the soft parts of the primitive catcareous sponges.

In regard to the Tetraxonia, with their regular tetracts, I submit the following vonsideration. When a number of spheres of equal size are uniformly pressed together on all sides, they become disposed to one amother in sach a way that between each four adjacent and directly contiguous spheres a regularly formed eavity is loft, which is continued in four threesided elefts disposied at a uniform angle, and is thus connected with the adjacent interspaces of similar form. Ono cau lest compare the form of these spaces to regular tetrahedra with iupushed walls and drawu-out angles, which pass into the similarly elongated angles of adjacent tetrahedral spaces, and thus secure the connection of all the cavities. Now, if ono supposes this entire system of cavities to be filled with a semi-solid mass, and the spheres to be empty spaces, there is an obvious neeessity for a sxpporting framework. And if the skeletal system necessary for the snpport of this framework consists of unifomily movable skeletal elements with cylindrical branches, then each of these bodies must necessarily

Fto. 12-Tetract spicule in em. tex witl four yplume bavo its centre in the middle of each tetrahedral mass between each four adjacent hollow spheres, and from this contre foter strands must run out along the four elongated angles of the tetrahedron.

The best supporting element for sueh it mass is afforied by such regular tertacts as we find in the similarly constitnted parenchyma between the ciliated chambers of Tetraxomia, and known to be typical for this gromy of sponges.

Although the almost wholly unknown dovelopment of the Hexactincllida gives ns us yet no basis for framing a conception of the architecture of the primitive Ifesartinellida, it is possible, from the close resemblance in the essentials of structure exhilited
by all the known representativen of the group, to conclade that the primitive amenturs must have had a similar structure, though in very simple form.

As I have alrealy noted, the generally sack-like, extremely loose body consists essentially of two approximately parallel bounding kamella, the dermal and the gartrat membranes, between which there extends the varionsly sintous membrana retienlaris, asailly forming a folded chamber-layer, and supported by a framework of fine heame The principal strands of this trabecular framework enelosing the parenchymal skeleton extend at right angles from each of the two limiting

Fii. 13-Arrapgement of Hexacts helwemis the chamilers. lamelle, and usually meet one another in such a way that they form beams penetrating the bodywall transversely, while they are also laterally connected by numerous trabeoule, which, rumning in another direction, form a somewhat irregular framework, though longitudinal and transverse strands predominate.

It thus appears to me evident that, in chese circumstances, no more advantageous form of spicule for the support of such a simple, loose Hexactinellid hody, could he devised than the regular hexacts, disposed in such a way that one radial ray unites the two bounding lamellie, while the second is tangential, and the third longitudinal (fig. 13), just as they do indeed occur in the simplest Lyssacina, Molascus, Bathydorns, \&e.

By the firm union of all such hexacts a latticework is formed such as we find to be developed with almost ideal regularity in the younger portions of Ferrecs. As the wall becomes thicker new layers of similar regular hexacts are laid down, as we find beat developed among the Lyssacina in Holascus fibulatus, and among the Dietyonina in the older portions of Furrea-stocks, but more or less distinctly in ull Dictyonina and most Lyssacina.

Thus it appears that a consideration of the mechamieal conditions of the soft parts to be supported affords in this case also an insight as to the utility of the specifics structure of the skeletal elements as here represented by the regular hexacts.

INDEX.

The more important referaces are indicated by leavier ligures,

Aranthusiae, in gen., 145, 375 .
" (actus, n, ap., 148, 375 (II. Ivii).
" Iubrius, n. sp., 147, 375 (PL. Ivii).
" pmesularia, n. 8p, 145, 375 (PI. Ivi.).
Acauiflosponyius, Salt, 14, 184.
Acanthospongie, 36.
Actinie, Aurete warrhinlli, 297.
" Etirde mempert, 292
Adrasta, 7.
Anga ejompanptilla, 56.
Afferent passages, 20 .
Agnssiz, 61.
". exploration by, 427.
Aleymerthan zperiosum, 5, 54.
Ampluidises, 36, 48 ; firtree-like, 212; largest, 202; peouliar, 192.
Amphidiscophora, 178, 380 ; playlogeny, 499.
Ancora, 48 .
Anderson, T., 18; on Japanese sponges, 276.
Amular thickening, 171, 173, 192.
Anomoclarlina, 16.
Antarctic Ocem, Balanites, 122; Holaveus, 36S; Polyikiathlus, 121.
Antilles Islandes, Aphronallistog, 395; Cyrtauton, 400; Euplectello, 366; Regulrella, 367: Rhabidozmetrlta, 371.
Aphrocallisteo, Gray, 305, 306, 310, 395.
*) Geatric, Gray, 305, 311, 396 (PL Ixxxiv.).
n) Twageit, Wright, 306, 313, 395 (Pls. Ixxxiii, 1exxiv,)
*) vamanke, in. 刀p, 319, 396 (11, Ixxxvi).
 1xyxv.).

tubutionas, 311.

Ascension, Apharoctlistes, 313.
Arconema, Siv, Kent, 113.
" kentii, 207.
" Aetabalenac, Sav. Kent, 116, 371 ($\mathrm{Pl} . \times x \mathrm{x}$).
Aseonematider, 371.
. lefined, 113.
.) bethymetrical distribution, 456, 458.
.1 geographical, 436.
" pihylogeny, 494.
Asconematines, 113, 371.
Astylospongide, Zittel, 12, 1之
Asymuloide, 10, 487.
Avlascus, in. gin., 118, 372.
n johustemi, n. sp., 118, 372 (P1, xxii).
Autocalyp, n. gen., 174, 380.
Trreyutaris, n, sp, $174,380,491$ (P). 1x.).
Aulochome, n. gen., 168, 378.
\Rightarrow cylindrica, n. sp., 168, 181, 370 (Ple. 1xvi., Ixviii.). Thǐn, 170, 177, 379 (Pl. Kxviii).
Auforgstis, 11. gen., 405.
" grayi, Bwk, 357, 405 (PL eiv.),
". zithlaz (Marshall), 361, 40 f (H , civ.).
Aulodictyou, Savill. Kent, 269.
" monlicumfii, 286.
 383.

Autodernalia, 43, 49.

Autogastraliia, 19.
Axial camnl, 27, 98
Azores, Stydomlyx, 187, 383,
Eahis, Eimplerflla, 76, 366.
Hajulus, 509 ,
Aalanclla, n. gerir, 514.
Bidanife, I. gen, 122, 37\%.
" Lipetta, 1. 21. 122, 372 (1). xxiii.).

 thamme, 339; Stylocoly, 221, 384,
Ltarbadas, Dadylocalye; 403; Regadrella, 85 ,
Barboza diu liocage, IIgalnucma leaitanirnm, 18:4, 185 , 295.

Barrbilu, 37, 276.
Masalin, 40, iE
Easal collaryad, $I_{\text {I/alonema }}$ setmuldifi, 195, 197 , 206.

Rathyitorne, n. gen, 150, 376 .

.. fimbriatus, n. 40. 20, 151, 376, 491 (Pl. iviii).
(vinosus, 11. 8p., 153, 376 (P . lix.).
\# dellatue, n. sp., 152, 376 (12. lix.)
Hathymetrical distribution, 453.
Herlingues, Euplectella, 366 .
Hermuilas, Aphrocallintes, 315 ; Aulocalyre, 174; Chome Lomua, 397 : Dactglocalyer, 350, 403; Euptem fella, 83, 367; Frarrea, 988; Lefroyella, 301, 302, 394 ; Rhabutodictywom, 107.
Bequia, Hyalonema, 207 ; Rhainfarliotmov, 170,
Mirotulifern, Carter, 9, 260.
Blainville, 99.
Sotton, nature of, 468.
Bowerharik, 6, 8; Aplinecalliotes, 306 ; Dactylocalys, 313; Buqplect lla, 54, 55, 59; Farraa, 267, 268, 371,273; IIyalourwa, 183, 184, 188; Iplitein, 345; Rassella, 136.
Eranching, 29 .
Itrindi, 182 .

Budiling, 25; of Pulufonhus, 133,
Thenos Ayres, Itulasenk, 86, 368; Rumilla, 375,
Calearen, phylogeny, 497.
Callicispougis, 9
Catlinphava ($=$ Pheroncana grayi), 237.
Callodietyonille, Zittel, 13.
Caminat, 497.
Canslaria, 45, 49.
Canary Islanils, Polfopognon, 254, 389.

