Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [311427]
Hydrodynamic conditions in a submerged porous breakwater
Metallinos, A.S.; Klonaris, G.T.; Memos, C.D.; Dimas, A.A. (2019). Hydrodynamic conditions in a submerged porous breakwater. Ocean Eng. 172: 712-725. https://dx.doi.org/10.1016/j.oceaneng.2018.12.038
In: Ocean Engineering. Pergamon: Elmsford. ISSN 0029-8018; e-ISSN 1873-5258
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Boussinesq-type model; Laboratory measurements (2DH); Submerged porousbreakwaters; Surface elevation; Velocity distribution; Wave kinematics

Authors  Top 
  • Metallinos, A.S.
  • Klonaris, G.T.
  • Memos, C.D.
  • Dimas, A.A.

Abstract
    In the present work the applicability of an extended Boussinesq-type model in simulating wave propagation over submerged porous breakwaters, as well as predicting the velocity distribution inside them was studied. The basic solver is able to reproduce wave propagation in practically any water depth over mild sloping bottom. Extension of this model is presented here to cover porous structures and predict wave kinematics in the interior of a permeable rubble mound covering 2DH configurations. Laboratory experiments were undertaken in the Hydraulic Engineering Laboratory, Department of Civil Engineering, University of Patras. Tests with a physical model were performed in order to measure the 2DH free surface elevation and 3D flow velocity in the interior of a porous submerged breakwater under regular and irregular, breaking and non-breaking, short or longer wave attack. The numerical results when compared with test data showed that adequate agreement was achieved in most cases.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org