Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Physical cues controlling seasonal immune allocation in a natural piscine model
Stewart, A.; Hablützel, P.I.; Watson, H.V.; Brown, M.; Friberg, I.M.; Cable, J.; Jackson, J.A. (2018). Physical cues controlling seasonal immune allocation in a natural piscine model. Frontiers in Immunology 9(582): 1-15. https://dx.doi.org/10.3389/fimmu.2018.00582
In: Frontiers in Immunology. Frontiers Research Foundation: Lausanne. e-ISSN 1664-3224
Peer reviewed article  

Available in  Authors 

Keyword
    Gasterosteus aculeatus Linnaeus, 1758 [WoRMS]
Author keywords
    Gasterosteus aculeatus, immunity, immunoregulation, seasonality, photoperiod, temperature

Authors  Top 
  • Stewart, A.
  • Hablützel, P.I.
  • Watson, H.V.
  • Brown, M.
  • Friberg, I.M.
  • Cable, J.
  • Jackson, J.A.

Abstract
    Seasonal patterns in immunity are frequently observed in vertebrates but are poorly understood. Here, we focused on a natural piscine model, the three-spined stickleback (Gasterosteus aculeatus), and asked how seasonal immune allocation is driven by physical variables (time, light, and heat). Using functionally-relevant gene expression metrics as a reporter of seasonal immune allocation, we synchronously sampled fish monthly from the wild (two habitats), and from semi-natural outdoors mesocosms (stocked from one of the wild habitats). This was repeated across two annual cycles, with continuous within-habitat monitoring of environmental temperature and implementing a manipulation of temperature in the mesocosms. We also conducted a long-term laboratory experiment, subjecting acclimated wild fish to natural and accelerated (×2) photoperiodic change at 7 and 15°C. The laboratory experiment demonstrated that immune allocation was independent of photoperiod and only a very modest effect, at most, was controlled by a tentative endogenous circannual rhythm. On the other hand, experimentally-determined thermal effects were able to quantitatively predict much of the summer–winter fluctuation observed in the field and mesocosms. Importantly, however, temperature was insufficient to fully predict, and occasionally was a poor predictor of, natural patterns. Thermal effects can thus be overridden by other (unidentified) natural environmental variation and do not take the form of an unavoidable constraint due to cold-blooded physiology. This is consistent with a context-dependent strategic control of immunity in response to temperature variation, and points to the existence of temperature-sensitive regulatory circuits that might be conserved in other vertebrates.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org