Capo of Good Hope, Holavike, 88.
Cape Si. Vineent, Baglectella, 73; Hyatonemin, 183.
Cape Verin Islands, A)drocallistoc, 395; Lornugininlia, 130; Sympaydfr, 120, 372
Cype Kork, 11 ymtowence, 232.
Canoline Islanils, Eim /ectelle, 81.
Carter, 18; Alegonorlitur, 103; Aphmodllister, 308; Ascumenia, 115; Binotulifera, 260; Clamilication. 9; Civtrommpha, 115, 160; Dactylocalys. 346; Distribution, 491; Euq/atrlla, 58 ; Euckl, 290; fairco, 269, 270, 276; Halmistietgum, 108 ; Hranclinella, 328; Hyatonema crluenor, 228; Lubaria, 298; Mcyorina $=$ Sonquerella, 260; Pherviema, 237; Polylinphot, 133; Rossille, 136, 137; Sympoyellic, 119.

Qurterios japonico, Gay, 181.
n. Iusitanice, Gray, 185.

Cunloralyn; n. gen., 172, 379.
" temer, M. sp., 172, 379 (11. Ixisi).
Cmulophucine, 124, 373.
Canlophack, n. gen., 124, 373.
(1) regauk, n. इр., 126, 373 (Ple xxy, xxvi.).
tutue, 11. sp., 124, 373 (PL xxiv.).
Celobes, Autorhone, 379.
Central boss, Hyalonema, 189.
Contral column, Hyalonema vicbuldiii, 191.
Contral oone, Hyalouomer apertwo, 204, 315 .
Chalinidre, 497.
Challenger Hexactincilida, List of, 472.
Chiamber cells, 23.
n layer, 20,47 .
" pores, 19, 47.
Chruelazma, n. gen., 320, 397
if calyx, 1. sp., 326, 308 (P1. 1xxxix.).
i) deciterlcinit, 324, 398, 498 (II. xe.).
i. Lamalum, i. sp, 323, 397 (PL xoi).
in lamello, n. 81., 321, 397 (Pl , Ixxxvii.,
Ixxxviii).
sp, 326 ($\mathrm{PL} . \mathrm{xc}_{\text {. }}$).
Chistina Lolands, Styloculyर, 293, 385.
Chassifications, $8,9,10$.
Clnus, 7,9 ; Dactylocaly, 344 ; Eurzicetello, 56 .
Clavulo, 37, 48
Clavularia, 266.
Cecloptychide, Zittel, 14.
Collar, 23.
Colnuella, Hyalanema graifle, 197.
Comitalia, 46, 49.
 56 ; Anthozon on Eturle, 298 ; on Itimimemusiotodetii, 191; Crustaceans, 56, 61; Hylroxoon, 96; Pahemonid, 56 ; Patython jatua on Hyzlourma, 183, 189; Strplioncyphtar micurbillo, 98.
Uonnecting membrane, 47 .
Connective substance, 24.
Corbitellio, 101.
a) spuetions, 101.

Coralliaspougis, $8,57$.
Toscinoporita, 12, 330, 396; distribution, 438 .
Cratevomorulic, Gray, 159, 161, 377.
Gratemmorytha meyeri, Gray, 161, 377 (P1. 1xi.).
. murrayi, n. sp., 164, 378 (II. Ixiii).

- Wherfideri, n. 日p., 164, 378 (II. Ixii).
*) Invider, n. sp., 166, 378 (P)s Ixvii., Inviii.),
Irozeta Islands, Arenthaeniex, 375 ; Autoralys, 170; Bathydonos, 153 ; Ceulonshacus, 373; Clume Tramut IaniHlla, 321; Fixrese sp., 388; Holurcus, 368 ; Muluconarrus, 368 ; Slylacaly, 384.
Cutl of spicules, 65.
Ciurvature of rajs, 170.
Cyathella, 0. Sehmialt, 14, 15.
Guathophiorne, 63.
"grfantail, i. geth, 332, 400.
" Ripwhei, O. Schunidt, 333,400 (II. xcii.).
n silutus, n. sp, 333, 400 (PI. xcii.).
Givelicpurgia atyerver, \mathbf{O}. Schmidt, 15 .
Dactoforalye (Stutchbury), 341, 342, 348, 102.

Weathi, proecseen of, 26 .
Mendivospongia sterei (Soterothanuws), 337.
Dermalia, 43, 48.
Dermal membrane, 19, 47.
Fermal proves, 17.
Bevelopmont, 26.
Hiacts, 36.

Diarefatio, O. Schumidh, 15.
Diclyocalye, it gon, 105, 3io.
". gmailis, in 81., 105 , 370 (11. xii).
Dictyomilia, 46, 59.
Dietyonina, Zittcl, 12, 39, 265, 390; bathymetrual Histrilution, 462 ; Iocalities of, $\$ 15$.
Divtyonkytom, 63.
Dipharorlinen, U, Schmidt, 15.
Diphutelía profirsula, 203.
Directalia, 46.
Disc of rosettues, 17 ä,
Discohexact, 48.
Discohexaster, 32, Is.
Diveoternia, Gray, 346.
Düderdcin's colloction, $4,42 \pi$, 131 .
Drucam, P. II., Aplorverilliseces, 309.
Efforent passafen, 20 .
Ehrenbergt IIymismewa, 182, 184.
English Channul, Ayfmeultides 395
Enodima, Iphoryirullider, 314; Chwalasmac, 396; Frevif, 291; Alvactiaella, 339: Peripipajella, 299.

Eexproyfa, ix.
Epithelium, 3:.
Eaperiade, Gray, 184.
Etheridge, Caph, Eyplectlla rumusir, 266.
Fulfilyan, Marehall, 104, 370.
Aurficigata teganio, Marahall, 103, 104, 370.
Arptelefla, Owen, 64, 365 (17s. i-vi., xiii., kir.) : bihiliograquy, 52 ; histary, 53,
Eaplefflle axicrithum, 11. Owou, 57, 64, 67, 366. crasiotellata, n. sp., 81, 307 (11, xiii.),
rnemuter, Owen, 76, 366.
jiví, Oseur Sclimidt, 72, 366 (Pl. vi).
(i) zulliah, 11. 31, 82, 367 (Pl . xiv).
rucemi), Herklots anil Marshall, 50, 60, 78, 366 (PL vi.).
suberem Wyv. Thomson, 60, 73, $\$ 60$
(Pls, vi, vi).
Euplootolliala, $\overline{51}$; bathymetinal distribution, $4 \bar{\sigma} G_{2}$ 458 ; goograthion, 4.46.
Euplectelline, 58, 365 .
Burreto (Scuper), Catter, 289, 291, 393,
i. rarlov, ni, sph, 296, 393 (19, Ixxviii).
\therefore farmopis, Cartor, $275,290,295,392$ (P1. ixxix.),
*. mavahalli, n. sp, 297, 393 (ㄹ. kxix.).
i. schmültï, n. घj., 293, 392 (P1. 1xxvifi.)
., emperfi, it sp. 292, 399 (TI. Ixxvii)

Eurele símp/igжкina, Semper, 298
Euretila, 12, 289, 301 ; distribution. 438 ; 1 bylogray. 493.

Encyultryma, n. gen., 176, 380.
$n \quad$ arricutam, $\mathrm{n} .5 \mathrm{~F}, 176,380,190$ (19. cii.).

Everón of cup of Bary, feymo. 169.
Farm, Di. A., Fiarrea, 266.
Firryy, Bowerhank, 266, 276, 390.
acederta, Dowerbank, 271, 274.
तlacigera, 14. s7. 287, 391 (PL Ixxv.).
derwou, Cartes, 270.
Jacundic, 0 . Selimidt, 268 , $27 \overline{0}$.
Jiotalate, Botwerlank, 271, 27\%.
gowsiofi, Bowerbank, 271.
hacekrtiu, 276 -
ïrraín, Bowrorlank, $271,274$.
infuadilutiforntis, Cartet, 270.
irregularis, Bowerbank, 271, 374.
lamis Bowerbank, $271,972$.
ocea (Bwlk.), Carter, 277,390 (Ples. Ixxi,
Ixxii., Ixsiii., Ixxvi.).
parasitica, Bwk., 271, 273.
jcramata, Powerbank, 271, 27.
preillum, Botrorbank, 271.
sollasi, n. sp., 281, 286, 391 (PI. Ixxiv.).
sp. (F), 288 ($\mathrm{HL} .1 \times \times \mathrm{i}$).
pinuifera, 271,273.
крiमarixsima, Bawerbank, 371, 273.
spinuteula, Boworbank, 271, 273.
rabusta, Bowerbank, 271, 274.
tubutate, 27.
valida, Bowerbank, 971, 273.

