Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Very high resolution marine 3D seismics in shallow water environments
Missiaen, T.; Versteeg, W.; Henriet, J.-P. (2004). Very high resolution marine 3D seismics in shallow water environments, in: 32nd International Geological Congress, Florence, Italy, August 20-28, 2004. Abstract Volume. pp. 817 (Abstract 175-3)
In: (2004). 32nd International Geological Congress, Florence, Italy, August 20-28, 2004. Abstract Volume. IGC: Florence. 2 vols pp.

Available in  Authors 
Document type: Summary

Keyword
    Marine/Coastal

Authors  Top 
  • Missiaen, T.
  • Versteeg, W.
  • Henriet, J.-P.

Abstract
    The adaptation of 3D techniques to very high resolution* shallow water studies has been progressing steadily over the last years. Cost-effective VHR 3D seismics is of great interest both in the field of engineering geophysics as well as for geological and geotechnical site investigations. Still, no well established practice for VHR 3D survey design seems to exist and few studies have been published on the relationship between acquisition parameters, processing costs and the quality of the processed data. (* the term "very high resolution" refers to mean source frequencies >1 kHz and expected resolution in the sub-meter range).The design of VHR 3D marine surveys does not simply reduce to a mere downscaling problem, it also requires specific strategies. The approach will not only depend on the geological target and the desired resolution, but will also be dictated by the field conditions and the available budget. The optimum acquisition strategy will necessarily be a compromise. On the one hand there is the need for high resolution and this requires the use of high frequencies. On the other hand there are the constraints placed on sampling - very high frequencies require very small sampling intervals.Working in shallow water environments will imply constraints on the acquisition geometry (trace interval, streamer spacing, line spacing, shot interval). Considering the frequency content of the seismic data and the desired resolution, accurate positioning is needed to prevent destructive stacking and obtain optimal imaging. Unfortunately, current navigation technology does not allow real-time positioning of the array elements with sufficient accuracy in a costeffective way, and additional geometry corrections may be needed.The compact, flexible acquisition system "Opus3D" developed at RCMG has allowed to further scale down the 3D seismic method to ultra-high resolutions and dm scale in a modest and cost-effective way, without requiring complex field procedures and processing. The system is designed for studies in shallow water, providing limited penetration and aimed at target sites of limited lateral extent. Acquisition and positioning constraints limit the acquisition system to nearshore studies. In protected areas and on rivers, canals and lakes the array may also be used as a stand-alone system.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org