Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Caught in the food web: complexity made simple?
Pomeroy, L.R. (2001). Caught in the food web: complexity made simple? Sci. Mar. (Barc.) 65(S2): 31-40. https://dx.doi.org/10.3989/scimar.2001.65s231
In: Scientia Marina (Barcelona). Consejo Superior de Investigaciones Científicas. Institut de Ciènces del Mar: Barcelona. ISSN 0214-8358; e-ISSN 1886-8134
Also appears in:
Gili, J.-M.; Pretus, J.L.; Packard, T.T. (Ed.) (2001). A Marine Science Odyssey into the 21st Century. Scientia Marina (Barcelona), 65(S2). Institut de Ciències del Mar: Barcelona. 326 pp. https://dx.doi.org/10.3989/scimar.2001.65s2, more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal
Author keywords
    food web, microbial food web, energy flux, community structure

Author  Top 
  • Pomeroy, L.R.

Abstract
    Several historically separate lines of food-web research are merging into a unified approach. Connections between microbial and metazoan food webs are significant. Interactions of control by predators, defenses against predation, and availability of organic and inorganic nutrition, not any one of these, shape food webs. The same principles of population ecology apply to metazoans and microorganisms, but microorganisms dominate the flux of energy in both marine and terrestrial systems. Microbial biomass often is a major fraction of total biomass, and very small organisms have a very large ratio of production and respiration to biomass. Assimilation efficiency of bacteria in natural systems is often not as high as in experimental systems, so more primary production is lost to microbial respiration than had been thought. Simulation has been a highly useful adjunct to experiments in both population theory and in studies of biogeochemical mass balance, but it does not fully encompass the complexity of real systems. A major challenge for the future is to find better ways to deal with the real complexity of food webs, both in modeling and in empirical observations, and to do a better job of bringing together conceptually the dynamics of population processes and biogeochemistry.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org