Farreide, 266 ; distributicm, 438 .
Fioldingia, Sav: Kent, 335, 101.
(1) Tagefloùdes, Sav. Kent, 335 (1'1. xevii.).

Fiji Islands, Tageria, $94,369$.
Filhol, H., 17; Avconconce, 116; bathymetrioal diestribution, 454; sivergent results, 433; Euvpler: tella sulicrea, 76 ; Pheronema, 230; Altgellum, 23.

Flesh spicules, 10.
Eloricome, 32, 48, 170.
Florida, Aphrocalliefer, 395 ; 'Sympayiflo, 3 2F
Form und structure, 19.
Foasil Euplectellids, 63.
France, Aplirocallialo, 395.
Gastralin, 44, 19.
Gastril eone, Myalosema, 189.

Ciantral membrane, $19,47$.

- pores, 4π.
". aepta, Hynlonewe sicturdii). 191.
Gummula, 60.
Genealogical tree, 495, 499.
General structure, 19.
Genital products, 24.
Geographieal distribution, 420.
Gibraltar, Emplectelle, 76, 366 : Fosasella, 143, 375.
Gloasary, 47.
Glassope, 202.
Granules, 24.
Graphioherasters, 31, 18.
Gray, 6, 56; Aphmentlider fuxatrix, 305 : Aswnepun: 114; Criteromorphide, 160; Dactylocalyciden, 343, 346; Einplectella, 55, 55; Hyalouema, 181, 184, 189; Lalaria hentiopherica, 937; Meycrella clarifinmie $=$ Semperclla, 960 ; Myfhotia, 359; Pheronemada, 237; Polylophins, 132, 133 ; Rosellu, 136 ; Sympagella, 119.
Grenaia, Eurplectella, it ; $H_{y / a}$ innema krntii, 207 .
Guadeloupe, Hyalozerna tocerw, 907,
Habradirtyum, Wyv. Thomson, 99, 370.
рресіosum, Quoy and Gisimand, 99, 370.
Haeckel, spicules, 490.
Hansem, A., Hyalonemar areficum, 188.
Havama, Maryatritella, 404.
Herklots and Marshall, Ehutedella, 5to.
Mertrigia, 0 . Schmidt, 109, 371 :
-1. jalcifera, O. Schmitt, 67, 109, 371, 491.
n. fateiforiats, 16 .

IIterotelli, 101.
Hexactincllida-origin of terim. 5. 51, 365; List of, 180.

Ifexadinella, Carter, 327; history. 327, 328, 398. n. Tafa, n, sp., 229, 399 (Ils, xciv., xer.). . Imbuloso, n. $8 \mathrm{sp}, 328,398$ (PL xcifi), - meltilabrini, Cartex, 331 (PL xevi).

Carter ($=$ Tretuhictynm cyatlus), $328,399$.

Hexacts, 29 ; irregular. 32; regular, i8; nodilar, 119.

Hexasterida, phylogeny, 492.
Hematerophiora, 51, 365 .
11iggin, Fiupicetella, 58 ; Hyalonema ceburaee, 186, 228 ; Lalaria heníshiarica, 238 . fle ronena heminhiarinnm, 347.
Hinde, G.J., I8.
Histology, 23.
Hithory of mork, 1 ; of Hexactinellith, fi.

Holascinic, 85, 367.
Holaseus, n. gen., 85, 307.

4. јюlıjaërüt, n. sp., 89, 368 (Pl, xvii.).
") valleyi, n. sp., 90,368 (PL . xvii).
4 tellatus, ni: ş, 86, 368 (P, xiv. x_{1} xv.).
Hulteriki, Wyv. Thomson, 115, 234.
cargenteri, W Jv. Thomson, 235.
pourtatenti, (O. Sclimidt), 236, 238
Myalochate possieti, Brandt, 182.
IIgalonema, Gray, 179, 189, 381.
sens. strict., subgen., 190.
affine (Marshall), 187, 216, 217.
amomaium (Bowerbank), 188.
arcticunt (Hausen), 189.
celuense, Higgin, 186, 228, 385.
cunw, 209, 383 (PL xxxiii.).
duisrgens, n, sp., 199, 382 (Pl. xxvili).
yracile, 196, 282 (P1. xxvii).
heutī, O. Sclmidt, 207, 382 (Pl. xxx.).
loveri, Wyv. Thomzon, 186.
Insitanicun, Ikurboza du Jocago, 183, 214,
225,385 (Pls. xxxviii, xxxix.).
mírazile, Bowerbank, 184.
mírabilis, 181.
parallelum, $\mathrm{N}^{4} \mathrm{Coy}, 183,188$,
pooulam, in. $5 \mathrm{p}+208,383$ (Pl . xxx iii.).
roturtum, n. sp, 229, 386 (PL. xxxii.).
sctcultzi $(=$ Semperelia), 259 .
के कholdit, Gray, 181, 190, 381 (PL xxvii); spicules, 192.
smithii, Young and Young, 188.
fenue, n. sp, 228, 386 (Pl. $5 x \mathrm{x}$.).
thomsoni, 187.
themsoni, var: exiguum, 214.
toxeres, Wiyv. Thomsom, 188, 201, 202, 203, 382 (P. xxix.).
(Stglocalyx) ajertur, n. sp., 214.
(Stylocalyx) devigerum, HL sp., 220 (PL. xlii).

(SSyloculy/c) elequw, 11. ap, 223 ($\mathrm{Pl}, \mathrm{xxxi}$).
(Stylocalyx) plolion, n. मु, 221 ((PI, x).).
(Stylocalys) tenerwin, in. Ip., 224 (PI. sxxi).
(Stylacalye) thomeoni, Marshall, 211.
species diverse indefinites, 231 ($\mathrm{P} 9 \mathrm{~A} . \mathrm{xxxii} .$, xxxix.).

Hyalouematide, Gray, 178, 381; bathymetrical distribution, 457, 459; geographical, 438 ,

[^127]Hyalonemating, F. E. S., 178, 381.
Hyyalostylue, n . geth, 110, 37 I . *) (ǐrer, n. s1, 110, 371 (M. Ixx.),
Ityaiothimaio ludchingi ($=$ Scmporella), 260 .
Hijalofltrix lugitanica, Gray, 185.
Hymedeanim johrouni (Bowerhank), 272.
Hypodermalia, 44, 49.
Hypogastralia, 45, 49.
Indian Ocean, 410; Antascue, 118; Mulacosacom, 91.
Inermia, 341, 402; bathymetrical distribufion,457,459.
Jphitcon beatric (Dowerbank), 306.
\because Gray, 355 .
\# calloryatious, Gray, 345 .
t. ingalli, Jwk., 345.
it panicea, Valenciemnes, 306,344 .
n mulyplolowa, Gray, 315.
Interwedia, 49.
Japan, Arauthesens, 376 ; Aphrocallistes, 396 ; Bullty doves, 151 ; Camlorhacu, 126, 373 ; Chome Jana, 398; Eriplectilla, 78, 366; Erwete, 392; Hexnctindla, 399, 400 ; Hyalonena, 191, 381 ; Periphagelle, 299, 394; Rhabidocalyptue, 37\%.
Japauese composition of aponge, 184.
Jelireys, Gwyw, Aphivorilistea bocagy; 308; Rosiellic, 143.

