Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Highly polymorphic mitochondrial DNA and deceiving haplotypic differentiation: implications for assessing population genetic differentiation and connectivity
Fourdrilis, S.; Backeljau, T. (2019). Highly polymorphic mitochondrial DNA and deceiving haplotypic differentiation: implications for assessing population genetic differentiation and connectivity. BMC Evol. Biol. 19: 92. https://dx.doi.org/10.1186/s12862-019-1414-3
In: BMC Evolutionary Biology. BioMed Central: London. ISSN 1471-2148; e-ISSN 1471-2148
Related to:
Fourdrilis, S.; Backeljau, T. (2019). Correction to: Highly polymorphic mitochondrial DNA and deceiving haplotypic differentiation: implications for assessing population genetic differentiation and connectivity. BMC Evol. Biol. 19(1): 103. https://dx.doi.org/10.1186/s12862-019-1428-x, more
Peer reviewed article  

Available in  Authors 

Keywords
    Melarhaphe neritoides (Linnaeus, 1758) [WoRMS]
    Marine/Coastal
Author keywords
    Differentiation statistics; Gene flow; Melarhaphe neritoides; Migrate-n;mtDNA hyperdiversity; Mutation rate

Authors  Top 
  • Fourdrilis, S.
  • Backeljau, T.

Abstract

    Background

    Hyperdiverse mtDNA with more than 5% of variable synonymous nucleotide sites can lead to erroneous interpretations of population genetic differentiation patterns and parameters (φST, DEST). We illustrate this by using hyperdiverse mtDNA markers to infer population genetic differentiation and connectivity in Melarhaphe neritoides, a NE Atlantic (NEA) gastropod with a high dispersal potential. We also provide a recent literature example of how mtDNA hyperdiversity may have misguided the interpretation of genetic connectivity in the crab Opecarcinus hypostegus.

    Results

    mtDNA variation surveyed throughout the NEA showed that nearly all M. neritoides specimens had haplotypes private to populations, suggesting at first glance a lack of gene flow and thus a strong population genetic differentiation. Yet, the bush-like haplotype network, though visually misleading, showed no signs of phylogeographic or other haplotype structuring. Coalescent-based gene flow estimates were high throughout the NEA, irrespective of whether or not mtDNA hyperdiversity was reduced by removing hypervariable sites.

    Conclusions

    Melarhaphe neritoides seems to be panmictic over the entire NEA, which is consistent with its long-lived pelagic larval stage. With hyperdiverse mtDNA, the apparent lack of shared haplotypes among populations does not necessarily reflect a lack of gene flow and/or population genetic differentiation by fixation of alternative haplotypes (DEST ≈ 1 does not a fortiori imply φST ≈ 1), but may be due to (1) a too low sampling effort to detect shared haplotypes and/or (2) a very high mutation rate that may conceal the signal of gene flow. Hyperdiverse mtDNA can be used to assess connectivity by coalescent-based methods. Yet, the combined use of φST and DEST can provide a reasonable inference of connectivity patterns from hyperdiverse mtDNA, too.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org