Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Aerosolizable marine phycotoxins and human health effects: in vitro support for the biogenics hypothesis
Van Acker, E.; De Rijcke, M.; Beck, I.M.; Huysman, S.; Vanhaecke, L.; De Schamphelaere, K.A.C.; Janssen, C.R. (2020). Aerosolizable marine phycotoxins and human health effects: in vitro support for the biogenics hypothesis. Mar. Drugs 18(1): 46. https://dx.doi.org/10.3390/md18010046
In: Marine Drugs. Molecular Diversity Preservation International (MDPI): Basel. ISSN 1660-3397; e-ISSN 1660-3397
Peer reviewed article  

Available in  Authors 

Author keywords
    sea spray aerosols; phycotoxins; oceans and human health; harmful algal blooms; yessotoxins; biogenics hypothesis; mTOR pathway

Authors  Top 
  • Van Acker, E.
  • De Rijcke, M.
  • Beck, I.M.
  • Huysman, S.
  • Vanhaecke, L.
  • De Schamphelaere, K.A.C.
  • Janssen, C.R.

Abstract
    Respiratory exposure to marine phycotoxins is of increasing concern. Inhalation of sea spray aerosols (SSAs), during harmful Karenia brevis and Ostreopsis ovata blooms induces respiratory distress among others. The biogenics hypothesis, however, suggests that regular airborne exposure to natural products is health promoting via a downregulation of the mechanistic target of rapamycin (mTOR) pathway. Until now, little scientific evidence supported this hypothesis. The current explorative in vitro study investigated both health‐affecting and potential health‐promoting mechanisms of airborne phycotoxin exposure, by analyzing cell viability effects via cytotoxicity assays and effects on the mTOR pathway via western blotting. To that end, A549 and BEAS‐2B lung cells were exposed to increasing concentrations (ng∙L−1 – mg∙L−1) of (1) pure phycotoxins and (2) an extract of experimental aerosolized homoyessotoxin (hYTX). The lowest cell viability effect concentrations were found for the examined yessotoxins (YTXs). Contradictory to the other phycotoxins, these YTXs only induced a partial cell viability decrease at the highest test concentrations. Growth inhibition and apoptosis, both linked to mTOR pathway activity, may explain these effects, as both YTXs were shown to downregulate this pathway. This proof‐of principle study supports the biogenics hypothesis, as specific aerosolizable marine products (e.g., YTXs) can downregulate the mTOR pathway.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org