Joanella, O. Schmidt, 10.
Juan Fernandes, Ilyalonema, 202, 383; Hivalonenia pecaluin, 208.
Ǩaliaprià (Gray), 346.
Kent, Saville, Aseonenia, 113 ; Aydirocallivta, 30 in, classification, 8, 9; Farrea, 268, 369 ; Field. ingia, 335 ; Hulteaia, 236; Pheromema, 236.
Kematoan, 497, 498.
Kerguelen Island, Cautoplucueue, 124; Chionelawna, 391; Holascus, 88 ; Rnssella, 139, 375.
Kermadec Islande, Aulochoue, 168,379 ; Choowianmer, 397; Eieryntegma, 380; Forma, 977; Poliopogon, 257; Walteria, 96, 369.
Key to Genera and Species, 107.
Kistermann, Hyalonema siduldit, 187.
Latiaria $(=$ Theronence $), 246$.
in lemìqhariaa (Gray), 237, 338.
Iavugruella, O. Sclmidt, 129, 37.
Lannginella pupu, O. Schmilt, $130,3 i+$ (PL. Hiii.).
Largest formis, 40.
Lefroyylla, Wyy. Thomson, 301, 394.
" ilecura, WYy. Thorason, 302, 394 (II 1xsxii.).
Leily, Pheronenir amme, 234.
Leiolotiifium, O. Sclimidt, 15, 238,
Gg 05

Lendenfeld, Calcarsa, 497.
List of Clallenger specimens, 47 .
Little Ki Ishand, Aulocystis, 361, 406 ; Crateromanylia, 161, 378 ; Cyrtauton, 333, 401; Earete, 292, 295, 996, 297, 392, 393; F"eldñgia, 335, 401; Hernetinella, 399 ; Lameginclla, 130, 374 ; Myliusic, 405; Pheroncma, 248, 250, 388; Polylophus, 133, 374; Semperella, 265.
Lithistide, 8, 496, 498.
Localities, Hist of, $125,426$.
Leqhiosalys, n. gen., 514.
Lophodilia (Farrea), 147, 369.
Lophospongixe (Schnltze, M.), 40, 184.
Lovén, Byaloacua boreale, 185.
Loveraia (Bocago), 185.
Luzon, Hyalonema, 333.
Lyssacina, 14, 39, 51, 365 ; bathymetrical distribution, 462 ; localities of, 434.
Sacandremia azoricu, Gray, 343.
Macaulay Islands, Potiopogon, 257, 389.
Macio, Pheronema carzenteri, 242.
Magellan Sirait, Acanthascws, 147; Bathydorus, 152; Rhabilocalyptus, 168.
Mreandrospongidx, Zittel, 13, 34, 402; distribution, 438 ; phylogeny, 493.
Malacex, A phracaltistes beatrix, 311, 396.
Salacasaccur, n. gen, 91, 368. it umguiculatus, n. sp., 93, 369 (Il. xix.). " vasturs, n. sp. 91, 368 (Pl. xviii.).
Maldon Istand, Hyalonema, 199.
Maly, analyais of spicules, 28.
Manila, Farrea, 278, 391.
Margaritclla, 0. Schmidt, $351,404$.
Margaritella ceeloptychioules, O. Schmidt, 351, 404 (PL ci.).
Marginal fringe, Hyalonema, 189, 190.
Margimalia, 43, 48.
Margiaal teeth, 32.
Mariou Island, Auloculyi; 174, 380.
Marshull, 3 ; Aplirocallistes, 309 ; Asconema, 115 ; bathymetrical distribution, 453 ; classification, 10 ; Cratcromorpha, 160; Ductylocatyp, 347; diagnosis of Euplectellidx, 103 ; distribution, 422; Euplectella, 60, 77; Eurrte, 290; FFaliro alictyum, 103; Hyalounma, 187, 216; Lakaria $=$ Pheronema, 246; leriplaragella, 299; plylogeny, 486 ; Rassella, 138; Sclerothamnus, 337; Sonmicrella, 260; Stylocalyy, 211.
Marshall and Herklote, Hyalotharma Turlehingi= Semperella, 260.

Marshall and Moyer, Aulocyntio, 363; Podylophtus, 132, 133.

Martene, von, 3; Hyalonema, 183.
Martinique, Hyalonema foxeres, 207 .
Meangis Iskands, Aulochous, 171, 379.
Melittionide, Zittel, 13, 304, 309, 395; distribution, 438; phylogeny, 493.
Mellish Islands, Hyaloneana, 217.
Membrana retieularis, 19, 492.
Membrane of parietal gaps, 4π.
Messier channel, Bathydorue, 152, 376 .
Meyer (see Marshall), 3.
Meycrella claviformis $=$ Smuperella, 260 .
Meycaino, Carter ($=$ Semperella), 260. n. clarifarmis, Gray, 237.

Megerinide, Gray, 260.
Mid Pacific, Euplectella, 81; Hyalonema, 231, 382.
Milne-Edwards, Alcyoncellum, 100; Aphrocallistes, 310; Erplectella suberea, 76 ; Habrodictjum, 99.

Mindamao Island, Iy yalomema gracile, 190.
Misaki Bay (Dóderlein), 431.
Molucca Islands, Eurete carteri, 296; IIalrodictyum, 370; Periphraymila, 299, 394; Monacide, 10, 14.

Monactellide, 496.
Monacta 37.
Monte Video, Holascue, 86; Hyalonema, 226.
Moom, T. J., Eiuplectella, 57.
Morrolight, Scleroplegma, 351.
Moroceo, Asconema, 372.
Moseley, 3.
Murie, J., Sclerothumnus, 337.
Murray, J., 3; Pheronema carpenteri, 241.
Myliveia, Gray, 352, 404; bibliography, 352; history, 353.
callocyathus, Gray, 346, 404.
Myxilla, 98.
Myxospongix, 498,
Nature of bottom, 428.
Nature of ground, influence of, 468.
Nidos de $\operatorname{Mer}(=\text { Pheronema grapi })^{2}$, 236.
Norman, Asconenia, 115; Holtenia carpenteri; 238; Hyalonema /usitunicum, 188.
North Atlantic, 440.
Norlh Pacific, 440; Bathyderve, 151, 376; Ilyalonena, 229, 386; Stylocalyx, 384.
North Temperate Zone (distributiou), 445.
North Tropical Zone (distribution), 446.
"Oscular plate," Sollas, 10.

Ova, 24.
Owen, Eitplectella, 53 ; Eaplectella cucumer, 266 ; Furrea, 207.
Oxyhexacts, 30, 31, 48.
Oxyhexasters, 48.
Prehastrella alyyesi, 115 .
Pachauľ̀linm (O. Schmidt), 15
Palieomanion, 18.
Palythoa, 183, 189, 190, 203, 211, 214.
I'arenchymalia, 45; 49.
Parietal gaps, 47.
Pathological modifications, 170.
Patulina (Carter), 9.
Penreall, T. J., 181.
Penguin Island, Bathydorus, 153, 376 ; Chonelasma, 327; Stylocalyc, 200, 384.
Pentacts, 33.
Piriphragrlla, Marshall, 299, 394.
n Cisw Marshall, 174, 299, 394 (Ils. lxxx., lexxi.).

Perrier, E. (bathymetrical distribution), 454.
Phakellia ventilatrum, Bwk., 398.
Pheronema, Leidy, 234, 239, 386.

```
#) anna, Leily, 239, 386 (Il, xiii.).
ir earpenleri (Wyv. Thomson), 241, 387
    (PL xliii)-
        giganteum, If 8\4, 250,388 (Pls. xiv.,
        xivi.).
        glabosum, in. sp., 248, 387 (P1, xliv.).
        grayt, Sav, Kent, 236, 246, 387.
        hemisp/arricum (Gray), 246,949,387.
        parfaiti, 17.
```

Pheronemadie (Gray), 237.
Philippine Islands, Aphrocallistes, 319, 39G; Aulucystis, 406; Crateromorpha, 161: Eaplectella, 64; Eurets, 293, 392; Farrea, 277 ; Holasens, 90 , 368; Hyalonema, 196, 389; Pelylophus, 133; Setervfliannw, 409 ; Seruperella, 261.
Phylogeny, 485.
Pinulus 33, 48.
Plocotictyum стsennaria, O. Schmilt $=$ (Holothmian, Thyme), 8.
Plakinide, 497 .
Pates-Sir Wyvile Thomson's, 3,
Pleionacidre, 10, 14.
Mcorhabdus, n. gen., 514.
1 leuralin, 42, 48.
Plumicomes, 31, 48, 173.
Pol ${ }^{2} \mathrm{javif}$, Calcarea, 497.
Poliopoyon, Wyy. Thomson, 254, 388.

