Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Physiological responses of estuarine animals to cadmium pollution
Theede, H. (1980). Physiological responses of estuarine animals to cadmium pollution. Helgol. Meeresunters. 33(1-4): 26-35. https://dx.doi.org/10.1007/BF02414732
In: Helgoländer Meeresuntersuchungen. Biologische Anstalt Helgoland: Hamburg. ISSN 0174-3597
Also appears in:
Kinne, O.; Bulnheim, H.-P. (Ed.) (1980). Protection of life in the sea: 14th European Marine Biology Symposium, 23-29 September 1979, Helgoland. Helgoländer Meeresuntersuchungen, 33(1-4). Biologische Anstalt Helgoland: Hamburg. 772 pp., more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal

Author  Top 
  • Theede, H.

Abstract
    Toxic effects of cadmium contamination may be observed at all levels of organismic organization. In estuarine areas the sensitivity of euryhaline species to acute Cd toxicity is strongly modified by various abiotic factors, whereas long-term threshold values are less dependent on environmental parameters. Experiments with larval stages of the mollusc Mytilus edulis reveal that Cd effects on life functions such as development and growth are differentially modified by temperature and salinity. High Cd concentrations can be accumulated by adult bivalves of coastal areas without signs of physiological damage. Mechanisms of heavy-metal detoxication in these molluscs seem to be quite different from those known to exist in vertebrates. Among decapod crustaceans, stenoecous species tend to exhibit higher rates of Cd uptake than euryoecous ones. Rates of Cd uptake and of accumulation depend on external and internal factors. In adult Nereis succinea individuals sublethal Cd effects have been recorded on growth and food conversion (in terms of energy content).

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org