Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

QWIP: A quantitative metric for quality control of aquatic reflectance spectral shape using the Apparent Visible Wavelength
Dierssen, H.M.; Vandermeulen, R.A.; Barnes, B.B.; Castagna, A.; Knaeps, E.; Vanhellemont, Q. (2022). QWIP: A quantitative metric for quality control of aquatic reflectance spectral shape using the Apparent Visible Wavelength. Front. Remote Sens. 3: 869611. https://dx.doi.org/10.3389/frsen.2022.869611
In: Frontiers in Remote Sensing. Frontiers Media S.A.: Lausanne. e-ISSN 2673-6187
Peer reviewed article  

Available in  Authors | Datasets 

Keyword
    Marine/Coastal
Author keywords
    remote sensing reflectance, ocean color, hyperspectral remote sensing, hydrologic optics, water quality, QA/QC - quality assurance/quality control, water-leaving reflectance spectra

Authors  Top | Datasets 
  • Dierssen, H.M.
  • Vandermeulen, R.A.
  • Barnes, B.B.
  • Castagna, A.
  • Knaeps, E.
  • Vanhellemont, Q.

Abstract
    The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the water-leaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simple metric developed from a global dataset spanning blue, green and brown water types to assess the quality of a measured or derived aquatic spectrum. The Quality Water Index Polynomial (QWIP) is founded on the Apparent Visible Wavelength (AVW), a one-dimensional geophysical metric of color that is inherently correlated to spectral shape calculated as a weighted harmonic mean across visible wavelengths. The QWIP represents a polynomial relationship between the hyperspectral AVW and a Normalized Difference Index (NDI) using red and green wavelengths. The QWIP score represents the difference between a spectrum’s AVW and NDI and the QWIP polynomial. The approach is tested extensively with both raw and quality controlled field data to identify spectra that fall outside the general trends observed in aquatic optics. For example, QWIP scores less than or greater than 0.2 would fail an initial screening and be subject to additional quality control. Common outliers tend to have spectral features related to: 1) incorrect removal of surface reflected skylight or 2) optically shallow water. The approach was applied to hyperspectral imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), as well as to multispectral imagery from the Visual Infrared Imaging Radiometer Suite (VIIRS) using sensor-specific extrapolations to approximate AVW. This simple approach can be rapidly implemented in ocean color processing chains to provide a level of uncertainty about a measured or retrieved spectrum and flag questionable or unusual spectra for further analysis.

Datasets (3)
  • PANTHYR hyperspectral water radiometry Blue Accelerator Platform 2022
  • PANTHYR hyperspectral water radiometry Blue Accelerator Platform 2023
  • TIMBERS: TIMBERS in-situ sensor dataset

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Datasets 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org