I'oliopogon umatou, Wyv. Thomson, 254, 3E8 ($\mathrm{M}=$ xilix., I.); analysie of spicules, 28 ; young forms, 956.
yigte, n. ap, 257, 389 (Pls, xIvii., xlviii.).
Pollacide, $10,14$.
Polyloptius, n. gen., 132, 374.
\# philippinemais (Gray), 133, 374 (Pls. liii, liv.) ; budding, 25.

Polyriabelns, in. gen., 121, 37 .
" oviformis, n. sp, 121, 372 (PI. xxiii.).
Portugal, Asconemu, 372; Dactylocrly, 350, 403; Fieldingia, 401 ; Pherouema, 387 ; Sympagella, 373.

Possession Island, Acturthascus, 145, 375.
Pouch-like depressions, 171.
Pourtales, Count, 268 ; exploration, 427.
Principalia, $46,47,49$.
Prince Edward Ishond, Aulaseres, 372 ; Autocalyx, 174 ; Rossella, 139, 375.
I'rostahia, 40, 48.
Protachillewn, 18.
Irout, W., 181.
Psetalia plotulosa, 132.
Pseadogasterb, Semperella, 261.
Pseudogastmi cavity, Cyrtaulon, 332 .
Pseudo-sieve plates, Semperellia, 261.
Puento Bueno, Acanfluscue, 147, 375; Rhabdocalyptuo, $158,377$.
Quoy and Gaimand, 55 ; Alcyoncellum, 99 ; Habindictyom, 99.
Radial folds, $169,171$.
Raonl or Sunday Islands, Earyplegma, 176, 380 ; Poliopogon, 257, 389.
Regadrella, O. Schmidt, 16, 84, 367.
phowix, 0. Schmilt, 62, 84, 367 (PI. xiii.).
Reproduction in Farrea, 285.
Reserve nutriment, 24.
Rhabrocalyptas, n. gen., 155, 327.

$$
\begin{aligned}
& \text { mollis, } \mathrm{n} . \mathrm{sp} ., 155,377 \text { (PL. 1xiv.) } \\
& \text { meperi, } \mathrm{n} . \mathrm{sp} ., 158,377 \text { (P1. Ixv.). }
\end{aligned}
$$

Rhabolodictyun, O. Schmidt, 107, 370.
selicatuan, 0 . Schmidh, 106, 107, 370 (Pl. xx.).
delineatum, 491.
Rhabdopectalta, O. Schmidt, 108, 370. " tintiamus, O. Schmint, 16, 69, 108, 370 (PL. xii.).
Rhabetartauridium, 0. Schniidt, 15,489 ,
Hidges, 65, 17T.
Ridley, 8. O., 181.

Tigid balls, 1\%.

Hio de la Plats, Hyvelonema, 228, 386 .
Tholler-stars, 120.
1 loot-tuft, 40 .
Fosettes, 30, 48, 128, 175.
Rasetifiora (Carter), 9, 138.
Rowstla, Carter, 115, 136, 138, 374.
.. aufanction, Citter, 130, 139, $37 \pm$ (PI. Iv.).
-. phitippinensig. 132.
.. culato, Wry. Thomson, 143, 375,
Howserlidie, 129,374 ; bathymetrical distribution, 456 , 458 ; geographical distribution, 436; phylogeny, 494.
Fiudiments of raxs, 1 to.
Sagani Bay, 3: Aphrocallietes, 317, 319; Chuselaena, 324: Eurefe, 296, 297, 393 ; Farma, 277, 278, 301 ; Stylocalyp; 214. 383.
Santa Criz, Meronema, 85 ; Regalreilla, 289, 387.
Sarcohexactinellida, 9.
Sarco-vitreohexactinellida, 0.
Sars, Iynalonensa tongissimum, 186; Ityalonazur parrum, 186.
Schmidt, 0., 8: Aphrocallioted, 307, 309 ; Asconema, 115; Cuctaulon, 332 ; Dactytocalyx, 346, 347 ; Emplectilla, 69; E'arrea, 265; Herticigia, 109; Holtenta pourtatosit, 236; Hyatonema kentii, 207. Hyafowema siduthit, 188: Lanaginella, 199; Lefroyecta, 309; Marguritella, 351; Mexican Sponges, 15 ; Pheronema, 245 ; Phercuema annar, 238; phylogeny, 488, 497 ; Rogoulrella, 81 ; Mhabiortictymu, 107: Mhalntopetella, 108 ; Sympayella, 111.
Schultze, M1., 6 ; Eacplectelta, 55 ; Hyalonemata, 182 ; Lophospongiac, 181.
Scleroplegiag, O. Schmidt, 350 , 404 .
comicum, O. Schmidt, 351, 404 (Pl . ci.). laterna, 16.
Sclerollaminu, Marshall, 337, 401.
Sideroflamme cluusi, Marshall, 339 (Il. xeviii.).
Scopule, 34, 18 .
Soppufaria (Carter), 289, 391.
Scopuiliford (Curter), 9.

Scapuitu, 8,
Seconilury ray, 30 .
Simper, 3 ; Eiplectela, 55 ; Erreff, 289 ; Hyalonema vichaltai ($=$ Semperella $)$ 185, 259.
Sanjuerella, Cray, 259.

Semperellinw, 259, 389.

Sintubal, Hyakinema, 385.
Seychelle Islands, Eupitectella, 36G,
Shetlani Lalands, Syylocolys, 383.
Siem Leone, Malacomerks, 93, 269.
Sisveplate, 66, 75, 190, 390.
Silicea (Eorserbank), 183.
Skelelal spicules, 27.
Skeleton, 27; evolution of, 502
South Atlantic, 440.
South Indian Ocean, Balfmites, 372.
South Pacific, 440; Bathydoruc, 1555 , 576 ; Diclyo: calye, 105,370 ; Hyalostytus, 37 ; Stylocalys, 294, 385 ; Tracigrautus, 128, 373.
South Temperate Zone, distribution, $\$ 45$.
South Tropical Zone, distribution, 44.
Sollas, clasification, 10 ; Dactylocalgr, 347 .
Spain, Aphrocallistes, 395 ; Sympapella, 372.
Sperme, 24:
Sphrerohexact, 48.
Spharohexasters, 31; 48.
Spicular sheath, 24.
Spicules, aualysis, 28 ; anehor, 42, 132 : appendicular, 132 ; arrangoment, 40, 41; axes of, 29 ; birotulate, 193 : brow-like, 34 ; clasps of, 28 ; comital, 68; compase, 80; cruciform, 186; curvature of, 30 ; extrinaic, 75 , 110 ; flori-como-hexradiate, 59 ; defensive, 71 ; formation, 499 ; lamination, 205 ; orientation, 502 ; portecto. multiradiate, 307^{-}; position, 40, 41 ; raphiule. like, 81 ; rationalised, 501 ; spindleshaped. 192; Bellate, 109; structure, 27 ; union, 38 .
Spoungicole, Gray, 189.
Spoingia octancyra, Brandt, 182, 184.
it spiniciux, Prandt, 182, 184.
Sponge, draiging, 61.
Stalk, $160,161,172$.
Stauractinella, Zitta, 14
Staumdermilen, Zittel, 13.
Statronewata (Sollas), 10, 347.
Stecre's spange (Sclerofthavuue), 337.
Stcpinesyphus miratillis (commensul), 98 .
St. 1,ucia, Emplectellit, i7.
St, Thomas, Aplerocalliste: 305; Chonelaona, 327: Forvea, 277, 288 ; Ilyalonema, 201; Myliunio, 405 ,
St. Vincent, Aulocgitio, toc.
Stutchbury, Dactyloculyj, 372.
Styfocalyr, i. nulgen. (see (Iyalonema), 211, 383. quertum, on. 3 , 214, 383 (Pls, xxxvin , sxxviii.),

S7ylocaly, rlariferium, if Fin 220, 384 ($\mathrm{IL} \times 1 \mathrm{Li}$). depresamia, in 41, 217, 383 (His xxxv-4 sxx+i).
Athans, n . PR - 223,384 (IL xxe).
plotens, in. 31, 221, 38+(11. s1.).
f(nerum, it sp,, 224, 385 (PI, xxxi)
Phemour, Marahath, 211, 383 (II. xxxiv.).
Superimposed individurts, 69
Superior funnel, 171.
Subilermal trabecalar space, 19 trabecules, 15.
Sulgeutral trahecular space 19. trabeenta, 17.
Survey of genera and species, 365.
Sǜs, Hyatomenta paratledau, 183,
Sympogela, 0. Schunidi, 119, S72.

$$
\text { " nur, O. Solmnidt, } 120 \text {, 3i2 (} \mathrm{PL} \text { xxii) }
$$

Sympagelline, 110, 372
Synapticula, 28, 38, 172.
Symanloite, 10, 39, 487.
Sypinguitarm (O. Schmidt), 15, 30y.
\& kitteli" (O , Schmidt), 317.
Tevgeria, n. gen., 94, 369.
in putchra, n. sp., 94, 369 (Pis. vii, viii., xi.).
Tegerina, 94, 369.
Tahiti, Dictyoealyx, 100.
"Talisman," 17.
Terminal raye $+77,172$, ac.
Terminal sieve-plate, $21,4 \%$.
Tefilla polyura, 132.
Tetractinellida, $\mathbf{1 0 6 .}$
Tatracts, 85 .
Thumsen, Wyvillo, i; Aydiracallisien, 306 ; Ascouma, 115, Corbitella, 101 ; Eiypledella, 60; Farvea, 268; Haluortictyum, 101; Hetrobella, 101; Ifolfinion, 186, 235 , Iyalanemu, 186, 301 ; Ejrayeltu, 301; Pheronewa, 241; Polioprogon, 254; Rawlla, 137, 1it.
Truan, Mylinkia, 405; Sichotluwarue, 339, 402.
Tisues, 23: finke-like, 69 .
Trechycautur, n, gen., 128, 3Fs.

"Truvailleur," 17 .
Tretodietyida, 327, 398; distribution, 438,
Trelatictyna $=\|$ esactinella, 328 .
cyalline $(=$ Heraetisolla tचiftiabrauर), 328,
Iatain (= IEernctütla lata), 327.
 328.

Trictio, 85.
Triaxoria (= Hexactiuellita), 51.
Trictioptalla eleyans, 17.
Tristan da-Cunha, Comidocalye, 172, 319 ; Farveo, 28 os, Iypalatema, 233.
Tropical Zone, diatrilution, 445
Tubulina, Carter, 9 .
Umbela, 36.
Umbelhularia groalaniliva, 352
Uncimath, 37, 48.
Uucinataria, 266; bathymetrical distribution, tō7, 458.

Uphinataria daissuni, 63.
Valenciennes, Ityalonema, 181.
「asella (=Hotlmia sacues), 237.
Ventriculites, 8.
Ventriculitidar, 15,
Verticils, double, 907.
Vitrea, 7.
Vitreo-hexactinellida, 9.
Vitreous fibre, 27.
Fotculina, 0 . Schmidt $r=$ Oyrkulor), 332.

$$
\text { sigabeci, } 16
$$

Vommaer, 3 .
W'alcoth, fossil Euplectollid, 63,
Wialteria, n. gon., 96, 369.

- Ifemaingit, n , 41., 96, 369 (Ple ix., 5. xi.).

Weltner, Aphrocullivies, 310; fossil forms, 16.
West Hebrides, Hyajoncana, 213, 382 .
West Indies, Aulocyetio, 406 ; Ductylocalyo, 403 ; Mijliuaia, 405; Scleroptegma, 101.
Witefieli, R. P1, fossil Euploctellii, 63.
Willemoes Suhm, Euptertella, 61.
 nena mírabiles, 186.
Toung forme, Poliopoyion, 256 .
Foung, M. and I., fosil IIgulorana, 188
Zebin, Guteromozfia, 161, 378, Explectella, 3G6, Entrectlla apiexyillam, 72; Buvete, 298; Hijaloncoid, 385: Pherorema, 246, 35\%, Poljiophus, 133 ; Sclerathaname, 33π; Scm. भmella, 261.
Zittel, Aplirvevillisen 309, 310; (lasaification, 11 . Darlytacaly, 34π; phylogeny, 491.

POSTSCIIPT

Latamites, Polyrkubdus and Polylophus are preoceupied as gencric names 1 propose, therefore, to substitnte Balanella for Balanites, Pleorhabidus for Polyrhubdus and Lopiocalyp for Polylophus,

[^0]: + Uber Euphet lla axpergillum, 1868, j. 1.

[^1]:
 = O. Schmidt, Grundzige cianr Spongionfaum des atlant Gebietes, 1870.

[^2]: 'AManill e II C\%, L beico Alaid d ITHa, xiii, 1078

[^3]:

[^4]:

[^5]:

[^6]: thhil. Trams, vol, elix. p. Jo.

[^7]: ${ }^{1}$ Ango mull Ming. Nisf. Hist, 185s.

[^8]: 1 Spongien des Meerigsens von Mtexiko, ii. p. 3s, Taí v. ing. 3.

[^9]:

[^10]:
 : On the Anutomy nul Ply

[^11]:

 Axn. mad Hogs. Akt, Hist, ser. 3, vol. xix. pp. H, 138.

[^12]: ${ }^{1}$ Archiz f. Natirganeth, vol. i. pp. $81-89,1867$.
 ${ }^{1}$ Lor. vil., p. 898
 ${ }^{6}$ IFoc. Zool Soc. Lomit, 14. 118, 18 Bea

[^13]: * Proc. Zool Soc Lond, Fp, 499-5 50 .
 ${ }^{\prime}$ Ueber Euplectella aspergillam, I. 4, 1868.
 "Arclizu nérlanil \&s, omet. ct watur, vol. iii. p. 458.

[^14]:

 (2OOL CHALL EXe-VAMT HIL-1886.)
 G85 8

[^15]: ${ }^{1}$ Ahen and Mag. Nout. His', ser. 4 , vol. sii. p. 342
 ${ }^{4}$ Aun, aid May. Nat. Hill, aer. 4, vol. siin. pp, 44-48:

[^16]: 1 Proc, Zood, Soc, Londen, p. $503_{2} 1875$.

[^17]:
 ${ }^{2}$ The Atlantic, vol. L. pi. 138-140.

[^18]: 1 Zritocho. f. vism Zool., BL. xxvi. p. IxxiiL
 ${ }^{1}$ Sonee by a Saturalist on the Challenger, 7872.

[^19]:

 ${ }^{3}$ Amom, Journ. Fich med Atrg, 1881, vol. xxil. p. 301, 3\%5,

[^20]: (2001- CEALLE EXY.-RAHI LIIT,-1886.)

[^21]: ${ }^{1}$ Comptes remlus, xciii. Pp, 871-031; Aun, and Mag. Nat. Fint., ser. 5, vol, ix. p. 46.
 ${ }^{2}$ La vie au fonl dee mers, 1. 282,1 I. iii,

[^22]:

[^23]: ${ }^{2}$ Zoc cit, pL xif. fig. D.

[^24]: 1 The loug tetricts which ane representel by Marshall in his diagramatie figure (loc cit., pl. xv. fig. 54, ce), as principilis of the oblique spienlar iamis, I have sought for in vain fit this young epecimen.
 ${ }^{2}$ Lae, cit, $\mathrm{T}^{\text {L }}$, xr , fig, 57.

[^25]:
 ${ }^{2}$ Dict d. Sci, Nat, voL Ix. pu $492 . \quad{ }^{3}$ Blatoville, loo eui., is 492
 ${ }^{+}$Vorage de ${ }^{1}$ Astrolahe, Zool, p. 302.

[^26]: ${ }^{1}$ Manuel d'Actinologie, 1834,
 : Yol. 1x. pp 493, 599.
 ${ }^{2}$ Manuel d'Actinologie, Atlas, pli. xcii. fig. 5.

[^27]: ${ }^{1}$ Ann, and Mag. Nat. Mït, ser. 4, voL. i. p. 114, 1868. $=$ Loc. cit, p. 126.

[^28]: by no means cass to recoucile with the above supposition, numely, that in the Voyage de VAstrolate Quoy and Gaimard note that theiv apecimen was presented to thom hy Mr. Nerkus, gorernor of the Molnecas, In order to reconcile the two statemens it must be accepted that the elegaat form which Mir. Merkus iresented did not cone from the Moluccas, liat from the lile of Burbon.

[^29]:

[^30]: ${ }^{1}$ Ann, and Mag. Nat. Hist, 8et, - , vol. i. pl. iv.
 = Zeitschir-f. xciss. Zool, Bd. xxv. p. 211, 1875.

[^31]:

[^32]:

[^33]: ${ }^{1}$ Pruc. Liog. Int., No, 54, p. 258, 184.

[^34]: ${ }^{1}$ The Depths of the Siva, 1873
 ${ }^{3}$ Loc, cuit, Ahs 10, 11 .
 ${ }^{4}$ Auric and Mag. Sat. Mist., 湤; 7, vol. vi. p. 436

[^35]:

 - Zailuchx f, winas Zonl, BLL xxvii. p. 1eL
 ${ }^{\text {a }}$ Spungien don Meerbinsers von Mexico, p, 05, 1880 .

[^36]: ${ }^{1}$ Quirl a a short round stick provided with a toothed dise on one extremity.
 ${ }^{-}$La vie au fond des mers, p. 285 , fig. xeii., 1885.

[^37]:

[^38]: ${ }^{1}$ Grundzitge ciner Spongienfiunin ile atlaut Gebietes, p. 12.

[^39]: ${ }^{1}$ Awh. and Mag. Nat. Mist, ser. 4, vol, xv., pt. x. fige 1.

[^40]: ${ }^{1}$ Anw. nud Mag. Nat. Hist., ser. 4, Tol. x. p. 68.

[^41]: ${ }^{1}$ dan. and May, Nat. Hist, ser. 4, vol, x. Ip $=137,138$.
 ${ }^{3}$ Amy, and Mag. Fat. Hist, ser. 4, rot. xi. p. 270.
 ${ }^{2}$ The Depths of the Sea, p. 418, 1873 .

 - Anw, and Mag. Nat. Miat, Ef. 4 , sol xii p. 361 .

 Ggis 18

[^42]: ${ }^{1}$ Aun, und Mag. Nitr. Mit, Rer. f, vol. xr. phe x. fig. f.

[^43]: ${ }^{1}$ Aun. und May. Nak. Mist, fer. 4, vol. x. p. 112.
 ${ }^{2}$ Ann, and Mug. Not. Hist, ser. 4, vol. x. Pp. 136-137.
 ${ }^{3}$ Zoitiohr, f. wies, Zool., Bd, xxvii. p. ISG.

[^44]: ${ }^{1}$ Iroc. Zool. Soc. Lond.e. p. 461, 1572.

[^45]: (zooL CHaLL BXP-PAITT LILL-1887.)

 Gge 23

[^46]: ${ }^{1}$ Synopis of the Contents of the Britinh Mrisum, ed. 27, 1830, Landon, 12 now,
 ${ }^{2}$ Prach Zooh. Soc. Lond., ph. iil. p1, 63-65.

[^47]: ${ }^{7}$ Mine-Eilwards and Jules Mitme, Monograph of the Eritish Fossil Corals, 1t S1,
 ${ }^{3}$ Ann, anil Mag. Nat. Mitionert, 2, wol. vi. p. 306.

[^48]: ${ }^{1}$ Anm, and Muy. Nut. Hist, ser. 3, vol. iv. p. 439 .
 "Asu, and A/ug. Nut. IFist, Ber. 3, vol. v. p. 220.
 ${ }^{1}$ Conaptes rondar, April 23, Isb0, vol, 1. p. 792

 * Symbiola ad polypa hyalochrotiles spectanter

 4 Monatiser, i. L. prows Akid. d. Wiss Berlin, p. 173.

[^49]: 1.Menctiber. d. k. prouss Ahail. 4. Wiss. Barlin, 1861, p, 450.

[^50]:
 ${ }^{3}$ Anh, anit Mag. Nat. Hist, sur. 3, rol. xvili. p. 397.

 ${ }^{4}$ Froe Zool Soc. Lonl, p. 18, 186 万.

[^51]:

 1 Ann. und Ahyy. Nat. Hist, set, 4, vol. if. p. 971, 1868
 (200L. CHALL EXP.-PAMT LIAL-1887.)

[^52]:

 "Loen int, p. 275.

[^53]: ${ }^{1}$ Aun mid Mag. Nol. Hist, Her. 4, vol ii. 11. 383
 F Quart. Jourw. Micr. Sci, , 1. 73, 1870,

[^54]:
 ${ }^{4}$ Anu, aud May. Nit. Hiuta Eer. 4, vol xv. p. 377.

[^55]: ${ }^{4}$ Loce cit, pie xxi. flye 3 , at

 ${ }^{3}$ Zoitachr.f. wins. Zoot, 1850, Suppl-Bh xxv, p. 142
 4The Atlantic, 1877, vol. L p. 273.

[^56]: ${ }^{1}$ Ann. ard Stag. Nat. Miat., ser. 4, rol. xx. pr 425, $\quad{ }^{3}$ Proc. Zool. Soe. Lond, p. 461.
 ${ }^{3}$ O. Schmilt, Spongion dem Meerriusens von Mexico, 1879 and 1880, p. G4.
 ${ }^{1}$ Anil. and Mag. Nat. Hist, sees. 5, vol. vi. 1. 436

[^57]: ${ }^{1}$ Anut, und Mag, Nat, Hist, ser. 4, vol. sii. p. 3i2, and pl. xiii. fig. 2e.

[^58]: ${ }^{1}$ Too few rays have been represented in $\mathrm{B1}$, XNX. fáa 13. Therv are from thirteen to Bixteen.

[^59]:
 ${ }^{1}$ Lone cit., Tal, xvil Hige 8 t

[^60]: ${ }^{3}$ Aan uul May, Nat, Hish, aer. 4, vol. sv, 14. 327.
 ${ }^{3}$ Lac. cit, ${ }^{\text {ju }}$, xxi. fig. S.

 - Loc, eill, fil. xxi. fig. 9.

[^61]: ${ }^{1}$ Proc. Acad, Nat. Sc. Philut, 1868, p, 9.
 ב Proe Acad NaL Sch. Fhillad (ISEA),
 ${ }^{3}$ American Naturaliat, vol. iv, pp, 15-2g, fig 1. 'Loc. cit, [1. 21, 29.

[^62]: ${ }^{1}$ Asoll and May, Nat. Hist, zur, 4, vol, v. pp. 189-186.
 ${ }^{2}$ Spongien des utlantischen Gebietes.
 ${ }^{3}$ Anit. and May. Nat. Mist, aen. 4, vol. xy, p. 118 .
 ${ }^{4}$ Ann, and Mag. Not. Hist, ser. 1, wol. vi. pp, 300-312, 1870,

[^63]: 1.Ann, and Ming. Nac. Hist, ser, 4, vol, ix. p. 450.
 ${ }^{2}$ Ann, and May. Nat. Hint, ser. 3, vol .xi. p. 235.
 ${ }^{3}$ Ann, und May. Nat. Hinf, set. 4, vol, si, pl g7t-288.
 'Ans. and Meg. Nat. Hist, ser. 4, rol xii. pp. 349-1ig.

[^64]: ${ }^{1}$ Ann, and Mag. Nat. Hist, set. 4, vol. xv, p. 385.
 ${ }^{2}$ Loc. cil., p. 389.
 ${ }^{3} Z Z i t t o c h r$. f. miss. Zool, 1876 , rol. $\mathrm{xxviL} . \mathrm{pp} .113-136$; vide p. 130.
 ${ }^{1}$ Asn. and Mag. Nat. Hid,, ser. 5, vol. vi. p. 436.
 ${ }^{5}$ Die Spongien des Meerbusens von Mexico, 1880, Pp. 64, 65.

[^65]: ${ }^{1}$ Phit. Trans., 1859, p. 701.

[^66]: ${ }^{1}$ The Atlantic, vol. i. p. 174-176.

[^67]:

[^68]: ${ }^{1}$ Avw. and Mag. Noth. Hist, ser, 4, vol ii. ip. 373-377.
 ${ }^{2}$ Amu anul Mag. Nut. Hist, ser. 1, vol. x. p. 76, 1872.
 ${ }^{2}$ Ans. and Mag. Nat. Mat, ser. d, vol. x. p. 116,1572
 ${ }^{\prime}$ Avn. and Mag. Nut. Hist, ger. 4, vol. x. p. 134
 ${ }^{5}$ Amp and Mag. NaL Hiah, ret. 4, rol. xii. p. 162, 1873.
 ${ }^{6}$ Aum, avd Mog. Nat. MisL, mer, 4, vol, xvi. pu 190, 180
 「Zeitschir. f. weini Zool., BL xxv., SuppL, pp. 219-295.

[^69]: ${ }^{1}$ Trams, Limn. Soc. Lond., vol. xxiii., pl. xxi., 1857.

[^70]: ${ }^{1}$ Lut, octs.

[^71]: ${ }^{1}$ Proc. Zool, Soce Liunl, p, 3292.
 ${ }^{3}$ Spongien der Athmtiachen Gebietei, 1×10.

[^72]: " dwu. und May. Nat Hfint, 186s.
 ${ }^{4}$ Mouthly Mier. Jown,, November I870.

[^73]: 1 Lice cith, 11. 1xic. fig. 12, 13, 14.
 ${ }^{2}$ Auh. aul Mug. Nat. Hist, ser. d $_{\text {, }}$ vol xii. p. 300.

[^74]: ${ }^{2}$ Proc. Zool. Soc. Lond, 1875, 18i6.

[^75]: ${ }^{1}$ An and Mog. Not. IVat., vol. sii. in 118, 1873.
 ${ }^{2}$ Mouthly Micr. Journ., W. Wiv. Lig-19, 1570.

[^76]:

[^77]:
 ${ }^{2}$ Mithuil, K. Znot, Wina, Irraden, ii. p. 27%.

[^78]: ${ }^{2}$ Anth, mall May. Nat. Hith, Bur. 4, vol. xix. p 122.

[^79]: ${ }^{1}$ Zeitachr. f. wrias, Zool, Bd. xxy., SuppL., pl, xiii.

[^80]: ${ }^{1}$ Zaitechr, f. wish, Zool, Dil. xxvii. p. 113.

[^81]: Spongien des Meerbasens von Slexieo, β - 47 .
 ${ }^{2}$ Ueher die Fortschritte der wissonschaml. Leistungen in der Niturgeschichte der Sponglen, wahrenil der Jahre 1870-1879, Archiv f. Nntargesch., 1883.

[^82]: ${ }^{1}$ Aron. and Mlay. Nat. Hiat, wer. 3, vol. ii, p. 294; Proc. Zool. Soc. Lond, vol. xxvi.
 ${ }^{2}$ Proce Zool Soc. LomL, p. 607, 1807.

[^83]:
 ${ }^{2}$ Proc. Zool Soc. Loul, Ib 75
 'Quard. Journ. Nicr. Sci, January 1870, pp. 7\%-70,

[^84]: 1.Ann, and Mag, Nat, Fist., per, 4, vol. xvi. po 100.

 1Spamien den Meerbuens von Mesico, 1679-so, p is.
 \$. Journ. Louth, Soc. Doml., vol. xy. [ip. 324-329.

[^85]: 1 Compter roulus, 1881, vol. xuiii. pp, 87 t -931 ; Anu. and Mag. Nat. Hist, vol. ix. p. 46.
 ${ }^{2}$ Ahhaull, it brier. Ahad, $18 \pi / 2$ p. 40.
 ${ }^{3}$ Zur Kenntniss der Spongien, 1852, P. 32.

[^86]: ispongien des Meerimsena von Mexico, p. 50 ,
 ${ }^{3}$ Ann. and Mag. Nat. Hist, ber. 4, vol. i. 1. 123.
 TProc, Zool. Soc. Lond., 1869, pl, xxi. figs. 2-4.

[^87]:

[^88]: ${ }^{1}$ In the figure (PL. LXXXVIII. fig. 3) the prickles of the madial ray ane by mistake provided with incarved, instical of jerpundicularly disposed prongh
 ${ }^{\text {Phe }}$ Hy miake, the gatral acopule ure omittel tu the figure.

[^89]:

[^90]: -The scopula figured on PI. XCIV, figs, G_{2} 9, do not belong to this form. They are easual intruiens.

[^91]: The name "Volvulina" has been applied to a Casteropod since 1865 .
 ${ }^{1} 9$, Sclsmidt, Spongien des Meerlnsens von Mexico, I. $58,1880$.

[^92]: ${ }^{1}$ Hallo mul May. Nat. Hat, wr. 1, vol, vi. 12.212

[^93]:
 ${ }^{3}$ Len cit, 1, 291 .

[^94]: ${ }^{1}$ Tocicih, p, e97.

[^95]: ${ }^{1}$ Znitadr. f. rists, Zoot, Thl, sxw, Sutph L

[^96]: I Proc. Zool. Sic. Lond., vol. ix. p. 86 ; Ann. and Mag. Nal. Hite, ter. I, vol, ix. p. 804.

 - October 17 so

 - Leoc, cit, 1). 68.

[^97]: t Rozier, Journal de Plysique, October 1780, t, xvi. p. 315,
 $=$ Loc cit., fig. 1 .

 * Proce Zoot Soc Loud. 186it, p. 505.

[^98]: ${ }^{3}$ Figurei bo, eit, pl. xxvi., fig, 2 ,
 ${ }^{2}$ Proc. Zool. Soc. Lond., 1869, p. 70.

[^99]:
 of the gemus

 4 Lor e2., 14829 "Lorcit., j. 321.

[^100]: 10. Sithnidt, Spongionfanmales Atfant. Gebietes, p. 18, 1570

[^101]: ${ }^{1}$ \%eitachro /. wiok Zool, Bd exvii. 1- 132
 ${ }^{2}$ Armi and May. Ant, Hist, sar, 4 , vol, xx, pp 2HD-300.
 ${ }^{4} \mathrm{Vol}$, ii. p1 $122-133$.

[^102]: 1 Proc. ZooL. Soc. Lond, 1869, ps. 77, pi. iii.

[^103]: 1 Lomg rit, P. 50 .

[^104]:

 - Properly, culloguthus, from ciaceor, a cup,

[^105]: 1. Ame and May. Not Hith, sec. 4, vol xiil p. ams.

[^106]:

[^107]: 1 Prone Zool, Sare Lond, 1807, 1. THE

[^108]:

[^109]: ${ }^{1}$ Mitheil d. Zool. Mructam, Drestra.

[^110]: ${ }^{1}$ Spmgien des 3terhusem von Stexion p. $5 \pm$

[^111]: 1 Proce Zook. Soc. Lond

 ${ }^{2}$ buc. citmpl. xaiii. Hg \&

[^112]: (zOML GHALL EXIL-VABY LHL-1887.)

[^113]: 1 Spangiet dis Meerbusent yan Mexico, p. H., Thf. vii. fig i.
 ${ }^{2} 0$. Schumid, tac, cil, 1, 50 .

[^114]: Dadytucalyrer patello, $3 \not 48$

[^115]:

[^116]: ${ }^{1}$ Zaifichr. f, wrian Zool, 1875, Bh, xxv, Suppl, p, 150,

[^117]: ${ }^{1}$ Narr, Chall. Exp, mol. i. part f. p. 449.

[^118]: ${ }^{3}$ Spong, Meerb. Mexico, 1880 .

 - La rie un fonit teo Mens
 ${ }^{4}$ Let expleration s smesmerince

[^119]:

[^120]:

[^121]: ${ }^{1}$ Alhanill. Kinight, Pream Aheol., 1586.

[^122]: ${ }^{1}$ Paliromtologit, E. pR 299, 200,

[^123]:

[^124]: ${ }^{1}$ PWis Linm. Soe N.S.IT, vol. x. p. 5.
 ${ }^{4}$ Grundzuge einer Spongtenfaum des atiantischen Gelietee, 18.0, I. 5.

[^125]: ${ }^{5}$ Loc. sit., Bdi. i. p. 352

[^126]: ${ }^{1}$ Gramiange siner Spongienfauna de\% atlautisehen Gebieter, pris.

[^127]: (8voL chati EXT,-VAIT LiH.-1887.)

